1
|
Harrer DC, Lüke F, Pukrop T, Ghibelli L, Reichle A, Heudobler D. MEPED as salvage therapy for relapsed/refractory Hodgkin's lymphoma incorporating edited non-oncogene addiction: mTOR as a bottleneck. Front Pharmacol 2025; 16:1553331. [PMID: 40183103 PMCID: PMC11965665 DOI: 10.3389/fphar.2025.1553331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Accepted: 02/24/2025] [Indexed: 04/05/2025] Open
Abstract
Rescue therapies of relapsed/refractory (r/r) Hodgkin's lymphoma (HL) in the third to sixth-line provide major, yet unresolved problems. The MEPED regimen includes nuclear receptor agonists such as pioglitazone and dexamethasone, which counterbalance HL homeostasis, HL stress response inhibitors, everolimus and COX-2 inhibitor, and a stress response inducer, low-dose metronomic treosulfan. CR (six of seven patients) and long-term cCR in patients receiving no consolidating allogeneic stem cell transplantation highlight MEPED as a potent salvage therapy in advanced refractory HL. MEPED edits everolimus activities in such a way that mTORC1 becomes a non-oncogene addiction bottleneck, hence determining long-term therapy outcome. The implications of the therapeutic paradigm shift toward editing of HL tissue, and particularly mTOR addiction, could prove to be profound for clinical practice, both in terms of outcome and treatment tolerability. The long-term results of MEPED treatment indicate the urgent evaluation of the schedule in a multicenter trial for r/r HL.
Collapse
Affiliation(s)
- Dennis Christoph Harrer
- Department of Internal Medicine III, Hematology and Oncology, University Hospital Regensburg, Regensburg, Germany
| | - Florian Lüke
- Department of Internal Medicine III, Hematology and Oncology, University Hospital Regensburg, Regensburg, Germany
- Division of Personalized Tumor Therapy, Fraunhofer Institute for Toxicology and Experimental Medicine, Regensburg, Germany
| | - Tobias Pukrop
- Department of Internal Medicine III, Hematology and Oncology, University Hospital Regensburg, Regensburg, Germany
- Bavarian Cancer Research Center (BZKF), University Hospital Regensburg, Regensburg, Germany
| | - Lina Ghibelli
- Department of Biology, University of Rome “Tor Vergata”, Rome, Italy
| | - Albrecht Reichle
- Department of Internal Medicine III, Hematology and Oncology, University Hospital Regensburg, Regensburg, Germany
| | - Daniel Heudobler
- Department of Internal Medicine III, Hematology and Oncology, University Hospital Regensburg, Regensburg, Germany
- Bavarian Cancer Research Center (BZKF), University Hospital Regensburg, Regensburg, Germany
| |
Collapse
|
2
|
Wang Q, Zhao Y, Song J, Niu J, Liu Y, Chao C. How halogenated aromatic compounds affect the electron supply and consumption in glucose supported denitrification? WATER RESEARCH 2024; 256:121569. [PMID: 38615604 DOI: 10.1016/j.watres.2024.121569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/24/2024] [Accepted: 04/02/2024] [Indexed: 04/16/2024]
Abstract
Halogenated aromatic compounds possess bidirectional effects on denitrifying bio-electron behavior, providing electrons and potentially interfering with electron consumption. This study selected the typical 4-chlorophenol (4-CP, 0-100 mg/L) to explore its impact mechanism on glucose-supported denitrification. When COD(glucose)/COD(4-CP)=28.70-3.59, glucose metabolism remained the dominant electron supply process, although its removal efficiency decreased to 73.84-49.66 %. When COD(glucose)/COD(4-CP)=2.39-1.43, 4-CP changed microbial carbon metabolism priority by inhibiting the abundance of glucose metabolizing enzymes, gradually replacing glucose as the dominant electron donor. Moreover, 5-100 mg/L 4-CP reduced adenosine triphosphate (ATP) by 15.52-24.67 % and increased reactive oxygen species (ROS) by 31.13-63.47 %, causing severe lipid peroxidation, thus inhibiting the utilization efficiency of glucose. Activated by glucose, 4-CP dechlorination had stronger electron consumption ability than NO2--N reduction (NO3--N > 4-CP > NO2--N), combined with the decreased nirS and nirK genes abundance, resulting in NO2--N accumulation. Compared with the blank group (0 mg/L 4-CP), 5-40 mg/L and 60-100 mg/L 4-CP reduced the secretion of cytochrome c and flavin adenine dinucleotides (FAD), respectively, further decreasing the electron transfer activity of denitrification system. Micropruina, a genus that participated in denitrification based on glucose, was gradually replaced by Candidatus_Microthrix, a genus that possessed 4-CP degradation and denitrification functions after introducing 60-100 mg/L 4-CP.
Collapse
Affiliation(s)
- Qian Wang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Yingxin Zhao
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China.
| | - Jinxin Song
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Jiaojiao Niu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Yinuo Liu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Chunfang Chao
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| |
Collapse
|
3
|
Přibyl T, Rumlová M, Mikyšková R, Reiniš M, Kaňa A, Škoch K, Zelenka J, Kirakci K, Ruml T, Lang K. PEGylated Molybdenum-Iodine Nanocluster as a Promising Radiodynamic Agent against Prostatic Adenocarcinoma. Inorg Chem 2024; 63:4419-4428. [PMID: 38364266 PMCID: PMC10915794 DOI: 10.1021/acs.inorgchem.4c00084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 01/31/2024] [Accepted: 02/01/2024] [Indexed: 02/18/2024]
Abstract
The combination of photodynamic therapy and radiotherapy has given rise to a modality called radiodynamic therapy (RDT), based on reactive oxygen species-producing radiosensitizers. The production of singlet oxygen, O2(1Δg), by octahedral molybdenum (Mo6) clusters upon X-ray irradiation allows for simplification of the architecture of radiosensitizing systems. In this context, we prepared a radiosensitizing system using copper-free click chemistry between a Mo6 cluster bearing azido ligands and the homo-bifunctional linker bis-dPEG11-DBCO. The resulting compound formed nanoparticles, which featured production of O2(1Δg) and efficient cellular uptake, leading to remarkable photo- and radiotoxic effects against the prostatic adenocarcinoma TRAMP-C2 cell line. Spheroids of TRAMP-C2 cells were also used for evaluation of toxicity and phototoxicity. In vivo experiments on a mouse model demonstrated that subcutaneous injection of the nanoparticles is a safe administration mode at a dose of up to 0.08 g kg-1. The reported results confirm the relevancy of Mo6-based radiosensitizing nanosystems for RDT.
Collapse
Affiliation(s)
- Tomáš Přibyl
- Department
of Biochemistry and Microbiology, University
of Chemistry and Technology Prague, 166 28 Praha 6, Czech Republic
| | - Michaela Rumlová
- Department
of Biotechnology, University of Chemistry
and Technology Prague, 166
28 Praha, Czech Republic
| | - Romana Mikyšková
- Institute
of Molecular Genetics of the Czech Academy of Sciences, Vídeňská 1084, 142 20 Praha, Czech Republic
| | - Milan Reiniš
- Institute
of Molecular Genetics of the Czech Academy of Sciences, Vídeňská 1084, 142 20 Praha, Czech Republic
| | - Antonín Kaňa
- Department
of Analytical Chemistry, University of Chemistry
and Technology Prague, 166
28 Praha, Czech Republic
| | - Karel Škoch
- Institute
of Inorganic Chemistry of the Czech Academy of Sciences, Řež 1001, 250 68 Husinec-Řež, Czech Republic
| | - Jaroslav Zelenka
- Department
of Biochemistry and Microbiology, University
of Chemistry and Technology Prague, 166 28 Praha 6, Czech Republic
| | - Kaplan Kirakci
- Institute
of Inorganic Chemistry of the Czech Academy of Sciences, Řež 1001, 250 68 Husinec-Řež, Czech Republic
| | - Tomáš Ruml
- Department
of Biochemistry and Microbiology, University
of Chemistry and Technology Prague, 166 28 Praha 6, Czech Republic
| | - Kamil Lang
- Institute
of Inorganic Chemistry of the Czech Academy of Sciences, Řež 1001, 250 68 Husinec-Řež, Czech Republic
| |
Collapse
|
4
|
Fibbi B, Marroncini G, Naldi L, Peri A. The Yin and Yang Effect of the Apelinergic System in Oxidative Stress. Int J Mol Sci 2023; 24:4745. [PMID: 36902176 PMCID: PMC10003082 DOI: 10.3390/ijms24054745] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 02/20/2023] [Accepted: 02/23/2023] [Indexed: 03/06/2023] Open
Abstract
Apelin is an endogenous ligand for the G protein-coupled receptor APJ and has multiple biological activities in human tissues and organs, including the heart, blood vessels, adipose tissue, central nervous system, lungs, kidneys, and liver. This article reviews the crucial role of apelin in regulating oxidative stress-related processes by promoting prooxidant or antioxidant mechanisms. Following the binding of APJ to different active apelin isoforms and the interaction with several G proteins according to cell types, the apelin/APJ system is able to modulate different intracellular signaling pathways and biological functions, such as vascular tone, platelet aggregation and leukocytes adhesion, myocardial activity, ischemia/reperfusion injury, insulin resistance, inflammation, and cell proliferation and invasion. As a consequence of these multifaceted properties, the role of the apelinergic axis in the pathogenesis of degenerative and proliferative conditions (e.g., Alzheimer's and Parkinson's diseases, osteoporosis, and cancer) is currently investigated. In this view, the dual effect of the apelin/APJ system in the regulation of oxidative stress needs to be more extensively clarified, in order to identify new potential strategies and tools able to selectively modulate this axis according to the tissue-specific profile.
