1
|
Shrivastava M, Aishwarya A, Fontes CMGA, Goyal A. A novel bifunctional type I α-l-arabinofuranosidase of family 43 glycoside hydrolase (BoGH43_35) from Bacteroides ovatus with endo-β-1,4-xylanase activity. Carbohydr Res 2025; 552:109432. [PMID: 40010274 DOI: 10.1016/j.carres.2025.109432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 02/14/2025] [Accepted: 02/18/2025] [Indexed: 02/28/2025]
Abstract
The gut bacterium Bacteroides ovatus harbors a diverse arsenal of glycoside hydrolases (GHs), which play pivotal roles in degrading dietary polysaccharides. In this study, we characterized a novel glycoside hydrolase from family 43 and subfamily 35 (BoGH43_35), cloned from B. ovatus. The 1956 bp gene was expressed in Escherichia coli BL21 (DE3), yielding a homogeneous soluble recombinant enzyme (∼74 kDa) upon purification through immobilized metal-ion affinity chromatography (IMAC). BoGH43_35 exhibited a remarkable specificity for arabinoxylans, with maximum catalytic activity (4.9 U mg-1) against wheat arabinoxylan (low-viscosity), followed by 3.0 U mg-1 against rye arabinoxylan (high viscosity) and beechwood xylan (2.3 U mg-1). Optimal enzymatic performance was achieved at 37 °C and pH 7.0 having kinetic parameters of Vmax 5.7 U mg-1 and KM calculated to be 2.7 mg mL-1 for wheat arabinoxylan. Notably, BoGH43_35 retained stability within an acidic pH range (4-5) and displayed a half-life of 89 min at 30 °C. Protein thermal stability assays revealed a melting temperature (Tm) of 41.0 °C. Thin-layer chromatography (TLC) and 1H NMR analyses of hydrolysed products confirmed the enzyme's dual functionality: an initial α-l-arabinofuranosidase (EC 3.2.1.55) activity, followed by an endo-β-1,4-xylanase (EC 3.2.1.8) activity, as evidenced by the release of xylooligosaccharides, including xylobiose and xylotriose, from xylans. Further structural analysis demonstrated BoGH43_35's ability to hydrolyze monosubstituted arabinofuranosyl residues from α-1,2- or α-1,3-linked arabinoxylan, confirming its type I α-l-arabinofuranosidase activity. This multifunctional enzyme holds potential in the valorization of hemicellulosic biomass and the production of prebiotic oligosaccharides and other biotechnological applications.
Collapse
Affiliation(s)
- Madhulika Shrivastava
- Carbohydrate Enzyme Biotechnology Laboratory, Department of Biosciences and Bioengineering, India
| | - Aishwarya Aishwarya
- School of Energy Sciences and Engineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India
| | - Carlos M G A Fontes
- CIISA - Faculdade de Medicina Veterinária, Universidade de Lisboa, Avenida da Universidade Técnica, 1300-477, Lisbon, Portugal; NZYTech Genes & Enzymes, Estrada do Paço do Lumiar, Campus do Lumiar, Edifício J, 1649-038, Lisbon, Portugal
| | - Arun Goyal
- Carbohydrate Enzyme Biotechnology Laboratory, Department of Biosciences and Bioengineering, India; School of Energy Sciences and Engineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India.
| |
Collapse
|
2
|
Wang W, Zhu J, Wang Y, Long L, Lin Q, Wang J, Ding S. Functional characterization of two GH27 ɑ-galactosidases from Penicillium parvum 4-14 and their differential capabilities upon plant biomass degradation. Carbohydr Res 2025; 551:109428. [PMID: 39965390 DOI: 10.1016/j.carres.2025.109428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Revised: 01/09/2025] [Accepted: 02/10/2025] [Indexed: 02/20/2025]
Abstract
Two new ɑ-galactosidases PpAgl27B and PpAgl27C from Penicillium parvum 4-14 were functionally investigated in this study. Based on the analysis of catalytic domain and phylogenetic tree, PpAgl27B (435 aa) and PpAgl27C (543 aa) belong to glycoside hydrolase (GH) 27 family. After expression in Pichia pastoris, the recombinant PpAgl27B and PpAgl27C showed the highest activities at pH 3.5 and 65 °C, or 4.0 and 45 °C, respectively. Using p-nitrophenyl-α-d-galactopyranoside (pNPGal) as substrate, the Michaelis constant were 0.90 mM for PpAgl27B and 2.54 mM for PpAgl27C. PpAgl27C had a low catalytic activity toward pNPGal and negligible activities on various natural substrates. Differently, PpAgl27B efficiently released galactose from the artificial substrate, raffinose family oligosaccharides, or galactomannans. Hydrolysis of corn bran arabinoxylan (CBAX) 1 or 2 were conducted by PpAgl27B alone or in combination with the enzyme blend E_CBAX1. PpAgl27B released a small amount of galactose (1.7-3.0 mg/g) from the both substrates. Compared with the individual enzymes, the liberations of galactose, xylose and arabinose from the substrates were significantly enhanced by combing PpAgl27B and E_CBAX1. The degrees of synergy of the enzyme combination for the saccharification of CBAX1 or CBAX2 were 1.20 and 1.13, respectively. PpAgl27B showed promising potential for the valorization of galactose-rich feedstocks as well as CBAX.
Collapse
Affiliation(s)
- Wei Wang
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, China
| | - Jiarong Zhu
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, China
| | - Yizhou Wang
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, China
| | - Liangkun Long
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, China; Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, Nanjing Forestry University, Nanjing, 210037, China.
| | - Qunying Lin
- Nanjing Institute for the Comprehensive Utilization of Wild Plants, Nanjing, 211111, China
| | - Jing Wang
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, China
| | - Shaojun Ding
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, China; Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, Nanjing Forestry University, Nanjing, 210037, China
| |
Collapse
|
3
|
Huo C, Sun Q, Teng C, Qiu X, Cai N, Zhong X. Structural characterization of pure xylan from corncob and its effect on xylooligosaccharides yield after enzymatic hydrolysis. Int J Biol Macromol 2025; 309:142932. [PMID: 40203934 DOI: 10.1016/j.ijbiomac.2025.142932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 03/27/2025] [Accepted: 04/06/2025] [Indexed: 04/11/2025]
Abstract
The structure of xylan plays a significant role in the degradation rate by xylanase to product xylooligosaccharides (XOS). In this study, xylan was extracted and purified from corncob, yielding two xylan fractions (WUAX-2, WUAX-3) with purities exceeding 90 %. The structures of WUAX-2 and WUAX-3 were characterized and hydrolysis efficiency was studied in relation to their structures. FT-IR results indicated that although xylan fractions had the same types of functional groups, WUAX-3 exhibited a higher level of -OH, CH, and CO groups compared to WUAX-2. NMR, the vibration signal of WUAX-2 and WUAX-3 was β-(1 → 4) -linked D-lignin unit β-D-xylopyran. X-ray diffraction results confirmed that WUAX-2 was a stable single-crystal structure. Meanwhile, the number of side-chains of WUAX-2 in the liquid was smaller than that of WUAX-3. WUAX-2 and WUAX-3 were hydrolyzed by a high-temperature-resistant xylanase (XynA) and yielded primarily xylohexaose (X6), xylotriose (X3), and xylobiose (X2). The XOS yield of WUAX-2 was 4.25 times higher than that of WUAX-3. These results indicate that the fewer xylan side-chains and substituent groups of xylan, the higher the enzymatic hydrolysis efficiency. The findings provide a deep understanding of the effect of xylan structure on the enzymatic behavior.
Collapse
Affiliation(s)
- Chunyan Huo
- Key Laboratory of Geriatric Nutrition and Health Ministry of Education, Beijing Technology and Business University, No. 11 Fucheng Street, Haidian District, Beijing 100084, China
| | - Qijie Sun
- Key Laboratory of Geriatric Nutrition and Health Ministry of Education, Beijing Technology and Business University, No. 11 Fucheng Street, Haidian District, Beijing 100084, China
| | - Chao Teng
- Key Laboratory of Geriatric Nutrition and Health Ministry of Education, Beijing Technology and Business University, No. 11 Fucheng Street, Haidian District, Beijing 100084, China; Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, No. 11 Fucheng Street, Haidian District, Beijing 100084, China; Key Laboratory of Green Manufacturing and Synthetic Biology of Food Bioactive Substances, China General Chamber of Commerce, Beijing Technology and Business University, No. 11 Fucheng Street, Haidian District, Beijing 100084, China.
| | - Xueyu Qiu
- Key Laboratory of Geriatric Nutrition and Health Ministry of Education, Beijing Technology and Business University, No. 11 Fucheng Street, Haidian District, Beijing 100084, China
| | - Ning Cai
- Key Laboratory of Geriatric Nutrition and Health Ministry of Education, Beijing Technology and Business University, No. 11 Fucheng Street, Haidian District, Beijing 100084, China
| | - Xiufang Zhong
- Key Laboratory of Geriatric Nutrition and Health Ministry of Education, Beijing Technology and Business University, No. 11 Fucheng Street, Haidian District, Beijing 100084, China
| |
Collapse
|
4
|
Pentari C, Mylona EP, Zerva A, Topakas E. Synergistic effects of distinct arabinofuranosidase specificities in lignocellulose degradation by different hemicellulases. Int J Biol Macromol 2025; 302:140575. [PMID: 39900162 DOI: 10.1016/j.ijbiomac.2025.140575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 01/27/2025] [Accepted: 01/31/2025] [Indexed: 02/05/2025]
Abstract
Arabinoxylan is a prevalent hemicellulose type, notably heterogeneous and resistant to biodegradation. Arabinofuranosidases (Abfs) remove arabinofuranosyl decorations of arabinoxylan, thus enabling hydrolysis by xylanases. However, a variety of Abf and xylanase specificities have emerged in recent years, necessitating a deeper understanding of their role in biomass degradation. This work investigates the biochemical features of TtAbf43 from Thermothelomyces thermophila, which specifically removes the O-3-linked arabinofuranose moieties from di-substituted xylopyranoses. The enzyme also exhibited secondary hydrolytic activity on o-nitrophenyl-β-d-xylopyranoside and arabinan. The hydrolysis of pretreated wheat and corn bran substrates was assessed using TtAbf43 and AnAbf51, two enzymes with distinct catalytic specificities. The Abfs enhanced the performance of endo-xylanases TmXyn10 and AnXyn11, promoting the release of xylo-oligomers, while the xylanases, in turn, stimulated arabinose release by the Abfs. Additionally, the Abfs facilitated the endo- and exo-activities of the bifunctional xylobiohydrolase/glucuronoxylanase TtXyn30A for the release of xylobiose and short aldouronic acids from biomass. AnAbf51 also acted in synergy with the acetyl xylan esterase OCE6 and the exo-deacetylase TtCE16B in debranching enzymatically derived oligomers from lignocellulose, whereas TtAbf43 remained unaffected by the esterases. These diverse synergistic relationships among different hemicellulases could assist the development of new enzymatic approaches for efficient biomass valorization.
Collapse
Affiliation(s)
- Christina Pentari
- Industrial Biotechnology & Biocatalysis Group, Biotechnology Laboratory, School of Chemical Engineering, National Technical University of Athens, Athens, Greece
| | - Evangelia Pinelopi Mylona
- Industrial Biotechnology & Biocatalysis Group, Biotechnology Laboratory, School of Chemical Engineering, National Technical University of Athens, Athens, Greece
| | - Anastasia Zerva
- Industrial Biotechnology & Biocatalysis Group, Biotechnology Laboratory, School of Chemical Engineering, National Technical University of Athens, Athens, Greece; Laboratory of Enzyme Technology, Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, 75 Iera Odos Street, 11855 Athens, Greece.
| | - Evangelos Topakas
- Industrial Biotechnology & Biocatalysis Group, Biotechnology Laboratory, School of Chemical Engineering, National Technical University of Athens, Athens, Greece.
| |
Collapse
|
5
|
Zhuang J, Zhang Y, Wang Y, Han Z, Yang J. Loop Dynamics Mediate Thermal Adaptation of Two Xylanases from Marine Bacteria. Int J Mol Sci 2025; 26:3215. [PMID: 40244048 PMCID: PMC11989904 DOI: 10.3390/ijms26073215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 03/26/2025] [Accepted: 03/26/2025] [Indexed: 04/18/2025] Open
Abstract
This study investigates the biochemical properties of two xylanases, ZgXyn10A and CaXyn10B, which are members of the glycoside hydrolase family 10 (GH10) and originate from the marine Bacteroidetes species Zobellia galactanivorans and Cellulophaga algicola, respectively. Utilizing an auto-induction expression system in Escherichia coli, high-purity recombinant forms of these enzymes were successfully produced. Biochemical assays revealed that ZgXyn10A and CaXyn10B exhibit optimal activities at 40 °C and 30 °C, respectively, and demonstrate a high sensitivity to temperature fluctuations. Unlike conventional low-temperature enzymes, these xylanases retain only a fraction of their maximal activity at lower temperatures. To gain deeper insights into the structural and functional properties of these marine xylanases, two thermostable GH10 xylanases, TmxB and CoXyn10A, which share comparable amino acid sequence identity with ZgXyn10A and CaXyn10B, were selected for structural comparison. All four marine xylanases share a nearly similar three-dimensional structural topology. Molecular dynamics simulation indicated a striking difference in structural fluctuations between the low-temperature and thermostable xylanases, as evidenced by the distinct root mean square deviation values. Moreover, root mean square fluctuation analysis specifically identified the β3-α3 and β7-α7 loop regions within the substrate-binding cleft as crucial determinants of the temperature characteristics of these GH10 xylanases. Our findings establish loop dynamics as a key evolutionary driver in the thermal adaptation of GH10 xylanases and propose a loop engineering strategy for the development of industrial biocatalysts with tailored temperature responses, particularly for lignocellulosic biomass processing under moderate thermal conditions.
Collapse
Affiliation(s)
| | | | | | - Zhenggang Han
- College of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430023, China; (J.Z.); (Y.Z.); (Y.W.)
| | - Jiangke Yang
- College of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430023, China; (J.Z.); (Y.Z.); (Y.W.)
| |
Collapse
|
6
|
Liu A, Zhang S, Wang W, Hou H, Dai Y, Li C, Zhang H. Effects of Different Pretreatments on Wheat Bran and Its Arabinoxylan Obtained by Sequential Extraction with Dilute Alkali and Alkali-Urea Mixture. Foods 2025; 14:696. [PMID: 40002139 PMCID: PMC11854628 DOI: 10.3390/foods14040696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 01/30/2025] [Accepted: 02/04/2025] [Indexed: 02/27/2025] Open
Abstract
Arabinoxylan (AX), an abundant and highly valuable component in wheat bran, has its structure and function influenced by the extraction method. A two-step extraction method, involving sequential extraction with a dilute alkali followed by a concentrated alkali-urea mixture, was employed to extract AX from wheat bran. This approach aimed to obtain AX with a high phenolic acid content while achieving a relatively high extraction yield. The dilute alkali extraction could effectively retain the phenolic acid content in the AX extract (≤89 μg/g). However, its yield and sugar content were relatively low. In contrast, the alkali-urea extraction could achieve a relatively high yield (≤55%) and sugar content (≤75%). Different pretreatments (defatting, deproteinization, and delignification) were performed before extraction, causing significant changes to the chemical composition and cell wall structural characteristics of destarched wheat bran, which, in turn, affected the yield and composition of the AX extracts. Deproteinization effectively increased the sugar content, phenolic acid content, and overall yield of the extracts. Different pretreatment and extraction methods significantly affected the DPPH radical scavenging rate and Fe2+ chelating rate of the AX extracts but had little impact on the ABTS radical scavenging rate. The antioxidant activity of AX extracted using alkali-urea was unexpectedly higher than that extracted using a dilute alkali. This suggests that the antioxidant activity of AX does not entirely depend on its phenolic acid content but is influenced by various other factors.
