1
|
Khemiri S, Santos AJ, Raymundo A. Impact of Trophic Mode-Driven Chlorella Biomass on Vegan Food Emulsions: Exploring Structure and Functionality. Molecules 2025; 30:766. [PMID: 40005078 PMCID: PMC11858101 DOI: 10.3390/molecules30040766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 12/29/2024] [Accepted: 01/31/2025] [Indexed: 02/27/2025] Open
Abstract
Aligning with sustainable green practices, this study examines the partial replacement of chickpea protein isolate with commercially available autotrophic Chlorella vulgaris (Auto-Chlorella) and heterotrophic Parachlorella kessleri (Hetero-Chlorella) to assess impacts on food emulsions' properties and potential functional value. Rheology and texture analysis show that Chlorella biocompounds enhance emulsions by creating a synergistic network with chickpea proteins. The type of Chlorella used significantly influences emulsion characteristics due to differences in culture and processing conditions. Hetero-Chlorella contributed to more structured emulsions, revealed by higher values of the viscoelastic functions (G', G″, and G0N), indicating a complex three-dimensional network (p < 0.05), while Auto-Chlorella excelled in augmenting dietary elements (p < 0.05), leading to emulsions rich in antioxidants and allowing for a 'rich in iron' claim. Both types contribute to smaller oil droplet size, improved firmness, adhesiveness, and appealing coloration (p < 0.05). Preliminary findings on Vitamin B12 content suggest promising bioavailability potential. However, the nutritional density of Chlorella emphasizes the need for careful microbiological stability. Produced on a lab scale without preservatives, these emulsions highlight the need for preservation strategies in large-scale production. This research supports the potential for industrial microalgae-based mayonnaise, addressing consumer demand for innovation while prioritizing safety.
Collapse
Affiliation(s)
- Sheyma Khemiri
- LEAF-Linking Landscape, Environment, Agriculture and Food Research Center, Associate Laboratory TERRA, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal; (A.J.S.); (A.R.)
| | | | | |
Collapse
|
2
|
Alves KA, Araújo RHCR, Silva AS, Almeida ES, Oliveira ÁMF, Rocha NS, Araújo MC, Gusmão TAS, Lima JF, Delgado JMPQ, Pereira JF, Santos RS, Lima AGB. Biodegradable Film Is Enriched with Pomegranate Seed Oil and Microalgae for Preservation of Cajarana ( Spondias dulcis). Polymers (Basel) 2025; 17:367. [PMID: 39940572 PMCID: PMC11820404 DOI: 10.3390/polym17030367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 01/23/2025] [Accepted: 01/27/2025] [Indexed: 02/16/2025] Open
Abstract
This study aimed to develop and characterize biodegradable films made from pectin, pomegranate seed oil, and different microalgae (Spirulina platensis, Chlorella sp., and Scenedesmus obliquus) and to evaluate their applicability as packaging by verifying their effect on the conservation and postharvest quality of cajarana (Spondias dulcis). The films proposed in this study were assessed for their physical, optical, and mechanical attributes, as well as the physicochemical characteristics of the fruits coated with the films after 14 days of storage at 10 ± 1 °C and relative humidity of 60 ± 5%. Incorporating microalgae improved the homogeneity and mechanical properties, decreasing breaking stress, elastic modulus, and maximum tensile strength, contributing to a lower solubility and improving the barrier properties of the films compared to the control (T1). The film formulated with 6% citric pectin, 40% glycerin, 0.5 mL·L-1 pomegranate seed oil (PSO), and 0.05% Scenedesmus obliquus showed better performance in solubility, water vapor permeability (WVP), and mechanical properties, maintaining gloss and transparency, approaching the performance of the commercial PVC film. The film was formulated with 6% pectin + 40% glycerin + 0.5 mL·L-1 PSO + 0.05% Chlorella sp. maintained the postharvest quality of cajarana fruits, allowing the conservation of the physicochemical quality of the fruits after 14 days of storage at 10 ± 1 °C and 60 ± 5% RH.
Collapse
Affiliation(s)
- Kalinny A. Alves
- Academic Unit of Agricultural Sciences, Federal University of Campina Grande, Pombal 58840-000, Paraíba, Brazil; (K.A.A.); (E.S.A.)
| | - Railene H. C. R. Araújo
- Department of Food Engineering, Federal University of Campina Grande, Campina Grande 58429-900, Paraíba, Brazil; (R.H.C.R.A.); (A.S.S.); (N.S.R.); (M.C.A.); (T.A.S.G.)
| | - Adriano S. Silva
- Department of Food Engineering, Federal University of Campina Grande, Campina Grande 58429-900, Paraíba, Brazil; (R.H.C.R.A.); (A.S.S.); (N.S.R.); (M.C.A.); (T.A.S.G.)
| | - Evanilson S. Almeida
- Academic Unit of Agricultural Sciences, Federal University of Campina Grande, Pombal 58840-000, Paraíba, Brazil; (K.A.A.); (E.S.A.)