Collapse
Affiliation(s)
- Benedetta Fibbi
- “Pituitary Diseases and Sodium Alterations” Unit, AOU Careggi, 50139 Florence, Italy
- Endocrinology, Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, 50139 Florence, Italy
| | - Giada Marroncini
- “Pituitary Diseases and Sodium Alterations” Unit, AOU Careggi, 50139 Florence, Italy
| | - Laura Naldi
- “Pituitary Diseases and Sodium Alterations” Unit, AOU Careggi, 50139 Florence, Italy
| | - Alessandro Peri
- “Pituitary Diseases and Sodium Alterations” Unit, AOU Careggi, 50139 Florence, Italy
- Endocrinology, Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, 50139 Florence, Italy
| |
Collapse
|
5
|
Hyponatremia and Cancer: From Bedside to Benchside. Cancers (Basel) 2023; 15:cancers15041197. [PMID: 36831539 PMCID: PMC9953859 DOI: 10.3390/cancers15041197] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 02/07/2023] [Accepted: 02/08/2023] [Indexed: 02/16/2023] Open
Abstract
Hyponatremia is the most common electrolyte disorder encountered in hospitalized patients. This applies also to cancer patients. Multiple causes can lead to hyponatremia, but most frequently this electrolyte disorder is due to the syndrome of inappropriate antidiuresis. In cancer patients, this syndrome is mostly secondary to ectopic secretion of arginine vasopressin by tumoral cells. In addition, several chemotherapeutic drugs induce the release of arginine vasopressin by the hypothalamus. There is evidence that hyponatremia is associated to a more negative outcome in several pathologies, including cancer. Many studies have demonstrated that in different cancer types, both progression-free survival and overall survival are negatively affected by hyponatremia, whereas the correction of serum [Na+] has a positive effect on patient outcome. In vitro studies have shown that cells grown in low [Na+] have a greater proliferation rate and motility, due to a dysregulation in intracellular signalling pathways. Noteworthy, vasopressin receptors antagonists, which were approved more than a decade ago for the treatment of euvolemic and hypervolemic hyponatremia, have shown unexpected antiproliferative effects. Because of this property, vaptans were also approved for the treatment of polycystic kidney disease. In vitro evidence indicated that this family of drugs effectively counteracts proliferation and invasivity of cancer cells, thus possibly opening a new scenario among the pharmacological strategies to treat cancer.
Collapse
|
6
|
Wu YZ, Su YH, Kuo CY. Stressing the Regulatory Role of Long Non-Coding RNA in the Cellular Stress Response during Cancer Progression and Therapy. Biomedicines 2022; 10:biomedicines10051212. [PMID: 35625948 PMCID: PMC9138696 DOI: 10.3390/biomedicines10051212] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 05/19/2022] [Accepted: 05/20/2022] [Indexed: 12/13/2022] Open
Abstract
Cellular stress response is an important adaptive mechanism for regulating cell fate decision when cells confront with stress. During tumorigenesis, tumor progression and the course of treatment, cellular stress signaling can activate subsequent response to deal with stress. Therefore, cellular stress response has impacts on the fate of tumor cells and tumor responsiveness relative to therapeutic agents. In recent years, attention has been drawn to long non-coding RNAs (lncRNAs), a novel class of RNA molecules with more than 200 nucleotides in length, which has little protein-coding potential and possesses various functions in multiple biological processes. Accumulating evidence has shown that lncRNAs are also engaged in the regulation of cellular stress response, particularly in cancers. Here, we summarize lncRNAs that have been reported in the adaptive response to major types of cellular stress including genotoxic, hypoxic, oxidative, metabolic and endoplasmic reticulum stress, all of which are often encountered by cancer cells. Specifically, the molecular mechanisms of how lncRNAs regulate cellular stress response during tumor progression or the development of therapy resistance are emphasized. The potential clinical applications of stress-responsive lncRNAs as biomarkers will also be discussed.
Collapse
Affiliation(s)
- Yi-Zhen Wu
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei 100229, Taiwan; (Y.-Z.W.); (Y.-H.S.)
| | - Yong-Han Su
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei 100229, Taiwan; (Y.-Z.W.); (Y.-H.S.)
| | - Ching-Ying Kuo
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei 100229, Taiwan; (Y.-Z.W.); (Y.-H.S.)
- Department of Laboratory Medicine, National Taiwan University Hospital, Taipei 100225, Taiwan
- Correspondence: ; Tel.: +886-2-23123456 (ext. 66909)
| |
Collapse
|
7
|
Khayatan D, Razavi SM, Arab ZN, Khanahmadi M, Momtaz S, Butler AE, Montecucco F, Markina YV, Abdolghaffari AH, Sahebkar A. Regulatory Effects of Statins on SIRT1 and Other Sirtuins in Cardiovascular Diseases. Life (Basel) 2022; 12:760. [PMID: 35629426 PMCID: PMC9146832 DOI: 10.3390/life12050760] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 05/17/2022] [Accepted: 05/18/2022] [Indexed: 12/22/2022] Open
Abstract
Adverse cardiovascular disease (CVD) outcomes, such as sudden cardiac death, acute myocardial infarction, and stroke, are often catastrophic. Statins are frequently used to attenuate the risk of CVD-associated morbidity and mortality through their impact on lipids and they may also have anti-inflammatory and other plaque-stabilization effects via different signaling pathways. Different statins, including atorvastatin, rosuvastatin, pravastatin, pitavastatin, and simvastatin, are administered to manage circulatory lipid levels. In addition, statins are potent inhibitors of 3-hydroxy-3-methylglutaryl coenzyme A (HMGCoA) reductase via modulating sirtuins (SIRTs). During the last two decades, SIRTs have been investigated in mammals and categorized as a family of nicotinamide adenine dinucleotide (NAD)-dependent histone deacetylases (HDACs) with significant oxidative stress regulatory function in cells-a key factor in extending cell lifespan. Recent work has demonstrated that statins upregulate SIRT1 and SIRT2 and downregulate SIRT6 in both in vitro and in vivo experiments and clinical trials. As statins show modulatory properties, especially in CVDs, future investigations are needed to delineate the role of SIRT family members in disease and to expand knowledge about the effects of statins on SIRTs. Here, we review what is currently known about the impact of statins on SIRTs and how these changes correlate with disease, particularly CVDs.
Collapse
Affiliation(s)
- Danial Khayatan
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; (D.K.); (S.M.R.); (Z.N.A.); (M.K.)
| | - Seyed Mehrad Razavi
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; (D.K.); (S.M.R.); (Z.N.A.); (M.K.)
| | - Zahra Najafi Arab
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; (D.K.); (S.M.R.); (Z.N.A.); (M.K.)
| | - Maryam Khanahmadi
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; (D.K.); (S.M.R.); (Z.N.A.); (M.K.)
| | - Saeideh Momtaz
- Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Karaj, Iran;
- Department of Toxicology and Pharmacology, School of Pharmacy, and Toxicology and Diseases Group, Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
- GI Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Alexandra E. Butler
- Research Department, Royal College of Surgeons in Ireland, Adliya P.O. Box 15503, Bahrain;
| | - Fabrizio Montecucco
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, 16132 Genoa, Italy;
- IRCCS Ospedale Policlinico San Martino Genova-Italian Cardiovascular Network, 16132 Genoa, Italy
| | - Yuliya V. Markina
- Laboratory of Cellular and Molecular Pathology of Cardiovascular System, Avtsyn Research Institute of Human Morphology of FSBI “Petrovsky National Research Center of Surgery”, 3 Tsyurupy Str., 117418 Moscow, Russia;
| | - Amir Hossein Abdolghaffari
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; (D.K.); (S.M.R.); (Z.N.A.); (M.K.)
- Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Karaj, Iran;
- Department of Toxicology and Pharmacology, School of Pharmacy, and Toxicology and Diseases Group, Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
- GI Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Amirhossein Sahebkar
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
8
|
Koncošová M, Rumlová M, Mikyšková R, Reiniš M, Zelenka J, Ruml T, Kirakci K, Lang K. Avenue to X-ray-induced photodynamic therapy of prostatic carcinoma with octahedral molybdenum cluster nanoparticles. J Mater Chem B 2022; 10:3303-3310. [PMID: 35380154 DOI: 10.1039/d2tb00141a] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
X-Ray-induced photodynamic therapy represents a suitable modality for the treatment of various malignancies. It is based on the production of reactive oxygen species by radiosensitizing nanoparticles activated by X-rays. Hence, it allows overcoming the depth-penetration limitations of conventional photodynamic therapy and, at the same time, reducing the dose needed to eradicate cancer in the frame of radiotherapy treatment. The direct production of singlet oxygen by octahedral molybdenum cluster complexes upon X-ray irradiation is a promising avenue in order to simplify the architecture of radiosensitizing systems. One such complex was utilized to prepare water-stable nanoparticles using the solvent displacement method. The nanoparticles displayed intense red luminescence in aqueous media, efficiently quenched by oxygen to produce singlet oxygen, resulting in a substantial photodynamic effect under blue light irradiation. A robust radiosensitizing effect of the nanoparticles was demonstrated in vitro against TRAMP-C2 murine prostatic carcinoma cells at typical therapeutic X-ray doses. Injection of a suspension of the nanoparticles to a mouse model revealed the absence of acute toxicity as evidenced by the invariance of key physiological parameters. This study paves the way for the application of octahedral molybdenum cluster-based radiosensitizers in X-ray-induced photodynamic therapy and its translation to in vivo experiments.
Collapse
Affiliation(s)
- Martina Koncošová
- Department of Biochemistry and Microbiology, University of Chemistry and Technology Prague, Technická 5, 166 28 Praha 6, Czech Republic.
| | - Michaela Rumlová
- Department of Biotechnology, University of Chemistry and Technology Prague, Technická 5, 166 28 Praha 6, Czech Republic
| | - Romana Mikyšková
- Institute of Molecular Genetics of the Czech Academy of Sciences, Vídeňská 1084, 142 20 Praha, Czech Republic
| | - Milan Reiniš
- Institute of Molecular Genetics of the Czech Academy of Sciences, Vídeňská 1084, 142 20 Praha, Czech Republic
| | - Jaroslav Zelenka
- Department of Biochemistry and Microbiology, University of Chemistry and Technology Prague, Technická 5, 166 28 Praha 6, Czech Republic.
| | - Tomáš Ruml
- Department of Biochemistry and Microbiology, University of Chemistry and Technology Prague, Technická 5, 166 28 Praha 6, Czech Republic.
| | - Kaplan Kirakci
- Institute of Inorganic Chemistry of the Czech Academy of Sciences, Řež 1001, 250 68 Husinec-Řež, Czech Republic.
| | - Kamil Lang
- Institute of Inorganic Chemistry of the Czech Academy of Sciences, Řež 1001, 250 68 Husinec-Řež, Czech Republic.
| |
Collapse
|
9
|
Kirakci K, Kubáňová M, Přibyl T, Rumlová M, Zelenka J, Ruml T, Lang K. A Cell Membrane Targeting Molybdenum-Iodine Nanocluster: Rational Ligand Design toward Enhanced Photodynamic Activity. Inorg Chem 2022; 61:5076-5083. [PMID: 35293732 DOI: 10.1021/acs.inorgchem.2c00040] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The development of singlet oxygen photosensitizers, which target specific cellular organelles, constitutes a pertinent endeavor to optimize the efficiency of photodynamic therapy. Targeting of the cell membrane eliminates the need for endocytosis of drugs that can lead to toxicity, intracellular degradation, or drug resistance. In this context, we utilized copper-free click chemistry to prepare a singlet oxygen photosensitizing complex, made of a molybdenum-iodine nanocluster stabilized by triazolate apical ligands. In phosphate-buffered saline, the complex formed nanoaggregates with a positive surface charge due to the protonatable amine function of the apical ligands. These nanoaggregates targeted cell membranes and caused an eminent blue-light phototoxic effect against HeLa cells at nanomolar concentrations, inducing apoptotic cell death, while having no dark toxicity at physiologically relevant concentrations. The properties of this complex were compared to those of a negatively charged parent complex to highlight the dominant effect of the nature of apical ligands on biological properties of the nanocluster. These two complexes also exerted (photo)antibacterial effects on several pathogenic strains in the form of planktonic cultures and biofilms. Overall, we demonstrated that the rational design of apical ligands toward cell membrane targeting leads to enhanced photodynamic efficiency.