Collapse
Affiliation(s)
- Axiang Liu
- College of Food Science and Engineering, Shandong Agricultural University, Tai’an 271018, China; (A.L.); (S.Z.); (W.W.); (H.H.); (Y.D.)
- Engineering and Technology Center for Grain Processing of Shandong Province, Tai’an 271018, China
| | - Shengjie Zhang
- College of Food Science and Engineering, Shandong Agricultural University, Tai’an 271018, China; (A.L.); (S.Z.); (W.W.); (H.H.); (Y.D.)
- Engineering and Technology Center for Grain Processing of Shandong Province, Tai’an 271018, China
| | - Wentao Wang
- College of Food Science and Engineering, Shandong Agricultural University, Tai’an 271018, China; (A.L.); (S.Z.); (W.W.); (H.H.); (Y.D.)
- Engineering and Technology Center for Grain Processing of Shandong Province, Tai’an 271018, China
| | - Hanxue Hou
- College of Food Science and Engineering, Shandong Agricultural University, Tai’an 271018, China; (A.L.); (S.Z.); (W.W.); (H.H.); (Y.D.)
- Engineering and Technology Center for Grain Processing of Shandong Province, Tai’an 271018, China
| | - Yangyong Dai
- College of Food Science and Engineering, Shandong Agricultural University, Tai’an 271018, China; (A.L.); (S.Z.); (W.W.); (H.H.); (Y.D.)
- Engineering and Technology Center for Grain Processing of Shandong Province, Tai’an 271018, China
| | - Cheng Li
- College of Food Science and Engineering, Shandong Agricultural University, Tai’an 271018, China; (A.L.); (S.Z.); (W.W.); (H.H.); (Y.D.)
- Engineering and Technology Center for Grain Processing of Shandong Province, Tai’an 271018, China
| | - Hui Zhang
- Department of Food Science and Nutrition, Culinary Institute, University of Jinan, Jinan 250022, China
| |
Collapse
|
7
|
Qaseem MF, Zhang W, Dupree P, Wu AM. Xylan structural diversity, biosynthesis, and functional regulation in plants. Int J Biol Macromol 2025; 291:138866. [PMID: 39719228 DOI: 10.1016/j.ijbiomac.2024.138866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 11/22/2024] [Accepted: 12/15/2024] [Indexed: 12/26/2024]
Abstract
Xylan is a vital component of plant cell walls, contributing to their structural integrity and flexibility through interactions with other polymers. Its structure varies among plant species, influencing the mechanical properties of cell walls. Xylan also has significant industrial potential, including in biofuels, biomaterials, food, and pharmaceuticals, due to its ability to be converted into valuable bioproducts. However, key aspects of xylan biosynthesis, regulation, and structural impact on plant growth and structures remain unclear. This review highlights current researches on xylan biosynthesis, modification, and applications, identifying critical gaps in knowledge. Meanwhile the review proposes new approaches to regulate xylan synthesis and understand its role in cell wall assembly and interactions with other polymers. Addressing these gaps could unlock the full industrial potential of xylan, leading to more sustainable applications.
Collapse
Affiliation(s)
- Mirza Faisal Qaseem
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangzhou 510642, China; Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architectures, South China Agricultural University, Guangzhou 510642, China
| | - Wenjuan Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangzhou 510642, China; Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architectures, South China Agricultural University, Guangzhou 510642, China
| | - Paul Dupree
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Ai-Min Wu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangzhou 510642, China; Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architectures, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
8
|
Sivan P, Urbancsok J, Donev EN, Derba‐Maceluch M, Barbut FR, Yassin Z, Gandla ML, Mitra M, Heinonen SE, Šimura J, Cermanová K, Karady M, Scheepers G, Jönsson LJ, Master ER, Vilaplana F, Mellerowicz EJ. Modification of xylan in secondary walls alters cell wall biosynthesis and wood formation programs and improves saccharification. PLANT BIOTECHNOLOGY JOURNAL 2025; 23:174-197. [PMID: 39436777 PMCID: PMC11672743 DOI: 10.1111/pbi.14487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 09/09/2024] [Accepted: 09/25/2024] [Indexed: 10/25/2024]
Abstract
Wood of broad-leaf tree species is a valued source of renewable biomass for biorefinery and a target for genetic improvement efforts to reduce its recalcitrance. Glucuronoxylan (GX) plays a key role in recalcitrance through its interactions with cellulose and lignin. To reduce recalcitrance, we modified wood GX by expressing GH10 and GH11 endoxylanases from Aspergillus nidulans in hybrid aspen (Populus tremula L. × tremuloides Michx.) and targeting the enzymes to cell wall. The xylanases reduced tree height, modified cambial activity by increasing phloem and reducing xylem production, and reduced secondary wall deposition. Xylan molecular weight was decreased, and the spacing between acetyl and MeGlcA side chains was reduced in transgenic lines. The transgenic trees produced hypolignified xylem having thin secondary walls and deformed vessels. Glucose yields of enzymatic saccharification without pretreatment almost doubled indicating decreased recalcitrance. The transcriptomics, hormonomics and metabolomics data provided evidence for activation of cytokinin and ethylene signalling pathways, decrease in ABA levels, transcriptional suppression of lignification and a subset of secondary wall biosynthetic program, including xylan glucuronidation and acetylation machinery. Several candidate genes for perception of impairment in xylan integrity were detected. These candidates could provide a new target for uncoupling negative growth effects from reduced recalcitrance. In conclusion, our study supports the hypothesis that xylan modification generates intrinsic signals and evokes novel pathways regulating tree growth and secondary wall biosynthesis.
Collapse
Affiliation(s)
- Pramod Sivan
- Umeå Plant Science Centre, Department of Forest Genetics and Plant PhysiologySwedish University of Agricultural SciencesUmeåSweden
- Division of Glycoscience, Department of ChemistryKTH Royal Institute of Technology, AlbaNova University CentreStockholmSweden
| | - János Urbancsok
- Umeå Plant Science Centre, Department of Forest Genetics and Plant PhysiologySwedish University of Agricultural SciencesUmeåSweden
| | - Evgeniy N. Donev
- Umeå Plant Science Centre, Department of Forest Genetics and Plant PhysiologySwedish University of Agricultural SciencesUmeåSweden
| | - Marta Derba‐Maceluch
- Umeå Plant Science Centre, Department of Forest Genetics and Plant PhysiologySwedish University of Agricultural SciencesUmeåSweden
| | - Félix R. Barbut
- Umeå Plant Science Centre, Department of Forest Genetics and Plant PhysiologySwedish University of Agricultural SciencesUmeåSweden
| | | | | | - Madhusree Mitra
- Umeå Plant Science Centre, Department of Forest Genetics and Plant PhysiologySwedish University of Agricultural SciencesUmeåSweden
| | - Saara E. Heinonen
- Division of Glycoscience, Department of ChemistryKTH Royal Institute of Technology, AlbaNova University CentreStockholmSweden
- Wallenberg Wood Science Centre (WWSC)KTH Royal Institute of TechnologyStockholmSweden
| | - Jan Šimura
- Umeå Plant Science Centre, Department of Forest Genetics and Plant PhysiologySwedish University of Agricultural SciencesUmeåSweden
| | - Kateřina Cermanová
- Laboratory of Growth Regulators, The Czech Academy of Sciences & Faculty of ScienceInstitute of Experimental Botany, Palacký UniversityOlomoucCzechia
| | - Michal Karady
- Laboratory of Growth Regulators, The Czech Academy of Sciences & Faculty of ScienceInstitute of Experimental Botany, Palacký UniversityOlomoucCzechia
| | | | | | - Emma R. Master
- Department of Chemical Engineering and Applied ChemistryUniversity of TorontoTorontoOntarioCanada
| | - Francisco Vilaplana
- Division of Glycoscience, Department of ChemistryKTH Royal Institute of Technology, AlbaNova University CentreStockholmSweden
- Wallenberg Wood Science Centre (WWSC)KTH Royal Institute of TechnologyStockholmSweden
| | - Ewa J. Mellerowicz
- Umeå Plant Science Centre, Department of Forest Genetics and Plant PhysiologySwedish University of Agricultural SciencesUmeåSweden
| |
Collapse
|
9
|
Zhang P, Long L, Ding S. Insight into lignin-carbohydrate ester change in pretreated corn bran and its enzymatic hydrolysis by three glucuronoyl esterases from Sordaria brevicollis. Int J Biol Macromol 2024; 282:137308. [PMID: 39510460 DOI: 10.1016/j.ijbiomac.2024.137308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 10/15/2024] [Accepted: 11/04/2024] [Indexed: 11/15/2024]
Abstract
Lignin-carbohydrate esters (LC-esters) formed by glucuronoarabinoxylan and lignin are a key factor for the recalcitrance of corn bran, understanding LC-esters change during pretreatment and enzymatic hydrolysis by glucuronoyl esterases (GEs) is essential to the sustainable utilization of corn bran. Herein, hydrolysis performances of three GEs, SbGE15A, SbGE15B, and SbGE15C from Sordaria brevicollis with different subclades and modularity, and changes in enzyme-reachable LC-esters during different pretreatments of corn bran have been comprehensively compared. FB enzymes, SbGE15B and SbGE15C showed higher catalytic activity towards model and natural substrates than FA enzyme, SbGE15A. Particularly, SbGE15C harboring carbohydrate-binding module 1 (CBM1) exhibited much superior catalytic performance and synergistic effect with GH10 endo-xylanase EpXYN1 from Eupenicillium parvum on pretreated residues than SbGE15A and SbGE15B without CBM1. Autohydrolysis and DES (ChCl-LA) pretreatment could decrease the content of enzyme-reachable LC-esters and depolymerize its structure, transitioning from Lignin-(Me)GlcA-Xylan to Lignin-(Me)GlcA-XOS, and eventually to Lignin-(Me)GlcA with increasing pretreatment time. These changes consequently cause a decrease in synergy between SbGE15s and EpXYN1 or commercial enzyme cocktails on pretreated residues. The findings provide new insights into significant changes in enzyme-reachable LC-esters depending on the pretreatment method and intensity and the consequent influence of these changes on the catalytic action of GEs.
Collapse
Affiliation(s)
- Peiyu Zhang
- The Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Key Lab for the Chemistry & Utilization of Agricultural and Forest Biomass, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, Jiangsu, China.
| | - Liangkun Long
- The Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Key Lab for the Chemistry & Utilization of Agricultural and Forest Biomass, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, Jiangsu, China.
| | - Shaojun Ding
- The Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Key Lab for the Chemistry & Utilization of Agricultural and Forest Biomass, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, Jiangsu, China.
| |
Collapse
|
10
|
Capetti CCDM, Ontañon O, Navas LE, Campos E, Simister R, Dowle A, Liberato MV, Pellegrini VDOA, Gómez LD, Polikarpov I. Sugarcane bagasse derived xylooligosaccharides produced by an arabinofuranosidase/xylobiohydrolase from Bifidobacterium longum in synergism with xylanases. Carbohydr Polym 2024; 339:122248. [PMID: 38823916 DOI: 10.1016/j.carbpol.2024.122248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 05/03/2024] [Accepted: 05/07/2024] [Indexed: 06/03/2024]
Abstract
Arabinoxylan is a major hemicellulose in the sugarcane plant cell wall with arabinose decorations that impose steric restrictions on the activity of xylanases against this substrate. Enzymatic removal of the decorations by arabinofuranosidases can allow a more efficient arabinoxylan degradation by xylanases. Here we produced and characterized a recombinant Bifidobacterium longum arabinofuranosidase from glycoside hydrolase family 43 (BlAbf43) and applied it, together with GH10 and GH11 xylanases, to produce xylooligosaccharides (XOS) from wheat arabinoxylan and alkali pretreated sugarcane bagasse. The enzyme synergistically enhanced XOS production by GH10 and GH11 xylanases, being particularly efficient in combination with the latter family of enzymes, with a degree of synergism of 1.7. We also demonstrated that the enzyme is capable of not only removing arabinose decorations from the arabinoxylan and from the non-reducing end of the oligomeric substrates, but also hydrolyzing the xylan backbone yielding mostly xylobiose and xylose in particular cases. Structural studies of BlAbf43 shed light on the molecular basis of the substrate recognition and allowed hypothesizing on the structural reasons of its multifunctionality.
Collapse
Affiliation(s)
- Caio Cesar de Mello Capetti
- Instituto de Física de São Carlos, Universidade de São Paulo, Avenida Trabalhador São-carlense 400, 13566-590 São Carlos, SP, Brazil
| | - Ornella Ontañon
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO), CICVyA, Instituto Nacional de Tecnología Agropecuaria (INTA), Los Reseros y N. Repetto, Hurlingham B1686, Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Autónoma de Buenos Aires, Argentina
| | - Laura E Navas
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO), CICVyA, Instituto Nacional de Tecnología Agropecuaria (INTA), Los Reseros y N. Repetto, Hurlingham B1686, Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Autónoma de Buenos Aires, Argentina
| | - Eleonora Campos
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO), CICVyA, Instituto Nacional de Tecnología Agropecuaria (INTA), Los Reseros y N. Repetto, Hurlingham B1686, Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Autónoma de Buenos Aires, Argentina
| | - Rachael Simister
- Centre for Novel Agricultural Products, Department of Biology, CNAP, University of York, York YO10 5DD, United Kingdom
| | - Adam Dowle
- Technology Facility, Proteomics Laboratory, Department of Biology, University of York, York YO10 5DD, United Kingdom
| | - Marcelo Vizoná Liberato
- Instituto de Física de São Carlos, Universidade de São Paulo, Avenida Trabalhador São-carlense 400, 13566-590 São Carlos, SP, Brazil
| | | | - Leonardo D Gómez
- Centre for Novel Agricultural Products, Department of Biology, CNAP, University of York, York YO10 5DD, United Kingdom.
| | - Igor Polikarpov
- Instituto de Física de São Carlos, Universidade de São Paulo, Avenida Trabalhador São-carlense 400, 13566-590 São Carlos, SP, Brazil.
| |
Collapse
|
11
|
Pentari C, Kosinas C, Nikolaivits E, Dimarogona M, Topakas E. Structural and molecular insights into a bifunctional glycoside hydrolase 30 xylanase specific to glucuronoxylan. Biotechnol Bioeng 2024; 121:2067-2078. [PMID: 38678481 DOI: 10.1002/bit.28731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 04/15/2024] [Accepted: 04/19/2024] [Indexed: 05/01/2024]
Abstract
Glycoside hydrolase (GH) 30 family xylanases are enzymes of biotechnological interest due to their capacity to degrade recalcitrant hemicelluloses, such as glucuronoxylan (GX). This study focuses on a subfamily 7 GH30, TtXyn30A from Thermothelomyces thermophilus, which acts on GX in an "endo" and "exo" mode, releasing methyl-glucuronic acid branched xylooligosaccharides (XOs) and xylobiose, respectively. The crystal structure of inactive TtXyn30A in complex with 23-(4-O-methyl-α-D-glucuronosyl)-xylotriose (UXX), along with biochemical analyses, corroborate the implication of E233, previously identified as alternative catalytic residue, in the hydrolysis of decorated xylan. At the -1 subsite, the xylose adopts a distorted conformation, indicative of the Michaelis complex of TtXyn30AEE with UXX trapped in the semi-functional active site. The most significant structural rearrangements upon substrate binding are observed at residues W127 and E233. The structures with neutral XOs, representing the "exo" function, clearly show the nonspecific binding at aglycon subsites, contrary to glycon sites, where the xylose molecules are accommodated via multiple interactions. Last, an unproductive ligand binding site is found at the interface between the catalytic and the secondary β-domain which is present in all GH30 enzymes. These findings improve current understanding of the mechanism of bifunctional GH30s, with potential applications in the field of enzyme engineering.