| | - Ágda M. F. Oliveira
- Postgraduate Program in Plant Science, Rural Federal University of the Semiarid, Mossoró 59625-900, Rio Grande do Norte, Brazil;
| | - Nayara S. Rocha
- Department of Food Engineering, Federal University of Campina Grande, Campina Grande 58429-900, Paraíba, Brazil; (R.H.C.R.A.); (A.S.S.); (N.S.R.); (M.C.A.); (T.A.S.G.)
| | - Max C. Araújo
- Department of Food Engineering, Federal University of Campina Grande, Campina Grande 58429-900, Paraíba, Brazil; (R.H.C.R.A.); (A.S.S.); (N.S.R.); (M.C.A.); (T.A.S.G.)
| | - Thaisa A. S. Gusmão
- Department of Food Engineering, Federal University of Campina Grande, Campina Grande 58429-900, Paraíba, Brazil; (R.H.C.R.A.); (A.S.S.); (N.S.R.); (M.C.A.); (T.A.S.G.)
| | - José F. Lima
- Center for Natural and Human Sciences, Federal University of ABC, Santo André 09210-580, São Paulo, Brazil;
| | - João M. P. Q. Delgado
- Institute of R&D in Structures and Construction (CONSTRUCT-LFC), Department of Civil Engineering, Faculty of Engineering, University of Porto, 4200-465 Porto, Portugal
| | - Joseane F. Pereira
- Department of Mechanical Engineering, Federal University of Campina Grande, Campina Grande 58429-900, Paraíba, Brazil; (J.F.P.); (R.S.S.); (A.G.B.L.)
| | - Romário S. Santos
- Department of Mechanical Engineering, Federal University of Campina Grande, Campina Grande 58429-900, Paraíba, Brazil; (J.F.P.); (R.S.S.); (A.G.B.L.)
| | - Antonio G. B. Lima
- Department of Mechanical Engineering, Federal University of Campina Grande, Campina Grande 58429-900, Paraíba, Brazil; (J.F.P.); (R.S.S.); (A.G.B.L.)
| |
Collapse
|
3
|
Abrha GT, Makaranga A, Jutur PP. Enhanced lipid accumulation in microalgae Scenedesmus sp. under nitrogen limitation. Enzyme Microb Technol 2024; 182:110546. [PMID: 39531895 DOI: 10.1016/j.enzmictec.2024.110546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 10/23/2024] [Accepted: 11/07/2024] [Indexed: 11/16/2024]
Abstract
Microalgae-based biofuel production is cost-effective only in a biorefinery, where valuable co-products offset high costs. Fatty acids produced by photosynthetic microalgae can serve as raw materials for bioenergy and pharmaceuticals. This study aims to understand the metabolic imprints of Scenedesmus sp. CABeR52, to decipher the physiological mechanisms behind lipid accumulation under nitrogen deprivation. Metabolomics profiles were generated using gas chromatography-mass spectrometry (GC-MS) of Scenedesmus sp. CABeR52 subjected to nutrient deprivation. Our initial data sets indicate that deprived cells have an increased accumulation of lipids (278.31 mg.g-1 dcw), 2.0 times higher than the control. The metabolomic profiling unveils a metabolic reprogramming, highlighting the upregulation of key metabolites involved in fatty acid biosynthesis, such as citric acid, succinic acid, and 2-ketoglutaric acid. The accumulation of trehalose, a stress-responsive metabolite, further underscores the microalga's adaptability. Interestingly, we found that a new fatty acid, nervonic acid, was identified in the complex, which has a significant role in brain development. These findings provide valuable insights into the metabolic pathways governing lipid accumulation in Scenedesmus sp., paving the way for its exploitation as a sustainable biofuel feedstock.
Collapse
Affiliation(s)
- Getachew Tafere Abrha
- Omics of Algae Group, Industrial Biotechnology, International Centre for Genetic Engineering and Biotechnology (ICGEB), Aruna Asaf Ali Marg, New Delhi 110067, INDIA; Department of Biotechnology, CoDANR, Mekelle University, Mekelle, Ethiopia
| | - Abdalah Makaranga
- Omics of Algae Group, Industrial Biotechnology, International Centre for Genetic Engineering and Biotechnology (ICGEB), Aruna Asaf Ali Marg, New Delhi 110067, INDIA
| | - Pannaga Pavan Jutur
- Omics of Algae Group, Industrial Biotechnology, International Centre for Genetic Engineering and Biotechnology (ICGEB), Aruna Asaf Ali Marg, New Delhi 110067, INDIA.