Collapse
Affiliation(s)
- Kaplan Kirakci
- Institute of Inorganic Chemistry of the Czech Academy of Sciences, Řež 1001, 250 68 Husinec-Řež, Czech Republic
| | - Michaela Kubáňová
- Department of Biochemistry and Microbiology, University of Chemistry and Technology Prague, 166 28 Praha 6, Czech Republic
| | - Tomáš Přibyl
- Department of Biochemistry and Microbiology, University of Chemistry and Technology Prague, 166 28 Praha 6, Czech Republic
| | - Michaela Rumlová
- Department of Biotechnology, University of Chemistry and Technology Prague, 166 28 Praha, Czech Republic
| | - Jaroslav Zelenka
- Department of Biochemistry and Microbiology, University of Chemistry and Technology Prague, 166 28 Praha 6, Czech Republic
| | - Tomáš Ruml
- Department of Biochemistry and Microbiology, University of Chemistry and Technology Prague, 166 28 Praha 6, Czech Republic
| | - Kamil Lang
- Institute of Inorganic Chemistry of the Czech Academy of Sciences, Řež 1001, 250 68 Husinec-Řež, Czech Republic
| |
Collapse
|
10
|
Bozzetti V, Senger S. Organoid technologies for the study of intestinal microbiota–host interactions. Trends Mol Med 2022; 28:290-303. [PMID: 35232671 PMCID: PMC8957533 DOI: 10.1016/j.molmed.2022.02.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 01/31/2022] [Accepted: 02/01/2022] [Indexed: 12/11/2022]
Abstract
Postbiotics have recently emerged as critical effectors of the activity of probiotics and, because of their safety profile, they are considered potential therapeutics for the treatment of fragile patients. Here, we present recent studies on probiotics and postbiotics in the context of novel discovery tools, such as organoids and organoid-based platforms, and nontransformed preclinical models, that can be generated from intestinal stem cells. The implementation of organoid-related techniques is the next gold standard for unraveling the effect of microbial communities on homeostasis, inflammation, idiopathic diseases, and cancer in the gut. We also summarize recent studies on biotics in organoid-based models and offer our perspective on future directions.
Collapse
|
11
|
Fibbi B, Marroncini G, Anceschi C, Naldi L, Peri A. Hyponatremia and Oxidative Stress. Antioxidants (Basel) 2021; 10:1768. [PMID: 34829639 PMCID: PMC8614907 DOI: 10.3390/antiox10111768] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/26/2021] [Accepted: 11/03/2021] [Indexed: 12/15/2022] Open
Abstract
Hyponatremia, i.e., the presence of a serum sodium concentration ([Na+]) < 136 mEq/L, is the most frequent electrolyte imbalance in the elderly and in hospitalized patients. Symptoms of acute hyponatremia, whose main target is the central nervous system, are explained by the "osmotic theory" and the neuronal swelling secondary to decreased extracellular osmolality, which determines cerebral oedema. Following the description of neurological and systemic manifestations even in mild and chronic hyponatremia, in the last decade reduced extracellular [Na+] was associated with detrimental effects on cellular homeostasis independently of hypoosmolality. Most of these alterations appeared to be elicited by oxidative stress. In this review, we focus on the role of oxidative stress on both osmolality-dependent and -independent impairment of cell and tissue functions observed in hyponatremic conditions. Furthermore, basic and clinical research suggested that oxidative stress appears to be a common denominator of the degenerative processes related to aging, cancer progression, and hyponatremia. Of note, low [Na+] is able to exacerbate multiple manifestations of senescence and to decrease progression-free and overall survival in oncologic patients.
Collapse
Affiliation(s)
- Benedetta Fibbi
- Pituitary Diseases and Sodium Alterations Unit, AOU Careggi, 50139 Florence, Italy; (B.F.); (G.M.)
- Endocrinology, Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, AOU Careggi, 50139 Florence, Italy; (C.A.); (L.N.)
| | - Giada Marroncini
- Pituitary Diseases and Sodium Alterations Unit, AOU Careggi, 50139 Florence, Italy; (B.F.); (G.M.)
- Endocrinology, Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, AOU Careggi, 50139 Florence, Italy; (C.A.); (L.N.)
| | - Cecilia Anceschi
- Endocrinology, Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, AOU Careggi, 50139 Florence, Italy; (C.A.); (L.N.)
| | - Laura Naldi
- Endocrinology, Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, AOU Careggi, 50139 Florence, Italy; (C.A.); (L.N.)
| | - Alessandro Peri
- Pituitary Diseases and Sodium Alterations Unit, AOU Careggi, 50139 Florence, Italy; (B.F.); (G.M.)
- Endocrinology, Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, AOU Careggi, 50139 Florence, Italy; (C.A.); (L.N.)
| |
Collapse
|
12
|
Svoboda J, Zolal A, Králík F, Eigner V, Ruml T, Zelenka J, Syslová K. Trans-palladium complexes with 1-adamantanamine and various halide ions: Synthesis, characterization, DNA and protein binding and in vitro cytotoxicity. Polyhedron 2021. [DOI: 10.1016/j.poly.2021.115458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
13
|
Inhibition of Mitochondrial Metabolism Leads to Selective Eradication of Cells Adapted to Acidic Microenvironment. Int J Mol Sci 2021; 22:ijms221910790. [PMID: 34639130 PMCID: PMC8509312 DOI: 10.3390/ijms221910790] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 09/22/2021] [Accepted: 10/02/2021] [Indexed: 01/17/2023] Open
Abstract
Metabolic transformation of cancer cells leads to the accumulation of lactate and significant acidification in the tumor microenvironment. Both lactate and acidosis have a well-documented impact on cancer progression and negative patient prognosis. Here, we report that cancer cells adapted to acidosis are significantly more sensitive to oxidative damage induced by hydrogen peroxide, high-dose ascorbate, and photodynamic therapy. Higher lactate concentrations abrogate the sensitization. Mechanistically, acidosis leads to a drop in antioxidant capacity caused by a compromised supply of nicotinamide adenine dinucleotide phosphate (NADPH) derived from glucose metabolism. However, lactate metabolism in the Krebs cycle restores NADPH supply and antioxidant capacity. CPI-613 (devimistat), an anticancer drug candidate, selectively eradicates the cells adapted to acidosis through inhibition of the Krebs cycle and induction of oxidative stress while completely abrogating the protective effect of lactate. Simultaneous cell treatment with tetracycline, an inhibitor of the mitochondrial proteosynthesis, further enhances the cytotoxic effect of CPI-613 under acidosis and in tumor spheroids. While there have been numerous attempts to treat cancer by neutralizing the pH of the tumor microenvironment, we alternatively suggest considering tumor acidosis as the Achilles’ heel of cancer as it enables selective therapeutic induction of lethal oxidative stress.
Collapse
|
14
|
Wang Y, Qing W. The construction of gold hybrid supramolecular hydrogels for doxorubicin delivery. Supramol Chem 2021. [DOI: 10.1080/10610278.2021.1973002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Yong Wang
- Henan International Joint Laboratory of Medicinal Plants Utilization, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, P.R. China
| | - Weixia Qing
- Laboratory for NanoMedical Photonics, School of Basic Medical Science, Henan University, Kaifeng, P.R. China
| |
Collapse
|
15
|
Eyres M, Lanfredini S, Xu H, Burns A, Blake A, Willenbrock F, Goldin R, Hughes D, Hughes S, Thapa A, Vavoulis D, Hubert A, D'Costa Z, Sabbagh A, Abraham AG, Blancher C, Jones S, Verrill C, Silva M, Soonawalla Z, Maughan T, Schuh A, Mukherjee S, O'Neill E. TET2 Drives 5hmc Marking of GATA6 and Epigenetically Defines Pancreatic Ductal Adenocarcinoma Transcriptional Subtypes. Gastroenterology 2021; 161:653-668.e16. [PMID: 33915173 DOI: 10.1053/j.gastro.2021.04.044] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 03/12/2021] [Accepted: 04/07/2021] [Indexed: 12/14/2022]
Abstract
BACKGROUND & AIMS Pancreatic ductal adenocarcinoma (PDAC) is characterized by advanced disease stage at presentation, aggressive disease biology, and resistance to therapy, resulting in an extremely poor 5-year survival rate of <10%. PDAC is classified into transcriptional subtypes with distinct survival characteristics, although how these arise is not known. Epigenetic deregulation, rather than genetics, has been proposed to underpin progression, but exactly why is unclear and is hindered by the technical limitations of analyzing clinical samples. METHODS We performed genome-wide epigenetic mapping of DNA modifications 5-methylcytosine and 5-hydroxymethylcytosine (5hmc) using oxidative bisulfite sequencing from formalin-embedded sections. We identified overlap with transcriptional signatures in formalin-fixed, paraffin-embedded tissue from resected patients, via bioinformatics using iCluster and mutational profiling and confirmed them in vivo. RESULTS We found that aggressive squamous-like PDAC subtypes result from epigenetic inactivation of loci, including GATA6, which promote differentiated classical pancreatic subtypes. We showed that squamous-like PDAC transcriptional subtypes are associated with greater loss of 5hmc due to reduced expression of the 5-methylcytosine hydroxylase TET2. Furthermore, we found that SMAD4 directly supports TET2 levels in classical pancreatic tumors, and loss of SMAD4 expression was associated with reduced 5hmc, GATA6, and squamous-like tumors. Importantly, enhancing TET2 stability using metformin and vitamin C/ascorbic acid restores 5hmc and GATA6 levels, reverting squamous-like tumor phenotypes and WNT-dependence in vitro and in vivo. CONCLUSIONS We identified epigenetic deregulation of pancreatic differentiation as an underpinning event behind the emergence of transcriptomic subtypes in PDAC. Our data showed that restoring epigenetic control increases biomarkers of classical pancreatic tumors that are associated with improved therapeutic responses and survival.
