1
|
Tomoiagă R, Nagy LC, Boros K, Moisă M, Bencze LC. Engineered Biocatalysts for the Asymmetric Synthesis of d-Phenylalanines. ACS Catal 2025; 15:7361-7389. [PMID: 40337374 PMCID: PMC12054356 DOI: 10.1021/acscatal.5c00837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 03/10/2025] [Accepted: 03/17/2025] [Indexed: 05/09/2025]
Abstract
The enzymatic synthesis of d-phenylalanines, important chiral building blocks for several pharmaceuticals and fine chemicals, has been widely explored. Their asymmetric synthesis of high atom economy and accessible prochiral starting materials is highly attractive, while the expanding toolbox of protein engineering facilitates access to biocatalysts tailored for these processes. Accordingly, this Review provides an overview of the protein engineering efforts of enzymes involved in the asymmetric synthetic pathways for d-phenylalanines. The engineering efforts on d-amino acid dehydrogenases, d-amino acid transaminases, and phenylalanine ammonia-lyases to produce d-phenylalanines are thoroughly examined, while their application in (chemo)enzymatic cascades is also discussed. For an improved efficiency of the cascades, the protein engineering of l-amino acid deaminases and/or l-amino acid oxidases for an increased transformation of phenylalanines is also addressed.
Collapse
Affiliation(s)
- Raluca
Bianca Tomoiagă
- Enzymology and Applied Biocatalysis
Research Center, Faculty of Chemistry and Chemical Engineering, Babeş-Bolyai University, Arany János Street 11, RO-400028 Cluj-Napoca, Romania
| | - Levente Csaba Nagy
- Enzymology and Applied Biocatalysis
Research Center, Faculty of Chemistry and Chemical Engineering, Babeş-Bolyai University, Arany János Street 11, RO-400028 Cluj-Napoca, Romania
| | - Krisztina Boros
- Enzymology and Applied Biocatalysis
Research Center, Faculty of Chemistry and Chemical Engineering, Babeş-Bolyai University, Arany János Street 11, RO-400028 Cluj-Napoca, Romania
| | - Mădălina
Elena Moisă
- Enzymology and Applied Biocatalysis
Research Center, Faculty of Chemistry and Chemical Engineering, Babeş-Bolyai University, Arany János Street 11, RO-400028 Cluj-Napoca, Romania
| | - László Csaba Bencze
- Enzymology and Applied Biocatalysis
Research Center, Faculty of Chemistry and Chemical Engineering, Babeş-Bolyai University, Arany János Street 11, RO-400028 Cluj-Napoca, Romania
| |
Collapse
|
2
|
Chang J, Zhang Y, Li Z, Ma Y, Hu X, Yang J, Zhang H. Biosynthesis of α-keto acids and resolution of chiral amino acids by l-amino acid deaminases from Proteus mirabilis. Protein Expr Purif 2024; 221:106518. [PMID: 38821452 DOI: 10.1016/j.pep.2024.106518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 05/21/2024] [Accepted: 05/28/2024] [Indexed: 06/02/2024]
Abstract
Chiral amino acids and their deamination products, α-keto acids, have important applications in food, medicine, and fine chemicals. In this study, two l-amino acid deaminase genes from Proteus mirabilis, PM473 of type Ⅰ and PM471 of type Ⅱ were cloned and expressed in Escherichia coli respectively, expected to achieve the chiral separation of amino acids. Extensive substrate preference testing showed that both deaminases had catalytic effects on the d-amino acid component of the D, l-amino acids, and PM473 has a wider catalytic range for amino acids. When D, L-Cys was used as the substrate, all L-Cys components and 75.1 % of D-Cys were converted to mercapto pyruvate, and the remaining D-Cys was a single chiral enantiomer. Molecular docking analysis showed that the interaction between the substrate and the key residues affected the stereoselectivity of enzymes. The compatibility of hydrophobicity between the binding pocket and substrate may be the basic factor that affects the substrate selectivity. This work provides an alternative method for the production of α-keto acids and the resolution of chiral amino acids.
Collapse
Affiliation(s)
- Junzhang Chang
- School of Food and Bioengineering, Hefei University of Technology, Feicui Road, No.420, Hefei, Anhui, China
| | - Yuxin Zhang
- School of Food and Bioengineering, Hefei University of Technology, Feicui Road, No.420, Hefei, Anhui, China.
| | - Zhiwei Li
- School of Food and Bioengineering, Hefei University of Technology, Feicui Road, No.420, Hefei, Anhui, China.
| | - Yunfeng Ma
- Anhui Anlito Biotechnology Co., Ltd., Lvan, Anhui, China.
| | - Xueqin Hu
- School of Food and Bioengineering, Hefei University of Technology, Feicui Road, No.420, Hefei, Anhui, China.
| | - Jingwen Yang
- School of Food and Bioengineering, Hefei University of Technology, Feicui Road, No.420, Hefei, Anhui, China; Anhui Anlito Biotechnology Co., Ltd., Lvan, Anhui, China.
| | - Hongbin Zhang
- School of Food and Bioengineering, Hefei University of Technology, Feicui Road, No.420, Hefei, Anhui, China.
| |
Collapse
|
3
|
Araseki H, Sugishima N, Chisuga T, Nakano S. Development of an Enzyme Cascade System for the Synthesis of Enantiomerically Pure D-Amino Acids Utilizing Ancestral L-Amino Acid Oxidase. Chembiochem 2024; 25:e202400036. [PMID: 38385659 DOI: 10.1002/cbic.202400036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/19/2024] [Accepted: 02/22/2024] [Indexed: 02/23/2024]
Abstract
Enantiomerically pure D-amino acids hold significant potential as precursors for synthesizing various fine chemicals, including peptide-based drugs and other pharmaceuticals. This study focuses on establishing an enzymatic cascade system capable of converting various L-amino acids into their D-isomers. The system integrates four enzymes: ancestral L-amino acid oxidase (AncLAAO-N4), D-amino acid dehydrogenase (DAADH), D-glucose dehydrogenase (GDH), and catalase. AncLAAO-N4 initiates the process by converting L-amino acids to corresponding keto acids, which are then stereo-selectively aminated to D-amino acids by DAADH using NADPH and NH4Cl. Concurrently, any generated H2O2 is decomposed into O2 and H2O by catalase, while GDH regenerates NADPH from D-glucose. Optimization of reaction conditions and substrate concentrations enabled the successful synthesis of five D-amino acids, including a D-Phe derivative, three D-Trp derivatives, and D-phenylglycine, all with high enantiopurity (>99 % ee) at a preparative scale (>100 mg). This system demonstrates a versatile approach for producing a diverse array of D-amino acids.
Collapse
Affiliation(s)
- Hayato Araseki
- Graduate Division of Nutritional and Environmental Sciences, University of Shizuoka 52-1 Yada, Suruga-ku, Shizuoka, 422-8526, Japan for S.N
| | - Narumi Sugishima
- Graduate Division of Nutritional and Environmental Sciences, University of Shizuoka 52-1 Yada, Suruga-ku, Shizuoka, 422-8526, Japan for S.N
| | - Taichi Chisuga
- Graduate Division of Nutritional and Environmental Sciences, University of Shizuoka 52-1 Yada, Suruga-ku, Shizuoka, 422-8526, Japan for S.N
| | - Shogo Nakano
- Graduate Division of Nutritional and Environmental Sciences, University of Shizuoka 52-1 Yada, Suruga-ku, Shizuoka, 422-8526, Japan for S.N
- PRESTO, Japan Science and Technology Agency, Saitama, Japan
| |
Collapse
|
4
|
Hu L, Liu L, Zhan C, Liu X, Liu C, Li Y, Bai Z, Yang Y. Creating NADP + -Specific Formate Dehydrogenases from Komagataella phaffii by Enzymatic Engineering. Chembiochem 2023; 24:e202300587. [PMID: 37783667 DOI: 10.1002/cbic.202300587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 09/27/2023] [Accepted: 10/02/2023] [Indexed: 10/04/2023]
Abstract
Most natural formate dehydrogenases (FDHs) exhibit NAD+ specificity, making it imperative to explore the engineering of FDH cofactor specificity for NADPH regeneration systems. The endogenous FDH of Komagataella phaffii (K. phaffii), termed KphFDH, is a typical NAD+ -specific FDH. However, investigations into engineering the cofactor specificity of KphFDH have yet to be conducted. To develop an NADP+ -specific variant of KphFDH, we selected D195, Y196, and Q197 as mutation sites and generated twenty site-directed variants. Through kinetic characterization, KphFDH/V19 (D195Q/Y196R/Q197H) was identified as the variant with the highest specificity towards NADP+ , with a ratio of catalytic efficiency (kcat /KM )NADP+ /(kcat /KM )NAD+ of 129.226. Studies of enzymatic properties revealed that the optimal temperature and pH for the reduction reaction of NADP+ catalyzed by KphFDH/V19 were 45 °C and 7.5, respectively. The molecular dynamics (MD) simulation was performed to elucidate the mechanism of high catalytic activity of KphFDH/V19 towards NADP+ . Finally, KphFDH/V19 was applied to an in vitro NADPH regeneration system with Meso-diaminopimelate dehydrogenase from Symbiobacterium thermophilum (StDAPDH/H227V). This study successfully created a KphFDH variant with high NADP+ specificity and demonstrated its practical applicability in an in vitro NADPH regeneration system.
Collapse
Affiliation(s)
- Liyuan Hu
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China
- Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China
| | - Luyao Liu
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China
- Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China
| | - Chunjun Zhan
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China
- Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China
| | - Xiuxia Liu
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China
- Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China
| | - Chunli Liu
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China
- Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China
| | - Ye Li
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China
- Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China
| | - Zhonghu Bai
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China
- Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China
| | - Yankun Yang
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China
- Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China
| |
Collapse
|
5
|
Wang J, Dong R, Yin J, Liang J, Gao H. Optimization of multi-enzyme cascade process for the biosynthesis of benzylamine. Biosci Biotechnol Biochem 2023; 87:1373-1380. [PMID: 37567780 DOI: 10.1093/bbb/zbad111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Accepted: 08/01/2023] [Indexed: 08/13/2023]
Abstract
Benzylamine is a valuable intermediate in the synthesis of organic compounds such as curing agents and antifungal drugs. To improve the efficiency of benzylamine biosynthesis, we identified the enzymes involved in the multi-enzyme cascade, regulated the expression strength by using RBS engineering in Escherichia coli, and established a regeneration-recycling system for alanine. This is a cosubstrate, coupled to cascade reactions, which resulted in E. coli RARE-TP and can synthesize benzylamine using phenylalanine as a precursor. By optimizing the supply of cosubstrates alanine and ammonia, the yield of benzylamine produced by whole-cell catalysis was increased by 1.5-fold and 2.7-fold, respectively, and the final concentration reached 6.21 mM. In conclusion, we achieved conversion from l-phenylalanine to benzylamine and increased the yield through enzyme screening, expression regulation, and whole-cell catalytic system optimization. This demonstrated a green and sustainable benzylamine synthesis method, which provides a reference and additional information for benzylamine biosynthesis research.