Collapse
Affiliation(s)
- Christina Pentari
- Industrial Biotechnology & Biocatalysis Group, Biotechnology Laboratory, School of Chemical Engineering, National Technical University of Athens, Athens, Greece
| | - Christos Kosinas
- Laboratory of Structural Biology and Biotechnology, Department of Chemical Engineering, University of Patras, Patras, Greece
| | - Efstratios Nikolaivits
- Industrial Biotechnology & Biocatalysis Group, Biotechnology Laboratory, School of Chemical Engineering, National Technical University of Athens, Athens, Greece
| | - Maria Dimarogona
- Laboratory of Structural Biology and Biotechnology, Department of Chemical Engineering, University of Patras, Patras, Greece
| | - Evangelos Topakas
- Industrial Biotechnology & Biocatalysis Group, Biotechnology Laboratory, School of Chemical Engineering, National Technical University of Athens, Athens, Greece
| |
Collapse
|
12
|
Liu N, Odinot E, David H, Vita N, Otalvaro FM, Parsiegla G, Denis Y, Faulds C, Fierobe HP, Perret S. Intracellular removal of acetyl, feruloyl and p-coumaroyl decorations on arabinoxylo-oligosaccharides imported from lignocellulosic biomass degradation by Ruminiclostridium cellulolyticum. Microb Cell Fact 2024; 23:151. [PMID: 38789996 PMCID: PMC11127375 DOI: 10.1186/s12934-024-02423-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 05/13/2024] [Indexed: 05/26/2024] Open
Abstract
BACKGROUND Xylans are polysaccharides that are naturally abundant in agricultural by-products, such as cereal brans and straws. Microbial degradation of arabinoxylan is facilitated by extracellular esterases that remove acetyl, feruloyl, and p-coumaroyl decorations. The bacterium Ruminiclostridium cellulolyticum possesses the Xua (xylan utilization associated) system, which is responsible for importing and intracellularly degrading arabinoxylodextrins. This system includes an arabinoxylodextrins importer, four intracellular glycosyl hydrolases, and two intracellular esterases, XuaH and XuaJ which are encoded at the end of the gene cluster. RESULTS Genetic studies demonstrate that the genes xuaH and xuaJ are part of the xua operon, which covers xuaABCDD'EFGHIJ. This operon forms a functional unit regulated by the two-component system XuaSR. The esterases encoded at the end of the cluster have been further characterized: XuaJ is an acetyl esterase active on model substrates, while XuaH is a xylan feruloyl- and p-coumaryl-esterase. This latter is active on oligosaccharides derived from wheat bran and wheat straw. Modelling studies indicate that XuaH has the potential to interact with arabinoxylobiose acylated with mono- or diferulate. The intracellular esterases XuaH and XuaJ are believed to allow the cell to fully utilize the complex acylated arabinoxylo-dextrins imported into the cytoplasm during growth on wheat bran or straw. CONCLUSIONS This study reports for the first time that a cytosolic feruloyl esterase is part of an intracellular arabinoxylo-dextrin import and degradation system, completing its cytosolic enzymatic arsenal. This system represents a new pathway for processing highly-decorated arabinoxylo-dextrins, which could provide a competitive advantage to the cell and may have interesting biotechnological applications.
Collapse
Affiliation(s)
- Nian Liu
- Aix-Marseille Université, CNRS, LCB-UMR7283, Marseille, France
| | - Elise Odinot
- OléoInnov, 19 rue du Musée, Marseille, 13001, France
| | - Hélène David
- Aix-Marseille Université, CNRS, LCB-UMR7283, Marseille, France
| | - Nicolas Vita
- Aix-Marseille Université, CNRS, LCB-UMR7283, Marseille, France
| | - Felipe Mejia Otalvaro
- Technical University of Denmark, The Novo Nordisk Foundation Center for Biosustainability, Konges Lyngby, 2800, Denmark
| | - Goetz Parsiegla
- Aix-Marseille Université, CNRS, BIP-UMR7281, Marseille, France
| | - Yann Denis
- Aix-Marseille Université, CNRS, IMM, Marseille, France
| | - Craig Faulds
- Biodiversité et Biotechnologie Fongiques, INRAE, Aix Marseille University, Marseille, UMR1163, 13009, France
| | | | | |
Collapse
|
13
|
Pang SL, Wang YY, Wang L, Zhang XJ, Li YH. The CBM91 module enhances the activity of β-xylosidase/α-L-arabinofuranosidase PphXyl43B from Paenibacillus physcomitrellae XB by adopting a unique loop conformation at the top of the active pocket. Int J Biol Macromol 2024; 266:131275. [PMID: 38556222 DOI: 10.1016/j.ijbiomac.2024.131275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/25/2024] [Accepted: 03/28/2024] [Indexed: 04/02/2024]
Abstract
Carbohydrate-binding module (CBM) family 91 is a novel module primarily associated with glycoside hydrolase (GH) family 43 enzymes. However, our current understanding of its function remains limited. PphXyl43B is a β-xylosidase/α-L-arabinofuranosidase bifunctional enzyme from physcomitrellae patens XB belonging to the GH43_11 subfamily and containing CBM91 at its C terminus. To fully elucidate the contributions of the CBM91 module, the truncated proteins consisting only the GH43_11 catalytic module (rPphXyl43B-dCBM91) and only the CBM91 module (rCBM91) of PphXyl43B were constructed, respectively. The result showed that rPphXyl43B-dCBM91 completely lost hydrolysis activity against both p-nitrophenyl-β-D-xylopyranoside and p-nitrophenyl-α-L-arabinofuranoside; it also exhibited significantly reduced activity towards xylobiose, xylotriose, oat spelt xylan and corncob xylan compared to the control. Thus, the CBM91 module is crucial for the β-xylosidase/α-L-arabinofuranosidase activities in PphXyl43B. However, rCBM91 did not exhibit any binding capability towards corncob xylan. Structural analysis indicated that CBM91 of PphXyl43B might adopt a loop conformation (residues 496-511: ILSDDYVVQSYGGFFT) to actively contribute to the catalytic pocket formation rather than substrate binding capability. This study provides important insights into understanding the function of CBM91 and can be used as a reference for analyzing the action mechanism of GH43_11 enzymes and their application in biomass energy conversion.
Collapse
Affiliation(s)
- Shuai Li Pang
- College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Yan Yan Wang
- College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Le Wang
- College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Xiao Jie Zhang
- College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Yan Hong Li
- College of Life Sciences, Capital Normal University, Beijing 100048, China.
| |
Collapse
|
14
|
Šuchová K, Fathallah W, Puchart V. Characterization of a novel GH30 non-specific endoxylanase AcXyn30B from Acetivibrio clariflavus. Appl Microbiol Biotechnol 2024; 108:312. [PMID: 38683242 PMCID: PMC11058611 DOI: 10.1007/s00253-024-13155-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 04/15/2024] [Accepted: 04/19/2024] [Indexed: 05/01/2024]
Abstract
The xylanolytic enzymes Clocl_1795 and Clocl_2746 from glycoside hydrolase (GH) family 30 are highly abundant in the hemicellulolytic system of Acetivibrio clariflavus (Hungateiclostridium, Clostridium clariflavum). Clocl_1795 has been shown to be a xylobiohydrolase AcXbh30A releasing xylobiose from the non-reducing end of xylan and xylooligosaccharides. In this work, biochemical characterization of Clocl_2746 is presented. The protein, designated AcXyn30B, shows low sequence similarity to other GH30 members and phylogenetic analysis revealed that AcXyn30B and related proteins form a separate clade that is proposed to be a new subfamily GH30_12. AcXyn30B exhibits similar specific activity on glucuronoxylan, arabinoxylan, and aryl glycosides of linear xylooligosaccharides suggesting that it is a non-specific xylanase. From polymeric substrates, it releases the fragments of degrees of polymerization (DP) 2-6. Hydrolysis of different xylooligosaccharides indicates that AcXyn30B requires at least four occupied catalytic subsites for effective cleavage. The ability of the enzyme to hydrolyze a wide range of substrates is interesting for biotechnological applications. In addition to subfamilies GH30_7, GH30_8, and GH30_10, the newly proposed subfamily GH30_12 further widens the spectrum of GH30 subfamilies containing xylanolytic enzymes. KEY POINTS: Bacterial GH30 endoxylanase from A. clariflavus (AcXyn30B) has been characterized AcXyn30B is non-specific xylanase hydrolyzing various xylans and xylooligosaccharides Phylogenetic analysis placed AcXyn30B in a new GH30_12 subfamily.
Collapse
Affiliation(s)
- Katarína Šuchová
- Institute of Chemistry, Slovak Academy of Sciences, Dúbravská cesta 9, 845 38, Bratislava, Slovakia.
| | - Walid Fathallah
- Institute of Chemistry, Slovak Academy of Sciences, Dúbravská cesta 9, 845 38, Bratislava, Slovakia
- Faculty of Science, Beni-Suef University, Beni-Suef, 625 11, Egypt
| | - Vladimír Puchart
- Institute of Chemistry, Slovak Academy of Sciences, Dúbravská cesta 9, 845 38, Bratislava, Slovakia
| |
Collapse
|
15
|
Tryfona T, Pankratova Y, Petrik D, Rebaque Moran D, Wightman R, Yu X, Echevarría-Poza A, Deralia PK, Vilaplana F, Anderson CT, Hong M, Dupree P. Altering the substitution and cross-linking of glucuronoarabinoxylans affects cell wall architecture in Brachypodium distachyon. THE NEW PHYTOLOGIST 2024; 242:524-543. [PMID: 38413240 DOI: 10.1111/nph.19624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 02/05/2024] [Indexed: 02/29/2024]
Abstract
The Poaceae family of plants provides cereal crops that are critical for human and animal nutrition, and also, they are an important source of biomass. Interacting plant cell wall components give rise to recalcitrance to digestion; thus, understanding the wall molecular architecture is important to improve biomass properties. Xylan is the main hemicellulose in grass cell walls. Recently, we reported structural variation in grass xylans, suggesting functional specialisation and distinct interactions with cellulose and lignin. Here, we investigated the functions of these xylans by perturbing the biosynthesis of specific xylan types. We generated CRISPR/Cas9 knockout mutants in Brachypodium distachyon XAX1 and GUX2 genes involved in xylan substitution. Using carbohydrate gel electrophoresis, we identified biochemical changes in different xylan types. Saccharification, cryo-SEM, subcritical water extraction and ssNMR were used to study wall architecture. BdXAX1A and BdGUX2 enzymes modify different types of grass xylan. Brachypodium mutant walls are likely more porous, suggesting the xylan substitutions directed by both BdXAX1A and GUX2 enzymes influence xylan-xylan and/or xylan-lignin interactions. Since xylan substitutions influence wall architecture and digestibility, our findings open new avenues to improve cereals for food and to use grass biomass for feed and the production of bioenergy and biomaterials.
Collapse
Affiliation(s)
- Theodora Tryfona
- Department of Biochemistry, School of Biological Sciences, University of Cambridge, Cambridge, CB2 1QW, UK
| | - Yanina Pankratova
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, NW14-3212, USA
| | - Deborah Petrik
- Department of Biology, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Diego Rebaque Moran
- Division of Glycoscience, Department of Chemistry, KTH Royal Institute of Technology, Stockholm, SE-106, Sweden
- Centro de Biotecnologia y Genomica de Plants (UPM-INIA/CSIC), Universidad Politecnica de Madrid, Pozuelo de Alarcon (Madrid), 28223, Spain
| | | | - Xiaolan Yu
- Department of Biochemistry, School of Biological Sciences, University of Cambridge, Cambridge, CB2 1QW, UK
| | - Alberto Echevarría-Poza
- Department of Biochemistry, School of Biological Sciences, University of Cambridge, Cambridge, CB2 1QW, UK
| | - Parveen Kumar Deralia
- Department of Biochemistry, School of Biological Sciences, University of Cambridge, Cambridge, CB2 1QW, UK
| | - Francisco Vilaplana
- Division of Glycoscience, Department of Chemistry, KTH Royal Institute of Technology, Stockholm, SE-106, Sweden
- Wallenberg Wood Science Centre, KTH Royal Institute of Technology, Stockholm, SE-11, Sweden
| | - Charles T Anderson
- Department of Biology, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Mei Hong
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, NW14-3212, USA
| | - Paul Dupree
- Department of Biochemistry, School of Biological Sciences, University of Cambridge, Cambridge, CB2 1QW, UK
| |
Collapse
|
16
|
Ravn JL, Manfrão-Netto JHC, Schaubeder JB, Torello Pianale L, Spirk S, Ciklic IF, Geijer C. Engineering Saccharomyces cerevisiae for targeted hydrolysis and fermentation of glucuronoxylan through CRISPR/Cas9 genome editing. Microb Cell Fact 2024; 23:85. [PMID: 38493086 PMCID: PMC10943827 DOI: 10.1186/s12934-024-02361-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 03/09/2024] [Indexed: 03/18/2024] Open
Abstract
BACKGROUND The abundance of glucuronoxylan (GX) in agricultural and forestry residual side streams positions it as a promising feedstock for microbial conversion into valuable compounds. By engineering strains of the widely employed cell factory Saccharomyces cerevisiae with the ability to directly hydrolyze and ferment GX polymers, we can avoid the need for harsh chemical pretreatments and costly enzymatic hydrolysis steps prior to fermentation. However, for an economically viable bioproduction process, the engineered strains must efficiently express and secrete enzymes that act in synergy to hydrolyze the targeted polymers. RESULTS The aim of this study was to equip the xylose-fermenting S. cerevisiae strain CEN.PK XXX with xylanolytic enzymes targeting beechwood GX. Using a targeted enzyme approach, we matched hydrolytic enzyme activities to the chemical features of the GX substrate and determined that besides endo-1,4-β-xylanase and β-xylosidase activities, α-methyl-glucuronidase activity was of great importance for GX hydrolysis and yeast growth. We also created a library of strains expressing different combinations of enzymes, and screened for yeast strains that could express and secrete the enzymes and metabolize the GX hydrolysis products efficiently. While strains engineered with BmXyn11A xylanase and XylA β-xylosidase could grow relatively well in beechwood GX, strains further engineered with Agu115 α-methyl-glucuronidase did not display an additional growth benefit, likely due to inefficient expression and secretion of this enzyme. Co-cultures of strains expressing complementary enzymes as well as external enzyme supplementation boosted yeast growth and ethanol fermentation of GX, and ethanol titers reached a maximum of 1.33 g L- 1 after 48 h under oxygen limited condition in bioreactor fermentations. CONCLUSION This work underscored the importance of identifying an optimal enzyme combination for successful engineering of S. cerevisiae strains that can hydrolyze and assimilate GX. The enzymes must exhibit high and balanced activities, be compatible with the yeast's expression and secretion system, and the nature of the hydrolysis products must be such that they can be taken up and metabolized by the yeast. The engineered strains, particularly when co-cultivated, display robust growth and fermentation of GX, and represent a significant step forward towards a sustainable and cost-effective bioprocessing of GX-rich biomass. They also provide valuable insights for future strain and process development targets.