Collapse
MESH Headings
- 5-Methylcytosine/analogs & derivatives
- 5-Methylcytosine/metabolism
- Animals
- Antineoplastic Combined Chemotherapy Protocols/pharmacology
- Ascorbic Acid/pharmacology
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Carcinoma, Pancreatic Ductal/drug therapy
- Carcinoma, Pancreatic Ductal/enzymology
- Carcinoma, Pancreatic Ductal/genetics
- Carcinoma, Pancreatic Ductal/pathology
- Cell Differentiation
- Cell Line, Tumor
- DNA Methylation/drug effects
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/metabolism
- Dioxygenases/genetics
- Dioxygenases/metabolism
- Epigenesis, Genetic/drug effects
- Epigenome
- Epigenomics
- GATA6 Transcription Factor/genetics
- GATA6 Transcription Factor/metabolism
- Gene Expression Profiling
- Gene Expression Regulation, Neoplastic
- Humans
- Metformin/pharmacology
- Mice, Nude
- Mice, Transgenic
- Pancreatic Neoplasms/drug therapy
- Pancreatic Neoplasms/enzymology
- Pancreatic Neoplasms/genetics
- Pancreatic Neoplasms/pathology
- Retrospective Studies
- Smad4 Protein/genetics
- Smad4 Protein/metabolism
- Transcription, Genetic/drug effects
- Transcriptome
- Wnt Signaling Pathway/genetics
- Xenograft Model Antitumor Assays
- Mice
Collapse
Affiliation(s)
- Michael Eyres
- Department of Oncology, University of Oxford, Oxford, UK
| | | | - Haonan Xu
- Department of Oncology, University of Oxford, Oxford, UK
| | - Adam Burns
- Department of Oncology, University of Oxford, Oxford, UK
| | - Andrew Blake
- Department of Oncology, University of Oxford, Oxford, UK
| | | | - Robert Goldin
- Centre for Pathology, Imperial College, London, United Kingdom
| | - Daniel Hughes
- Department of Oncology, University of Oxford, Oxford, UK; Department of Hepatobiliary and Pancreatic Surgery, Oxford University Hospitals National Health Service Foundation Trust, Oxford, United Kingdom
| | - Sophie Hughes
- Department of Oncology, University of Oxford, Oxford, UK
| | - Asmita Thapa
- Department of Oncology, University of Oxford, Oxford, UK
| | | | - Aline Hubert
- Department of Oncology, University of Oxford, Oxford, UK
| | | | - Ahmad Sabbagh
- Department of Oncology, University of Oxford, Oxford, UK
| | | | - Christine Blancher
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Stephanie Jones
- Oxford Radcliffe Biobank, Nuffield Department of Surgical Sciences, University of Oxford, Oxford, United Kingdom
| | - Clare Verrill
- Nuffield Department of Surgical Sciences and Oxford National Institute for Health Research Biomedical Research Centre, University of Oxford, Oxford, United Kingdom
| | - Michael Silva
- Department of Hepatobiliary and Pancreatic Surgery, Oxford University Hospitals National Health Service Foundation Trust, Oxford, United Kingdom
| | - Zahir Soonawalla
- Department of Hepatobiliary and Pancreatic Surgery, Oxford University Hospitals National Health Service Foundation Trust, Oxford, United Kingdom
| | | | - Anna Schuh
- Department of Oncology, University of Oxford, Oxford, UK
| | | | - Eric O'Neill
- Department of Oncology, University of Oxford, Oxford, UK.
| |
Collapse
|
16
|
Stenvinkel P, Meyer CJ, Block GA, Chertow GM, Shiels PG. Understanding the role of the cytoprotective transcription factor nuclear factor erythroid 2-related factor 2-lessons from evolution, the animal kingdom and rare progeroid syndromes. Nephrol Dial Transplant 2021; 35:2036-2045. [PMID: 31302696 PMCID: PMC7716811 DOI: 10.1093/ndt/gfz120] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 05/10/2019] [Indexed: 12/20/2022] Open
Abstract
The cytoprotective transcriptor factor nuclear factor erythroid 2– related factor 2 (NRF2) is part of a complex regulatory network that responds to environmental cues. To better understand its role in a cluster of inflammatory and pro-oxidative burden of lifestyle diseases that accumulate with age, lessons can be learned from evolution, the animal kingdom and progeroid syndromes. When levels of oxygen increased in the atmosphere, mammals required ways to protect themselves from the metabolic toxicity that arose from the production of reactive oxygen species. The evolutionary origin of the NRF2–Kelch-like ECH-associated protein 1 (KEAP1) signalling pathway from primitive origins has been a prerequisite for a successful life on earth, with checkpoints in antioxidant gene expression, inflammation, detoxification and protein homoeostasis. Examples from the animal kingdom suggest that superior antioxidant defense mechanisms with enhanced NRF2 expression have been developed during evolution to protect animals during extreme environmental conditions, such as deep sea diving, hibernation and habitual hypoxia. The NRF2–KEAP1 signalling pathway is repressed in progeroid (accelerated ageing) syndromes and a cluster of burden of lifestyle disorders that accumulate with age. Compelling links exist between tissue hypoxia, senescence and a repressed NRF2 system. Effects of interventions that activate NRF2, including nutrients, and more potent (semi)synthetic NRF2 agonists on clinical outcomes are of major interest. Given the broad-ranging actions of NRF2, we need to better understand the mechanisms of activation, biological function and regulation of NRF2 and its inhibitor, KEAP1, in different clinical conditions to ensure that modulation of this thiol-based system will not result in major adverse effects. Lessons from evolution, the animal kingdom and conditions of accelerated ageing clarify a major role of a controlled NRF2–KEAP1 system in healthy ageing and well-being.
Collapse
Affiliation(s)
- Peter Stenvinkel
- Division of Renal Medicine, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| | | | | | - Glenn M Chertow
- Department of Medicine, Division of Nephrology, Stanford University, Stanford, CA, USA
| | - Paul G Shiels
- Institute of Cancer Sciences, Wolfson Wohl Translational Research Centre, University of Glasgow, Bearsden, Glasgow, UK
| |
Collapse
|
17
|
Vrzáčková N, Ruml T, Zelenka J. Postbiotics, Metabolic Signaling, and Cancer. Molecules 2021; 26:molecules26061528. [PMID: 33799580 PMCID: PMC8000401 DOI: 10.3390/molecules26061528] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/05/2021] [Accepted: 03/09/2021] [Indexed: 12/19/2022] Open
Abstract
Postbiotics are health-promoting microbial metabolites delivered as a functional food or a food supplement. They either directly influence signaling pathways of the body or indirectly manipulate metabolism and the composition of intestinal microflora. Cancer is the second leading cause of death worldwide and even though the prognosis of patients is improving, it is still poor in the substantial part of the cases. The preventable nature of cancer and the importance of a complex multi-level approach in anticancer therapy motivate the search for novel avenues of establishing the anticancer environment in the human body. This review summarizes the principal findings demonstrating the usefulness of both natural and synthetic sources of postbotics in the prevention and therapy of cancer. Specifically, the effects of crude cell-free supernatants, the short-chain fatty acid butyrate, lactic acid, hydrogen sulfide, and β-glucans are described. Contradictory roles of postbiotics in healthy and tumor tissues are highlighted. In conclusion, the application of postbiotics is an efficient complementary strategy to combat cancer.
Collapse
|
18
|
Xu Y, Yang Y, Huang Y, Ma Q, Shang J, Guo J, Cao X, Wang X, Li M. Inhibition of Nrf2/HO-1 signaling pathway by Dextran Sulfate suppresses angiogenesis of Gastric Cancer. J Cancer 2021; 12:1042-1060. [PMID: 33442403 PMCID: PMC7797653 DOI: 10.7150/jca.50605] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Accepted: 11/16/2020] [Indexed: 12/11/2022] Open
Abstract
Purpose: To investigate the role of Nrf2/HO-1 signaling pathway in angiogenesis and whether dextran sulfate (DS) could suppress angiogenesis by inhibiting Nrf2/HO-1 signaling pathway in gastric cancer. Methods:In vitro; Western blot analyzed the expression of Nrf2 in gastric cell lines. Tube formation assay observed the effect of gradient concentration DS on the angiogenic potential of HGC-27 cells. Immunofluorescence,western blot and qPCR analyzed the effects of DS on the expression of Nrf2, HO-1 and VEGF under gradient hypoxia time. Immunofluorescence,western blot,qPCR and tube formation assay analyzed the effects of up-regulating or down-regulating Nrf2/HO-1 signaling pathway on VEGF expression and angiogenic potential in HGC-27 cells. In vivo: Construct nude mouse intraperitoneal implantation metastasis model. Immunohistochemistry and western blot analyzed the effects of DS on the expression of Nrf2, HO-1, VEGF and MVD in nude mice. Immunohistochemistry detected the expression of Nrf2, HO-1, VEGF and MVD in human paracancerous tissue and gastric cancer tissues with different degrees of differentiation. Results: The expression of Nrf2 increased most significantly in HGC-27 cell line. DS reduced the angiogenic potential and the expression of Nrf2, HO-1 and VEGF in HGC-27 cells. Down-regulation of Nrf2/HO-1 signaling pathway decreased VEGF expression and angiogenic potential in HGC-27 cells. Up-regulation of Nrf2/HO-1 signaling pathway increased VEGF expression and angiogenic potential in HGC-27 cells. DS reduced the expression of Nrf2, HO-1, VEGF and MVD in nude mice. Nrf2, HO-1, VEGF and MVD showed low expression in paracancerous tissue but high expression in gastric cancer tissues. They were weak, moderate and strong in well, moderately and poorly differentiated gastric cancer tissues, respectively. Conclusion: Nrf2/HO-1 signaling pathway may positively regulate gastric cancer angiogenesis and DS may suppress the angiogenesis by inhibiting Nrf2/HO-1 signaling pathway in gastric cancer.