| |
Collapse
|
4
|
Maity S, Mallick N. Role of cultivation parameters in carbohydrate accretion for production of bioethanol and C-phycocyanin from a marine cyanobacterium Leptolyngbya valderiana BDU 41001: A sustainable approach. BIORESOURCE TECHNOLOGY 2024; 411:131209. [PMID: 39181513 DOI: 10.1016/j.biortech.2024.131209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 07/30/2024] [Accepted: 08/01/2024] [Indexed: 08/27/2024]
Abstract
The investigation aimed to augment carbohydrate accumulation in the marine cyanobacterium Leptolyngbya valderiana BDU 41001 to facilitate bioethanol production. Under the standardised physiochemical condition (SPC), i.e. 90 µmol photon m-2 s-1 light intensity, initial culture pH 8.5, 35 °C temperature and mixing at 150 rpm increased the carbohydrate productivity ∼70 % than the control, while a 47 % rise in content was obtained under the nitrate (N)-starved condition. Therefore, a two-stage cultivation strategy was implemented, combining SPC at the 1st stage and N starvation at the 2nd stage, resulting in 80 % augmentation of carbohydrate yield, which enhanced the bioethanol yield by ∼86 % as compared to the control employing immobilised yeast fermentation. Moreover, biomass utilisation was maximised by extracting C-phycocyanin, where a ∼77 % rise in productivity was recorded under the SPC. This study highlights the potential of L. valderiana for pilot-scale biorefinery applications, advancing the understanding of sustainable biofuel production.
Collapse
Affiliation(s)
- Sudatta Maity
- Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal, India
| | - Nirupama Mallick
- Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal, India.
| |
Collapse
|
5
|
Zhou J, Wang M, Grimi N, Dar BN, Calvo-Lerma J, Barba FJ. Research progress in microalgae nutrients: emerging extraction and purification technologies, digestive behavior, and potential effects on human gut. Crit Rev Food Sci Nutr 2024; 64:11375-11395. [PMID: 37489924 DOI: 10.1080/10408398.2023.2237586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/26/2023]
Abstract
Microalgae contain a diverse range of high-value compounds that can be utilized directly or fractionated to obtain components with even greater value-added potential. With the use of microalgae for food and medical purposes, there is a growing interest in their digestive properties and impact on human gut health. The extraction, separation, and purification of these components are key processes in the industrial application of microalgae. Innovative technologies used to extract and purify microalgal high-added-value compounds are key for their efficient utilization and evaluation. This review's comprehensive literature review was performed to highlight the main high-added-value microalgal components. The technologies for obtaining bioactive compounds from microalgae are being developed rapidly, various innovative, efficient, green separation and purification technologies are emerging, thus helping in the scaling-up and subsequent commercialization of microalgae products. Finally, the digestive behavior of microalgae nutrients and their health effects on the human gut microbiota were discussed. Microalgal nutrients exhibit favorable digestive properties and certain components have been shown to benefit gut microbes. The reality that must be faced is that multiple processes are still required for microalgae raw materials to final usable products, involving energy, time consumption and loss of ingredients, which still face challenges.
Collapse
Affiliation(s)
- Jianjun Zhou
- Research Group in Innovative Technologies for Sustainable Food (ALISOST), Department of Preventive Medicine and Public Health, Food Science, Toxicology and Forensic Medicine, Faculty of Pharmacy, Universitat de València, Burjassot, València, Spain
- Department of Biotechnology, Institute of Agrochemistry and Food Technology-National Research Council (IATA-CSIC), Paterna, València, Spain
| | - Min Wang
- Research Group in Innovative Technologies for Sustainable Food (ALISOST), Department of Preventive Medicine and Public Health, Food Science, Toxicology and Forensic Medicine, Faculty of Pharmacy, Universitat de València, Burjassot, València, Spain
- Department of Biotechnology, Institute of Agrochemistry and Food Technology-National Research Council (IATA-CSIC), Paterna, València, Spain
| | - Nabil Grimi
- Université de Technologie de Compiègne, ESCOM, TIMR (Integrated Transformations of Renewable Matter), Centre de Recherche Royallieu, Compiègne, France
| | - Basharat N Dar
- Department of Food Technology, Islamic University of Science & Technology, Awantipora, Kashmir, India
| | - Joaquim Calvo-Lerma
- Instituto Universitario de Ingeniería para el Desarrollo (IU-IAD), Universitat Politècnica de València, Valencia, Spain
| | - Francisco J Barba
- Research Group in Innovative Technologies for Sustainable Food (ALISOST), Department of Preventive Medicine and Public Health, Food Science, Toxicology and Forensic Medicine, Faculty of Pharmacy, Universitat de València, Burjassot, València, Spain
| |
Collapse
|
6
|
Panchal SK, Heimann K, Brown L. Improving Undernutrition with Microalgae. Nutrients 2024; 16:3223. [PMID: 39339823 PMCID: PMC11435262 DOI: 10.3390/nu16183223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 09/15/2024] [Accepted: 09/18/2024] [Indexed: 09/30/2024] Open
Abstract
Undernutrition is an important global health problem, especially in children and older adults. Both reversal of maternal and child undernutrition and heathy ageing have become United Nations-supported global initiatives, leading to increased attention to nutritional interventions targeting undernutrition. One feasible option is microalgae, the precursor of all terrestrial plants. Most commercially farmed microalgae are photosynthetic single-celled organisms producing organic carbon compounds and oxygen. This review will discuss commercial opportunities to grow microalgae. Microalgae produce lipids (including omega-3 fatty acids), proteins, carbohydrates, pigments and micronutrients and so can provide a suitable and underutilised alternative for addressing undernutrition. The health benefits of nutrients derived from microalgae have been identified, and thus they are suitable candidates for addressing nutritional issues globally. This review will discuss the potential benefits of microalgae-derived nutrients and opportunities for microalgae to be converted into food products. The advantages of microalgae cultivation include that it does not need arable land or pesticides. Additionally, most species of microalgae are still unexplored, presenting options for further development. Further, the usefulness of microalgae for other purposes such as bioremediation and biofuels will increase the knowledge of these microorganisms, allowing the development of more efficient production of these microalgae as nutritional interventions.