Collapse
Affiliation(s)
- Jonas L Ravn
- Department of Life Sciences, Chalmers University of Technology, Gothenburg, 412 96, Sweden.
| | - João H C Manfrão-Netto
- Department of Life Sciences, Chalmers University of Technology, Gothenburg, 412 96, Sweden
- Brazilian Center for Research in Energy and Materials (CNPEM), Brazilian Biorenewables National Laboratory (LNBR), Campinas, 13083-100, Brazil
| | - Jana B Schaubeder
- Institute of Bioproducts and Paper Technology (BPTI), Graz University of Technology, Inffeldgasse 23, Graz, 8010, Austria
| | - Luca Torello Pianale
- Department of Life Sciences, Chalmers University of Technology, Gothenburg, 412 96, Sweden
| | - Stefan Spirk
- Institute of Bioproducts and Paper Technology (BPTI), Graz University of Technology, Inffeldgasse 23, Graz, 8010, Austria
| | - Iván F Ciklic
- Department of Life Sciences, Chalmers University of Technology, Gothenburg, 412 96, Sweden
- Estación Experimental Agropecuaria Mendoza, Instituto Nacional de Tecnología Agropecuaria (INTA), 5507 Luján de Cuyo, San Martín, Mendoza, 3853, Argentina
| | - Cecilia Geijer
- Department of Life Sciences, Chalmers University of Technology, Gothenburg, 412 96, Sweden.
| |
Collapse
|
17
|
Liang J, Chen Y, Li S, Liu D, Tian H, Xiang Q, Zhao K, Yu X, Chen Q, Fan H, Zhang L, Penttinen P, Gu Y. Transcriptomic analysis and carbohydrate metabolism-related enzyme expression across different pH values in Rhizopus delemar. Front Microbiol 2024; 15:1359830. [PMID: 38511010 PMCID: PMC10953822 DOI: 10.3389/fmicb.2024.1359830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 02/22/2024] [Indexed: 03/22/2024] Open
Abstract
Introduction pH is one of the important factors affecting the growth and performance of microorganisms. Methods We studied the pH response and plant growth-promoting (PGP) ability of Rhizopus delemar using cultivation experiments and transcriptomics, and verified the expression profiles using quantitative real-time PCR. Results pH affected the growth and PGP properties of R. delemar. At pH 7, the growth rate of R. delemar was rapid, whereas pH 4 and 8 inhibited mycelial growth and PGP ability, respectively. In the pot experiment, the plant height was the highest at pH 7, 56 cm, and the lowest at pH 4 and pH 5, 46.6 cm and 47 cm, respectively. Enzyme activities were highest at pH 6 to pH 7. Enzyme activities were highest at pH 6 to pH 7. Among the 1,629 differentially expressed genes (DEGs), 1,033 genes were up-regulated and 596 were down-regulated. A total of 1,623 DEGs were annotated to carbohydrate-active enzyme coding genes. Discussion The PGP characteristics, e.g., Phosphorus solubilization ability, of R. delemar were strongest at pH 7. The results provide useful information regarding the molecular mechanism of R. delemar pH response.
Collapse
Affiliation(s)
- Jinpeng Liang
- Department of Microbiology, College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Yulan Chen
- Department of Microbiology, College of Resources, Sichuan Agricultural University, Chengdu, China
- Liangshan Tobacco Corporation of Sichuan Province, Xichang, China
| | - Sisi Li
- Department of Microbiology, College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Dongyang Liu
- Department of Microbiology, College of Resources, Sichuan Agricultural University, Chengdu, China
- Liangshan Tobacco Corporation of Sichuan Province, Xichang, China
| | - Hong Tian
- Department of Microbiology, College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Quanju Xiang
- Department of Microbiology, College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Ke Zhao
- Department of Microbiology, College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Xiumei Yu
- Department of Microbiology, College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Qiang Chen
- Department of Microbiology, College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Hongzhu Fan
- Institute of Agricultural Resources and Environmental Science, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Lingzi Zhang
- Department of Microbiology, College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Petri Penttinen
- Department of Microbiology, College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Yunfu Gu
- Department of Microbiology, College of Resources, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
18
|
Chen X, Zhang X, Zhao X, Zhang P, Long L, Ding S. A novel cellulolytic/xylanolytic SbAA14 from Sordaria brevicollis with a branched chain preference and its synergistic effects with glycoside hydrolases on lignocellulose. Int J Biol Macromol 2024; 260:129504. [PMID: 38228212 DOI: 10.1016/j.ijbiomac.2024.129504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 01/05/2024] [Accepted: 01/12/2024] [Indexed: 01/18/2024]
Abstract
In this study, the novel auxiliary activity (AA) family 14 lytic polysaccharide monooxygenase (LPMO) SbAA14 from Sordaria brevicollis was successfully characterized. It was active against heteroxylan, xyloglucan and cellulose in β-cellulose and released native oligosaccharides and corresponding C1- and/or C4-oxidized products. SbAA14 showed a branched chain preference, because partial removal of arabinosyl substituents from heteroxylan led to a decrease in activity. SbAA14 had synergistic effects with the debranching enzyme EpABF62C in an enzyme- and ascorbic acid-dependent manner. SbAA14 had synergistic effects with the GH10 endoxylanase EpXYN1, and the degree of synergy was greater with step-by-step addition than with simultaneous addition. SbAA14 could also synergize with Celluclast® 1.5 L on NaOH-pretreated wheat straw and on NaOH-pretreated and hydrogen peroxide-acetic acid (HPAC)-H2SO4-pretreated bamboo substrates. The greatest synergistic effect between SbAA14 and Celluclast® 1.5 L was observed for HPAC-H2SO4-200 mM pretreated bamboo, in which the degree of synergy reached approximately 1.61. The distinctive substrate preference of SbAA14 indicated that it is a novel AA14 LPMO that may act mainly on heteroxylan with numerous arabinosyl substituents between cellulose fibers rather than on recalcitrant xylan tightly associated with cellulose. These findings broaden the understanding of enigmatic AA14 LPMOs and provide new insights into the substrate specificities and biological functionalities of AA14 LPMOs in fungi.
Collapse
Affiliation(s)
- Xueer Chen
- The Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Key Lab for the Chemistry & Utilization of Agricultural and Forest Biomass, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, Jiangsu, China
| | - Xi Zhang
- The Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Key Lab for the Chemistry & Utilization of Agricultural and Forest Biomass, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, Jiangsu, China
| | - Xu Zhao
- The Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Key Lab for the Chemistry & Utilization of Agricultural and Forest Biomass, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, Jiangsu, China
| | - Peiyu Zhang
- The Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Key Lab for the Chemistry & Utilization of Agricultural and Forest Biomass, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, Jiangsu, China
| | - Liangkun Long
- The Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Key Lab for the Chemistry & Utilization of Agricultural and Forest Biomass, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, Jiangsu, China
| | - Shaojun Ding
- The Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Key Lab for the Chemistry & Utilization of Agricultural and Forest Biomass, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, Jiangsu, China.
| |
Collapse
|
19
|
Pentari C, Zerva A, Kosinas C, Karampa P, Puchart V, Dimarogona M, Topakas E. The role of CE16 exo-deacetylases in hemicellulolytic enzyme mixtures revealed by the biochemical and structural study of the novel TtCE16B esterase. Carbohydr Polym 2024; 327:121667. [PMID: 38171682 DOI: 10.1016/j.carbpol.2023.121667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 12/03/2023] [Accepted: 12/04/2023] [Indexed: 01/05/2024]
Abstract
Acetyl esterases belonging to the carbohydrate esterase family 16 (CE16) is a growing group of enzymes, with exceptional diversity regarding substrate specificity and regioselectivity. However, further insight into the CE16 specificity is required for their efficient biotechnological exploitation. In this work, exo-deacetylase TtCE16B from Thermothelomyces thermophila was heterologously expressed and biochemically characterized. The esterase targets positions O-3 and O-4 of singly and doubly acetylated non-reducing-end xylopyranosyl residues, provided the presence of a free vicinal hydroxyl group at position O-4 and O-3, respectively. Crystal structure of TtCE16B, the first representative among the CE16 enzymes, in apo- and product-bound form, allowed the identification of residues forming the catalytic triad and oxyanion hole, as well as the structural elements related to the enzyme preference for oligomers. The role of TtCE16B in hemicellulose degradation was investigated on acetylated xylan from birchwood and pre-treated beechwood biomass. TtCE16B exhibited complementary activity to commercially available OCE6 acetylxylan esterase. Moreover, it showed synergistic effects with SrXyl43 β-xylosidase. Overall, supplementation of xylan-targeting enzymatic mixtures with both TtCE16B and OCE6 esterases led to a 3-fold or 4-fold increase in xylose release, when using TmXyn10 and TtXyn30A xylanases respectively.
Collapse
Affiliation(s)
- Christina Pentari
- Industrial Biotechnology & Biocatalysis Group, Biotechnology Laboratory, School of Chemical Engineering, National Technical University of Athens, Athens, Greece
| | - Anastasia Zerva
- Industrial Biotechnology & Biocatalysis Group, Biotechnology Laboratory, School of Chemical Engineering, National Technical University of Athens, Athens, Greece; Laboratory of Enzyme Technology, Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, 75 Iera Odos Street, 11855 Athens, Greece
| | - Christos Kosinas
- Laboratory of Structural Biology and Biotechnology, Department of Chemical Engineering, University of Patras, Patras, Greece
| | - Panagiota Karampa
- Laboratory of Structural Biology and Biotechnology, Department of Chemical Engineering, University of Patras, Patras, Greece
| | - Vladimír Puchart
- Institute of Chemistry, Slovak Academy of Sciences, Dúbravská cesta 9, 845 38 Bratislava, Slovak Republic
| | - Maria Dimarogona
- Laboratory of Structural Biology and Biotechnology, Department of Chemical Engineering, University of Patras, Patras, Greece.
| | - Evangelos Topakas
- Industrial Biotechnology & Biocatalysis Group, Biotechnology Laboratory, School of Chemical Engineering, National Technical University of Athens, Athens, Greece.
| |
Collapse
|
20
|
Gui Y, Wu Y, Shu T, Hou Z, Hu Y, Li W, Yu L. Multi-point immobilization of GH 11 endo-β-1,4-xylanase on magnetic MOF composites for higher yield of xylo-oligosaccharides. Int J Biol Macromol 2024; 260:129277. [PMID: 38211918 DOI: 10.1016/j.ijbiomac.2024.129277] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 12/25/2023] [Accepted: 01/04/2024] [Indexed: 01/13/2024]
Abstract
GH 11 endo-β-1,4-xylanase (Xy) was a crucial enzyme for xylooligosaccharides (XOS) production. The lower reusability and higher cost of purification has limited the industrial application of Xy. Addressing these challenges, our study utilized various immobilization techniques, different supports and forces for Xy immobilization. This study presents a new method in the development of Fe3O4@PDA@MOF-Xy which is immobilized via multi-point interaction forces, demonstrating a significant advancement in protein loading capacity (80.67 mg/g), and exhibiting remarkable tolerance to acidic and alkaline conditions. This method significantly improved Xy reusability and efficiency for industrial applications, maintaining 60 % activity over 10 cycles. Approximately 23 % XOS production was achieved by Fe3O4@PDA@MOF-Xy. Moreover, the yield of XOS from cobcorn xylan using this system was 1.15 times higher than that of the free enzyme system. These results provide a theoretical and applicative basis for enzyme immobilization and XOS industrial production.
Collapse
Affiliation(s)
- Yifan Gui
- Institute of Resource Biology and Biotechnology, Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; Key Laboratory of Molecular Biophysics Ministry of Education, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Ya Wu
- Institute of Resource Biology and Biotechnology, Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; Key Laboratory of Molecular Biophysics Ministry of Education, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Tong Shu
- Institute of Resource Biology and Biotechnology, Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; Key Laboratory of Molecular Biophysics Ministry of Education, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Ziqi Hou
- Institute of Resource Biology and Biotechnology, Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; Key Laboratory of Molecular Biophysics Ministry of Education, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yaofeng Hu
- Institute of Resource Biology and Biotechnology, Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; Key Laboratory of Molecular Biophysics Ministry of Education, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Wei Li
- Institute of Resource Biology and Biotechnology, Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; Key Laboratory of Molecular Biophysics Ministry of Education, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Longjiang Yu
- Institute of Resource Biology and Biotechnology, Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; Key Laboratory of Molecular Biophysics Ministry of Education, Huazhong University of Science and Technology, Wuhan 430074, China.
| |
Collapse
|
21
|
Li M, Tang H, Hu H, Liu X, Xue D, Yu X, Zhang J, Chen H, Chen J, Wang C, Gong C. Production of acetic acid from wheat bran by catalysis of an acetoxylan esterase. BIORESOURCE TECHNOLOGY 2024; 396:130443. [PMID: 38354962 DOI: 10.1016/j.biortech.2024.130443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/07/2024] [Accepted: 02/08/2024] [Indexed: 02/16/2024]
Abstract
In this study, a gene encoding for acetylxylan esterase was cloned and expressed in E. coli. A single uniform band with molecular weight of 31.2 kDa was observed in SDS-PAGE electrophoresis. Served as the substrate, p-nitrophenol butyrate was employed to detect the recombinant enzyme activity. It exhibited activity at a wide temperature range (30-100 °C) and pH (5.0-9.0) with the optimal temperature of 70 °C and pH 8.0. Acetylxylan esterase showed two substrates' specificities with the highest Vmax of 177.2 U/mg and Km of 20.98 mM against p-nitrophenol butyrate. Meanwhile, the Vmax of p-nitrophenol acetate was 137.0 U/mg and Km 12.16 mM. The acetic acid yield of 0.39 g/g was obtained (70 °C and pH 8.0) from wheat bran pretreated using amylase and papain. This study showed the highest yield up to date and developed a promising strategy for acetic acid production using wheat bran.
Collapse
Affiliation(s)
- Mei Li
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan 430068, PR China
| | - Hongzhi Tang
- State Key Laboratory of Microbial Metabolism, and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Haiyang Hu
- State Key Laboratory of Microbial Metabolism, and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Xiaoji Liu
- CECEP (Feixi) WTE CO., LTD., Hefei 230001, PR China
| | - Dongsheng Xue
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan 430068, PR China
| | - Xun Yu
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan 430068, PR China
| | - Jiaqi Zhang
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan 430068, PR China
| | - Hao Chen
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan 430068, PR China
| | - Jia Chen
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan 430068, PR China
| | - Chongju Wang
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan 430068, PR China
| | - Chunjie Gong
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan 430068, PR China.
| |
Collapse
|
22
|
Ma Y, Morozova SM, Kumacheva E. From Nature-Sourced Polysaccharide Particles to Advanced Functional Materials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2312707. [PMID: 38391153 DOI: 10.1002/adma.202312707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 02/15/2024] [Indexed: 02/24/2024]
Abstract
Polysaccharides constitute over 90% of the carbohydrate mass in nature, which makes them a promising feedstock for manufacturing sustainable materials. Polysaccharide particles (PSPs) are used as effective scavengers, carriers of chemical and biological cargos, and building blocks for the fabrication of macroscopic materials. The biocompatibility and degradability of PSPs are advantageous for their uses as biomaterials with more environmental friendliness. This review highlights the progresses in PSP applications as advanced functional materials, by describing PSP extraction, preparation, and surface functionalization with a variety of functional groups, polymers, nanoparticles, and biologically active species. This review also outlines the fabrication of PSP-derived macroscopic materials, as well as their applications in soft robotics, sensing, scavenging, water harvesting, drug delivery, and bioengineering. The paper is concluded with an outlook providing perspectives in the development and applications of PSP-derived materials.