Collapse
Affiliation(s)
- Yuanyi Xu
- Department of Pathology, Ningxia Medical University, Yinchuan, Ningxia 750004, China
| | - Yuanyuan Yang
- Department of Pathology, Ningxia Medical University, Yinchuan, Ningxia 750004, China
| | - Yunning Huang
- Department of Gastrointestinal Surgery, The Affiliated People's Hospital of Ningxia Medical University, Yinchuan, Ningxia 750001, China
| | - Qian Ma
- College of Life Sciences, Ningxia University, Yinchuan, Ningxia 750021, China.,College of Basic Medicine, Ningxia Medical University, Yinchuan, Ningxia 750004, China
| | - Jing Shang
- Third Clinical Medical College, Ningxia Medical University, Yinchuan, Ningxia 750004, China
| | - Jiaxin Guo
- Department of Pathology, Ningxia Medical University, Yinchuan, Ningxia 750004, China
| | - Xiangmei Cao
- Department of Pathology, Ningxia Medical University, Yinchuan, Ningxia 750004, China
| | - Xiaofei Wang
- Department of Pathology, North China University of Science and Technology Affiliated Hospital, Tangshan, Hebei 063000, China
| | - Mengqi Li
- Department of Pathology, Ningxia Medical University, Yinchuan, Ningxia 750004, China
| |
Collapse
|
19
|
Wang L, Chai X, Wan R, Zhang H, Zhou C, Xiang L, Paul ME, Li Y. Disulfiram Chelated With Copper Inhibits the Growth of Gastric Cancer Cells by Modulating Stress Response and Wnt/β-catenin Signaling. Front Oncol 2020; 10:595718. [PMID: 33409152 PMCID: PMC7780754 DOI: 10.3389/fonc.2020.595718] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 11/09/2020] [Indexed: 12/19/2022] Open
Abstract
Disulfiram (DSF) is a well-known drug for alcohol abuse. In recent decades, DSF has been demonstrated to exhibit anti-tumor activity; DSF chelated with copper shows enhanced anti-tumor effect. Our goal was to explore the effect of DSF/Cu complex on the growth and metastasis of gastric cancer (GC) in vitro and in vivo. DSF/Cu complex suppressed the proliferation, migration of MKN-45 and BGC-823 GC cells. Furthermore, DSF/Cu treatment reduced the tumor volume in GC mouse models with a tumor suppression rate of 48.24%. Additionally, DSF/Cu induced apoptosis in vitro in MKN-45 and BGC-823 GC cells in a dose- and time-dependent manner as well as in vivo in the xenograft tumor mouse model. Furthermore, DSF/Cu induced autophagy and autophagic flux in MKN-45 and BGC-823 cells, increased the expression of autophagy-related Beclin-1 and LC3 proteins in vivo. Additionally, DSF/Cu suppressed aerobic glycolysis and oxidative phosphorylation by reducing oxygen consumption rate and extracellular acidification rate, respectively, in MKN-45 and BGC-823 cells. Treatment with DSF/Cu induced oxidative stress and DNA damage response by elevating the reactive oxygen species levels; increasing the expression of P53, P21, and γ-H2AX proteins; and inhibiting Wnt/β-catenin signaling in vitro and in vivo. Thus, DSF/Cu suppressed the growth and metastasis of GC cells via modulating the stress response and Wnt/β-catenin signaling. Hence, DSF may be used as a potential therapeutic agent for the treatment of GC.
Collapse
Affiliation(s)
- Ling Wang
- Key Laboratory of Digestive System Tumors of Gansu Province, Lanzhou University Second Hospital, Lanzhou, China
| | - Xiaoke Chai
- Key Laboratory of Digestive System Tumors of Gansu Province, Lanzhou University Second Hospital, Lanzhou, China
| | - Run Wan
- Key Laboratory of Digestive System Tumors of Gansu Province, Lanzhou University Second Hospital, Lanzhou, China
| | - Hong Zhang
- Department of Pathology, First Hospital of Lanzhou University, Lanzhou, China
| | - Cong Zhou
- Key Laboratory of Digestive System Tumors of Gansu Province, Lanzhou University Second Hospital, Lanzhou, China
| | - Lin Xiang
- Department of Pathology, Lanzhou University Second Hospital, Lanzhou, China
| | - Maswikiti Ewetse Paul
- Key Laboratory of Digestive System Tumors of Gansu Province, Lanzhou University Second Hospital, Lanzhou, China
| | - Yumin Li
- Key Laboratory of Digestive System Tumors of Gansu Province, Lanzhou University Second Hospital, Lanzhou, China
| |
Collapse
|
20
|
Lv X, Yu H, Zhang Q, Huang Q, Hong X, Yu T, Lan H, Mei C, Zhang W, Luo H, Pang P, Shan H. SRXN1 stimulates hepatocellular carcinoma tumorigenesis and metastasis through modulating ROS/p65/BTG2 signalling. J Cell Mol Med 2020; 24:10714-10729. [PMID: 32746503 PMCID: PMC7521256 DOI: 10.1111/jcmm.15693] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 07/06/2020] [Accepted: 07/09/2020] [Indexed: 12/21/2022] Open
Abstract
Sulfiredoxin 1 (SRXN1) is a pivotal regulator of the antioxidant response in eukaryotic cells. However, the role of SRXN1 in hepatocellular carcinoma (HCC) is far from clear. The present study aims to elucidate whether SRXN1 participates in tumorigenesis and metastasis of HCC and to determine the molecular mechanisms. We found that SRXN1 expression was up-regulated in HCC tissue samples and correlated with poor prognosis in HCC patients. We also observed that SRXN1 knockdown by transient siRNA transfection inhibited HCC cell proliferation, migration and invasion. Overexpression of SRXN1 increased HCC cell migration and invasion. B-cell translocation gene 2 (BTG2) was identified as a downstream target of SRXN1. Mechanistic studies revealed that SRXN1-depleted reactive oxygen species (ROS) modulated migration and invasion of HCC cells. In addition, the ROS/p65/BTG2 signalling hub was found to regulate the epithelial-mesenchymal transition (EMT), which mediates the pro-metastasis role of SRXN1 in HCC cells. In vivo experiments showed SRXN1 promotes HCC tumour growth and metastasis in mouse subcutaneous xenograft and metastasis models. Collectively, our results revealed a novel pro-tumorigenic and pro-metastatic function of SRXN1 in HCC. These findings demonstrate a rationale to exploit SRXN1 as a therapeutic target effectively preventing metastasis of HCC.
Collapse
MESH Headings
- Animals
- Carcinoma, Hepatocellular/enzymology
- Carcinoma, Hepatocellular/genetics
- Carcinoma, Hepatocellular/pathology
- Carcinoma, Hepatocellular/secondary
- Cell Line, Tumor
- Cell Movement
- Cell Transformation, Neoplastic/genetics
- Epithelial-Mesenchymal Transition/genetics
- Epithelial-Mesenchymal Transition/physiology
- Gene Expression Regulation, Neoplastic
- Humans
- Immediate-Early Proteins/physiology
- Liver Neoplasms/enzymology
- Liver Neoplasms/genetics
- Liver Neoplasms/pathology
- Lung Neoplasms/secondary
- Male
- Mice
- Mice, Inbred BALB C
- Mice, Nude
- Neoplasm Invasiveness
- Neoplasm Metastasis/physiopathology
- Neoplasm Proteins/antagonists & inhibitors
- Neoplasm Proteins/genetics
- Neoplasm Proteins/physiology
- Neoplasm Transplantation
- Oxidoreductases Acting on Sulfur Group Donors/antagonists & inhibitors
- Oxidoreductases Acting on Sulfur Group Donors/genetics
- Oxidoreductases Acting on Sulfur Group Donors/physiology
- RNA Interference
- RNA, Messenger/genetics
- RNA, Neoplasm/genetics
- RNA, Small Interfering/genetics
- RNA, Small Interfering/pharmacology
- Reactive Oxygen Species/metabolism
- Transcription Factors/metabolism
- Tumor Stem Cell Assay
- Tumor Suppressor Proteins/physiology
Collapse
Affiliation(s)
- Xiufang Lv
- Guangdong Provincial Key Laboratory of Biomedical Imaging and Guangdong Provincial Engineering Research Center of Molecular ImagingThe Fifth Affiliated HospitalSun Yat‐sen UniversityZhuhaiChina
| | - Hailing Yu
- Guangdong Provincial Key Laboratory of Biomedical Imaging and Guangdong Provincial Engineering Research Center of Molecular ImagingThe Fifth Affiliated HospitalSun Yat‐sen UniversityZhuhaiChina
| | - Qianqian Zhang
- Guangdong Provincial Key Laboratory of Biomedical Imaging and Guangdong Provincial Engineering Research Center of Molecular ImagingThe Fifth Affiliated HospitalSun Yat‐sen UniversityZhuhaiChina
| | - Quanyong Huang
- Department of UltrasoundThe Fifth Affiliated HospitalSun Yat‐sen UniversityZhuhaiChina
| | - Xiaopeng Hong
- Department of Hepatobiliary SurgeryThe Fifth Affiliated HospitalSun Yat‐sen UniversityZhuhaiChina
| | - Ting Yu
- Guangdong Provincial Key Laboratory of Biomedical Imaging and Guangdong Provincial Engineering Research Center of Molecular ImagingThe Fifth Affiliated HospitalSun Yat‐sen UniversityZhuhaiChina
| | - Huimin Lan
- Guangdong Provincial Key Laboratory of Biomedical Imaging and Guangdong Provincial Engineering Research Center of Molecular ImagingThe Fifth Affiliated HospitalSun Yat‐sen UniversityZhuhaiChina
| | - Chaoming Mei
- Guangdong Provincial Key Laboratory of Biomedical Imaging and Guangdong Provincial Engineering Research Center of Molecular ImagingThe Fifth Affiliated HospitalSun Yat‐sen UniversityZhuhaiChina
| | - Wenkai Zhang
- Guangdong Provincial Key Laboratory of Biomedical Imaging and Guangdong Provincial Engineering Research Center of Molecular ImagingThe Fifth Affiliated HospitalSun Yat‐sen UniversityZhuhaiChina
| | - Hui Luo
- Guangdong Provincial Key Laboratory of Biomedical Imaging and Guangdong Provincial Engineering Research Center of Molecular ImagingThe Fifth Affiliated HospitalSun Yat‐sen UniversityZhuhaiChina
| | - Pengfei Pang
- Guangdong Provincial Key Laboratory of Biomedical Imaging and Guangdong Provincial Engineering Research Center of Molecular ImagingThe Fifth Affiliated HospitalSun Yat‐sen UniversityZhuhaiChina
- Center for Interventional MedicineThe Fifth Affiliated HospitalSun Yat‐sen UniversityZhuhaiChina
| | - Hong Shan
- Guangdong Provincial Key Laboratory of Biomedical Imaging and Guangdong Provincial Engineering Research Center of Molecular ImagingThe Fifth Affiliated HospitalSun Yat‐sen UniversityZhuhaiChina
- Center for Interventional MedicineThe Fifth Affiliated HospitalSun Yat‐sen UniversityZhuhaiChina
| |
Collapse
|
21
|
Serum deprivation initiates adaptation and survival to oxidative stress in prostate cancer cells. Sci Rep 2020; 10:12505. [PMID: 32719369 PMCID: PMC7385110 DOI: 10.1038/s41598-020-68668-x] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 06/22/2020] [Indexed: 02/08/2023] Open
Abstract
Inadequate nutrient intake leads to oxidative stress disrupting homeostasis, activating signaling, and altering metabolism. Oxidative stress serves as a hallmark in developing prostate lesions, and an aggressive cancer phenotype activating mechanisms allowing cancer cells to adapt and survive. It is unclear how adaptation and survival are facilitated; however, literature across several organisms demonstrates that a reversible cellular growth arrest and the transcription factor, nuclear factor-kappaB (NF-κB), contribute to cancer cell survival and therapeutic resistance under oxidative stress. We examined adaptability and survival to oxidative stress following nutrient deprivation in three prostate cancer models displaying varying degrees of tumorigenicity. We observed that reducing serum (starved) induced reactive oxygen species which provided an early oxidative stress environment and allowed cells to confer adaptability to increased oxidative stress (H2O2). Measurement of cell viability demonstrated a low death profile in stressed cells (starved + H2O2), while cell proliferation was stagnant. Quantitative measurement of apoptosis showed no significant cell death in stressed cells suggesting an adaptive mechanism to tolerate oxidative stress. Stressed cells also presented a quiescent phenotype, correlating with NF-κB nuclear translocation, suggesting a mechanism of tolerance. Our data suggests that nutrient deprivation primes prostate cancer cells for adaptability to oxidative stress and/or a general survival mechanism to anti-tumorigenic agents.