Collapse
Affiliation(s)
- Sunil K Panchal
- School of Science, Western Sydney University, Richmond, NSW 2753, Australia
| | - Kirsten Heimann
- College of Medicine and Public Health, Flinders University, Health Science Building, Building 4, Registry Road, Bedford Park, Adelaide, SA 5042, Australia
| | - Lindsay Brown
- School of Pharmacy and Medical Sciences, Griffith University, Gold Coast, QLD 4222, Australia
| |
Collapse
|
7
|
Toshkova-Yotova T, Sulikovska I, Djeliova V, Petrova Z, Ognyanov M, Denev P, Toshkova R, Georgieva A. Exopolysaccharides from the Green Microalga Strain Coelastrella sp. BGV-Isolation, Characterization, and Assessment of Anticancer Potential. Curr Issues Mol Biol 2024; 46:10312-10334. [PMID: 39329966 PMCID: PMC11431334 DOI: 10.3390/cimb46090614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/13/2024] [Accepted: 09/14/2024] [Indexed: 09/28/2024] Open
Abstract
Algal metabolites have been extensively studied as potential anticancer therapeutics. Among them, polysaccharides have attracted much attention because of their beneficial biological effects and safety. In the present research, the chemical characteristics, antitumor, and proapoptotic activities of extracellular polysaccharides (EPS) isolated from a new Bulgarian strain of the green microalga Coelastrella sp. BGV were investigated. A fast and convenient method of precipitation with cold ethanol was used to isolate EPS from the culture medium. The chemical characteristics of the isolated EPS were examined by colorimetric and spectrophotometric analyses, HPSEC-RID and HPLC-UV chromatography, and FT-IR spectroscopy. The results showed that the isolated EPS sample consists of three carbohydrate fractions with different molecular weights (11.5 × 104 Da, 30.7 × 104 Da, and 72.4 × 104 Da, respectively) and contains 7.14 (w/w%) protein. HPLC-UV analysis revealed the presence of galactose and fucose. The total uronic acid content in the sample was 4.5 (w/w%). The IR-FT spectrum of EPS revealed the presence of various functional groups typical of a polysaccharide (or proteoglycan) composed primarily of neutral sugars. The anticancer potential of the obtained EPS was assessed using cell lines with cancerous and non-cancerous origins as in vitro experimental models. The results of the performed MTT assay showed that EPS reduced the viability of the cervical and mammary carcinoma cell lines HeLa and MCF-7, while the control non-cancer cell lines BALB/3T3 and HaCaT were less affected. The HeLa cell line showed the highest sensitivity to the effects of EPS and was therefore used for further studies of its anticancer potential. The ability of EPS to inhibit cancer cell migration was demonstrated by wound-healing (scratch) assay. The cell cycle FACS analysis indicated that the EPS treatment induced significant increases in the sub G1 cell population and decreases of the percentages of cells in the G1, S, and G2-M phases, compared to the control. The fluorescent microscopy studies performed using three different staining methods in combination with Annexin V-FITC flow cytometric analysis clearly demonstrate the ability of EPS to induce cancer cell death via the apoptosis pathway. Moreover, an altered pattern and intensity of the immunocytochemical staining for the apoptosis- and proliferation-related proteins p53, bcl2, and Ki67 was detected in EPS-treated HeLa cancer cells as compared to the untreated controls. The obtained results characterize the new local strain of green microalgae Coelastrella sp. BGV as a producer of EPS with selective antitumor activity and provide an opportunity for further studies of its pharmacological and biotechnological potential.