Collapse
Affiliation(s)
- Yingshan Ma
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario, M5S 3H6, Canada
| | - Sofia M Morozova
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario, M5S 3H6, Canada
- Center of Fluid Physics and Soft Matter, N.E. Bauman Moscow State Technical University, 5/1 2-nd Baumanskaya street, Moscow, 105005, Russia
| | - Eugenia Kumacheva
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario, M5S 3H6, Canada
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, Ontario, M5S 3E5, Canada
- The Institute of Biomaterials and Biomedical Engineering, University of Toronto, 4 Taddle Creek Road, Toronto, Ontario, M5S 3G9, Canada
| |
Collapse
|
23
|
Yoshimi Y, Tryfona T, Dupree P. Structure, Modification Pattern, and Conformation of Hemicellulose in Plant Biomass. J Appl Glycosci (1999) 2024; 72:7201301. [PMID: 40200932 PMCID: PMC11975222 DOI: 10.5458/jag.7201301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 10/22/2024] [Indexed: 04/10/2025] Open
Abstract
Different forms of plant biomass have been utilised for various applications in daily life and have gained increasing attention as replacements for fossil fuel-based products in the pursuit of a sustainable society. Plant cell walls, the primary carbon sink of plant biomass, have a high-order polysaccharide architecture consisting of cellulose, hemicelluloses, pectins, lignin and some proteins. Hemicelluloses are a group of polysaccharides that interact with cellulose, which is fundamental to the different properties and functionality of the plant cell walls. However, for industrial applications, the complex polysaccharide architecture poses a barrier to their efficient use. Understanding the molecular basis of plant cell walls - especially cellulose-hemicellulose interactions - is therefore critical to improving the utilisation of plant biomass. Recent research has revealed that the detailed structures, modification patterns, and conformation of hemicelluloses play an influential role in their interaction with cellulose. In this review, we discuss the latest insights into hemicelluloses across different forms of plant biomass and how their structures affect cell wall assembly. Additionally, we explore recent findings on how alterations in hemicellulose structure and modification patterns affect the usability of plant biomass, including the extractability of polysaccharides and the digestibility of biomass by glycoside hydrolases for biofuel production. Furthermore, we address unsolved questions in the field and propose future strategies to maximize the potential of plant biomass.
Collapse
Affiliation(s)
| | | | - Paul Dupree
- Department of Biochemistry, University of Cambridge
| |
Collapse
|
24
|
Schaubeder JB, Spirk S, Fliri L, Orzan E, Biegler V, Palasingh C, Selinger J, Bakhshi A, Bauer W, Hirn U, Nypelö T. Role of intrinsic and extrinsic xylan in softwood kraft pulp fiber networks. Carbohydr Polym 2024; 323:121371. [PMID: 37940269 DOI: 10.1016/j.carbpol.2023.121371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 08/31/2023] [Accepted: 09/06/2023] [Indexed: 11/10/2023]
Abstract
Xylan is primarily found in the secondary cell wall of plants providing strength and integrity. To take advantage of the reinforcing effect of xylan in papermaking, it is crucial to understand its role in pulp fibers, as it undergoes substantial changes during pulping. However, the contributions of xylan that is added afterwards (extrinsic) and xylan present after pulping (intrinsic) remain largely unexplored. Here, we partially degraded xylan from refined bleached softwood kraft pulp (BSKP) and adsorbed xylan onto BSKP. Enzymatic degradation of 1 % xylan resulted in an open hand sheet structure, while adsorption of 3 % xylan created a denser fiber network. The mechanical properties improved with adsorbed xylan, but decreased more significantly after enzymatic treatment. We propose that the enhancement in mechanical properties by adsorbed extrinsic xylan is due to increased fiber-fiber bonds and sheet density, while the deterioration in mechanical properties of the enzyme treated pulp is caused by the opposite effect. These findings suggest that xylan is decisive for fiber network strength. However, intrinsic xylan is more critical, and the same properties cannot be achieved by readsorbing xylan onto the fibers. Therefore, pulping parameters should be selected to preserve intrinsic xylan within the fibers to maintain paper strength.
Collapse
Affiliation(s)
- Jana B Schaubeder
- Institute of Bioproducts and Paper Technology, Graz University of Technology, Inffeldgasse 23, 8010 Graz, Austria
| | - Stefan Spirk
- Institute of Bioproducts and Paper Technology, Graz University of Technology, Inffeldgasse 23, 8010 Graz, Austria
| | - Lukas Fliri
- Department of Bioproducts and Biosystems, Aalto University, Vuorimiehentie 1, FI-00076 Aalto, Finland
| | - Eliott Orzan
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Kemivägen 10, 412 96 Gothenburg, Sweden
| | - Veronika Biegler
- Institute for Materials Chemistry and Research, University of Vienna, Währinger Straße 42, 1090 Vienna, Austria
| | - Chonnipa Palasingh
- Department of Bioproducts and Biosystems, Aalto University, Vuorimiehentie 1, FI-00076 Aalto, Finland
| | - Julian Selinger
- Institute of Bioproducts and Paper Technology, Graz University of Technology, Inffeldgasse 23, 8010 Graz, Austria; Department of Bioproducts and Biosystems, Aalto University, Vuorimiehentie 1, FI-00076 Aalto, Finland
| | - Adelheid Bakhshi
- Institute of Bioproducts and Paper Technology, Graz University of Technology, Inffeldgasse 23, 8010 Graz, Austria
| | - Wolfgang Bauer
- Institute of Bioproducts and Paper Technology, Graz University of Technology, Inffeldgasse 23, 8010 Graz, Austria
| | - Ulrich Hirn
- Institute of Bioproducts and Paper Technology, Graz University of Technology, Inffeldgasse 23, 8010 Graz, Austria.
| | - Tiina Nypelö
- Department of Bioproducts and Biosystems, Aalto University, Vuorimiehentie 1, FI-00076 Aalto, Finland; Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Kemivägen 10, 412 96 Gothenburg, Sweden.
| |
Collapse
|
25
|
Melo VSD, Gomes BM, Chambergo FS. Biochemical characterization of a xylose-tolerant GH43 β-xylosidase from Geobacillus thermodenitrificans. Carbohydr Res 2023; 532:108901. [PMID: 37487384 DOI: 10.1016/j.carres.2023.108901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 07/12/2023] [Accepted: 07/15/2023] [Indexed: 07/26/2023]
Abstract
Hemicelluloses are the second most abundant polysaccharide in plant biomass, in which xylan is the main constituent. Aiming at the total degradation of xylan and the obtention of fermentable sugars, several enzymes acting synergistically are required, especially β-xylosidases. In this study, β-xylosidase from Geobacillus thermodenitrificans (GtXyl) was expressed in E. coli BL21 and characterized. The enzyme GtXyl has been grouped within the family of glycoside hydrolases 43 (GH43). Results showed that GtXyl obtained the highest activity at pH 5.0 and temperature of 60 °C. In the additive's tests, the enzyme remained stable in the presence of metal ions and EDTA, and showed high tolerance to xylose, with a relative activity of 55.4% at 400 mM. The enzyme also presented bifunctional activity of β-xylosidase and α-l-arabinofuranosidase, with the highest activity on the substrate p-nitrophenyl-β-d-xylopyranoside. The specific activity on p-nitrophenyl-β-d-xylopyranoside was 18.33 U mg-1 and catalytic efficiency of 20.21 mM-1 s-1, which is comparable to other β-xylosidases reported in the literature. Putting together, the GtXyl enzyme presented interesting biochemical characteristics that are desirable for the application in the enzymatic hydrolysis of plant biomass, such as activity at higher temperatures, high thermostability and stability to metal ions.
Collapse
Affiliation(s)
- Vandierly Sampaio de Melo
- Laboratory of Biochemistry and Protein Biotechnology, School of Arts, Sciences and Humanities, University of São Paulo, Av. Arlindo Bettio, 1000, São Paulo, CEP: 03828000, Brazil
| | - Brisa Moreira Gomes
- Laboratory of Biochemistry and Protein Biotechnology, School of Arts, Sciences and Humanities, University of São Paulo, Av. Arlindo Bettio, 1000, São Paulo, CEP: 03828000, Brazil
| | - Felipe Santiago Chambergo
- Laboratory of Biochemistry and Protein Biotechnology, School of Arts, Sciences and Humanities, University of São Paulo, Av. Arlindo Bettio, 1000, São Paulo, CEP: 03828000, Brazil.
| |
Collapse
|
26
|
Chen J, Qin H, You C, Long L. Improved secretory expression and characterization of thermostable xylanase and β-xylosidase from Pseudothermotoga thermarum and their application in synergistic degradation of lignocellulose. Front Bioeng Biotechnol 2023; 11:1270805. [PMID: 37790249 PMCID: PMC10544939 DOI: 10.3389/fbioe.2023.1270805] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 09/04/2023] [Indexed: 10/05/2023] Open
Abstract
Xylanase and β-xylosidase are the key enzymes for hemicellulose hydrolysis. To further improve hydrolysis efficacy, high temperature hydrolysis with thermostable hemicellulases showed promise. In this study, thermostable xylanase (Xyn) and β-xylosidase (XynB) genes from Pseudothermotoga thermarum were cloned and secretory expressed in Bacillu subtilis. Compared with Escherichia coli expression host, B. subtilis resulted in a 1.5 time increase of enzymatic activity for both recombinant enzymes. The optimal temperature and pH were 95°C and 6.5 for Xyn, and 95°C and 6.0 for XynB. Thermostability of both recombinant enzymes was observed between the temperature range of 75-85°C. Molecular docking analysis through AutoDock showed the involvement of Glu525, Asn526, Trp774 and Arg784 in Xyn-ligand interaction, and Val237, Lys238, Val761 and Asn76 in XynB-ligand interaction, respectively. The recombinant Xyn and XynB exhibited synergistic hydrolysis of beechwood xylan and pretreated lignocellulose, where Xyn and XynB pre-hydrolysis achieved a better improvement of pretreated lignocellulose hydrolysis by commercial cellulase. The observed stability of the enzymes at high temperature and the synergistic effect on lignocellulosic substrates suggested possible application of these enzymes in the field of saccharification process.
Collapse
Affiliation(s)
- Jinkang Chen
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Hao Qin
- Eco-Materials and Renewable Energy Research Center (ERERC), College of Engineering and Applied Sciences, Nanjing University, Nanjing, Jiangsu, China
- Little Swan Electric Co., Ltd., Midea Group, Wuxi, China
| | - Chaoqun You
- Jiangsu Key Lab for the Chemistry and Utilization of Agro-Forest Biomas, College of Chemical Engineering, Nanjing Forestry University, Nanjing, China
| | - Lingfeng Long
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| |
Collapse
|
27
|
Vega-Sagardía M, Delgado J, Ruiz-Moyano S, Garrido D. Proteomic analyses of Bacteroides ovatus and Bifidobacterium longum in xylan bidirectional culture shows sugar cross-feeding interactions. Food Res Int 2023; 170:113025. [PMID: 37316088 DOI: 10.1016/j.foodres.2023.113025] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 05/18/2023] [Accepted: 05/19/2023] [Indexed: 06/16/2023]
Abstract
The intestinal microbiome is a community of anaerobic microorganisms whose activities significantly impact human health. Its composition can be modulated by consuming foods rich in dietary fiber, such as xylan, a complex polysaccharide that can be considered an emerging prebiotic. In this work, we evaluated how certain gut bacteria acted as primary degraders, fermenting dietary fibers, and releasing metabolites that other bacteria can further use. Different bacterial strains of Lactobacillus, Bifidobacterium, and Bacteroides were evaluated for their ability to consume xylan and interact with one another. Results from unidirectional assays gave indications of possible cross-feeding between bacteria using xylan as a carbon source. Bidirectional assays showed that Bifidobacterium longum PT4 increased its growth in the presence of Bacteroides ovatus HM222. Proteomic analyses indicated that B. ovatus HM222 synthesizes enzymes facilitating xylan degradation, such as β-xylanase, arabinosidase, L-arabinose isomerase, and xylosidase. Interestingly, the relative abundance of these proteins remains largely unaffected in the presence of Bifidobacterium longum PT4. In the presence of B. ovatus, B. longum PT4 increased the production of enzymes such as α-L-arabinosidase, L-arabinose isomerase, xylulose kinase, xylose isomerase, and sugar transporters. These results show an example of positive interaction between bacteria mediated by xylan consumption. Bacteroides degraded this substrate to release xylooligosaccharides, or monosaccharides (xylose, arabinose), which might support the growth of secondary degraders such as B. longum.
Collapse
Affiliation(s)
- Marco Vega-Sagardía
- Department of Chemical and Bioprocess Engineering, School of Engineering, Pontificia Universidad Católica de Chile, Vicuña Mackenna 4860, Santiago, Chile
| | - Josué Delgado
- Food Hygiene and Safety, Meat and Meat Products Research Institute, Faculty of Veterinary Science, Universidad de Extremadura, Avenida de las Ciencias s/n, 10003 Caceres, Spain.
| | - Santiago Ruiz-Moyano
- Departamento de Producción Animal y Ciencia de los Alimentos, Nutrición y Bromatología, Escuela de Ingenierías Agrarias, Universidad de Extremadura, Avda. Adolfo Suárez s/n, 06007 Badajoz, Spain; Instituto Universitario de Investigación de Recursos Agrarios (INURA), Universidad de Extremadura, Avda. de la Investigación s/n, Campus Universitario, 06006 Badajoz, Spain
| | - Daniel Garrido
- Department of Chemical and Bioprocess Engineering, School of Engineering, Pontificia Universidad Católica de Chile, Vicuña Mackenna 4860, Santiago, Chile.
| |
Collapse
|
28
|
Passoth V, Brandenburg J, Chmielarz M, Martín-Hernández GC, Nagaraj Y, Müller B, Blomqvist J. Oleaginous yeasts for biochemicals, biofuels and food from lignocellulose-hydrolysate and crude glycerol. Yeast 2023; 40:290-302. [PMID: 36597618 DOI: 10.1002/yea.3838] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/21/2022] [Accepted: 12/31/2022] [Indexed: 01/05/2023] Open
Abstract
Microbial lipids produced from lignocellulose and crude glycerol (CG) can serve as sustainable alternatives to vegetable oils, whose production is, in many cases, accompanied by monocultures, land use changes or rain forest clearings. Our projects aim to understand the physiology of microbial lipid production by oleaginous yeasts, optimise the production and establish novel applications of microbial lipid compounds. We have established methods for fermentation and intracellular lipid quantification. Following the kinetics of lipid accumulation in different strains, we found high variability in lipid formation even between very closely related oleaginous yeast strains on both, wheat straw hydrolysate and CG. For example, on complete wheat straw hydrolysate, we saw that one Rhodotorula glutinis strain, when starting assimilating D-xylosealso assimilated the accumulated lipids, while a Rhodotorula babjevae strain could accumulate lipids on D-xylose. Two strains (Rhodotorula toruloides CBS 14 and R. glutinis CBS 3044) were found to be the best out of 27 tested to accumulate lipids on CG. Interestingly, the presence of hemicellulose hydrolysate stimulated glycerol assimilation in both strains. Apart from microbial oil, R. toruloides also produces carotenoids. The first attempts of extraction using the classical acetone-based method showed that β-carotene is the major carotenoid. However, there are indications that there are also substantial amounts of torulene and torularhodin, which have a very high potential as antioxidants.