Collapse
|
22
|
Kirakci K, Zelenka J, Křížová I, Ruml T, Lang K. Octahedral Molybdenum Cluster Complexes with Optimized Properties for Photodynamic Applications. Inorg Chem 2020; 59:9287-9293. [PMID: 32516524 DOI: 10.1021/acs.inorgchem.0c01173] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Two new octahedral molybdenum cluster complexes act as an efficient singlet oxygen supplier in the context of the photodynamic therapy of cancer cells under blue-light irradiation. These complexes integrate the {Mo6I8}4+ core with 4'-carboxybenzo-15-crown-5 or cholate apical ligands and were characterized by 1H NMR, HR ESI-MS, and CHN elemental analysis. Both complexes display high quantum yields of luminescence and singlet oxygen formation in aqueous media associated with a suitable stability against hydrolysis. They are internalized into lysosomes of HeLa cells with no dark toxicity at pharmacologically relevant concentrations and have a strong phototoxic effect under blue-light irradiation, even in the presence of fetal bovine serum. The last feature is essential for further translation to in vivo experiments. Overall, these complexes are attractive molecular photosensitizers toward photodynamic applications.
Collapse
Affiliation(s)
- Kaplan Kirakci
- Institute of Inorganic Chemistry of the Czech Academy of Sciences, Řež 1001, 250 68 Husinec-Řež, Czech Republic
| | - Jaroslav Zelenka
- Department of Biochemistry and Microbiology, University of Chemistry and Technology Prague, Technická 5, 166 28 Praha 6, Czech Republic
| | - Ivana Křížová
- Department of Biotechnology, University of Chemistry and Technology Prague, Technická 5, 166 28 Praha 6, Czech Republic
| | - Tomáš Ruml
- Department of Biochemistry and Microbiology, University of Chemistry and Technology Prague, Technická 5, 166 28 Praha 6, Czech Republic
| | - Kamil Lang
- Institute of Inorganic Chemistry of the Czech Academy of Sciences, Řež 1001, 250 68 Husinec-Řež, Czech Republic
| |
Collapse
|
23
|
Zhu S, Li Y, Huang Y, Zhang M, Gu X, He Y, Liu H, Ma M, Lu W. Optimized HSP90 mediated fluorescent probes for cancer-specific bioimaging. J Mater Chem B 2020; 8:1878-1896. [PMID: 32037409 DOI: 10.1039/c9tb02505g] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Cancer-specific bioimaging has been correlated with fluorescence-guided tumor therapy, garnering extensive interest from researchers. Herein, a highly efficient tumor-targeting fluorescent probe (NP-001), which is integrated with 4-hydroxy-1,8-naphthalimide and NVP-AUY922, for tumor imaging has been established. 4-Hydroxy-1,8-naphthalimide is a fluorescent molecule with remarkable imaging compatibility. NVP-AUY922 is a heat shock protein 90 (HSP90) inhibitor with preferential tumor selectivity that is conjugated to 4-hydroxy-1,8-naphthalimide as a tumor-targeting ligand. NP-002, a resorcinol-blocked probe which prevented binding with an amino acid residue of the HSP90 ATP binding pocket, was also synthesized as a control. In vitro and ex vivo assays showed that NP-001 could arrest cell proliferation, induce apoptosis and accumulate to inhibit HSP90. Confocal laser scanning microscopy (CLSM) also confirmed that NP-001 could be selectively internalized by tumor cells for cancer-specific bioimaging. Moreover, pharmacokinetic studies and histological analysis also indicated that NP-001 had a relatively longer retention time and showed no major organ-related toxicities. Overall, these encouraging data suggest that NP-001 is a promising new candidate for the early diagnosis of metastatic disease as well as targeted tumor imaging.
Collapse
Affiliation(s)
- Shulei Zhu
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, 3663 North Zhongshan Road, Shanghai, 200062, P. R. China.
| | - Yalei Li
- Division of Anti-Tumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, P. R. China
| | - Yushu Huang
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, 3663 North Zhongshan Road, Shanghai, 200062, P. R. China.
| | - Minmin Zhang
- Division of Anti-Tumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, P. R. China
| | - Xiaofan Gu
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, 3663 North Zhongshan Road, Shanghai, 200062, P. R. China.
| | - Yang He
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, 3663 North Zhongshan Road, Shanghai, 200062, P. R. China.
| | - Hongchun Liu
- Division of Anti-Tumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, P. R. China
| | - Mingliang Ma
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, 3663 North Zhongshan Road, Shanghai, 200062, P. R. China. and Key Laboratory of Brain Functional Genomics-Ministry of Education, School of Life Science, East China Normal University, 3663 North Zhongshan Road, Shanghai, 200062, P. R. China.
| | - Wei Lu
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, 3663 North Zhongshan Road, Shanghai, 200062, P. R. China.
| |
Collapse
|
24
|
Marroncini G, Fibbi B, Errico A, Grappone C, Maggi M, Peri A. Effects of low extracellular sodium on proliferation and invasive activity of cancer cells in vitro. Endocrine 2020; 67:473-484. [PMID: 31784880 DOI: 10.1007/s12020-019-02135-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 11/07/2019] [Indexed: 12/16/2022]
Abstract
PURPOSE Hyponatremia is the most common electrolyte disorder in hospitalized patients, and its etiopathogenesis is related to an underlying tumor in 14% of cases. Hyponatremia has been associated with a worse outcome in several pathologies, including cancer, in which the leading cause of this electrolyte alteration is the syndrome of inappropriate antidiuresis. The aim of this study was to analyze in vitro the effects of low extracellular [Na+] in cancer progression. MATERIALS AND METHODS We used a previously validated experimental model of chronic hyponatremia to characterize the effects of low extracellular [Na+] in different human cancer cell lines: pancreatic adenocarcinoma (PANC-1), neuroblastoma (SK-N-AS, SH-SY5Y), colorectal adenocarcinoma (HCT-8), chronic myeloid leukemia (K562). RESULTS Our results demonstrate a direct relationship between low [Na+], reduced cell adhesion and increased invasion and proliferation in all cell lines tested. Accordingly, the number of tumor colonies grown in soft agar and the expression of collagenases type IV (metalloproteinases 2 and 9) were markedly higher in cancer cells exposed to reduced extracellular [Na+]. Gene analysis showed an upregulation of molecular pathways involved in oxidative stress (heme oxygenase 1) and in proliferation and invasion (RhoA, ROCK-1, ROCK-2). The activation of RhoA/ROCK pathway was paralleled by a deregulation of the cytoskeleton-associated proteins, resulting in the promotion of actin cytoskeletal remodeling and cell invasion. CONCLUSIONS Overall, our data demonstrate for the first time that low [Na+] promotes cancer progression in vitro, thus suggesting that hyponatremia is not a simple bystander of disease severity in cancer.
Collapse
Affiliation(s)
- Giada Marroncini
- Pituitary Diseases and Sodium Alterations Unit, AOU Careggi, 50139, Florence, Italy
- Endocrinology, Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, AOU Careggi, 50139, Florence, Italy
| | - Benedetta Fibbi
- Pituitary Diseases and Sodium Alterations Unit, AOU Careggi, 50139, Florence, Italy
- Endocrinology, Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, AOU Careggi, 50139, Florence, Italy
| | - Alice Errico
- Pituitary Diseases and Sodium Alterations Unit, AOU Careggi, 50139, Florence, Italy
- Endocrinology, Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, AOU Careggi, 50139, Florence, Italy
| | - Cecilia Grappone
- Gastroenterology, Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, AOU Careggi, 50139, Florence, Italy
| | - Mario Maggi
- Endocrinology, Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, AOU Careggi, 50139, Florence, Italy
| | - Alessandro Peri
- Pituitary Diseases and Sodium Alterations Unit, AOU Careggi, 50139, Florence, Italy.