Collapse
Affiliation(s)
- Tanya Toshkova-Yotova
- Department of Plant Ecophysiology, Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., 21, 1113 Sofia, Bulgaria
| | - Inna Sulikovska
- Department of Pathology, Institute of Experimental Morphology, Pathology and Anthropology with Museum, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., 25, 1113 Sofia, Bulgaria
| | - Vera Djeliova
- Department of Molecular Biology of Cell Cycle, Institute of Molecular Biology "Acad. R. Tsanev", Bulgarian Academy of Sciences, Acad. G. Bonchev Str., 21, 1113 Sofia, Bulgaria
| | - Zdravka Petrova
- Department of Pathology, Institute of Experimental Morphology, Pathology and Anthropology with Museum, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., 25, 1113 Sofia, Bulgaria
| | - Manol Ognyanov
- Laboratory of Biologically Active Substances, Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, 139 Ruski Blvd., 4000 Plovdiv, Bulgaria
| | - Petko Denev
- Laboratory of Biologically Active Substances, Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, 139 Ruski Blvd., 4000 Plovdiv, Bulgaria
| | - Reneta Toshkova
- Department of Pathology, Institute of Experimental Morphology, Pathology and Anthropology with Museum, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., 25, 1113 Sofia, Bulgaria
| | - Ani Georgieva
- Department of Pathology, Institute of Experimental Morphology, Pathology and Anthropology with Museum, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., 25, 1113 Sofia, Bulgaria
| |
Collapse
|
8
|
Dey B, Prabhakar MR, Jayaraman S, Gujjala LKS, Venugopal AP, Balasubramanian P. Biopolymer-based solutions for enhanced safety and quality assurance: A review. Food Res Int 2024; 191:114723. [PMID: 39059918 DOI: 10.1016/j.foodres.2024.114723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 06/25/2024] [Accepted: 07/02/2024] [Indexed: 07/28/2024]
Abstract
The improper disposal of petroleum-based plastics has been associated with detrimental environmental consequences, such as the proliferation of microplastic pollution and increased emissions of greenhouse gases (GHGs). Consequently, biopolymers have emerged as a highly regarded alternative due to their environmental-friendly attributes and versatile range of applications. In response to consumer demands for safer food options, sustainable packaging, and escalating environmental concerns, the food sector is increasingly adopting biopolymers. Further, in the recent decade, the usage of active or functional biopolymers has evolved into smart biopolymers that can transmit real-time data to consumers. This review covers key topics such as antimicrobial and biodegradable packaging, edible coatings and films, incorporation of scavengers and bioactive substances that prolong the shelf life and guard against moisture and microbial contamination. The paper also discusses the development of edible cutlery as a sustainable substitute for plastic, the encapsulation of bioactive substances within biopolymers, 3-D food printing for regulated nutrition delivery and thickening and gelling agents that improve food texture and stability. It also discusses the integration of smart polymer functions, demonstrating their importance in guaranteeing food safety and quality, such as biosensing, pH and gas detection, antibacterial characteristics, and time-temperature monitoring. By shedding light on market trends, future scope, and potentialities, this review aims to elucidate the prospects of utilizing biopolymers to address sustainability and quality concerns within the food industry effectively.
Collapse
Affiliation(s)
- Baishali Dey
- Department of Biotechnology & Medical Engineering, National Institute of Technology Rourkela, 769 008, India
| | - Muhil Raj Prabhakar
- Department of Biotechnology & Medical Engineering, National Institute of Technology Rourkela, 769 008, India
| | - Sivaraman Jayaraman
- Department of Biotechnology & Medical Engineering, National Institute of Technology Rourkela, 769 008, India
| | | | - Arun Prasath Venugopal
- Department of Food Process Engineering, National Institute of Technology Rourkela, 769 008, India
| | - Paramasivan Balasubramanian
- Department of Biotechnology & Medical Engineering, National Institute of Technology Rourkela, 769 008, India.
| |
Collapse
|
9
|
Matheus J, Alegria MJ, Nunes MC, Raymundo A. Algae-Boosted Chickpea Hummus: Improving Nutrition and Texture with Seaweeds and Microalgae. Foods 2024; 13:2178. [PMID: 39063262 PMCID: PMC11276347 DOI: 10.3390/foods13142178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/04/2024] [Accepted: 07/06/2024] [Indexed: 07/28/2024] Open
Abstract
The global food industry faces a critical challenge in ensuring sustainable practices to meet the demands of a growing population while minimizing environmental impact. At the same time, consumer awareness and the demand for quality products drive innovation and inspire positive changes in the food supply chain. Aiming to create a more sustainable and nutrient-rich alternative, this study is summarized by characterizing the physical and chemical characteristics of algae-enriched chickpea hummus: an innovative approach to popular food products. The algae-enriched hummuses were developed with an incorporation (6% w/w) of Gelidium corneum and Fucus vesiculosus seaweeds and Chlorella vulgaris (hetero and autotrophic) microalgae to reveal their technological potential and evaluate the nutritional and rheological characteristics relative to a control hummus (without algae). From a nutritional perspective, the main results indicated that hummus enriched with microalgae showed an increase in protein content and an improved mineral profile. This was particularly notable for the seaweed F. vesiculosus and the autotrophic microalga C. vulgaris, leading to claims of being a "source of" and "rich in" various minerals. Additionally, the antioxidant activity of hummus containing F. vesiculosus and C. vulgaris increased significantly compared to the control. From a rheological perspective, incorporating algae into the humus strengthened its structure. The microalgae further enhanced the dish's elasticity and firmness, thus improving this chickpea-based dish´s overall texture and quality.