Collapse
Affiliation(s)
- Jinli Wang
- School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Runan Dong
- School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Jingxin Yin
- School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Jianhua Liang
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, China
| | - Haijun Gao
- School of Life Science, Beijing Institute of Technology, Beijing, China
| |
Collapse
|
6
|
Kawamura Y, Ishida C, Miyata R, Miyata A, Hayashi S, Fujinami D, Ito S, Nakano S. Structural and functional analysis of hyper-thermostable ancestral L-amino acid oxidase that can convert Trp derivatives to D-forms by chemoenzymatic reaction. Commun Chem 2023; 6:200. [PMID: 37737277 PMCID: PMC10517122 DOI: 10.1038/s42004-023-01005-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 09/12/2023] [Indexed: 09/23/2023] Open
Abstract
Production of D-amino acids (D-AAs) on a large-scale enables to provide precursors of peptide therapeutics. In this study, we designed a novel L-amino acid oxidase, HTAncLAAO2, by ancestral sequence reconstruction, exhibiting high thermostability and long-term stability. The crystal structure of HTAncLAAO2 was determined at 2.2 Å by X-ray crystallography, revealing that the enzyme has an octameric form like a "ninja-star" feature. Enzymatic property analysis demonstrated that HTAncLAAO2 exhibits three-order larger kcat/Km values towards four L-AAs (L-Phe, L-Leu, L-Met, and L-Ile) than that of L-Trp. Through screening the variants, we obtained the HTAncLAAO2(W220A) variant, which shows a > 6-fold increase in kcat value toward L-Trp compared to the original enzyme. This variant applies to synthesizing enantio-pure D-Trp derivatives from L- or rac-forms at a preparative scale. Given its excellent properties, HTAncLAAO2 would be a starting point for designing novel oxidases with high activity toward various amines and AAs.
Collapse
Affiliation(s)
- Yui Kawamura
- Graduate Division of Nutritional and Environmental Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, 422-8526, Japan
| | - Chiharu Ishida
- Graduate Division of Nutritional and Environmental Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, 422-8526, Japan
| | - Ryo Miyata
- Graduate Division of Nutritional and Environmental Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, 422-8526, Japan
- Health and Medical Research Institute, National Institute of Advanced Industrial Science and Technology, 2217-14 Hayashi-cho, Takamatsu, Kagawa, 761-0395, Japan
| | - Azusa Miyata
- Graduate Division of Nutritional and Environmental Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, 422-8526, Japan
| | - Seiichiro Hayashi
- Division of Structural Biology, Medical Institute of Bioregulation, Kyushu University, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Daisuke Fujinami
- Graduate Division of Nutritional and Environmental Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, 422-8526, Japan
| | - Sohei Ito
- Graduate Division of Nutritional and Environmental Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, 422-8526, Japan
| | - Shogo Nakano
- Graduate Division of Nutritional and Environmental Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, 422-8526, Japan.
- PREST, Japan Science and Technology Agency, Saitama, Japan.
| |
Collapse
|
7
|
Wang L, Wang H, Chen J, Qin Z, Yu S, Zhou J. Coordinating caffeic acid and salvianic acid A pathways for efficient production of rosmarinic acid in Escherichia coli. Metab Eng 2023; 76:29-38. [PMID: 36623792 DOI: 10.1016/j.ymben.2023.01.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 12/17/2022] [Accepted: 01/05/2023] [Indexed: 01/09/2023]
Abstract
Rosmarinic acid is a natural hydroxycinnamic acid ester used widely in the food and pharmaceutical industries. Although many attempts have been made to screen rate-limiting enzymes and optimize modules through co-culture fermentation, the titer of rosmarinic acid remains at the microgram level by microorganisms. A de novo biosynthetic pathway for rosmarinic acid was constructed based on caffeic acid synthesis modules in Escherichia coli. Knockout of competing pathways increased the titer of rosmarinic acid and reduced the synthesis of rosmarinic acid analogues. An L-amino acid deaminase was introduced to balance metabolic flux between the synthesis of caffeic acid and salvianic acid A. The ratio of FADH2/FAD was maintained via the coordination of deaminase and HpaBC, which is responsible for caffeic acid synthesis. Knockout of menI, encoding an endogenous thioesterase, increased the stability of caffeoyl-CoA. The final strain produced 5780.6 mg/L rosmarinic acid in fed-batch fermentation, the highest yet reported for microbial production. The strategies applied in this study lay a foundation for the synthesis of other caffeic acid and rosmarinic acid derivatives.
Collapse
Affiliation(s)
- Lian Wang
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China; Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China; Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China.
| | - Huijing Wang
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China; Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
| | - Jianbin Chen
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China; Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
| | - Zhijie Qin
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China; Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
| | - Shiqin Yu
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China; Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China; Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China; Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Jingwen Zhou
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China; Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China; Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China; Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, Wuxi, 214122, China.
| |
Collapse
|
8
|
Zhou M, Wang T, Cheng GJ. Mechanistic insights into reductive deamination with hydrosilanes catalyzed by B(C6F5)3: A DFT study. Front Chem 2022; 10:1025135. [DOI: 10.3389/fchem.2022.1025135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 09/20/2022] [Indexed: 11/18/2022] Open
Abstract
Selective defunctionalization of synthetic intermediates is a valuable approach in organic synthesis. Here, we present a theoretical study on the recently developed B(C6F5)3/hydrosilane-mediated reductive deamination reaction of primary amines. Our computational results provide important insights into the reaction mechanism, including the active intermediate, the competing reactions of the active intermediate, the role of excess hydrosilane, and the origin of chemoselectivity. Moreover, the study on the substituent effect of hydrosilane indicated a potential way to improve the efficiency of the reductive deamination reaction.
Collapse
|
9
|
Huo J, Bai Y, Fan TP, Zheng X, Cai Y. Hydroxytyrosol production from l-DOPA by engineered Escherichia coli co-expressing l-amino acid deaminase, α-keto acid decarboxylase, aldehyde reductase and glucose dehydrogenase with NADH regeneration. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.09.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
10
|
Xiong T, Bai Y, Fan TP, Zheng X, Cai Y. Biosynthesis of phenylpyruvic acid from l-phenylalanine using chromosomally engineered Escherichia coli. Biotechnol Appl Biochem 2022; 69:1909-1916. [PMID: 34554609 DOI: 10.1002/bab.2256] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 09/14/2021] [Indexed: 11/09/2022]
Abstract
The efficiency of whole-cell biotransformation is often affected by the genetic instability of plasmid-based expression systems, which require selective pressure to maintain the stability of the plasmids. To circumvent this shortcoming, we constructed a chromosome engineering strain for the synthesis of phenylpyruvic acid (PPA) from l-phenylalanine. First, l-amino acid deaminase (pmLAAD) from Proteus myxofaciens was incorporated into Escherichia coli BL21 (DE3) chromosome and the copy numbers of pmLAAD were increased by chemically induced chromosomal evolution (CIChE). Fifty-nine copies of pmLAAD were obtained in E. coli BL8. The PPA titer of E. coli BL8 reached 2.22 g/L at 6 h. Furthermore, the deletion of lacI improved PPA production. In the absence of isopropyl-β-d-thiogalactopyranoside, the resulting strain, E. coli BL8△recA△lacI, produced 2.65 g/L PPA at 6 h and yielded a 19.37% increase in PPA production compared to E. coli BL8△recA. Finally, the engineered E. coli BL8△recA△lacI strain achieved 19.14 g/L PPA at 24 h in a 5-L bioreactor.
Collapse
Affiliation(s)
- Tianzhen Xiong
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China
- College of Life Science, Xinyang Normal University, Xinyang, Henan, China
| | - Yajun Bai
- College of Life Sciences, Northwest University, Xi'an, Shaanxi, China
| | - Tai-Ping Fan
- Department of Pharmacology, University of Cambridge, Cambridge, UK
| | - Xiaohui Zheng
- College of Life Sciences, Northwest University, Xi'an, Shaanxi, China
| | - Yujie Cai
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China
| |
Collapse
|
11
|
Liu J, Wang K, Wang M, Deng H, Chen X, Shang Y, Liu X, Yu X. Efficient whole cell biotransformation of tyrosol from L-tyrosine by engineered Escherichia coli. Enzyme Microb Technol 2022; 160:110100. [PMID: 35872508 DOI: 10.1016/j.enzmictec.2022.110100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 07/14/2022] [Accepted: 07/17/2022] [Indexed: 11/03/2022]
Abstract
An engineered Escherichia coli was constructed by co-expressing L-amino acid deaminase, α-keto acid decarboxylase, alcohol dehydrogenase, and glucose dehydrogenase through two plasmids for tyrosol production. The activity of the rate-limiting enzyme L-amino acid deaminase from Cosenzaea myxofaciens (CmAAD) toward tyrosine was improved by structure-guided modification. The enzyme activity of triple mutant CmAAD V438G/K147V/R151E toward tyrosine was ~5.12-fold higher than that of the wild-type CmAAD. Secondly, the plasmid copy numbers and the gene orders were optimized to improve the titer of tyrosol. Finally, the recombinant strain CS-6 transformed 10 mM tyrosine into 9.56 ± 0.64 mM tyrosol at 45 ℃, and the space-time yield reached 0.478 mM·L-1·h-1. This study proposes a novel idea for the efficient and natural production of tyrosol, which has great potential for industrial application.