Collapse
Affiliation(s)
- Volkmar Passoth
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Jule Brandenburg
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
- Klinisk Mikrobiologi Falun, Falun Lasarett, Falun, Sweden
| | - Mikołaj Chmielarz
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | | | - Yashaswini Nagaraj
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Bettina Müller
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Johanna Blomqvist
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
| |
Collapse
|
29
|
Ravn JL, Ristinmaa AS, Coleman T, Larsbrink J, Geijer C. Yeasts Have Evolved Divergent Enzyme Strategies To Deconstruct and Metabolize Xylan. Microbiol Spectr 2023; 11:e0024523. [PMID: 37098941 PMCID: PMC10269524 DOI: 10.1128/spectrum.00245-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 04/08/2023] [Indexed: 04/27/2023] Open
Abstract
Together with bacteria and filamentous fungi, yeasts actively take part in the global carbon cycle. Over 100 yeast species have been shown to grow on the major plant polysaccharide xylan, which requires an arsenal of carbohydrate active enzymes. However, which enzymatic strategies yeasts use to deconstruct xylan and what specific biological roles they play in its conversion remain unclear. In fact, genome analyses reveal that many xylan-metabolizing yeasts lack expected xylanolytic enzymes. Guided by bioinformatics, we have here selected three xylan-metabolizing ascomycetous yeasts for in-depth characterization of growth behavior and xylanolytic enzymes. The savanna soil yeast Blastobotrys mokoenaii displays superior growth on xylan thanks to an efficient secreted glycoside hydrolase family 11 (GH11) xylanase; solving its crystal structure revealed a high similarity to xylanases from filamentous fungi. The termite gut-associated Scheffersomyces lignosus, in contrast grows more slowly, and its xylanase activity was found to be mainly cell surface-associated. The wood-isolated Wickerhamomyces canadensis, surprisingly, could not utilize xylan as the sole carbon source without the addition of xylooligosaccharides or exogenous xylanases or even co-culturing with B. mokoenaii, suggesting that W. canadensis relies on initial xylan hydrolysis by neighboring cells. Furthermore, our characterization of a novel W. canadensis GH5 subfamily 49 (GH5_49) xylanase represents the first demonstrated activity in this subfamily. Our collective results provide new information on the variable xylanolytic systems evolved by yeasts and their potential roles in natural carbohydrate conversion. IMPORTANCE Microbes that take part in the degradation of the polysaccharide xylan, the major hemicellulose component in plant biomass, are equipped with specialized enzyme machineries to hydrolyze the polymer into monosaccharides for further metabolism. However, despite being found in virtually every habitat, little is known of how yeasts break down and metabolize xylan and what biological role they may play in its turnover in nature. Here, we have explored the enzymatic xylan deconstruction strategies of three underexplored yeasts from diverse environments, Blastobotrys mokoenaii from soil, Scheffersomyces lignosus from insect guts, and Wickerhamomyces canadensis from trees, and we show that each species has a distinct behavior regarding xylan conversion. These findings may be of high relevance for future design and development of microbial cell factories and biorefineries utilizing renewable plant biomass.
Collapse
Affiliation(s)
- Jonas L. Ravn
- Department of Life Sciences, Chalmers University of Technology, Gothenburg, Sweden
| | | | - Tom Coleman
- Department of Life Sciences, Chalmers University of Technology, Gothenburg, Sweden
| | - Johan Larsbrink
- Department of Life Sciences, Chalmers University of Technology, Gothenburg, Sweden
- Wallenberg Wood Science Center, Chalmers University of Technology, Gothenburg, Sweden
| | - Cecilia Geijer
- Department of Life Sciences, Chalmers University of Technology, Gothenburg, Sweden
| |
Collapse
|
30
|
Garbelotti CV, Grandis A, Crevelin E, Buckeridge MS, de Moraes LAB, Ward RJ. Glycomic profiling identifies key-structural differences in three arabinoxylan fractions from sugarcane culms. Carbohydr Polym 2023; 310:120694. [PMID: 36925235 DOI: 10.1016/j.carbpol.2023.120694] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 02/03/2023] [Accepted: 02/08/2023] [Indexed: 02/13/2023]
Abstract
Sugarcane is an important food and bioenergy crop, and although the residual biomass is potentially available for biorefinery and biofuels production the complex plant cell wall matrix requires pretreatment prior to enzymatic hydrolysis. Arabinoxylans require multiple enzymes for xylose backbone and saccharide side-branch hydrolysis to release xylooligosaccharides and pentoses. The effect of arabinoxylan structure on xylooligosaccharide release by combinations of up to five xylanolytic enzymes was studied using three arabinoxylan fractions extracted from sugarcane culms by sodium chlorite, DMSO and alkaline treatments. Reducing sugar release and LC-MS detection with chemometric analysis identified different xylooligosaccharide profiles between extracts following enzyme treatments. The position and degree of side-branch decorations are determinants of enzyme activity and xylooligosaccharide diversity with the alkaline and post‑sodium chlorite extracts as the most accessible and most recalcitrant, respectively, indicating acetyl substituents as a major recalcitrance factor. The complex xylooligosaccharide profile with the DMSO extract suggests regions with different levels of branching. Chemometric analysis identified GH10 xylanase hydrolysis products that act as substrates for other enzymes, such as α-glucuronidase. The strategy reported here can identify specific enzyme combinations to overcome barriers for biomass processing such as pretreatment selection, recalcitrance to enzyme digestion and optimization of reducing sugar release.
Collapse
Affiliation(s)
- Carolina Victal Garbelotti
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP CEP 14040-901, Brazil.
| | - Adriana Grandis
- Laboratório de Fisiologia Ecológica de Plantas do Instituto de Biociências da Universidade de São Paulo, São Paulo, SP CEP 05508-090, Brazil
| | - Eduardo Crevelin
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP CEP 14040-901, Brazil.
| | - Marcos Silveira Buckeridge
- Laboratório de Fisiologia Ecológica de Plantas do Instituto de Biociências da Universidade de São Paulo, São Paulo, SP CEP 05508-090, Brazil
| | - Luiz Alberto Beraldo de Moraes
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP CEP 14040-901, Brazil.
| | - Richard John Ward
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP CEP 14040-901, Brazil.
| |
Collapse
|
31
|
Zhang Y, Wang R, Liu L, Wang E, Yang J, Yuan H. Distinct lignocellulolytic enzymes produced by Trichoderma harzianum in response to different pretreated substrates. BIORESOURCE TECHNOLOGY 2023; 378:128990. [PMID: 37003454 DOI: 10.1016/j.biortech.2023.128990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/27/2023] [Accepted: 03/28/2023] [Indexed: 06/19/2023]
Abstract
In order to optimize the composition of enzyme cocktail for improving the hydrolytic efficiency of lignocellulose, different substrates were tested as inducers for producing lignocellulolytic enzymes by Trichoderma harzianum EM0925 in this study. As results, ultrafine grinding or steam explosion pretreated substrates can induce T. harzianum EM0925 to secret holo lignocellulolytic enzymes; acid treated substrate can induce cellobiohydrolase; while alkali or sodium chlorite treated substrates can induce β-xylosidase specifically. Furthermore, the combination of enzyme cocktails with different hydrolysis characteristics can further improve the hydrolysis efficiency, since 100% yields of glucose and xylose were obtained simultaneously from ultrafine grinding treated corn stover at low enzyme dosage (1.2 mg proteins/g substrate). This study for the first time demonstrated an effective solution that specific-pretreated substrates can be used as inducers for specific enzyme production by T. harzianum, which provided new idea and potential strategy for the construction of highly-efficient lignocellulolytic enzyme cocktails.
Collapse
Affiliation(s)
- Yu Zhang
- State Key Laboratory of Animal Biotech Breeding and Key Laboratory of Soil Microbiology, Ministry of Agriculture, College of Biological Sciences, China Agricultural University, Beijing, China; Center for Advanced Measurement Science, National Institute of Metrology, Beijing, China
| | - Ruonan Wang
- State Key Laboratory of Animal Biotech Breeding and Key Laboratory of Soil Microbiology, Ministry of Agriculture, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Liang Liu
- State Key Laboratory of Animal Biotech Breeding and Key Laboratory of Soil Microbiology, Ministry of Agriculture, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Entao Wang
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Jinshui Yang
- State Key Laboratory of Animal Biotech Breeding and Key Laboratory of Soil Microbiology, Ministry of Agriculture, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Hongli Yuan
- State Key Laboratory of Animal Biotech Breeding and Key Laboratory of Soil Microbiology, Ministry of Agriculture, College of Biological Sciences, China Agricultural University, Beijing, China.
| |
Collapse
|
32
|
Long L, Wang W, Liu Z, Lin Y, Wang J, Lin Q, Ding S. Insights into the capability of the lignocellulolytic enzymes of Penicillium parvum 4-14 to saccharify corn bran after alkaline hydrogen peroxide pretreatment. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2023; 16:79. [PMID: 37170321 PMCID: PMC10176746 DOI: 10.1186/s13068-023-02319-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 04/10/2023] [Indexed: 05/13/2023]
Abstract
BACKGROUND Corn bran is a major agro-industrial byproduct from corn starch processing. It contains abundant arabinoxylan that can be converted into value-added chemicals via biotechnology. Corn bran arabinoxylan (CBAX) is one of the most recalcitrant xylans for enzymatic degradation due to its particular heterogeneous nature. The present study aimed to investigate the capability of the filamentous fungus Penicillium parvum 4-14 to enzymatically saccharify CBAX and reveal the fungal carbohydrate-active enzyme (CAZyme) repertoire by genome sequencing and secretome analysis. RESULTS CBAX1 and CBAX2 with different branching degrees, together with corn bran residue (CBR) were generated from corn bran after alkaline hydrogen peroxide (AHP) pretreatment and graded ethanol precipitation. The protein blends E_CBAX1, E_CBAX2, and E_CBR were produced by the fungus grown on CBAX1, CBAX2, or CBR, respectively. Under the optimal conditions, E_CBAX1 released more than 80% xylose and arabinose from CBAX1 and CBAX2. Almost complete saccharification of the arabinoxylans was achieved by combining E_CBAX1 and a commercial enzyme cocktail Cellic®CTec3. Approximately 89% glucose, 64% xylose, and 64% arabinose were liberated from CBR by E_CBR. The combination of E_CBR with Cellic®CTec3 enhanced the saccharification of CBR, with conversion ratios of 97% for glucose, 81% for xylose, and 76% for arabinose. A total of 376 CAZymes including plentiful lignocellulolytic enzymes were predicted in P. parvum based on the fungal genomic sequence (25.8 Mb). Proteomic analysis indicated that the expression of CAZymes in P. parvum varied between CBAX1 and CBR, and the fungus produced complete cellulases, numerous hemicellulases, as well as high levels of glycosidases under the culture conditions. CONCLUSIONS This investigation disclosed the CAZyme repertoire of P. parvum at the genomic and proteomic levels, and elaborated on the promising potential of fungal lignocellulolytic enzymes upon saccharification of corn bran biomass after AHP pretreatment.
Collapse
Affiliation(s)
- Liangkun Long
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, China
- Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, Nanjing Forestry University, Nanjing, 210037, China
| | - Wei Wang
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, China
| | - Zhen Liu
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, China
| | - Yuanxin Lin
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, China
| | - Jing Wang
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, China
| | - Qunying Lin
- Nanjing Institute for the Comprehensive Utilization of Wild Plants, Nanjing, 211111, China
| | - Shaojun Ding
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, China.
- Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, Nanjing Forestry University, Nanjing, 210037, China.
| |
Collapse
|
33
|
Wang R, Zhang Y, Liu L, Yang J, Yuan H. Discovery of a bifunctional xylanolytic enzyme with arabinoxylan arabinofuranohydrolase-d3 and endo-xylanase activities and its application in the hydrolysis of cereal arabinoxylans. Microb Biotechnol 2023. [PMID: 37096984 DOI: 10.1111/1751-7915.14267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 04/11/2023] [Accepted: 04/13/2023] [Indexed: 04/26/2023] Open
Abstract
Xylanolytic enzymes, with both endo-xylanase and arabinoxylan arabinofuranohydrolase (AXH) activities, are attractive for the economically feasible conversion of recalcitrant arabinoxylan. However, their characterization and utilization of these enzymes in biotechnological applications have been limited. Here, we characterize a novel bifunctional enzyme, rAbf43A, cloned from a bacterial consortium that exhibits AXH and endo-xylanase activities. Hydrolytic pattern analyses revealed that the AXH activity belongs to AXHd3 because it attacked only the C(O)-3-linked arabinofuranosyl residues of double-substituted xylopyranosyl units of arabinoxylan and arabinoxylan-derived oligosaccharides, which are usually resistant to hydrolysis. The enzyme rAbf43A also liberated a series of xylo-oligosaccharides (XOSs) from beechwood xylan, xylohexaose and xylopentaose, indicating that rAbf43A exhibited endo-xylanase activity. Homology modelling based on AlphaFold2 and site-directed mutagenesis identified three non-catalytic residues (H161, A270 and L505) located in the substrate-binding pocket essential for its dual-functionality, while the mutation of A117 located in the -1 subsite to the proline residue only affected its endo-xylanase activity. Additionally, rAbf43A showed significant synergistic action with the bifunctional xylanase/feruloyl esterase rXyn10A/Fae1A from the same bacterial consortium on insoluble wheat arabinoxylan and de-starched wheat bran degradation. When rXyn10A/Fae1A was added to the rAbf43A pre-hydrolyzed reactions, the amount of released reducing sugars, xylose and ferulic acid increased by 9.43% and 25.16%, 189.37% and 93.54%, 31.39% and 32.30%, respectively, in comparison with the sum of hydrolysis products released by each enzyme alone. The unique characteristics of rAbf43A position it as a promising candidate not only for designing high-performance enzyme cocktails but also for investigating the structure-function relationship of GH43 multifunctional enzymes.
Collapse
Affiliation(s)
- Ruonan Wang
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, China
- College of Life Science, Luoyang Normal University, Luoyang, China
| | - Yu Zhang
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Liang Liu
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Jinshui Yang
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Hongli Yuan
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, China
| |
Collapse
|
34
|
Pentari C, Zerva A, Dimarogona M, Topakas E. The xylobiohydrolase activity of a GH30 xylanase on natively acetylated xylan may hold the key for the degradation of recalcitrant xylan. Carbohydr Polym 2023; 305:120527. [PMID: 36737185 DOI: 10.1016/j.carbpol.2022.120527] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 12/22/2022] [Accepted: 12/29/2022] [Indexed: 01/11/2023]
Abstract
Acetyl substitutions are common on the hemicellulosic structures of lignocellulose, which up until recently were known to inhibit xylanase activity. Emerging data, however, suggest that xylanases are able to accommodate acetyl side-groups within their catalytic site. In the present work, a fungal GH30 xylanase from Thermothelomyces thermophila, namely TtXyn30A, was shown to release acetylated xylobiose when acting on pretreated lignocellulosic substrate. The released disaccharides could be acetylated at the 2-OH, 3-OH or both positions of the non-reducing end xylose, but the existence of the acetylation on the reducing end cannot be excluded. The synergy of TtXyn30A with acetyl esterases indicates that particular subsites within its active site cannot tolerate acetylated xylopyranose residues. Molecular docking showed that acetyl group can be accommodated on the 2- or 3-OH position of the non-reducing end xylose, unlike the reducing-end xylose (subsite -1), where only 3-OH decoration can be accommodated. Such insight into the catalytic activity of TtXyn30A could contribute to a better understanding of its biological role and thus lead to a more sufficient biotechnological utilization.