- Endocrinology, Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, AOU Careggi, 50139, Florence, Italy.
| |
Collapse
|
25
|
Kirakci K, Demel J, Hynek J, Zelenka J, Rumlová M, Ruml T, Lang K. Phosphinate Apical Ligands: A Route to a Water-Stable Octahedral Molybdenum Cluster Complex. Inorg Chem 2019; 58:16546-16552. [PMID: 31794199 DOI: 10.1021/acs.inorgchem.9b02569] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Recent studies have unraveled the potential of octahedral molybdenum cluster complexes (Mo6) as relevant red phosphors and photosensitizers of singlet oxygen, O2(1Δg), for photobiological applications. However, these complexes tend to hydrolyze in an aqueous environment, which deteriorates their properties and limits their applications. To address this issue, we show that phenylphosphinates are extraordinary apical ligands for the construction of Mo6 complexes. These new complexes display unmatched luminescence quantum yields and singlet oxygen production in aqueous solutions. More importantly, the complex with diphenylphosphinate ligands is the only stable complex of these types in aqueous media. These complexes internalize in lysosomes of HeLa cells, have no dark toxicity, and yet are phototoxic in the submicromolar concentration range. The superior hydrolytic stability of the diphenylphosphinate complex allows for conservation of its photophysical properties and biological activity over a long period, making it a promising compound for photobiological applications.
Collapse
Affiliation(s)
- Kaplan Kirakci
- Institute of Inorganic Chemistry of the Czech Academy of Sciences , Řež 1001 , 250 68 Husinec-Řež , Czech Republic
| | - Jan Demel
- Institute of Inorganic Chemistry of the Czech Academy of Sciences , Řež 1001 , 250 68 Husinec-Řež , Czech Republic
| | - Jan Hynek
- Institute of Inorganic Chemistry of the Czech Academy of Sciences , Řež 1001 , 250 68 Husinec-Řež , Czech Republic
| | | | | | | | - Kamil Lang
- Institute of Inorganic Chemistry of the Czech Academy of Sciences , Řež 1001 , 250 68 Husinec-Řež , Czech Republic
| |
Collapse
|
26
|
Kirakci K, Zelenka J, Rumlová M, Cvačka J, Ruml T, Lang K. Cationic octahedral molybdenum cluster complexes functionalized with mitochondria-targeting ligands: photodynamic anticancer and antibacterial activities. Biomater Sci 2019; 7:1386-1392. [PMID: 30656318 DOI: 10.1039/c8bm01564c] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Octahedral molybdenum cluster complexes have recently come forth as pertinent singlet oxygen photosensitizers towards biological applications. Still, their phototoxic efficiency in the absence of nanocarriers remains limited due to their poor cellular uptake. Here, two cationic octahedral molybdenum cluster complexes, bearing carboxylate ligands with triphenylphosphonium (1) or N-methyl pyridinium (2) mitochondria-targeting terminal functions, have been designed and synthesized. Their photophysical properties in water and in vitro biological activity were investigated in the context of blue-light photodynamic therapy of cancer and photoinactivation of bacteria. Upon blue light irradiation, complex 1 displays red luminescence with a quantum yield of 0.24 in water, whereas complex 2 is much less emissive (ΦL < 0.01). Nevertheless, both complexes efficiently produce singlet oxygen, O2(1Δg). Complex 1 is rapidly internalized into HeLa cells and accumulated in mitochondria, followed by relocation to lysosomes and clearance at longer times. In contrast, the more hydrophilic 2 is not internalized into HeLa cells, highlighting the effect of the apical ligands on the uptake properties. The treatment with 1 results in an intensive phototoxic effect under 460 nm irradiation (IC50 = 0.10 ± 0.02 μM), which exceeds by far those previously reported for octahedral cluster-based molecular photosensitizers. The ratio between phototoxicity and dark toxicity is approximately 50 and evidences a therapeutic window for the application of 1 in blue-light photodynamic therapy. Complex 1 also enters and efficiently photoinactivates Gram-positive bacteria Enterococcus faecalis and Staphylococcus aureus, documenting its suitability as a blue-light photosensitizer for antimicrobial applications.
Collapse
Affiliation(s)
- Kaplan Kirakci
- Institute of Inorganic Chemistry of the Czech Academy of Sciences, 250 68 Husinec-ŘeŽ, Czech Republic.
| | | | | | | | | | | |
Collapse
|
27
|
Dendrobium Officinale Polysaccharides Protect against MNNG-Induced PLGC in Rats via Activating the NRF2 and Antioxidant Enzymes HO-1 and NQO-1. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:9310245. [PMID: 31281597 PMCID: PMC6589278 DOI: 10.1155/2019/9310245] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 01/29/2019] [Indexed: 12/11/2022]
Abstract
Dendrobium officinale polysaccharides (DOP) are the main effective ingredient in Dendrobium officinale. Nuclear factor erythroid 2-related factor 2 (NRF2) signaling is regarded as an important way to mitigate the effects of reactive oxygen species (ROS) damage and inhibit gastric cancer progress. This study introduces a previously unknown effect of DOP on precancerous lesions of gastric cancer (PLGC). The mechanism discussed herein is based on the NRF2 signal pathway as well as its downstream antioxidant enzymes heme oxygenase-1 (HO-1) and NADPH quinone oxidoreductase-1 (NQO-1). DOP was prepared by the alcohol deposition method, and its molecular weight was determined using High-Performance Gel-Permeation Chromatography (HPGPC). Sixty male rats were randomly divided into five groups: normal control group (NC), PLGC model group (PLGC), model treated with low dose (2.4 g/kg) of DOP (L-DOP), model treated with middle dose (4.8 g/kg) of DOP (M-DOP), and model treated with high dose (9.6 g/kg) of DOP (H-DOP). DOP was orally administered to rats for 15 consecutive days prior to the start of a seven-month course of 1-methyl-3-nitro-1-nitrosoguanidine (MNNG) exposure. Histological evaluation was observed by hematoxylin and eosin (HE) and alcian blue/periodic acid-Schiff (AB-PAS) staining. Alanine aminotransferase (ALT), aspartate transaminase (AST), serum creatinine (Scr), serum uric acid (UA), blood urea nitrogen (BUN), and HE staining were detected for liver and kidney function. The level of 8-hydroxy-deoxyguanosine (8-OHdG) in serum was detected by kits. The NRF2 protein expression was detected by immunohistochemistry, and western blotting was utilized to compare differential protein expression levels among cytoplasmic and nuclear cell fractions. Expression levels of antioxidant enzymes heme oxygenase 1 (HO-1), Glutamate-Cysteine Ligase Catalytic Subunit (GCLC), Glutamate-Cysteine Ligase Modifier Subunit (GCLM), and NAD(P)H: quinone oxidoreductase-1 (NQO-1) were analyzed by reverse transcriptase polymerase chain reaction (RT-PCR); furthermore, the protein expression of NRF2, HO-1, and NQO-1 was detected by western blotting. The results showed that the average content of DOP is 83%, and its molecular weight is mainly contained within 3500 and 1000000. The H-DOP experimental group exhibited noticeable weight gain after seven months, reduced intestinal metaplasia, and made the atypical hyperplasia to be kept in moderate or mild degree. Data also showed DOP to be capable of decreasing levels of ALT, UA, and BUN, all of which had been elevated following the appearance of MNNG-induced PLGCs. DOP was also seen to reduce the expression of 8-OHdG and promote the expression of NRF2 in the gastric mucosa. Furthermore, RT-PCR and western blotting results showed that DOP upregulated the gene and protein expression of HO-1 and NQO-1. These findings show that DOP prevents MNNG-induced PLGC along with subsequent liver and kidney damage. The protective effects of DOP are associated with the reduction of 8-OHdG levels as well as the activation of the NRF2 pathway and its related antioxidant enzymes, HO-1 and NQO-1.
Collapse
|
28
|
Koch E, Finne K, Eikrem Ø, Landolt L, Beisland C, Leh S, Delaleu N, Granly M, Vikse BE, Osman T, Scherer A, Marti HP. Transcriptome-proteome integration of archival human renal cell carcinoma biopsies enables identification of molecular mechanisms. Am J Physiol Renal Physiol 2019; 316:F1053-F1067. [DOI: 10.1152/ajprenal.00424.2018] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Renal cell cancer is among the most common forms of cancer in humans, with around 35,000 deaths attributed to kidney carcinoma in the European Union in 2012 alone. Clear cell renal cell carcinoma (ccRCC) represents the most common form of kidney cancer and the most lethal of all genitourinary cancers. Here, we apply omics technologies to archival core biopsies to investigate the biology underlying ccRCC. Knowledge of these underlying processes should be useful for the discovery and/or confirmation of novel therapeutic approaches and ccRCC biomarker development. From partial or full nephrectomies of 11 patients, paired core biopsies of ccRCC-affected tissue and adjacent (“peritumorous”) nontumor tissue were both sampled and subjected to proteomics analyses. We combined proteomics results with our published mRNA sequencing data from the same patients and with published miRNA sequencing data from an overlapping patient cohort from our institution. Statistical analysis and pathway analysis were performed with JMP Genomics and Ingenuity Pathway Analysis (IPA), respectively. Proteomics analysis confirmed the involvement of metabolism and oxidative stress-related pathways in ccRCC, whereas the most affected pathways in the mRNA sequencing data were related to the immune system. Unlike proteomics or mRNA sequencing alone, a combinatorial cross-omics pathway analysis approach captured a broad spectrum of biological processes underlying ccRCC, such as mitochondrial damage, repression of apoptosis, and immune system pathways. Sirtuins, immunoproteasome genes, and CD74 are proposed as potential targets for the treatment of ccRCC.
Collapse
Affiliation(s)
- Even Koch
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Kenneth Finne
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Øystein Eikrem
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
- Department of Medicine, Haukeland University Hospital, Bergen, Norway
| | - Lea Landolt
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Christian Beisland
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
- Department of Urology, Haukeland University Hospital, Bergen, Norway
| | - Sabine Leh
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
- Department of Pathology, Haukeland University Hospital, Bergen, Norway
| | - Nicolas Delaleu
- 2C SysBioMed, Contra, Switzerland
- Molecular Oncology, Oncology Institute of Southern Switzerland, Bellinzona, Switzerland
| | - Magnus Granly
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Bjørn Egil Vikse
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Tarig Osman
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Andreas Scherer
- Spheromics, Kontiolahti, Finland
- Institute for Molecular Medicine Finland, University of Helsinki, Helsinki, Finland
| | - Hans-Peter Marti
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
- Department of Medicine, Haukeland University Hospital, Bergen, Norway
| |
Collapse
|
29
|
The Autophagy-Lysosomal Pathways and Their Emerging Roles in Modulating Proteostasis in Tumors. Cells 2018; 8:cells8010004. [PMID: 30577555 PMCID: PMC6356230 DOI: 10.3390/cells8010004] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 12/17/2018] [Accepted: 12/18/2018] [Indexed: 12/12/2022] Open
Abstract
In normal physiological condition, the maintenance of cellular proteostasis is a prerequisite for cell growth, functioning, adapting to changing micro-environments, and responding to extracellular stress. Cellular proteostasis is maintained by specific proteostasis networks (PNs) to prevent protein misfolding, aggregating, and accumulating in subcellular compartments. Commonly, the PNs are composed of protein synthesis, molecular chaperones, endoplasmic reticulum (ER), unfolded protein response (UPR), stress response pathways (SRPs), secretions, ubiquitin proteasome system (UPS), and autophagy-lysosomal pathways (ALPs). Although great efforts have been made to explore the underlying detailed mechanisms of proteostasis, there are many questions remain to explore, especially in proteostasis regulated by the ALPs. Proteostasis out-off-balance is correlated with various human diseases such as diabetes, stroke, inflammation, hypertension, pulmonary fibrosis, and Alzheimer’s disease. Enhanced regulation of PNs is observed in tumors, thereby indicating that proteostasis may play a pivotal role in tumorigenesis and cancer development. Recently, inhibitors targeting the UPS have shown to be failed in solid tumor treatment. However, there is growing evidence showing that the ALPs play important roles in regulation of proteostasis alone or with a crosstalk with other PNs in tumors. In this review, we provide insights into the proteostatic process and how it is regulated by the ALPs, such as macroautophagy, aggrephagy, chaperone-mediated autophagy, microautophagy, as well as mitophagy during tumor development.