Collapse
Affiliation(s)
- Jinbin Liu
- School of Marine and Bioengineering, YanCheng Institute of Technology, Yancheng, Jiangsu 224051, China
| | - Kaipeng Wang
- School of Marine and Bioengineering, YanCheng Institute of Technology, Yancheng, Jiangsu 224051, China
| | - Mian Wang
- School of Marine and Bioengineering, YanCheng Institute of Technology, Yancheng, Jiangsu 224051, China
| | - Huaxiang Deng
- Center for Synthetic Biochemistry, Institute of Synthetic Biology, Institutes of Advanced Technologies, Shenzhen, China
| | - Xiaodong Chen
- School of Marine and Bioengineering, YanCheng Institute of Technology, Yancheng, Jiangsu 224051, China
| | - Yueling Shang
- School of Marine and Bioengineering, YanCheng Institute of Technology, Yancheng, Jiangsu 224051, China
| | - Xiaochen Liu
- School of Marine and Bioengineering, YanCheng Institute of Technology, Yancheng, Jiangsu 224051, China
| | - Xiaohong Yu
- School of Marine and Bioengineering, YanCheng Institute of Technology, Yancheng, Jiangsu 224051, China.
| |
Collapse
|
12
|
Efficient synthesis of tyrosol from L-tyrosine via heterologous Ehrlich pathway in Escherichia coli. Chin J Chem Eng 2022. [DOI: 10.1016/j.cjche.2021.05.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
13
|
Zhu Y, Yuan J. A Four-Step Enzymatic Cascade for Efficient Production of L-Phenylglycine from Biobased L-Phenylalanine. Chembiochem 2022; 23:e202100661. [PMID: 35132758 DOI: 10.1002/cbic.202100661] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 02/06/2022] [Indexed: 11/09/2022]
Abstract
Enantiopure amino acids are of particular interest in the agrochemical and pharmaceutical industries. Here, we reported a multi-enzyme cascade for efficient production of L-phenylglycine (L-Phg) from biobased L-phenylalanine (L-Phe). We first attempted to engineer Escherichia coli for expressing L-amino acid deaminase (LAAD) from Proteus mirabilis, hydroxymandelate synthase (HmaS) from Amycolatopsis orientalis, (S)-mandelate dehydrogenase (SMDH) from Pseudomonas putida, the endogenous aminotransferase (AT) encoded by ilvE and L-glutamate dehydrogenase (GluDH) from E. coli. However, 10 mM L-Phe only afforded the synthesis of 7.21 ± 0.15 mM L-Phg. The accumulation of benzoylformic acid suggested that the transamination step might be rate-limiting. We next used leucine dehydrogenase (LeuDH) from Bacillus cereus to bypass the use of L-glutamate as amine donor, and 40 mM L-Phe gave 39.97 ± 3.84 mM (6.04 ± 0.58 g/L) L-Phg, reaching 99.9% conversion. In summary, this work demonstrated a concise four-step enzymatic cascade for the L-Phg synthesis from biobased L-Phe, with a potential for future industrial applications.
Collapse
Affiliation(s)
- Yuling Zhu
- Xiamen University, School of Life Sciences, CHINA
| | - Jifeng Yuan
- Xiamen University, School of Life Sciences, #C220, School of Life Sciences, Xiangan District, Xiamen University, 361102, Xiamen, CHINA
| |
Collapse
|
14
|
Semi-Rational Design of Proteus mirabilis l-Amino Acid Deaminase for Expanding Its Substrate Specificity in α-Keto Acid Synthesis from l-Amino Acids. Catalysts 2022. [DOI: 10.3390/catal12020175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
l-amino acid deaminases (LAADs) are flavoenzymes that catalyze the stereospecific oxidative deamination of l-amino acids into α-keto acids, which are widely used in the pharmaceutical, food, chemical, and cosmetic industries. However, the substrate specificity of available LAADs is limited, and most substrates are concentrated on several bulky or basic l-amino acids. In this study, we employed a LAAD from Proteus mirabilis (PmiLAAD) and broadened its substrate specificity using a semi-rational design strategy. Molecular docking and alanine scanning identified F96, Q278, and E417 as key residues around the substrate-binding pocket of PmiLAAD. Site-directed saturation mutagenesis identified E417 as the key site for substrate specificity expansion. Expansion of the substrate channel with mutations of E417 (E417L, E417A) improved activity toward the bulky substrate l-Trp, and mutation of E417 to basic amino acids (E417K, E417H, E417R) enhanced the universal activity toward various l-amino acid substrates. The variant PmiLAADE417K showed remarkable catalytic activity improvement on seven substrates (l-Ala, l-Asp, l-Ile, l-Leu, l-Phe, l-Trp, and l-Val). The catalytic efficiency improvement obtained by E417 mutation may be attributed to the expansion of the entrance channel and its electrostatic interactions. These PmiLAAD variants with a broadened substrate spectrum can extend the application potential of LAADs.
Collapse
|
15
|
Ishida C, Miyata R, Hasebe F, Miyata A, Kumazawa S, Ito S, Nakano S. Reconstruction of Hyper‐Thermostable Ancestral L‐Amino Acid Oxidase to Perform Deracemization to D‐Amino Acids. ChemCatChem 2021. [DOI: 10.1002/cctc.202101296] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Chiharu Ishida
- Graduate School of Integrated Pharmaceutical and Nutritional Sciences University of Shizuoka Shizuoka 422-8526 Japan
| | - Ryo Miyata
- Graduate School of Integrated Pharmaceutical and Nutritional Sciences University of Shizuoka Shizuoka 422-8526 Japan
| | - Fumihito Hasebe
- Graduate School of Integrated Pharmaceutical and Nutritional Sciences University of Shizuoka Shizuoka 422-8526 Japan
| | - Azusa Miyata
- Graduate School of Integrated Pharmaceutical and Nutritional Sciences University of Shizuoka Shizuoka 422-8526 Japan
| | - Shigenori Kumazawa
- Graduate School of Integrated Pharmaceutical and Nutritional Sciences University of Shizuoka Shizuoka 422-8526 Japan
| | - Sohei Ito
- Graduate School of Integrated Pharmaceutical and Nutritional Sciences University of Shizuoka Shizuoka 422-8526 Japan
| | - Shogo Nakano
- Graduate School of Integrated Pharmaceutical and Nutritional Sciences University of Shizuoka Shizuoka 422-8526 Japan
- PREST, Japan Science and Technology Agency Saitama 332-0012 Japan
| |
Collapse
|
16
|
Han J, Lyutenko NV, Sorochinsky AE, Okawara A, Konno H, White S, Soloshonok VA. Tailor-Made Amino Acids in Pharmaceutical Industry: Synthetic Approaches to Aza-Tryptophan Derivatives. Chemistry 2021; 27:17510-17528. [PMID: 34913215 DOI: 10.1002/chem.202102485] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 08/24/2021] [Indexed: 12/22/2022]
Abstract
Over the recent years there has been a noticeable upsurge of interest in aza-analogs of tryptophan which are isosteric to the latter and found numerous applications in medicinal, bioorganic chemistry, and peptide research. In the present review article, five aza-tryptophan derivatives are profiled, including aza-substitution in the positions 2, on the five-membered ring, as well as in positions 4, 5, 6, and 7 on the six-membered ring. A detailed and comprehensive literature overview of the synthetic methods for the preparation of these aza-tryptophans is presented and general facets of the biological properties and most promising applications are discussed.
Collapse
Affiliation(s)
- Jianlin Han
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources International Innovation Center for Forest Chemicals and Materials College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, P. R. China
| | - Nataliya V Lyutenko
- Department of Fine Organic Synthesis V.P. Kukhar Institute of Bioorganic Chemistry and Petrochemistry, The National Academy of Sciences of Ukraine, 1 Murmanska str., Kyiv, 02094, Ukraine
| | - Alexander E Sorochinsky
- Department of Fine Organic Synthesis V.P. Kukhar Institute of Bioorganic Chemistry and Petrochemistry, The National Academy of Sciences of Ukraine, 1 Murmanska str., Kyiv, 02094, Ukraine
| | - Ayaka Okawara
- Graduate School of Science and Engineering, Yamagata University, 4-3-16, Jonan, Yonezawa, Yamagata, 992-8510, Japan
| | - Hiroyuki Konno
- Graduate School of Science and Engineering, Yamagata University, 4-3-16, Jonan, Yonezawa, Yamagata, 992-8510, Japan
| | - Sarah White
- Oakwood Chemical, Inc., 730 Columbia Hwy. N, Estill, SC, 29918, USA
| | - Vadim A Soloshonok
- Department of Organic Chemistry I Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel Lardizábal 3, 20018, San Sebastián, Spain.,IKERBASQUE, Basque Foundation for Science, María Díaz de Haro 3, Plaza Bizkaia, 48013, Bilbao, Spain
| |
Collapse
|
17
|
Abdulbagi M, Wang L, Siddig O, Di B, Li B. D-Amino Acids and D-Amino Acid-Containing Peptides: Potential Disease Biomarkers and Therapeutic Targets? Biomolecules 2021; 11:1716. [PMID: 34827714 PMCID: PMC8615943 DOI: 10.3390/biom11111716] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 10/26/2021] [Accepted: 10/27/2021] [Indexed: 12/17/2022] Open
Abstract
In nature, amino acids are found in two forms, L and D enantiomers, except for glycine which does not have a chiral center. The change of one form to the other will lead to a change in the primary structure of proteins and hence may affect the function and biological activity of proteins. Indeed, several D-amino acid-containing peptides (DAACPs) were isolated from patients with cataracts, Alzheimer's and other diseases. Additionally, significant levels of free D-amino acids were found in several diseases, reflecting the disease conditions. Studying the molecular mechanisms of the DAACPs formation and the alteration in D-amino acids metabolism will certainly assist in understanding these diseases and finding new biomarkers and drug targets. In this review, the presence of DAACPs and free D-amino acids and their links with disease development and progress are summarized. Similarly, we highlight some recent advances in analytical techniques that led to improvement in the discovery and analysis of DAACPs and D-amino acids.
Collapse
Affiliation(s)
- Mohamed Abdulbagi
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing 210009, China; (M.A.); (L.W.); (O.S.)
| | - Liya Wang
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing 210009, China; (M.A.); (L.W.); (O.S.)
| | - Orwa Siddig
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing 210009, China; (M.A.); (L.W.); (O.S.)
| | - Bin Di
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing 210009, China; (M.A.); (L.W.); (O.S.)
- Center Key Laboratory on Protein Chemistry and Structural Biology, China Pharmaceutical University, Nanjing 210009, China
- MOE Key Laboratory of Drug Quality Control and Pharmacovigilance, China Pharmaceutical University, Nanjing 210009, China
| | - Bo Li
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing 210009, China; (M.A.); (L.W.); (O.S.)