Collapse
Affiliation(s)
- Christina Pentari
- Industrial Biotechnology & Biocatalysis Group, Biotechnology Laboratory, School of Chemical Engineering, National Technical University of Athens, Athens, Greece
| | - Anastasia Zerva
- Industrial Biotechnology & Biocatalysis Group, Biotechnology Laboratory, School of Chemical Engineering, National Technical University of Athens, Athens, Greece
| | - Maria Dimarogona
- Laboratory of Structural Biology and Biotechnology, Department of Chemical Engineering, University of Patras, Patras, Greece
| | - Evangelos Topakas
- Industrial Biotechnology & Biocatalysis Group, Biotechnology Laboratory, School of Chemical Engineering, National Technical University of Athens, Athens, Greece.
| |
Collapse
|
35
|
Mendonça M, Barroca M, Collins T. Endo-1,4-β-xylanase-containing glycoside hydrolase families: Characteristics, singularities and similarities. Biotechnol Adv 2023; 65:108148. [PMID: 37030552 DOI: 10.1016/j.biotechadv.2023.108148] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 04/02/2023] [Accepted: 04/04/2023] [Indexed: 04/09/2023]
Abstract
Endo-1,4-β-xylanases (EC 3.2.1.8) are O-glycoside hydrolases that cleave the internal β-1,4-D-xylosidic linkages of the complex plant polysaccharide xylan. They are produced by a vast array of organisms where they play critical roles in xylan saccharification and plant cell wall hydrolysis. They are also important industrial biocatalysts with widespread application. A large and ever growing number of xylanases with wildly different properties and functionalites are known and a better understanding of these would enable a more effective use in various applications. The Carbohydrate-Active enZYmes database (CAZy), which classifies evolutionarily related proteins into a glycoside hydrolase family-subfamily organisational scheme has proven powerful in understanding these enzymes. Nevertheless, ambiguity currently exists as to the number of glycoside hydrolase families and subfamilies harbouring catalytic domains with true endoxylanase activity and as to the specific characteristics of each of these families/subfamilies. This review seeks to clarify this, identifying 9 glycoside hydrolase families containing enzymes with endo-1,4-β-xylanase activity and discussing their properties, similarities, differences and biotechnological perspectives. In particular, substrate specificities and hydrolysis patterns and the structural determinants of these are detailed, with taxonomic aspects of source organisms being also presented. Shortcomings in current knowledge and research areas that require further clarification are highlighted and suggestions for future directions provided. This review seeks to motivate further research on these enzymes and especially of the lesser known endo-1,4-β-xylanase containing families. A better understanding of these enzymes will serve as a foundation for the knowledge-based development of process-fitted endo-1,4-β-xylanases and will accelerate their development for use with even the most recalcitrant of substrates in the biobased industries of the future.
Collapse
|
36
|
Schmitz E, Leontakianakou S, Adlercreutz P, Nordberg Karlsson E, Linares-Pastén JA. Novel Function of CtXyn5A from Acetivibrio thermocellus: Dual Arabinoxylanase and Feruloyl Esterase Activity in the Same Active Site. Chembiochem 2023; 24:e202200667. [PMID: 36449982 PMCID: PMC10107809 DOI: 10.1002/cbic.202200667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 11/30/2022] [Accepted: 11/30/2022] [Indexed: 12/02/2022]
Abstract
Enzymes' uncharacterised side activities can have significant effects on reaction products and yields. Hence, their identification and characterisation are crucial for the development of successful reaction systems. Here, we report the presence of feruloyl esterase activity in CtXyn5A from Acetivibrio thermocellus, besides its well-known arabinoxylanase activity, for the first time. Activity analysis of enzyme variants mutated in the catalytic nucleophile, Glu279, confirmed removal of all activity for E279A and E279L, and increased esterase activity while removing xylanase activity for E279S, thus allowing the proposal that both reaction types are catalysed in the same active site in two subsequential steps. The ferulic acid substituent is cleaved off first, followed by hydrolysis of the xylan backbone. The esterase activity on complex carbohydrates was found to be higher than that of a designated ferulic acid esterase (E-FAERU). Therefore, we conclude that the enzyme exhibits a dual function rather than an esterase side activity.
Collapse
Affiliation(s)
- Eva Schmitz
- Biotechnology, Department of Chemistry, Lund University, P.O. Box 124, Lund, 22100, Sweden
| | - Savvina Leontakianakou
- Biotechnology, Department of Chemistry, Lund University, P.O. Box 124, Lund, 22100, Sweden
| | - Patrick Adlercreutz
- Biotechnology, Department of Chemistry, Lund University, P.O. Box 124, Lund, 22100, Sweden
| | - Eva Nordberg Karlsson
- Biotechnology, Department of Chemistry, Lund University, P.O. Box 124, Lund, 22100, Sweden
| | | |
Collapse
|
37
|
Zhang N, Jiang Y, Sun YJ, Jiang JC, Tong YJ. Breeding of a thermostable xylanase-producing strain of Myceliophthora thermophila by atmospheric room temperature plasma (ARTP) mutagenesis. Front Bioeng Biotechnol 2023; 10:1095323. [PMID: 36686237 PMCID: PMC9849395 DOI: 10.3389/fbioe.2022.1095323] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 12/20/2022] [Indexed: 01/06/2023] Open
Abstract
Introduction: Hemicellulose is an important component in lignocellulose materials, which is second only to cellulose, accounting for 15%-35% of the dry weight of plants. In the current situation of energy shortage, making full use of lignocellulose materials to produce fuel ethanol has become an important way to solve the energy problem. Xylanase plays a crucial role in the utilization of hemicellulose. It is a necessary means to reduce the cost of hemicellulose utilization by improving the activity of xylanase. Moreover, most naturally xylanases are mesophilic enzymes, which limits their industrial application. Methods:In this study, Myceliophthora thermophila was used to produce xylanases and a thermostable mutant M 2103 was obtained by atmospheric room temperature plasma (ARTP) mutagenesis. The research work started with exploring the effects of ARTP mutagenesis on the antioxidase system [superoxide dismutase (SOD), catalase (CAT), peroxidase (POD), polyphenol oxidase (PPO), and antioxidant capacity (AOC)] of M. thermophile, and found that superoxide dismutase activity increased by 221.13%, and polyphenol oxidase activity increased by 486.04% as compared with the original strain when the implantation time was 300 s. So as to determine the conditions for subsequent mutagenesis. Results and Discussion:For the mutant M 2103, the reaction temperature for xylanase production remained stable in the range of 70°C-85°C. Its optimum temperature was 75°C, which was 15°C higher than that of the original strain. And its xylanase activity increased by 21.71% as compared with the original strain. M 2103 displayed a significantly higher relative xylanase activity than the original strain in the acidic (pH 4.0-7.0) range, and the xylanase activity was relatively stable in the pH range of 6.0-8.5. These results provide an alternative biocatalyst for the production of xylooligosaccharide, and a potential usage of ARTP in the mutagenesis of thermostable mutant.
Collapse
Affiliation(s)
- Ning Zhang
- Key Lab of Biomass Energy and Material, Key Lab of Chemical Engineering of Forest Products, National Engineering Research Center of Low-Carbon Processing and Utilization of Forest Biomass, Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resource, National Forestry and Grassland Administration, Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry (CAF), Nanjing, Jiangsu, China,Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, China
| | - Yue Jiang
- Key Lab of Biomass Energy and Material, Key Lab of Chemical Engineering of Forest Products, National Engineering Research Center of Low-Carbon Processing and Utilization of Forest Biomass, Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resource, National Forestry and Grassland Administration, Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry (CAF), Nanjing, Jiangsu, China,Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, China
| | - Yun-Juan Sun
- Key Lab of Biomass Energy and Material, Key Lab of Chemical Engineering of Forest Products, National Engineering Research Center of Low-Carbon Processing and Utilization of Forest Biomass, Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resource, National Forestry and Grassland Administration, Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry (CAF), Nanjing, Jiangsu, China,Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, China,*Correspondence: Yun-Juan Sun, ; Jian-Chun Jiang,
| | - Jian-Chun Jiang
- Key Lab of Biomass Energy and Material, Key Lab of Chemical Engineering of Forest Products, National Engineering Research Center of Low-Carbon Processing and Utilization of Forest Biomass, Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resource, National Forestry and Grassland Administration, Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry (CAF), Nanjing, Jiangsu, China,Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, China,*Correspondence: Yun-Juan Sun, ; Jian-Chun Jiang,
| | - Ya-Juan Tong
- Key Lab of Biomass Energy and Material, Key Lab of Chemical Engineering of Forest Products, National Engineering Research Center of Low-Carbon Processing and Utilization of Forest Biomass, Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resource, National Forestry and Grassland Administration, Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry (CAF), Nanjing, Jiangsu, China,Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, China
| |
Collapse
|
38
|
Recent advances in xylo-oligosaccharides production and applications: A comprehensive review and bibliometric analysis. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2023. [DOI: 10.1016/j.bcab.2023.102608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
39
|
Microbial xylanolytic carbohydrate esterases. Essays Biochem 2022; 67:479-491. [PMID: 36468678 DOI: 10.1042/ebc20220129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 11/04/2022] [Accepted: 11/17/2022] [Indexed: 12/12/2022]
Abstract
Abstract
This article reviews microbial esterases participating in the degradation of the major plant hemicellulose, xylan. The main chain of this polysaccharide built of β-1,4-glycosidically linked xylopyranosyl residues is substituted by other sugars and also partially acetylated. Besides esters of acetic acid, there are two other types of ester linkages in plant xylans. L-Arabinofuranosyl side chains form esters with phenolic acids, predominantly with ferulic acid. The dimerization of ferulic acid residues leads to cross-links connecting the hemicellulose molecules. Ferulic acid cross-links were shown to serve as covalent linkage between lignin and hemicellulose. Another cross-linking between lignin and hemicellulose is provided by esters between the xylan side residues of glucuronic or 4-O-methyl-D-glucurononic acid and lignin alcohols. Regardless of the cross-linking, the side residues prevent xylan main chains from association that leads to crystallization similar to that of cellulose. Simultaneously, xylan decorations hamper the action of enzymes acting on the main chain. The enzymatic breakdown of plant xylan, therefore, requires a concerted action of glycanases attacking the main chain and enzymes catalyzing debranching, called accessory xylanolytic enzymes including xylanolytic esterases. While acetylxylan esterases and feruloyl esterases participate directly in xylan degradation, glucuronoyl esterases catalyze its separation from lignin. The current state of knowledge of diversity, classification and structure–function relationship of these three types of xylanolytic carbohydrate esterases is discussed with emphasis on important aspects of their future research relevant to their industrial applications.
Collapse
|
40
|
Tamburino R, Marcolongo L, Sannino L, Ionata E, Scotti N. Plastid Transformation: New Challenges in the Circular Economy Era. Int J Mol Sci 2022; 23:ijms232315254. [PMID: 36499577 PMCID: PMC9736159 DOI: 10.3390/ijms232315254] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/29/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022] Open
Abstract
In a circular economy era the transition towards renewable and sustainable materials is very urgent. The development of bio-based solutions, that can ensure technological circularity in many priority areas (e.g., agriculture, biotechnology, ecology, green industry, etc.), is very strategic. The agricultural and fishing industry wastes represent important feedstocks that require the development of sustainable and environmentally-friendly industrial processes to produce and recover biofuels, chemicals and bioactive molecules. In this context, the replacement, in industrial processes, of chemicals with enzyme-based catalysts assures great benefits to humans and the environment. In this review, we describe the potentiality of the plastid transformation technology as a sustainable and cheap platform for the production of recombinant industrial enzymes, summarize the current knowledge on the technology, and display examples of cellulolytic enzymes already produced. Further, we illustrate several types of bacterial auxiliary and chitinases/chitin deacetylases enzymes with high biotechnological value that could be manufactured by plastid transformation.
Collapse
Affiliation(s)
- Rachele Tamburino
- CNR-IBBR, Institute of Biosciences and BioResources, 80055 Naples, Italy
| | | | - Lorenza Sannino
- CNR-IBBR, Institute of Biosciences and BioResources, 80055 Naples, Italy
| | - Elena Ionata
- CNR-IRET, Research Institute on Terrestrial Ecosystems, 80131 Naples, Italy
| | - Nunzia Scotti
- CNR-IBBR, Institute of Biosciences and BioResources, 80055 Naples, Italy
- Correspondence:
| |
Collapse
|
41
|
Liu N, Gagnot S, Denis Y, Byrne D, Faulds C, Fierobe HP, Perret S. Selfish uptake versus extracellular arabinoxylan degradation in the primary degrader Ruminiclostridium cellulolyticum, a new string to its bow. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2022; 15:127. [PMID: 36403068 PMCID: PMC9675976 DOI: 10.1186/s13068-022-02225-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 11/04/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Primary degraders of polysaccharides play a key role in anaerobic biotopes, where plant cell wall accumulates, providing extracellular enzymes to release fermentable carbohydrates to fuel themselves and other non-degrader species. Ruminiclostridium cellulolyticum is a model primary degrader growing amongst others on arabinoxylan. It produces large multi-enzymatic complexes called cellulosomes, which efficiently deconstruct arabinoxylan into fermentable monosaccharides. RESULTS Complete extracellular arabinoxylan degradation was long thought to be required to fuel the bacterium during this plant cell wall deconstruction stage. We discovered and characterized a second system of "arabinoxylan" degradation in R. cellulolyticum, which challenged this paradigm. This "selfish" system is composed of an ABC transporter dedicated to the import of large and possibly acetylated arabinoxylodextrins, and a set of four glycoside hydrolases and two esterases. These enzymes show complementary action modes on arabinoxylo-dextrins. Two α-L-arabinofuranosidases target the diverse arabinosyl side chains, and two exo-xylanases target the xylo-oligosaccharides backbone either at the reducing or the non-reducing end. Together, with the help of two different esterases removing acetyl decorations, they achieve the depolymerization of arabinoxylo-dextrins in arabinose, xylose and xylobiose. The in vivo study showed that this new system is strongly beneficial for the fitness of the bacterium when grown on arabinoxylan, leading to the conclusion that a part of arabinoxylan degradation is achieved in the cytosol, even if monosaccharides are efficiently provided by the cellulosomes in the extracellular space. These results shed new light on the strategies used by anaerobic primary degrader bacteria to metabolize highly decorated arabinoxylan in competitive environments. CONCLUSION The primary degrader model Ruminiclostridium cellulolyticum has developed a "selfish" strategy consisting of importing into the bacterium, large arabinoxylan-dextrin fractions released from a partial extracellular deconstruction of arabinoxylan, thus complementing its efficient extracellular arabinoxylan degradation system. Genetic studies suggest that this system is important to support fitness and survival in a competitive biotope. These results provide a better understanding of arabinoxylan catabolism in the primary degrader, with biotechnological application for synthetic microbial community engineering for the production of commodity chemicals from lignocellulosic biomass.