Collapse
Affiliation(s)
- José Matheus
- LEAF—Linking Landscape, Environment, Agriculture and Food Research Center, Associated Laboratory TERRA, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal; (J.M.); (M.C.N.)
| | - Maria João Alegria
- SUMOL+COMPAL, Rua Dr. António João Eusébio, 24, 2790-179 Carnaxide, Portugal;
| | - Maria Cristiana Nunes
- LEAF—Linking Landscape, Environment, Agriculture and Food Research Center, Associated Laboratory TERRA, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal; (J.M.); (M.C.N.)
| | - Anabela Raymundo
- LEAF—Linking Landscape, Environment, Agriculture and Food Research Center, Associated Laboratory TERRA, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal; (J.M.); (M.C.N.)
| |
Collapse
|
10
|
Zhang J, Yang H, Sun Y, Yan B, Chen W, Fan D. The potential use of microalgae for nutrient supply and health enhancement in isolated and confined environments. Compr Rev Food Sci Food Saf 2024; 23:e13418. [PMID: 39073089 DOI: 10.1111/1541-4337.13418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 06/17/2024] [Accepted: 07/02/2024] [Indexed: 07/30/2024]
Abstract
Exploring isolated and confined environments (IACEs), such as deep-sea ecosystems, polar regions, and outer space, presents multiple challenges. Among these challenges, ensuring sustainable food supply over long timescales and maintaining the health of personnel are fundamental issues that must be addressed. Microalgae, as a novel food resource, possess favorable physiological and nutritional characteristics, demonstrating potential as nutritional support in IACEs. In this review, we discuss the potential of microalgae as a nutritional supplement in IACEs from four perspectives. The first section provides a theoretical foundation by reviewing the environmental adaptability and previous studies in IACEs. Subsequently, the typical nutritional components of microalgae and their bioavailability are comprehensively elucidated. And then focus on the impact of these ingredients on health enhancement and elucidate its mechanisms in IACEs. Combining the outstanding stress resistance, rich active ingredients, the potential to alleviate osteoporosis, regulate metabolism, and promote mental well-being, microalgae demonstrate significant value for food applications. Furthermore, the development of novel microalgae biomatrices enhances health safeguards. Nevertheless, the widespread application of microalgae in IACEs still requires extensive studies and more fundamental data, necessitating further exploration into improving bioavailability, high biomass cultivation methods, and enhancing palatability.
Collapse
Affiliation(s)
- Jian Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, China
| | - Huayu Yang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, China
| | - Yuying Sun
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, China
| | - Bowen Yan
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, China
| | - Wei Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Daming Fan
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, China
| |
Collapse
|
11
|
Zhao Y, Han C, Wu Y, Sun Q, Ma M, Xie Z, Sun R, Pei H. Extraction, structural characterization, and antioxidant activity of polysaccharides from three microalgae. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 931:172567. [PMID: 38643871 DOI: 10.1016/j.scitotenv.2024.172567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/10/2024] [Accepted: 04/16/2024] [Indexed: 04/23/2024]
Abstract
Microalgal polysaccharides have received much attention due to their potential value in preventing and regulating oxidative damage. This study aims to reveal the mechanisms of regulating oxidative stress and the differences in the yield, structure, and effect of polysaccharides extracted from three microalgae: Golenkinia sp. polysaccharides (GPS), Chlorella sorokiniana polysaccharides (CPS), and Spirulina subsalsa polysaccharides (SPS). Using the same extraction method, GPS, CPS, and SPS were all heteropoly- saccharides composed of small molecular fraction: the monosaccharides mainly comprised galactose (Gal). Among the three, SPS had a higher proportion of small molecular fraction, and a higher proportion of Gal; thus it had the highest yield and antioxidant activity. GPS, CPS, and SPS all showed strong antioxidant activity in vitro, and showed strong ability to regulate oxidative stress, among which SPS was slightly higher. From the analysis of gene expression, the Nrf2-ARE signalling pathway was an important pathway for GPS, CPS, and SPS to regulate cellular oxidative stress. This study provides a theoretical foundation for further research on the utilization of microalgae polysaccharides and product development.
Collapse
Affiliation(s)
- Yang Zhao
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Chun Han
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Yangyingdong Wu
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Qianchen Sun
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Meng Ma
- School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Zhen Xie
- School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Rong Sun
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Haiyan Pei
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China; School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China; Shandong Provincial Engineering Center on Environmental Science and Technology, Jinan 250061, China; Institute of Eco-Chongming (IEC), Shanghai 202162, China.