- Center Key Laboratory on Protein Chemistry and Structural Biology, China Pharmaceutical University, Nanjing 210009, China
- MOE Key Laboratory of Drug Quality Control and Pharmacovigilance, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
18
|
Wu Y, Zhang S, Song W, Liu J, Chen X, Hu G, Zhou Y, Liu L, Wu J. Enhanced Catalytic Efficiency of L‐amino Acid Deaminase Achieved by a Shorter Hydride Transfer Distance. ChemCatChem 2021. [DOI: 10.1002/cctc.202101067] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Yaoyun Wu
- School of Pharmaceutical Science Jiangnan University Wuxi 214122 P. R. China
- State Key Laboratory of Food Science and Technology Jiangnan University Wuxi 214122 P. R. China
| | - Sheng Zhang
- Tianrui Chemical Co. Ltd Department of Chemistry Quzhou 324400 P. R. China
| | - Wei Song
- School of Pharmaceutical Science Jiangnan University Wuxi 214122 P. R. China
- State Key Laboratory of Food Science and Technology Jiangnan University Wuxi 214122 P. R. China
| | - Jia Liu
- State Key Laboratory of Food Science and Technology Jiangnan University Wuxi 214122 P. R. China
| | - Xiulai Chen
- State Key Laboratory of Food Science and Technology Jiangnan University Wuxi 214122 P. R. China
| | - Guipeng Hu
- School of Pharmaceutical Science Jiangnan University Wuxi 214122 P. R. China
- State Key Laboratory of Food Science and Technology Jiangnan University Wuxi 214122 P. R. China
| | - Yiwen Zhou
- School of Pharmaceutical Science Jiangnan University Wuxi 214122 P. R. China
| | - Liming Liu
- State Key Laboratory of Food Science and Technology Jiangnan University Wuxi 214122 P. R. China
| | - Jing Wu
- School of Pharmaceutical Science Jiangnan University Wuxi 214122 P. R. China
| |
Collapse
|
19
|
Sugiura S, Nakano S, Niwa M, Hasebe F, Matsui D, Ito S. Catalytic mechanism of ancestral L-lysine oxidase assigned by sequence data mining. J Biol Chem 2021; 297:101043. [PMID: 34358565 PMCID: PMC8405998 DOI: 10.1016/j.jbc.2021.101043] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 07/26/2021] [Accepted: 08/02/2021] [Indexed: 11/23/2022] Open
Abstract
A large number of protein sequences are registered in public databases such as PubMed. Functionally uncharacterized enzymes are included in these databases, some of which likely have potential for industrial applications. However, assignment of the enzymes remained difficult tasks for now. In this study, we assigned a total of 28 original sequences to uncharacterized enzymes in the FAD-dependent oxidase family expressed in some species of bacteria including Chryseobacterium, Flavobacterium, and Pedobactor. Progenitor sequence of the assigned 28 sequences was generated by ancestral sequence reconstruction, and the generated sequence exhibited L-lysine oxidase activity; thus, we named the enzyme AncLLysO. Crystal structures of ligand-free and ligand-bound forms of AncLLysO were determined, indicating that the enzyme recognizes L-Lys by hydrogen bond formation with R76 and E383. The binding of L-Lys to AncLLysO induced dynamic structural change at a plug loop formed by residues 251 to 254. Biochemical assays of AncLLysO variants revealed the functional importance of these substrate recognition residues and the plug loop. R76A and E383D variants were also observed to lose their activity, and the kcat/Km value of G251P and Y253A mutations were approximately 800- to 1800-fold lower than that of AncLLysO, despite the indirect interaction of the substrates with the mutated residues. Taken together, our data demonstrate that combinational approaches to sequence classification from database and ancestral sequence reconstruction may be effective not only to find new enzymes using databases of unknown sequences but also to elucidate their functions.
Collapse
Affiliation(s)
- Sayaka Sugiura
- Graduate Division of Nutritional and Environmental Sciences, University of Shizuoka, Suruga-ku, Shizuoka, Japan
| | - Shogo Nakano
- Graduate Division of Nutritional and Environmental Sciences, University of Shizuoka, Suruga-ku, Shizuoka, Japan; PREST, Japan Science and Technology Agency, Kawaguchi, Japan.
| | - Masazumi Niwa
- Graduate Division of Nutritional and Environmental Sciences, University of Shizuoka, Suruga-ku, Shizuoka, Japan
| | - Fumihito Hasebe
- Graduate Division of Nutritional and Environmental Sciences, University of Shizuoka, Suruga-ku, Shizuoka, Japan
| | - Daisuke Matsui
- Department of Biotechnology, College of Life Sciences, Ritsumeikan University, Kusatsu, Shiga, Japan
| | - Sohei Ito
- Graduate Division of Nutritional and Environmental Sciences, University of Shizuoka, Suruga-ku, Shizuoka, Japan
| |
Collapse
|
20
|
Kozuka K, Nakano S, Asano Y, Ito S. Partial Consensus Design and Enhancement of Protein Function by Secondary-Structure-Guided Consensus Mutations. Biochemistry 2021; 60:2309-2319. [PMID: 34254784 DOI: 10.1021/acs.biochem.1c00309] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Consensus design (CD) is a representative sequence-based protein design method that enables the design of highly functional proteins by analyzing vast amounts of protein sequence data. This study proposes a partial consensus design (PCD) of a protein as a derivative approach of CD. The method replaces the target protein sequence with a consensus sequence in a secondary-structure-dependent manner (i.e., regionally dependent and divided into α-helix, β-sheet, and loop regions). In this study, we generated several artificial partial consensus l-threonine 3-dehydrogenases (PcTDHs) by PCD using the TDH from Cupriavidus necator (CnTDH) as a target protein. Structural and functional analysis of PcTDHs suggested that thermostability would be independently improved when consensus mutations are introduced into the loop region of TDHs. On the other hand, enzyme kinetic parameters (kcat/Km) and average productivity would be synergistically enhanced by changing the combination of the mutations-replacement of one region of CnTDH with a consensus sequence provided only negative effects, but the negative effects were nullified when the two regions were replaced simultaneously. Taken together, we propose the hypothesis that there are protein regions that encode individual protein properties, such as thermostability and activity, and that the introduction of consensus mutations into these regions could additively or synergistically modify their functions.
Collapse
Affiliation(s)
- Kohei Kozuka
- Graduate School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, 422-8526, Japan
| | - Shogo Nakano
- Graduate School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, 422-8526, Japan.,PREST, Japan Science and Technology Agency, Kawaguchi, Saitama 332-0012, Japan
| | - Yasuhisa Asano
- Biotechnology Research Center and Department of Biotechnology, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan
| | - Sohei Ito
- Graduate School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, 422-8526, Japan
| |
Collapse
|
21
|
Pollegioni L, Molla G, Sacchi S, Murtas G. Human D-aspartate Oxidase: A Key Player in D-aspartate Metabolism. Front Mol Biosci 2021; 8:689719. [PMID: 34250021 PMCID: PMC8260693 DOI: 10.3389/fmolb.2021.689719] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 06/09/2021] [Indexed: 11/15/2022] Open
Abstract
In recent years, the D-enantiomers of amino acids have been recognized as natural molecules present in all kingdoms, playing a variety of biological roles. In humans, d-serine and d-aspartate attracted attention for their presence in the central nervous system. Here, we focus on d-aspartate, which is involved in glutamatergic neurotransmission and the synthesis of various hormones. The biosynthesis of d-aspartate is still obscure, while its degradation is due to the peroxisomal flavin adenine dinucleotide (FAD)-containing enzyme d-aspartate oxidase. d-Aspartate emergence is strictly controlled: levels decrease in brain within the first days of life while increasing in endocrine glands postnatally and through adulthood. The human d-aspartate oxidase (hDASPO) belongs to the d-amino acid oxidase-like family: its tertiary structure closely resembles that of human d-amino acid oxidase (hDAAO), the enzyme that degrades neutral and basic d-amino acids. The structure-function relationships of the physiological isoform of hDASPO (named hDASPO_341) and the regulation of gene expression and distribution and properties of the longer isoform hDASPO_369 have all been recently elucidated. Beyond the substrate preference, hDASPO and hDAAO also differ in kinetic efficiency, FAD-binding affinity, pH profile, and oligomeric state. Such differences suggest that evolution diverged to create two different ways to modulate d-aspartate and d-serine levels in the human brain. Current knowledge about hDASPO is shedding light on the molecular mechanisms underlying the modulation of d-aspartate levels in human tissues and is pushing novel, targeted therapeutic strategies. Now, it has been proposed that dysfunction in NMDA receptor-mediated neurotransmission is caused by disrupted d-aspartate metabolism in the nervous system during the onset of various disorders (such as schizophrenia): the design of suitable hDASPO inhibitors aimed at increasing d-aspartate levels thus represents a novel and useful form of therapy.
Collapse
Affiliation(s)
- Loredano Pollegioni
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | - Gianluca Molla
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | - Silvia Sacchi
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | - Giulia Murtas
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| |
Collapse
|
22
|
Pickl M, Marín-Valls R, Joglar J, Bujons J, Clapés P. Chemoenzymatic Production of Enantiocomplementary 2-Substituted 3-Hydroxycarboxylic Acids from L-α-Amino Acids. Adv Synth Catal 2021; 363:2866-2876. [PMID: 34276272 PMCID: PMC7611260 DOI: 10.1002/adsc.202100145] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Indexed: 12/14/2022]
Abstract
A two-enzyme cascade reaction plus in situ oxidative decarboxylation for the transformation of readily available canonical and non-canonical L-α-amino acids into 2-substituted 3-hydroxy-carboxylic acid derivatives is described. The biocatalytic cascade consisted of an oxidative deamination of L-α-amino acids by an L-α-amino acid deaminase from Cosenzaea myxofaciens, rendering 2-oxoacid intermediates, with an ensuing aldol addition reaction to formaldehyde, catalyzed by metal-dependent (R)- or (S)-selective carboligases namely 2-oxo-3-deoxy-l-rhamnonate aldolase (YfaU) and ketopantoate hydroxymethyltransferase (KPHMT), respectively, furnishing 3-substituted 4-hydroxy-2-oxoacids. The overall substrate conversion was optimized by balancing biocatalyst loading and amino acid and formaldehyde concentrations, yielding 36-98% aldol adduct formation and 91- 98% ee for each enantiomer. Subsequent in situ follow-up chemistry via hydrogen peroxide-driven oxidative decarboxylation afforded the corresponding 2-substituted 3-hydroxycarboxylic acid derivatives.