Collapse
|
30
|
Guo L, Ma L, Liu C, Lei Y, Tang N, Huang Y, Huang G, Li D, Wang Q, Liu G, Tang M, Jing Z, Deng Y. ERp29 counteracts the suppression of malignancy mediated by endoplasmic reticulum stress and promotes the metastasis of colorectal cancer. Oncol Rep 2018; 41:1603-1615. [PMID: 30569094 PMCID: PMC6365697 DOI: 10.3892/or.2018.6943] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2018] [Accepted: 11/29/2018] [Indexed: 01/11/2023] Open
Abstract
Endoplasmic reticulum protein 29 (ERp29), an endoplasmic reticulum (ER) protein, participates in ER stress (ERS), but little is known about the association of ERp29 with ERS in the metastasis and prognosis of cancerous diseases. The present study revealed that ERp29 was important to ERS and interfered with the malignant behaviors of colorectal cancer (CRC). Experiments in in vitro and in animal models revealed that ERS inhibited the cell growth and suppressed the metastatic capacity of CRC cells, but ERp29 counteracted these effects. Furthermore, it was demonstrated that ERp29 recovered the migration and metastatic behaviors of CRC cells suppressed by ERS, mediated only when it combined with cullin5 (CUL5). ERp29 also relied on CUL5 to promote epithelial-mesenchymal transition. From the immunohistochemical examination of CRC tissues, the high expression of ERp29 was revealed to predict the poor prognosis of 457 CRC cases. The retrospective analysis of the clinicopathological data of patients with CRC was consistent with the results of the in vitro and in vivo experiments. Thus, ERp29 protected CRC cells from ERS-mediated reduction of malignancy to promote metastasis and may be a potential target of medical intervention for CRC therapy.
Collapse
Affiliation(s)
- Lili Guo
- Department of Pathology, Nanfang Hospital and School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Lili Ma
- Department of Pathology, Nanfang Hospital and School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Chao Liu
- Department of Pathology and Laboratory Medicine, Guangdong General Hospital and Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510080, P.R. China
| | - Yan Lei
- Department of Pathology, Nanfang Hospital and School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Na Tang
- Department of Pathology, Shenzhen People's Hospital, Second Clinical Medical College of Jinan University, Shenzhen, Guangdong 518020, P.R. China
| | - Yingxin Huang
- Department of Pathology, Nanfang Hospital and School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Guan Huang
- Department of Pathology, Nanfang Hospital and School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Dazhou Li
- Department of Pathology, Nanfang Hospital and School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Qi Wang
- Department of Pathology, Nanfang Hospital and School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Guanglong Liu
- Department of Pathology, Nanfang Hospital and School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Minshan Tang
- Department of Pathology, Nanfang Hospital and School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Zhiliang Jing
- Department of Pathology, Nanfang Hospital and School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Yongjian Deng
- Department of Pathology, Nanfang Hospital and School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| |
Collapse
|
31
|
Chen M, Xie S. Therapeutic targeting of cellular stress responses in cancer. Thorac Cancer 2018; 9:1575-1582. [PMID: 30312004 PMCID: PMC6275842 DOI: 10.1111/1759-7714.12890] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2018] [Revised: 09/13/2018] [Accepted: 09/14/2018] [Indexed: 11/30/2022] Open
Abstract
Similar to bacteria, yeast, and other organisms that have evolved pathways to respond to environmental stresses, cancer cells develop mechanisms that increase genetic diversity to facilitate adaptation to a variety of stressful conditions, including hypoxia, nutrient deprivation, exposure to DNA-damaging agents, and immune responses. To survive, cancer cells trigger mechanisms that drive genomic instability and mutation, alter gene expression programs, and reprogram the metabolic pathways to evade growth inhibition signaling and immune surveillance. A deeper understanding of the molecular mechanisms that underlie the pathways used by cancer cells to overcome stresses will allow us to develop more efficacious strategies for cancer therapy. Herein, we overview several key stresses imposed on cancer cells, including oxidative, metabolic, mechanical, and genotoxic, and discuss the mechanisms that drive cancer cell responses. The therapeutic implications of these responses are also considered, as these factors pave the way for the targeting of stress adaption pathways in order to slow cancer progression and block resistance to therapy.
Collapse
Affiliation(s)
- Miao Chen
- College of Life Sciences, Shandong Provincial Key Laboratory of Animal Resistance Biology, Institute of Biomedical SciencesShandong Normal UniversityJinanChina
| | - Songbo Xie
- College of Life Sciences, Shandong Provincial Key Laboratory of Animal Resistance Biology, Institute of Biomedical SciencesShandong Normal UniversityJinanChina
| |
Collapse
|
32
|
Kirakci K, Zelenka J, Rumlová M, Martinčík J, Nikl M, Ruml T, Lang K. Octahedral molybdenum clusters as radiosensitizers for X-ray induced photodynamic therapy. J Mater Chem B 2018; 6:4301-4307. [PMID: 32254506 DOI: 10.1039/c8tb00893k] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The use of radiosensitizers recently emerged as a promising approach to circumvent the depth penetration limitations of photodynamic therapy of cancer and to enhance radiotherapeutical effects. A widely explored current strategy is based on complex nanoarchitectures that facilitate the transfer of energy harvested from X-ray radiation by scintillating nanoparticles to the surrounding photosensitizer molecules to generate reactive oxygen species, mostly singlet oxygen O2(1Δg). We describe an alternative approach aiming at a considerable simplification of the architecture. The presented nanoparticles, made of the luminescent octahedral molybdenum cluster compound (n-Bu4N)2[Mo6I8(OCOCF3)6], efficiently absorb X-rays due to the high content of heavy elements, leading to the formation of the excited triplet states that interact with molecular oxygen to produce O2(1Δg). The activity of the nanoparticles on HeLa cells was first investigated under UVA/blue-light irradiation in order to prove the biological effects of photosensitized O2(1Δg); there is no dark toxicity at micromolar concentrations, but strong phototoxicity in the nanomolar range. The nanoparticles significantly enhance the antiproliferative effect of X-ray radiation in vitro at lower concentration than for previously reported O2(1Δg) radiosensitizing systems and this effect is more pronounced on cancer HeLa cells than non-cancer MRC cells. The results demonstrate that the cluster-based radiosensitizers of O2(1Δg) have strong potential with respect to the enhancement of the efficacy of radiotherapy with exciting opportunities for cancer treatment.
Collapse
Affiliation(s)
- Kaplan Kirakci
- Institute of Inorganic Chemistry of the Czech Academy of Sciences, 250 68 ŘeŽ, Czech Republic.
| | | | | | | | | | | | | |
Collapse
|
33
|
Lin P, He Y, Wen DY, Li XJ, Zeng JJ, Mo WJ, Li Q, Peng JB, Wu YQ, Pan DH, Li HY, Mo QY, Wei YP, Yang H, Chen G. Comprehensive analysis of the clinical significance and prospective molecular mechanisms of differentially expressed autophagy-related genes in thyroid cancer. Int J Oncol 2018; 53:603-619. [PMID: 29749543 PMCID: PMC6017182 DOI: 10.3892/ijo.2018.4404] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 04/25/2018] [Indexed: 02/07/2023] Open
Abstract
Thyroid cancer (TC) is the most common endocrine malignancy, accounting for approximately 90% of all malignancies of the endocrine system. Despite the fact that patients with TC tend to have good prognoses, the high incidence rate and lymph node metastases remain unresolved issues. Autophagy is an indispensable process that maintains intracellular homeostasis; however, the role of autophagy in several steps of the initiation and progression of TC has not yet been elucidated. In this study, we first identified several autophagy-related genes (ARGs) that were provoked in the onset of TC. Subsequently, a bioinformatics analysis hinted that these genes were markedly disturbed in several proliferative signaling pathways. Moreover, we demonstrated that the differentially expressed ARGs were closely related to several aggressive clinical manifestations, including an advanced tumor stage and lymph node metastasis. Our study further selected prognostic ARGs and developed a prognostic signature based on three key genes (ATG9B, BID and B1DNAJB1), which displayed a moderate ability to predict the prognosis of TC. On the whole, the findings of this study demonstrate that ARGs disrupt proliferation-related pathways and consequently lead to aggressive clinical manifestations. These findings provide insight into the potential molecular mechanisms of action of ARGs and their clinical significance, and also provide classification information of potential therapeutic significance.
Collapse
Affiliation(s)
- Peng Lin
- Department of Medical Ultrasonics, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Yun He
- Department of Medical Ultrasonics, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Dong-Yue Wen
- Department of Medical Ultrasonics, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Xiao-Jiao Li
- Department of Nuclear Medicine, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Jing-Jing Zeng
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Wei-Jia Mo
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Qing Li
- Department of Medical Ultrasonics, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Jin-Bo Peng
- Department of Medical Ultrasonics, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Yu-Quan Wu
- Department of Medical Ultrasonics, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Deng-Hua Pan
- Department of Medical Ultrasonics, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Hai-Yuan Li
- Department of Medical Ultrasonics, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Qiu-Yan Mo
- Department of Medical Ultrasonics, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Yun-Peng Wei
- Department of Medical Ultrasonics, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Hong Yang
- Department of Medical Ultrasonics, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Gang Chen
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| |
Collapse
|