| |
Collapse
|
12
|
Laureati M, De Boni A, Saba A, Lamy E, Minervini F, Delgado AM, Sinesio F. Determinants of Consumers' Acceptance and Adoption of Novel Food in View of More Resilient and Sustainable Food Systems in the EU: A Systematic Literature Review. Foods 2024; 13:1534. [PMID: 38790835 PMCID: PMC11120339 DOI: 10.3390/foods13101534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/01/2024] [Accepted: 05/04/2024] [Indexed: 05/26/2024] Open
Abstract
This review article aims to provide an up-to-date overview of the main determinants of consumers' acceptance of novel foods (new foods and ingredients) in the EU with emphasis on product's intrinsic properties (sensory characteristics) and individual factors (socio-demographics, perceptive, psychological) by adopting a systematic approach following the PRISMA methodology. Case studies on terrestrial (i.e., insects, cultured meat and other animal origin products, plant-based food including mushrooms, plant-based analogues, pulses, and cereals) and aquatic systems (i.e., algae and jellyfish) are included focusing on age-related and cross-national differences in consumer acceptance of novel foods and ingredients. General trends have emerged that are common to all the novel foods analysed, regardless of their aquatic or terrestrial origin. Aspects such as food neophobia, unfamiliarity, and poor knowledge of the product are important barriers to the consumption of novel foods, while healthiness and environmental sustainability perception are drivers of acceptance. Sensory properties are challenging for more familiar ingredients such as plant-based food (e.g., novel food made by pulses, mushrooms, cereals and pseudocereals). Results are discussed in terms of feasibility of introducing these products in the EU food systems highlighting strategies that can encourage the use of new ingredients or novel foods.
Collapse
Affiliation(s)
- Monica Laureati
- Department of Food, Environmental and Nutritional Sciences, University of Milan, 20133 Milan, Italy
| | - Annalisa De Boni
- Department of Soil, Plant and Food Sciences (DISSPA), University of Bari Aldo Moro, 70126 Bari, Italy; (A.D.B.); (F.M.)
| | - Anna Saba
- Council for Agricultural Research and Economics, Research Centre for Food and Nutrition (CREA-AN), Via Ardeatina, 546, 00178 Rome, Italy; (A.S.); (F.S.)
| | - Elsa Lamy
- Mediterranean Institute for Agriculture Environment and Development & CHANGE—Global Change and Sustainability Institute, University of Evora, 7006-554 Évora, Portugal; (E.L.); (A.M.D.)
| | - Fabio Minervini
- Department of Soil, Plant and Food Sciences (DISSPA), University of Bari Aldo Moro, 70126 Bari, Italy; (A.D.B.); (F.M.)
| | - Amélia M. Delgado
- Mediterranean Institute for Agriculture Environment and Development & CHANGE—Global Change and Sustainability Institute, University of Evora, 7006-554 Évora, Portugal; (E.L.); (A.M.D.)
| | - Fiorella Sinesio
- Council for Agricultural Research and Economics, Research Centre for Food and Nutrition (CREA-AN), Via Ardeatina, 546, 00178 Rome, Italy; (A.S.); (F.S.)
| |
Collapse
|
13
|
Dhandwal A, Bashir O, Malik T, Salve RV, Dash KK, Amin T, Shams R, Wani AW, Shah YA. Sustainable microalgal biomass as a potential functional food and its applications in food industry: a comprehensive review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024:10.1007/s11356-024-33431-6. [PMID: 38710849 DOI: 10.1007/s11356-024-33431-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 04/18/2024] [Indexed: 05/08/2024]
Abstract
Microalgae (MA) are the most abundant seaweeds with high nutritional properties. They are accepted as potential biocatalysts for the bioremediation of wastewater. They are widely used in food, feed, and biofuel industries and can potentially be food for future generations. MA-based purification of wastewater technology could be a universal alternative solution for the recovery of resources from wastewater for low-cost biomass feedstock for industry. They provide a wide range of functional components, viz. omega-3 fatty acids, along with a plenteous number of pigments such as ß-carotene, astaxanthin, lutein, phycocyanin, and chlorophyll, which are used extensively as food additives and nutraceuticals. Further, proteins, lipids, vitamins, and carbohydrates are described as nutritional characteristics in MA. They are investigated as single-cell protein, thickening/stabilizing agents, and pigment sources in the food industry. The review emphasizes the production and extraction of nutritional and functional components of algal biomass and the role of microalgal polysaccharides in digestion and nutritional absorption in the gastrointestinal tract. Further, the use of MA in the food industry was also investigated along with their potential therapeutic applications.
Collapse
Affiliation(s)
- Akhil Dhandwal
- Department of Food Technology and Nutrition, School of Agriculture, Lovely Professional University, Phagwara, Punjab, India
| | - Omar Bashir
- Department of Food Technology and Nutrition, School of Agriculture, Lovely Professional University, Phagwara, Punjab, India
| | - Tanu Malik
- Department of Food Technology and Nutrition, School of Agriculture, Lovely Professional University, Phagwara, Punjab, India
| | - Rahul Vinayak Salve
- Department of Food Technology and Nutrition, School of Agriculture, Lovely Professional University, Phagwara, Punjab, India
| | - Kshirod Kumar Dash
- Department of Food Processing Technology, Ghani Khan Choudhury Institute of Engineering and Technology, Malda, West Bengal, India.