Collapse
Affiliation(s)
- Mathias Pickl
- Department of Chemical Biology. Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), Jordi Girona 18–26, 08034 Barcelona, Spain
- Department of Chemistry, University of Graz, Heinrichstrasse 28, 8010 Graz, Austria
| | - Roser Marín-Valls
- Department of Chemical Biology. Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), Jordi Girona 18–26, 08034 Barcelona, Spain
| | - Jesús Joglar
- Department of Chemical Biology. Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), Jordi Girona 18–26, 08034 Barcelona, Spain
| | - Jordi Bujons
- Department of Chemical Biology. Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), Jordi Girona 18–26, 08034 Barcelona, Spain
| | - Pere Clapés
- Department of Chemical Biology. Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), Jordi Girona 18–26, 08034 Barcelona, Spain
| |
Collapse
|
23
|
Lee H, Kim D, Kim S, Lee HS. Conversion of Racemic Unnatural Amino Acids to Optically Pure Forms by a Coupled Enzymatic Reaction. Molecules 2021; 26:1274. [PMID: 33652889 PMCID: PMC7956486 DOI: 10.3390/molecules26051274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 02/21/2021] [Indexed: 11/30/2022] Open
Abstract
Genetic code expansion (GCE) technology is a useful tool for the site-specific modification of proteins. An unnatural amino acid (UAA) is one of the essential components of this technique, typically required at high concentration (1 mM or higher) in growth medium. The supply of UAAs is an important limitation to the application of GCE technology, as many UAAs are either expansive or commercially unavailable. In this study, two UAAs in a racemic mixture were converted into optically pure forms using two enzymes, the d-amino acid oxidase (RgDAAO) from Rhodotorula gracilis and the aminotransferase (TtAT) from Thermus thermophilus. In the coupled enzyme system, RgDAAO oxidizes the d-form of UAAs in a stereospecific manner and produces the corresponding α-keto acids, which are then converted into the l-form of UAAs by TtAT, resulting in the quantitative and stereospecific conversion of racemic UAAs to optically pure forms. The genetic incorporation of the optically pure UAAs into a target protein produced a better protein yield than the same experiments using the racemic mixtures of the UAAs. This method could not only be used for the preparation of optically pure UAAs from racemic mixtures, but also the broad substrate specificity of both enzymes would allow for its expansion to structurally diverse UAAs.
Collapse
Affiliation(s)
| | | | | | - Hyun Soo Lee
- Department of Chemistry, Sogang University, 35 Baekbeomro Mapogu, Seoul 121-742, Korea; (H.L.); (D.K.); (S.K.)
| |
Collapse
|
24
|
Luo Z, Yu S, Zeng W, Zhou J. Comparative analysis of the chemical and biochemical synthesis of keto acids. Biotechnol Adv 2021; 47:107706. [PMID: 33548455 DOI: 10.1016/j.biotechadv.2021.107706] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 01/25/2021] [Accepted: 01/26/2021] [Indexed: 12/28/2022]
Abstract
Keto acids are essential organic acids that are widely applied in pharmaceuticals, cosmetics, food, beverages, and feed additives as well as chemical synthesis. Currently, most keto acids on the market are prepared via chemical synthesis. The biochemical synthesis of keto acids has been discovered with the development of metabolic engineering and applied toward the production of specific keto acids from renewable carbohydrates using different metabolic engineering strategies in microbes. In this review, we provide a systematic summary of the types and applications of keto acids, and then summarize and compare the chemical and biochemical synthesis routes used for the production of typical keto acids, including pyruvic acid, oxaloacetic acid, α-oxobutanoic acid, acetoacetic acid, ketoglutaric acid, levulinic acid, 5-aminolevulinic acid, α-ketoisovaleric acid, α-keto-γ-methylthiobutyric acid, α-ketoisocaproic acid, 2-keto-L-gulonic acid, 2-keto-D-gluconic acid, 5-keto-D-gluconic acid, and phenylpyruvic acid. We also describe the current challenges for the industrial-scale production of keto acids and further strategies used to accelerate the green production of keto acids via biochemical routes.
Collapse
Affiliation(s)
- Zhengshan Luo
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China; Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Shiqin Yu
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Weizhu Zeng
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Jingwen Zhou
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
25
|
Zhang DP, Jing XR, Wu LJ, Fan AW, Nie Y, Xu Y. Highly selective synthesis of D-amino acids via stereoinversion of corresponding counterpart by an in vivo cascade cell factory. Microb Cell Fact 2021; 20:11. [PMID: 33422055 PMCID: PMC7797136 DOI: 10.1186/s12934-020-01506-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 12/29/2020] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND D-Amino acids are increasingly used as building blocks to produce pharmaceuticals and fine chemicals. However, establishing a universal biocatalyst for the general synthesis of D-amino acids from cheap and readily available precursors with few by-products is challenging. In this study, we developed an efficient in vivo biocatalysis system for the synthesis of D-amino acids from L-amino acids by the co-expression of membrane-associated L-amino acid deaminase obtained from Proteus mirabilis (LAAD), meso-diaminopimelate dehydrogenases obtained from Symbiobacterium thermophilum (DAPDH), and formate dehydrogenase obtained from Burkholderia stabilis (FDH), in recombinant Escherichia coli. RESULTS To generate the in vivo cascade system, three strategies were evaluated to regulate enzyme expression levels, including single-plasmid co-expression, double-plasmid co-expression, and double-plasmid MBP-fused co-expression. The double-plasmid MBP-fused co-expression strain Escherichia coli pET-21b-MBP-laad/pET-28a-dapdh-fdh, exhibiting high catalytic efficiency, was selected. Under optimal conditions, 75 mg/mL of E. coli pET-21b-MBP-laad/pET-28a-dapdh-fdh whole-cell biocatalyst asymmetrically catalyzed the stereoinversion of 150 mM L-Phe to D-Phe, with quantitative yields of over 99% ee in 24 h, by the addition of 15 mM NADP+ and 300 mM ammonium formate. In addition, the whole-cell biocatalyst was used to successfully stereoinvert a variety of aromatic and aliphatic L-amino acids to their corresponding D-amino acids. CONCLUSIONS The newly constructed in vivo cascade biocatalysis system was effective for the highly selective synthesis of D-amino acids via stereoinversion.
Collapse
Affiliation(s)
- Dan-Ping Zhang
- School of Biotechnology and Key laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, China
| | - Xiao-Ran Jing
- School of Biotechnology and Key laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, China
| | - Lun-Jie Wu
- School of Biotechnology and Key laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, China
| | - An-Wen Fan
- School of Biotechnology and Key laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, China
| | - Yao Nie
- School of Biotechnology and Key laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, China.
- Suqian Industrial Technology Research Institute of Jiangnan University, Suqian, 223814, China.
| | - Yan Xu
- School of Biotechnology and Key laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, China
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| |
Collapse
|
26
|
Ancestral L-amino acid oxidases for deracemization and stereoinversion of amino acids. Commun Chem 2020; 3:181. [PMID: 36703379 PMCID: PMC9814856 DOI: 10.1038/s42004-020-00432-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 11/10/2020] [Indexed: 01/29/2023] Open
Abstract
L-amino acid oxidases (LAAOs) can be applied to convert racemic amino acids to D-isomers, which are potential precursors of pharmaceuticals. However, this application is hampered by the lack of available stable and structure-determined LAAOs. In this study, we attempt to address this limitation by utilizing two ancestral LAAOs: AncLAAO-N4 and AncLAAO-N5. AncLAAO-N4 has the highest thermal and temporal stabilities among the designed LAAOs that can be used for deracemization and stereoinversion. AncLAAO-N5 can provide X-ray crystal structures, which are helpful to reveal substrate recognition and reaction mechanisms of LAAOs at the molecular level. Next, we attempted to improve activity of AncLAAO-N4 toward L-Val through a semi-rational protein engineering method. Three variants with enhanced activity toward L-Val were obtained. Taken together, we believe that the activity and substrate selectivity of AncLAAOs give them the potential to be key enzymes in various chemoenzymatic reactions.
Collapse
|
27
|
Zhu Y, Yang T, Chen Y, Fan C, Yuan J. One‐Pot Synthesis of Aromatic Amines from Renewable Feedstocks via Whole‐Cell Biocatalysis. ChemistrySelect 2020. [DOI: 10.1002/slct.202003807] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Yuling Zhu
- State Key Laboratory of Cellular Stress Biology School of Life Sciences, Xiamen University Fujian 361102 PR China
| | - Taiwei Yang
- State Key Laboratory of Cellular Stress Biology School of Life Sciences, Xiamen University Fujian 361102 PR China
| | - Yueyang Chen
- State Key Laboratory of Cellular Stress Biology School of Life Sciences, Xiamen University Fujian 361102 PR China
| | - Cong Fan
- State Key Laboratory of Cellular Stress Biology School of Life Sciences, Xiamen University Fujian 361102 PR China
| | - Jifeng Yuan
- State Key Laboratory of Cellular Stress Biology School of Life Sciences, Xiamen University Fujian 361102 PR China
| |
Collapse
|
28
|
Recent advances in biocatalytic derivatization of L-tyrosine. Appl Microbiol Biotechnol 2020; 104:9907-9920. [PMID: 33067683 DOI: 10.1007/s00253-020-10949-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 09/29/2020] [Accepted: 10/05/2020] [Indexed: 01/29/2023]
Abstract
L-Tyrosine is an aromatic, polar, non-essential amino acid that contains a highly reactive α-amino, α-carboxyl, and phenolic hydroxyl group. Derivatization of these functional groups can produce chemicals, such as L-3,4-dihydroxyphenylalanine, tyramine, 4-hydroxyphenylpyruvic acid, and benzylisoquinoline alkaloids, which are widely employed in the pharmaceutical, food, and cosmetics industries. In this review, we summarize typical L-tyrosine derivatizations catalyzed by enzymatic biocatalysts, as well as the strategies and challenges associated with their production processes. Finally, we discuss future perspectives pertaining to the enzymatic production of L-tyrosine derivatives.Key points• Summary of recent advances in enzyme-catalyzed L-tyrosine derivatization.• Highlights of relevant strategies involved in L-tyrosine derivatives biosynthesis.• Future perspectives on industrial applications of L-tyrosine derivatization.