Collapse
Affiliation(s)
- Nian Liu
- Aix Marseille Univ, CNRS, LCB, Marseille, France, 31 chemin Joseph Aiguier F-13402, Marseille Cedex 20, Marseille, France
| | - Séverine Gagnot
- Aix Marseille Univ, CNRS, LCB, Marseille, France, 31 chemin Joseph Aiguier F-13402, Marseille Cedex 20, Marseille, France
| | - Yann Denis
- Aix Marseille Univ, CNRS, IMM, Marseille, France
| | | | - Craig Faulds
- INRAE, Aix Marseille Univ, INRAE, BBF, Marseille, France, 13009, Marseille, France
| | - Henri-Pierre Fierobe
- Aix Marseille Univ, CNRS, LCB, Marseille, France, 31 chemin Joseph Aiguier F-13402, Marseille Cedex 20, Marseille, France
| | - Stéphanie Perret
- Aix Marseille Univ, CNRS, LCB, Marseille, France, 31 chemin Joseph Aiguier F-13402, Marseille Cedex 20, Marseille, France.
| |
Collapse
|
42
|
Granborg JR, Kaasgaard SG, Janfelt C. Variation in oligosaccharide profiles observed with AP-MALDI in different regions of maize kernels after treatment with xylanases. J Cereal Sci 2022. [DOI: 10.1016/j.jcs.2022.103586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
43
|
Hou YH, Yang ZH, Wang JZ, Yang QZ. Characterization of a thermostable alkaline feruloyl esterase from Alternaria alternata and its synergism in dissolving pulp production. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2022.108657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
44
|
Immobilization and Application of the Recombinant Xylanase GH10 of Malbranchea pulchella in the Production of Xylooligosaccharides from Hydrothermal Liquor of the Eucalyptus ( Eucalyptus grandis) Wood Chips. Int J Mol Sci 2022; 23:ijms232113329. [PMID: 36362138 PMCID: PMC9656307 DOI: 10.3390/ijms232113329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/26/2022] [Accepted: 10/28/2022] [Indexed: 11/06/2022] Open
Abstract
Xylooligosaccharides (XOS) are widely used in the food industry as prebiotic components. XOS with high purity are required for practical prebiotic function and other biological benefits, such as antioxidant and inflammatory properties. In this work, we immobilized the recombinant endo-1,4-β-xylanase of Malbranchea pulchella (MpXyn10) in various chemical supports and evaluated its potential to produce xylooligosaccharides (XOS) from hydrothermal liquor of eucalyptus wood chips. Values >90% of immobilization yields were achieved from amino-activated supports for 120 min. The highest recovery values were found on Purolite (142%) and MANAE-MpXyn10 (137%) derivatives, which maintained more than 90% residual activity for 24 h at 70 °C, while the free-MpXyn10 maintained only 11%. In addition, active MpXyn10 derivatives were stable in the range of pH 4.0−6.0 and the presence of the furfural and HMF compounds. MpXyn10 derivatives were tested to produce XOS from xylan of various sources. Maximum values were observed for birchwood xylan at 8.6 mg mL−1 and wheat arabinoxylan at 8.9 mg mL−1, using Purolite-MpXyn10. Its derivative was also successfully applied in the hydrolysis of soluble xylan present in hydrothermal liquor, with 0.9 mg mL−1 of XOS after 3 h at 50 °C. This derivative maintained more than 80% XOS yield after six cycles of the assay. The results obtained provide a basis for the application of immobilized MpXyn10 to produce XOS with high purity and other high-value-added products in the lignocellulosic biorefinery field.
Collapse
|
45
|
Drey E, Kok CR, Hutkins R. Role of Bifidobacterium pseudocatenulatum in Degradation and Consumption of Xylan-Derived Carbohydrates. Appl Environ Microbiol 2022; 88:e0129922. [PMID: 36200766 PMCID: PMC9599329 DOI: 10.1128/aem.01299-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 09/16/2022] [Indexed: 11/20/2022] Open
Abstract
Xylans, a family of xylose-based polysaccharides, are dietary fibers resistant to digestion. They therefore reach the large intestine intact; there, they are utilized by members of the gut microbiota. They are initially broken down by primary degraders that utilize extracellular xylanases to cleave xylan into smaller oligomers. The resulting xylooligosaccharides (XOS) can either be further metabolized directly by primary degraders or cross-feed secondary consumers, including Bifidobacterium. While several Bifidobacterium species have metabolic systems for XOS, most grow poorly on longer-chain XOS and xylan substrates. In this study, we isolated strains of Bifidobacterium pseudocatenulatum and observed that some, including B. pseudocatenulatum ED02, displayed growth on XOS with a high degree of polymerization (DP) and straight-chain xylan, suggesting a primary degrader phenotype that is rare in Bifidobacterium. In silico analyses revealed that only the genomes of these xylan-fermenting (xylan+) strains contained an extracellular GH10 endo-β-1.4 xylanase, a key enzyme for primary degradation of xylan. The presence of an extracellular xylanase was confirmed by the appearance of xylan hydrolysis products in cell-free supernatants. Extracellular xylanolytic activity was only detected in xylan+ strains, as indicated by the production of XOS fragments with a DP of 2 to 6, identified by thin-layer chromatography (TLC) and high-performance liquid chromatography (HPLC). Additionally, in vitro fecal fermentations revealed that strains with a xylan+ phenotype can persist with xylan supplementation. These results indicate that xylan+ B. pseudocatenulatum strains may have a competitive advantage in the complex environment of the gastrointestinal tract, due to their ability to act as primary degraders of xylan through extracellular enzymatic degradation. IMPORTANCE The beneficial health effects of dietary fiber are now well established. Moreover, low fiber consumption is associated with increased risks of metabolic and systemic diseases. This so-called "fiber gap" also has a profound impact on the composition of the gut microbiome, leading to a disrupted or dysbiotic microbiota. Therefore, understanding the mechanisms by which keystone bacterial species in the gut utilize xylans and other dietary fibers may provide a basis for developing strategies to restore gut microbiome function. The results described here provide biochemical and genetic evidence for primary xylan utilization by human-derived Bifidobacterium pseudocatenulatum and show also that cooperative utilization of xylans occurs among other members of this species.
Collapse
Affiliation(s)
- Elizabeth Drey
- Department of Food Science and Technology, Food Innovation Center, University of Nebraska—Lincoln, Lincoln, Nebraska, USA
- Nebraska Food for Health Center, University of Nebraska—Lincoln, Lincoln, Nebraska, USA
| | - Car Reen Kok
- Nebraska Food for Health Center, University of Nebraska—Lincoln, Lincoln, Nebraska, USA
- Complex Biosystems, University of Nebraska—Lincoln, Lincoln, Nebraska, USA
| | - Robert Hutkins
- Department of Food Science and Technology, Food Innovation Center, University of Nebraska—Lincoln, Lincoln, Nebraska, USA
- Nebraska Food for Health Center, University of Nebraska—Lincoln, Lincoln, Nebraska, USA
| |
Collapse
|
46
|
Rojas-Pérez LC, Narváez-Rincón PC, Rocha MAM, Coelho E, Coimbra MA. Production of xylose through enzymatic hydrolysis of glucuronoarabinoxylan from brewers' spent grain. BIORESOUR BIOPROCESS 2022; 9:105. [PMID: 38647754 PMCID: PMC10992567 DOI: 10.1186/s40643-022-00594-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Accepted: 09/10/2022] [Indexed: 11/10/2022] Open
Abstract
Xylose is an abundant bioresource for obtaining diverse chemicals and added-value products. The production of xylose from green alternatives like enzymatic hydrolysis is an important step in a biorefinery context. This research evaluated the synergism among four classes of hydrolytic purified enzymes-endo-1,4-β-xylanase, α-L-arabinofuranosidase, β-xylosidase, and α-D-glucuronidase-over hydrolysis of glucuronoarabinoxylan (GAX) obtained from brewers' spent grain (BSG) after alkaline extraction and ethanol precipitation. First, monosaccharides, uronic acids and glycosidic-linkages of alkaline extracted GAX fraction from BSG were characterized, after that different strategies based on the addition of one or two families of enzymes-endo-1,4-β-xylanase (GH10 and GH11) and α-L-arabinofuranosidase (GH43 and GH51)-cooperating with one β-xylosidase (GH43) and one α-D-glucuronidase (GH67) into enzymatic hydrolysis were assessed to obtain the best yield of xylose. The xylose release was monitored over time in the first 90 min and after a prolonged reaction up to 48 h of reaction. The highest yield of xylose was 63.6% (48 h, 40 ℃, pH 5.5), using a mixture of all enzymes devoid of α-L-arabinofuranosidase (GH43) family. These results highlight the importance of GH51 arabinofuranosidase debranching enzyme to allow a higher cleavage of the xylan backbone of GAX from BSG and their synergy with 2 endo-1,4-β-xylanase (GH10 and GH11), one β-xylosidase (GH43) and the inclusion of one α-D-glucuronidase (GH67) in the reaction system. Therefore, this study provides an environmentally friendly process to produce xylose from BSG through utilization of enzymes as catalysts.
Collapse
Affiliation(s)
- Lilia C Rojas-Pérez
- Departamento de Ingeniería Química, Facultad de Ingeniería, Universidad Ean, 110221, Bogotá D.C., Colombia.
- Departamento de Ingeniería Química y Ambiental, Facultad de Ingeniería, Universidad Nacional de Colombia, 111321, Bogotá D.C., Colombia.
| | - Paulo C Narváez-Rincón
- Departamento de Ingeniería Química y Ambiental, Facultad de Ingeniería, Universidad Nacional de Colombia, 111321, Bogotá D.C., Colombia
| | - M Angélica M Rocha
- Departamento de Química, Universidade de Aveiro, 3810-193, Aveiro, Portugal
| | - Elisabete Coelho
- Departamento de Química, Universidade de Aveiro, 3810-193, Aveiro, Portugal
| | - Manuel A Coimbra
- Departamento de Química, Universidade de Aveiro, 3810-193, Aveiro, Portugal
| |
Collapse
|
47
|
Xylan-cellulose thin film platform for assessing xylanase activity. Carbohydr Polym 2022; 294:119737. [DOI: 10.1016/j.carbpol.2022.119737] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 06/01/2022] [Accepted: 06/12/2022] [Indexed: 11/18/2022]
|
48
|
Xie Y, Cai G, Xu M, Han B, Li C, Lu J. The effect of barley infected with xylanase‐producing filamentous fungi on premature yeast flocculation. JOURNAL OF THE INSTITUTE OF BREWING 2022. [DOI: 10.1002/jib.702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Ying Xie
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology Jiangnan University Wuxi 214122 China
- College of Biology and Food Engineering Jilin Institute of Chemical Technology Jilin 132022 China
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing Jiangnan University Wuxi 214122 China
- Jiangsu Provincial Engineering Research Center for Bioactive Product Processing Jiangnan University Wuxi 214122 China
| | - Guolin Cai
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology Jiangnan University Wuxi 214122 China
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing Jiangnan University Wuxi 214122 China
- Jiangsu Provincial Engineering Research Center for Bioactive Product Processing Jiangnan University Wuxi 214122 China
| | - Minwei Xu
- Department of Plant Sciences North Dakota State University Fargo ND 58108 USA
| | - Bingxin Han
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology Jiangnan University Wuxi 214122 China
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing Jiangnan University Wuxi 214122 China
| | - Cun Li
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology Jiangnan University Wuxi 214122 China
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing Jiangnan University Wuxi 214122 China
| | - Jian Lu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology Jiangnan University Wuxi 214122 China
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing Jiangnan University Wuxi 214122 China
- Jiangsu Provincial Engineering Research Center for Bioactive Product Processing Jiangnan University Wuxi 214122 China
| |
Collapse
|
49
|
Zhong R, Phillips DR, Ye ZH. Independent recruitment of glycosyltransferase family 61 members for xylan substitutions in conifers. PLANTA 2022; 256:70. [PMID: 36068444 DOI: 10.1007/s00425-022-03989-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 08/31/2022] [Indexed: 06/15/2023]
Abstract
Several pine members of the gymnosperm-specific GT61 clades were demonstrated to be arabinosyltransferases and xylosyltransferases catalyzing the transfer of 2-O-Araf, 3-O-Araf and 2-O-Xyl side chains onto xylooligomer acceptors, indicating their possible involvement in Araf and Xyl substitutions of xylan in pine. Xylan in conifer wood is substituted at O-2 with methylglucuronic acid (MeGlcA) as well as at O-3 with arabinofuranose (Araf), which differs from xylan in dicot wood that is typically decorated with MeGlcA but not Araf. Currently, glycosyltransferases responsible for conifer xylan arabinosylation have not been identified. Here, we investigated the roles of pine glycosyltransferase family 61 (GT61) members in xylan substitutions. Biochemical characterization of four pine wood-associated GT61 members showed that they exhibited three distinct glycosyltransferase activities involved in xylan substitutions. Two of them catalyzed the addition of 2-O-α-Araf or 3-O-α-Araf side chains onto xylooligomer acceptors and thus were named Pinus taeda xylan 2-O-arabinosyltransferase 1 (PtX2AT1) and 3-O-arabinosyltransferase 1 (PtX3AT1), respectively. Two other pine GT61 members were found to be xylan 2-O-xylosyltransferases (PtXYXTs) adding 2-O-β-Xyl side chains onto xylooligomer acceptors. Furthermore, sequential reactions with PtX3AT1 and the PtGUX1 xylan glucuronyltransferase demonstrated that PtX3AT1 could efficiently arabinosylate glucuronic acid (GlcA)-substituted xylooligomers and likewise, PtGUX1 was able to add GlcA side chains onto 3-O-Araf-substituted xylooligomers. Phylogenetic analysis revealed that PtX2AT1, PtX3AT1 and PtXYXTs resided in three gymnosperm-specific GT61 clades that are separated from the grass-expanded GT61 clade harboring xylan 3-O-arabinosyltransferases and 2-O-xylosyltransferases, suggesting that they might have been recruited independently for xylan substitutions in gymnosperms. Together, our findings have established several pine GT61 members as xylan 2-O- and 3-O-arabinosyltransferases and 2-O-xylosyltransferases and they indicate that pine xylan might also be substituted with 2-O-Araf and 2-O-Xyl side chains.
Collapse
Affiliation(s)
- Ruiqin Zhong
- Department of Plant Biology, University of Georgia, Athens, GA, 30602, USA
| | - Dennis R Phillips
- Department of Chemistry, University of Georgia, Athens, GA, 30602, USA
| | - Zheng-Hua Ye
- Department of Plant Biology, University of Georgia, Athens, GA, 30602, USA.
| |
Collapse
|
50
|
Xie Y, Xu M, Han B, Chen T, Cai G, Lu J. Barley Husk Degraded by Fusarium graminearum MH1 Induced Premature Yeast Flocculation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:10296-10304. [PMID: 35947430 DOI: 10.1021/acs.jafc.2c03114] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Premature yeast flocculation (PYF) is one of the pivotal problems affecting beer flavor and production. PYF is induced by certain non-starch polysaccharides produced by the degradation of malted barley husks upon the growth of contaminated microorganisms, such as Fusarium graminearum. In this research, the formation mechanism of PYF was uncovered by investigating the secretome of F. graminearum MH1 inoculated to the barley husk. The polysaccharide extract of degraded husk was ultrafiltrated into four fractions and characterized by the minimum PYF concentration, molecular mass distribution, monosaccharide composition, and zeta potential. Among the four fractions, the high-molecular-weight polysaccharide fraction had the highest content of uronic acid and the most negative zeta potential, which contributed to the most severe PYF phenomenon. In addition, the PYF yeast showed a more negative zeta potential than the control yeast during the small-scale brewing process. This is aligned to the negatively charged polysaccharides potentially bonded to the surface of yeast cells through the calcium cation in the same fermentation system, which results in rapid flocculation and precipitation. Approximately 12% of the 214 proteins identified in the Fusarium graminearum MH1 secretome were hemicellulases, which substantially interpreted the mechanism of polysaccharides inducing PYF yeast during beer brewing.
Collapse
Affiliation(s)
- Ying Xie
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- College of Biology and Food Engineering, Jilin Institute of Chemical Technology, Jilin 132022, China
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China
- Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, Wuxi 214122, China
| | - Minwei Xu
- Department of Plant Sciences, North Dakota State University, Fargo, North Dakota 58108, United States
| | - Bingxin Han
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China
| | - Tianming Chen
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China
| | - Guolin Cai
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China
- Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, Wuxi 214122, China
| | - Jian Lu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China
- Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, Wuxi 214122, China
| |
Collapse
|