Collapse
|
29
|
Chu Q, Zhu H, Liu B, Cao G, Fang C, Wu Y, Li X, Han G. Delivery of amino acid oxidase via catalytic nanocapsules to enable effective tumor inhibition. J Mater Chem B 2020; 8:8546-8557. [PMID: 32840278 DOI: 10.1039/d0tb01425g] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Amino acids are the fundamental building blocks of proteins in tumor cells. The consumption of amino acid can be an effective approach for destroying the tumor cytoskeleton and malfunctioning of the intracellular metabolic balance. Following this concept, herein, amino acid oxidase (AAO) is delivered by hollow Fe3+/tannic acid nanocapsules (HFe-TA) and incorporated within the cancer cell membrane (M) for the first time for synergistic tumor therapy. In this system (M@AAO@HFe-TA), the intracellularly delivered AAO molecules catalyze the oxidative deamination effectively and consume amino acids significantly. The upregulation of intracellular acid and H2O2 concentration facilitates the HFe-TA mediated Fenton reaction and enhances the induction of cytotoxic ˙OH. With the combined effects, considerable in vitro and in vivo tumor inhibition was achieved by M@AAO@Fe-TA due to the activated Bcl-2/Bax/Cyt C/caspase 3 mitochondrial apoptotic pathway. This study offers an alternative therapeutic platform, functioning as a biomimetic cascade nanozyme, to enable synergistic starvation and chemodynamic tumor therapy with high efficacy.
Collapse
Affiliation(s)
- Qiang Chu
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, P. R. China.
| | - Huimin Zhu
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, P. R. China.
| | - Bin Liu
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, P. R. China.
| | - Guodong Cao
- Department of Surgery, Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310000, P. R. China
| | - Chao Fang
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, P. R. China.
| | - Yulian Wu
- Department of Surgery, Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310000, P. R. China
| | - Xiang Li
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, P. R. China.
| | - Gaorong Han
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, P. R. China.
| |
Collapse
|
30
|
Martínez-Rodríguez S, Torres JM, Sánchez P, Ortega E. Overview on Multienzymatic Cascades for the Production of Non-canonical α-Amino Acids. Front Bioeng Biotechnol 2020; 8:887. [PMID: 32850740 PMCID: PMC7431475 DOI: 10.3389/fbioe.2020.00887] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 07/09/2020] [Indexed: 12/11/2022] Open
Abstract
The 22 genetically encoded amino acids (AAs) present in proteins (the 20 standard AAs together with selenocysteine and pyrrolysine), are commonly referred as proteinogenic AAs in the literature due to their appearance in ribosome-synthetized polypeptides. Beyond the borders of this key set of compounds, the rest of AAs are generally named imprecisely as non-proteinogenic AAs, even when they can also appear in polypeptide chains as a result of post-transductional machinery. Besides their importance as metabolites in life, many of D-α- and L-α-"non-canonical" amino acids (NcAAs) are of interest in the biotechnological and biomedical fields. They have found numerous applications in the discovery of new medicines and antibiotics, drug synthesis, cosmetic, and nutritional compounds, or in the improvement of protein and peptide pharmaceuticals. In addition to the numerous studies dealing with the asymmetric synthesis of NcAAs, many different enzymatic pathways have been reported in the literature allowing for the biosynthesis of NcAAs. Due to the huge heterogeneity of this group of molecules, this review is devoted to provide an overview on different established multienzymatic cascades for the production of non-canonical D-α- and L-α-AAs, supplying neophyte and experienced professionals in this field with different illustrative examples in the literature. Whereas the discovery of new or newly designed enzymes is of great interest, dusting off previous enzymatic methodologies by a "back and to the future" strategy might accelerate the implementation of new or improved multienzymatic cascades.
Collapse
|
31
|
Pei S, Ruan X, Liu J, Song W, Chen X, Luo Q, Liu L, Wu J. Enhancement of α-ketoisovalerate production by relieving the product inhibition of l-amino acid deaminase from Proteus mirabilis. Chin J Chem Eng 2020. [DOI: 10.1016/j.cjche.2020.04.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
32
|
Liu J, Bai Y, Fan TP, Zheng X, Cai Y. Unveiling the Multipath Biosynthesis Mechanism of 2-Phenylethanol in Proteus mirabilis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:7684-7690. [PMID: 32608230 DOI: 10.1021/acs.jafc.0c02918] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Proteus mirabilis could convert l-phenylalanine into 2-phenylethanol (2-PE) via the Ehrlich pathway, the amino acid deaminase pathway, and the aromatic amino acid decarboxylase pathway. The aromatic amino acid decarboxylase pathway was proved for the first time in P. mirabilis. In this pathway, l-aromatic amino acid transferase demonstrated a unique catalytic property, transforming 2-penylethylamine into phenylacetaldehyde. Eleven enzymes were supposed to involve in 2-phenylethanol synthesis. The mRNA expression levels of 11 genes were assessed over time by reverse transcription-quantitative polymerase chain reaction (RT-qPCR) in vivo. As a result, the expression of 11 genes was significantly increased, suggesting that P. mirabilis could transform l-phenylalanine into 2-phenylethanol via three pathways under aerobic conditions; nine genes were significantly overexpressed, suggesting that P. mirabilis could synthesize 2-phenylethanol via the Ehrlich pathway under anaerobic conditions. This study reveals the multipath synthetic metabolism for 2-phenylethanol in P. mirabilis and will enrich the new ideas for natural (2-PE) synthesis.
Collapse
Affiliation(s)
- Jinbin Liu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Yajun Bai
- College of Life Sciences, Northwest University, Xi'an, Shanxi 710069, China
| | - Tai-Ping Fan
- Department of Pharmacology, University of Cambridge, Cambridge CB2 1T, U.K
| | - Xiaohui Zheng
- College of Life Sciences, Northwest University, Xi'an, Shanxi 710069, China
| | - Yujie Cai
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| |
Collapse
|
33
|
Zeng B, Lai Y, Liu L, Cheng J, Zhang Y, Yuan J. Engineering Escherichia coli for High-Yielding Hydroxytyrosol Synthesis from Biobased l-Tyrosine. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:7691-7696. [PMID: 32578426 DOI: 10.1021/acs.jafc.0c03065] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Hydroxytyrosol (HT) is a natural antioxidant with many associated health benefits. In this study, we established efficient enzymatic cascades for the synthesis of HT from biobased l-tyrosine. First, a dopamine-mediated route for HT production was investigated. The combination of native hydroxylase (HpaBC) from Escherichia coli and l-DOPA decarboxylase (DODC) from Pseudomonas putida could efficiently convert 5 mM l-tyrosine into dopamine with conversion above 90%. However, further incorporation of monoamine oxidase (MAO) from Micrococcus luteus and phenylacetaldehyde reductase (PAR) from Solanum lycopersicum only resulted in 3.47 mM HT with 69.4% conversion. Therefore, a second enzyme cascade that comprises HpaBC from E. coli, l-amino acid deaminase (LAAD) from Proteus mirabilis, α-keto acid decarboxylase (ARO10) from Saccharomyces cerevisiae, and PAR from S. lycopersicum was designed. This enzymatic route showed higher catalytic activity and efficiently synthesized HT. The 24.27 mM HT was obtained from 25 mM l-tyrosine with a high conversion of 97.1%, and 32.35 mM HT was produced using 50 mM l-tyrosine, which represents the highest HT titer using l-tyrosine as a substrate reported to date. In summary, we have developed a green and sustainable platform for efficient HT enzymatic synthesis.
Collapse
Affiliation(s)
- Baiyun Zeng
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Fujian 361102, China
| | - Yumeng Lai
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Fujian 361102, China
| | - Lijun Liu
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Fujian 361102, China
| | - Jie Cheng
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Fujian 361102, P. R. China
| | - Yang Zhang
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Fujian 361102, China
| | - Jifeng Yuan
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Fujian 361102, China
| |
Collapse
|
34
|
Li T, Cui X, Cui Y, Sun J, Chen Y, Zhu T, Li C, Li R, Wu B. Exploration of Transaminase Diversity for the Oxidative Conversion of Natural Amino Acids into 2-Ketoacids and High-Value Chemicals. ACS Catal 2020. [DOI: 10.1021/acscatal.0c01895] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Tao Li
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China
- University of Chinese Academy of Sciences, Beijing, 100101, PR China
| | - Xuexian Cui
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China
- University of Chinese Academy of Sciences, Beijing, 100101, PR China
| | - Yinglu Cui
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Jinyuan Sun
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Yanchun Chen
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China
- University of Chinese Academy of Sciences, Beijing, 100101, PR China
| | - Tong Zhu
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China
- University of Chinese Academy of Sciences, Beijing, 100101, PR China
| | - Chuijian Li
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Ruifeng Li
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China
- University of Chinese Academy of Sciences, Beijing, 100101, PR China
| | - Bian Wu
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China
| |
Collapse
|
35
|
Pollegioni L, Rosini E, Molla G. Advances in Enzymatic Synthesis of D-Amino Acids. Int J Mol Sci 2020; 21:E3206. [PMID: 32369969 PMCID: PMC7247363 DOI: 10.3390/ijms21093206] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 04/27/2020] [Accepted: 04/28/2020] [Indexed: 01/02/2023] Open
Abstract
In nature, the D-enantiomers of amino acids (D-AAs) are not used for protein synthesis and during evolution acquired specific and relevant physiological functions in different organisms. This is the reason for the surge in interest and investigations on these "unnatural" molecules observed in recent years. D-AAs are increasingly used as building blocks to produce pharmaceuticals and fine chemicals. In past years, a number of methods have been devised to produce D-AAs based on enantioselective enzymes. With the aim to increase the D-AA derivatives generated, to improve the intrinsic atomic economy and cost-effectiveness, and to generate processes at low environmental impact, recent studies focused on identification, engineering and application of enzymes in novel biocatalytic processes. The aim of this review is to report the advances in synthesis of D-AAs gathered in the past few years based on five main classes of enzymes. These enzymes have been combined and thus applied to multi-enzymatic processes representing in vitro pathways of alternative/exchangeable enzymes that allow the generation of an artificial metabolism for D-AAs synthetic purposes.
Collapse
Affiliation(s)
| | | | - Gianluca Molla
- Department of Biotechnology and Life Sciences, University of Insubria, via J.H. Dunant 3, 21100 Varese, Italy; (L.P.); (E.R.)
| |
Collapse
|
36
|
Watanabe Y, Kuroda K, Tatemichi Y, Nakahara T, Aoki W, Ueda M. Construction of engineered yeast producing ammonia from glutamine and soybean residues (okara). AMB Express 2020; 10:70. [PMID: 32296960 PMCID: PMC7158961 DOI: 10.1186/s13568-020-01011-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 04/07/2020] [Indexed: 11/10/2022] Open
Abstract
Ammonia is an essential substance for agriculture and the chemical industry. The intracellular production of ammonia in yeast (Saccharomyces cerevisiae) by metabolic engineering is difficult because yeast strongly assimilates ammonia, and the knockout of genes enabling this assimilation is lethal. Therefore, we attempted to produce ammonia outside the yeast cells by displaying a glutaminase (YbaS) from Escherichia coli on the yeast cell surface. YbaS-displaying yeast successfully produced 3.34 g/L ammonia from 32.6 g/L glutamine (83.2% conversion rate), providing it at a higher yield than in previous studies. Next, using YbaS-displaying yeast, we also succeeded in producing ammonia from glutamine in soybean residues (okara) produced as food waste from tofu production. Therefore, ammonia production outside cells by displaying ammonia-lyase on the cell surface is a promising strategy for producing ammonia from food waste as a novel energy resource, thereby preventing food loss.
Collapse
|
37
|
Liu L, Zhu Y, Chen Y, Chen H, Fan C, Mo Q, Yuan J. One‐Pot Cascade Biotransformation for Efficient Synthesis of Benzyl Alcohol and Its Analogs. Chem Asian J 2020; 15:1018-1021. [DOI: 10.1002/asia.201901680] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 01/31/2020] [Indexed: 12/12/2022]
Affiliation(s)
- Lijun Liu
- State Key Laboratory of Cellular Stress Biology School of Life SciencesXiamen University Fujian Xiamen 361102 P. R. China
| | - Yuling Zhu
- State Key Laboratory of Cellular Stress Biology School of Life SciencesXiamen University Fujian Xiamen 361102 P. R. China
| | - Yufen Chen
- State Key Laboratory of Cellular Stress Biology School of Life SciencesXiamen University Fujian Xiamen 361102 P. R. China
| | - Huiyu Chen
- State Key Laboratory of Cellular Stress Biology School of Life SciencesXiamen University Fujian Xiamen 361102 P. R. China
| | - Cong Fan
- State Key Laboratory of Cellular Stress Biology School of Life SciencesXiamen University Fujian Xiamen 361102 P. R. China
| | - Qiwen Mo
- State Key Laboratory of Cellular Stress Biology School of Life SciencesXiamen University Fujian Xiamen 361102 P. R. China
| | - Jifeng Yuan
- State Key Laboratory of Cellular Stress Biology School of Life SciencesXiamen University Fujian Xiamen 361102 P. R. China
| |
Collapse
|
38
|
Tararina MA, Allen KN. Bioinformatic Analysis of the Flavin-Dependent Amine Oxidase Superfamily: Adaptations for Substrate Specificity and Catalytic Diversity. J Mol Biol 2020; 432:3269-3288. [PMID: 32198115 DOI: 10.1016/j.jmb.2020.03.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 02/24/2020] [Accepted: 03/06/2020] [Indexed: 12/29/2022]
Abstract
The flavin-dependent amine oxidase (FAO) superfamily consists of over 9000 nonredundant sequences represented in all domains of life. Of the thousands of members identified, only 214 have been functionally annotated to date, and 40 unique structures are represented in the Protein Data Bank. The few functionally characterized members share a catalytic mechanism involving the oxidation of an amine substrate through transfer of a hydride to the FAD cofactor, with differences observed in substrate specificities. Previous studies have focused on comparing a subset of superfamily members. Here, we present a comprehensive analysis of the FAO superfamily based on reaction mechanism and substrate recognition. Using a dataset of 9192 sequences, a sequence similarity network, and subsequently, a genome neighborhood network were constructed, organizing the superfamily into eight subgroups that accord with substrate type. Likewise, through phylogenetic analysis, the evolutionary relationship of subgroups was determined, delineating the divergence between enzymes based on organism, substrate, and mechanism. In addition, using sequences and atomic coordinates of 22 structures from the Protein Data Bank to perform sequence and structural alignments, active-site elements were identified, showing divergence from the canonical aromatic-cage residues to accommodate large substrates. These specificity determinants are held in a structural framework comprising a core domain catalyzing the oxidation of amines with an auxiliary domain for substrate recognition. Overall, analysis of the FAO superfamily reveals a modular fold with cofactor and substrate-binding domains allowing for diversity of recognition via insertion/deletions. This flexibility allows facile evolution of new activities, as shown by reinvention of function between subfamilies.
Collapse
Affiliation(s)
- Margarita A Tararina
- Program in Biomolecular Pharmacology, Boston University School of Medicine, 72 East Concord Street, Boston, MA 02118, USA
| | - Karen N Allen
- Program in Biomolecular Pharmacology, Boston University School of Medicine, 72 East Concord Street, Boston, MA 02118, USA; Department of Chemistry, Boston University, 590 Commonwealth Avenue, Boston, MA 02215, USA.
| |
Collapse
|
39
|
Active Expression of Membrane-Bound L-Amino Acid Deaminase from Proteus mirabilis in Recombinant Escherichia coli by Fusion with Maltose-Binding Protein for Enhanced Catalytic Performance. Catalysts 2020. [DOI: 10.3390/catal10020215] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
L-amino acid deaminases (LAADs) are membrane flavoenzymes that catalyze the deamination of neutral and aromatic L-amino acids to α-keto acids and ammonia. LAADs can be used to develop many important biotechnological applications. However, the transmembrane α-helix of LAADs restricts its soluble active expression and purification from a heterologous host, such as Escherichia coli. Herein, through fusion with the maltose-binding protein (MBP) tag, the recombinant E. coli BL21 (DE3)/pET-21b-MBP-PmLAAD was constructed and the LAAD from Proteus mirabilis (PmLAAD) was actively expressed as a soluble protein. After purification, the purified MBP-PmLAAD was obtained. Then, the catalytic activity of the MBP-PmLAAD fusion protein was determined and compared with the non-fused PmLAAD. After fusion with the MBP-tag, the catalytic efficiency of the MBP-PmLAAD cell lysate was much higher than that of the membrane-bound PmLAAD whole cells. The soluble MBP-PmLAAD cell lysate catalyzed the conversion of 100 mM L-phenylalanine (L-Phe) to phenylpyruvic acid (PPA) with a 100% yield in 6 h. Therefore, the fusion of the MBP-tag not only improved the soluble expression of the PmLAAD membrane-bound protein, but also increased its catalytic performance.
Collapse
|
40
|
Nshimiyimana P, Liu L, Du G. Engineering of L-amino acid deaminases for the production of α-keto acids from L-amino acids. Bioengineered 2019; 10:43-51. [PMID: 30876377 PMCID: PMC6527072 DOI: 10.1080/21655979.2019.1595990] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 03/10/2019] [Accepted: 03/12/2019] [Indexed: 10/27/2022] Open
Abstract
α-keto acids are organic compounds that contain an acid group and a ketone group. L-amino acid deaminases are enzymes that catalyze the oxidative deamination of amino acids for the formation of their corresponding α-keto acids and ammonia. α-keto acids are synthesized industrially via chemical processes that are costly and use harsh chemicals. The use of the directed evolution technique, followed by the screening and selection of desirable variants, to evolve enzymes has proven to be an effective way to engineer enzymes with improved performance. This review presents recent studies in which the directed evolution technique was used to evolve enzymes, with an emphasis on L-amino acid deaminases for the whole-cell biocatalysts production of α-keto acids from their corresponding L-amino acids. We discuss and highlight recent cases where the engineered L-amino acid deaminases resulted in an improved production yield of phenylpyruvic acid, α-ketoisocaproate, α-ketoisovaleric acid, α-ketoglutaric acid, α-keto-γ-methylthiobutyric acid, and pyruvate.
Collapse
Affiliation(s)
- Project Nshimiyimana
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China
| | - Long Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China
| | - Guocheng Du
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China
| |
Collapse
|
41
|
Nakano S, Minamino Y, Hasebe F, Ito S. Deracemization and Stereoinversion to Aromatic d-Amino Acid Derivatives with Ancestral l-Amino Acid Oxidase. ACS Catal 2019. [DOI: 10.1021/acscatal.9b03418] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Shogo Nakano
- Graduate School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Yuki Minamino
- Graduate School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Fumihito Hasebe
- Graduate School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Sohei Ito
- Graduate School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| |
Collapse
|
42
|
Ju S, Qian M, Xu G, Yang L, Wu J. Chemoenzymatic Approach to (
S
)‐1,2,3,4‐Tetrahydroisoquinoline Carboxylic Acids Employing D‐Amino Acid Oxidase. Adv Synth Catal 2019. [DOI: 10.1002/adsc.201900178] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Shuyun Ju
- Institute of Bioengineering, College of Chemical and Biological EngineeringZhejiang University Hangzhou 310027 People's Republic of China
| | - Mingxin Qian
- Tongli Biomedical Co., Ltd 1# Guotai North Road, Zhangjiagang Economic Development Zone Zhangjiagang 215600, Jiangsu People's Republic of China
| | - Gang Xu
- Institute of Bioengineering, College of Chemical and Biological EngineeringZhejiang University Hangzhou 310027 People's Republic of China
| | - Lirong Yang
- Institute of Bioengineering, College of Chemical and Biological EngineeringZhejiang University Hangzhou 310027 People's Republic of China
| | - Jianping Wu
- Institute of Bioengineering, College of Chemical and Biological EngineeringZhejiang University Hangzhou 310027 People's Republic of China
| |
Collapse
|
43
|
Yuan Y, Song W, Liu J, Chen X, Luo Q, Liu L. Production of α‐Ketoisocaproate and α‐Keto‐β‐Methylvalerate by Engineered L‐Amino Acid Deaminase. ChemCatChem 2019. [DOI: 10.1002/cctc.201900259] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Yuxiang Yuan
- State Key Laboratory of Food Science and TechnologyJiangnan University Wuxi 214122 P. R. China
- Key Laboratory of Industrial Biotechnology Ministry of EducationJiangnan University Wuxi 214122 P. R. China
| | - Wei Song
- State Key Laboratory of Food Science and TechnologyJiangnan University Wuxi 214122 P. R. China
- Key Laboratory of Industrial Biotechnology Ministry of EducationJiangnan University Wuxi 214122 P. R. China
| | - Jia Liu
- State Key Laboratory of Food Science and TechnologyJiangnan University Wuxi 214122 P. R. China
- Key Laboratory of Industrial Biotechnology Ministry of EducationJiangnan University Wuxi 214122 P. R. China
| | - Xiulai Chen
- State Key Laboratory of Food Science and TechnologyJiangnan University Wuxi 214122 P. R. China
- Key Laboratory of Industrial Biotechnology Ministry of EducationJiangnan University Wuxi 214122 P. R. China
| | - Qiuling Luo
- State Key Laboratory of Food Science and TechnologyJiangnan University Wuxi 214122 P. R. China
- Key Laboratory of Industrial Biotechnology Ministry of EducationJiangnan University Wuxi 214122 P. R. China
| | - Liming Liu
- State Key Laboratory of Food Science and TechnologyJiangnan University Wuxi 214122 P. R. China
- Key Laboratory of Industrial Biotechnology Ministry of EducationJiangnan University Wuxi 214122 P. R. China
| |
Collapse
|
44
|
Asano Y, Yasukawa K. Identification and development of amino acid oxidases. Curr Opin Chem Biol 2019; 49:76-83. [DOI: 10.1016/j.cbpa.2018.10.020] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 10/16/2018] [Accepted: 10/22/2018] [Indexed: 12/23/2022]
|
45
|
Wu L, Guo X, Wu G, Liu P, Liu Z. Efficient production of α-keto acids by immobilized E. coli-pETduet-1- PmiLAAO in a jacketed packed-bed reactor. ROYAL SOCIETY OPEN SCIENCE 2019; 6:182035. [PMID: 31183133 PMCID: PMC6502377 DOI: 10.1098/rsos.182035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 03/01/2019] [Indexed: 06/09/2023]
Abstract
α-keto acids are compounds of primary interest for the fine chemical, pharmaceutical and agrochemical sectors. l-amino acid oxidases as an efficient tool are used for α-keto acids preparation in this study. Firstly, an l-amino acid oxidase (PmiLAAO) from Proteus mirabilis was discovered by data mining. Secondly, by gene expression vector screening, pETDuet-1-PmiLAAO activity improved by 130%, as compared to the pET20b-PmiLAAO. PmiLAAO production was increased to 9.8 U ml-1 by optimized expression condition (OD600 = 0.65, 0.45 mmol l-1 IPTG, 20 h of induction). Furthermore, The PmiLAAO was stabile in the pH range of 4.0-9.0 and in the temperature range of 10-40°C; the optimal pH and temperature of recombinant PmiLAAO were 6.5 and 37°C, respectively. Afterwards, in order to simplify product separation process, E. coli-pETduet-1-PmiLAAO was immobilized in Ca-alginate beads. Continuous production of 2-oxo-3-phenylpropanoic acid was conducted in a packed-bed reactor via immobilized E. coli-pETduet-1-PmiLAAO. Significantly, 29.66 g l-1 2-oxo-3-phenylpropanoic acid with a substrate conversion rate of 99.5% was achieved by correspondingly increasing the residence time (25 h). This method holds the potential to be used for efficiently producing pure α-keto acids.
Collapse
Affiliation(s)
- Licheng Wu
- Department of R&D of zhejiang zhengshuo Biological Co., Ltd, Huzhou 313000, Zhejiang, People's Republic of China
| | - Xiaolei Guo
- College of life science, Fujian normal university, Fuzhou, Fujian 350000, People's Republic of China
| | - Gaobing Wu
- College of Life Science and Technology, State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Pengfu Liu
- Zhejiang University of Technology, Hangzhou 310014, Zhejiang, People's Republic of China
| | - Ziduo Liu
- College of Life Science and Technology, State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| |
Collapse
|
46
|
Properties of l-amino acid deaminase: En route to optimize bioconversion reactions. Biochimie 2019; 158:199-207. [DOI: 10.1016/j.biochi.2019.01.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 01/18/2019] [Indexed: 12/24/2022]
|
47
|
Zhang C, Song W, Liu J, Chen X, Liu L. Production of enantiopure (R)- or (S)-2-hydroxy-4-(methylthio)butanoic acid by multi-enzyme cascades. BIORESOUR BIOPROCESS 2019. [DOI: 10.1186/s40643-019-0244-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
48
|
Zhang D, Jing X, Zhang W, Nie Y, Xu Y. Highly selective synthesis of d-amino acids from readily available l-amino acids by a one-pot biocatalytic stereoinversion cascade. RSC Adv 2019; 9:29927-29935. [PMID: 35531513 PMCID: PMC9072125 DOI: 10.1039/c9ra06301c] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 09/16/2019] [Indexed: 11/21/2022] Open
Abstract
d-Amino acids are key intermediates required for the synthesis of important pharmaceuticals. However, establishing a universal enzymatic method for the general synthesis of d-amino acids from cheap and readily available precursors with few by-products is challenging. In this study, we constructed and optimized a cascade enzymatic route involving l-amino acid deaminase and d-amino acid dehydrogenase for the biocatalytic stereoinversions of l-amino acids into d-amino acids. Using l-phenylalanine (l-Phe) as a model substrate, this artificial biocatalytic cascade stereoinversion route first deaminates l-Phe to phenylpyruvic acid (PPA) through catalysis involving recombinant Escherichia coli cells that express l-amino acid deaminase from Proteus mirabilis (PmLAAD), followed by stereoselective reductive amination with recombinant meso-diaminopimelate dehydrogenase from Symbiobacterium thermophilum (StDAPDH) to produce d-phenylalanine (d-Phe). By incorporating a formate dehydrogenase-based NADPH-recycling system, d-Phe was obtained in quantitative yield with an enantiomeric excess greater than 99%. In addition, the cascade reaction system was also used to stereoinvert a variety of aromatic and aliphatic l-amino acids to the corresponding d-amino acids by combining the PmLAAD whole-cell biocatalyst with the StDAPDH variant. Hence, this method represents a concise and efficient route for the asymmetric synthesis of d-amino acids from the corresponding l-amino acids. An efficient one-pot biocatalytic cascade was developed for synthesis of d-amino acids from readily available l-amino acids via stereoinversion.![]()
Collapse
Affiliation(s)
- Danping Zhang
- School of Biotechnology
- Key Laboratory of Industrial Biotechnology
- Ministry of Education
- Jiangnan University
- Wuxi 214122
| | - Xiaoran Jing
- School of Biotechnology
- Key Laboratory of Industrial Biotechnology
- Ministry of Education
- Jiangnan University
- Wuxi 214122
| | - Wenli Zhang
- School of Biotechnology
- Key Laboratory of Industrial Biotechnology
- Ministry of Education
- Jiangnan University
- Wuxi 214122
| | - Yao Nie
- School of Biotechnology
- Key Laboratory of Industrial Biotechnology
- Ministry of Education
- Jiangnan University
- Wuxi 214122
| | - Yan Xu
- School of Biotechnology
- Key Laboratory of Industrial Biotechnology
- Ministry of Education
- Jiangnan University
- Wuxi 214122
| |
Collapse
|
49
|
Liu J, Jiang J, Bai Y, Fan TP, Zhao Y, Zheng X, Cai Y. Mimicking a New 2-Phenylethanol Production Pathway from Proteus mirabilis JN458 in Escherichia coli. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:3498-3504. [PMID: 29560727 DOI: 10.1021/acs.jafc.8b00627] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Bacteria rarely produce natural 2-phenylethanol. We verified a new pathway from Proteus mirabilis JN458 to produce 2-phenylethanol using Escherichia coli to coexpress l-amino acid deaminase, α-keto acid decarboxylase, and alcohol dehydrogenase from P. mirabilis. Based on this pathway, a glucose dehydrogenase coenzyme regeneration system was constructed. The optimal conditions of biotransformation by the recombinant strain E-pAEAKaG were at 40 °C and pH 7.0. Finally, the recombinant strain E-pAEAKaG produced 3.21 ± 0.10 g/L 2-phenylethanol in M9 medium containing 10 g/L l-phenylalanine after a 16 h transformation. Furthermore, when the concentration of l-phenylalanine was 4 g/L (24 mM), the production of 2-phenylethanol reached 2.88 ± 0.18 g/L and displayed a higher conversion rate of 97.38 mol %.
Collapse
Affiliation(s)
- Jinbin Liu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology , Jiangnan University , 1800 Lihu Road , Wuxi , Jiangsu 214122 , China
| | - Jing Jiang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology , Jiangnan University , 1800 Lihu Road , Wuxi , Jiangsu 214122 , China
| | - Yajun Bai
- College of Life Sciences , Northwest University , Xi'an , Shanxi 710069 , China
| | - Tai-Ping Fan
- Department of Pharmacology , University of Cambridge , Cambridge CB2 1T , U.K
| | - Ye Zhao
- College of Life Sciences , Northwest University , Xi'an , Shanxi 710069 , China
| | - Xiaohui Zheng
- College of Life Sciences , Northwest University , Xi'an , Shanxi 710069 , China
| | - Yujie Cai
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology , Jiangnan University , 1800 Lihu Road , Wuxi , Jiangsu 214122 , China
| |
Collapse
|
50
|
Romero E, Gómez Castellanos JR, Gadda G, Fraaije MW, Mattevi A. Same Substrate, Many Reactions: Oxygen Activation in Flavoenzymes. Chem Rev 2018; 118:1742-1769. [DOI: 10.1021/acs.chemrev.7b00650] [Citation(s) in RCA: 216] [Impact Index Per Article: 30.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Elvira Romero
- Molecular Enzymology Group, University of Groningen, Nijenborgh 4, 9747AG Groningen, The Netherlands
| | - J. Rubén Gómez Castellanos
- Department of Biology and Biotechnology “Lazzaro Spallanzani”, University of Pavia, Via Ferrata 9, 27100 Pavia, Italy
| | - Giovanni Gadda
- Departments of Chemistry and Biology, Center for Diagnostics and Therapeutics, and Center for Biotechnology and Drug Design, Georgia State University, Atlanta, Georgia 30302-3965, United States
| | - Marco W. Fraaije
- Molecular Enzymology Group, University of Groningen, Nijenborgh 4, 9747AG Groningen, The Netherlands
| | - Andrea Mattevi
- Department of Biology and Biotechnology “Lazzaro Spallanzani”, University of Pavia, Via Ferrata 9, 27100 Pavia, Italy
| |
Collapse
|