| | - Tawheed Amin
- Division of Food Science and Technology, Sher-E-Kashmir University of Agricultural Sciences and Technology of Kashmir, Srinagar, Jammu and Kashmir, India
| | - Rafeeya Shams
- Department of Food Technology and Nutrition, School of Agriculture, Lovely Professional University, Phagwara, Punjab, India
| | - Ab Waheed Wani
- Department of Horticulture, Lovely Professional University, Phagwara, Punjab, India
| | - Yasir Abbas Shah
- Natural and Medical Sciences Research Centre, University of Nizwa, Nizwa, Oman
| |
Collapse
|
14
|
Gaur S, Kaur M, Kalra R, Rene ER, Goel M. Application of microbial resources in biorefineries: Current trend and future prospects. Heliyon 2024; 10:e28615. [PMID: 38628756 PMCID: PMC11019186 DOI: 10.1016/j.heliyon.2024.e28615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 03/21/2024] [Accepted: 03/21/2024] [Indexed: 04/19/2024] Open
Abstract
The recent growing interest in sustainable and alternative sources of energy and bio-based products has driven the paradigm shift to an integrated model termed "biorefinery." Biorefinery framework implements the concepts of novel eco-technologies and eco-efficient processes for the sustainable production of energy and value-added biomolecules. The utilization of microbial resources for the production of various value-added products has been documented in the literatures. However, the appointment of these microbial resources in integrated resource management requires a better understanding of their status. The main of aim of this review is to provide an overview on the defined positioning and overall contribution of the microbial resources, i.e., algae, fungi and bacteria, for various bioprocesses and generation of multiple products from a single biorefinery. By utilizing waste material as a feedstock, biofuels can be generated by microalgae while sequestering environmental carbon and producing value added compounds as by-products. In parallel, fungal biorefineries are prolific producers of lignocellulose degrading enzymes along with pharmaceutically important novel products. Conversely, bacterial biorefineries emerge as a preferred platform for the transformation of standard cells into proficient bio-factories, developing chassis and turbo cells for enhanced target compound production. This comprehensive review is poised to offer an intricate exploration of the current trends, obstacles, and prospective pathways of microbial biorefineries, for the development of future biorefineries.
Collapse
Affiliation(s)
- Suchitra Gaur
- Sustainable Agriculture Program, The Energy and Resources Institute, TERI-Gram, Gurugram, 122001, Haryana, India
| | - Mehak Kaur
- Sustainable Agriculture Program, The Energy and Resources Institute, TERI-Gram, Gurugram, 122001, Haryana, India
| | - Rishu Kalra
- Sustainable Agriculture Program, The Energy and Resources Institute, TERI-Gram, Gurugram, 122001, Haryana, India
| | - Eldon R. Rene
- Department of Water Supply, Sanitation and Environmental Engineering, IHE Delft Institute for Water Education, Westvest 7, Delft, 2601DA, the Netherlands
| | - Mayurika Goel
- Sustainable Agriculture Program, The Energy and Resources Institute, TERI-Gram, Gurugram, 122001, Haryana, India
| |
Collapse
|
15
|
Burgunter-Delamare B, Shetty P, Vuong T, Mittag M. Exchange or Eliminate: The Secrets of Algal-Bacterial Relationships. PLANTS (BASEL, SWITZERLAND) 2024; 13:829. [PMID: 38592793 PMCID: PMC10974524 DOI: 10.3390/plants13060829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 03/09/2024] [Accepted: 03/11/2024] [Indexed: 04/11/2024]
Abstract
Algae and bacteria have co-occurred and coevolved in common habitats for hundreds of millions of years, fostering specific associations and interactions such as mutualism or antagonism. These interactions are shaped through exchanges of primary and secondary metabolites provided by one of the partners. Metabolites, such as N-sources or vitamins, can be beneficial to the partner and they may be assimilated through chemotaxis towards the partner producing these metabolites. Other metabolites, especially many natural products synthesized by bacteria, can act as toxins and damage or kill the partner. For instance, the green microalga Chlamydomonas reinhardtii establishes a mutualistic partnership with a Methylobacterium, in stark contrast to its antagonistic relationship with the toxin producing Pseudomonas protegens. In other cases, as with a coccolithophore haptophyte alga and a Phaeobacter bacterium, the same alga and bacterium can even be subject to both processes, depending on the secreted bacterial and algal metabolites. Some bacteria also influence algal morphology by producing specific metabolites and micronutrients, as is observed in some macroalgae. This review focuses on algal-bacterial interactions with micro- and macroalgal models from marine, freshwater, and terrestrial environments and summarizes the advances in the field. It also highlights the effects of temperature on these interactions as it is presently known.
Collapse
Affiliation(s)
- Bertille Burgunter-Delamare
- Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Friedrich Schiller University Jena, 07743 Jena, Germany; (P.S.); (T.V.)
| | - Prateek Shetty
- Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Friedrich Schiller University Jena, 07743 Jena, Germany; (P.S.); (T.V.)
- Cluster of Excellence Balance of the Microverse, Friedrich Schiller University Jena, 07743 Jena, Germany
| | - Trang Vuong
- Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Friedrich Schiller University Jena, 07743 Jena, Germany; (P.S.); (T.V.)
| | - Maria Mittag
- Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Friedrich Schiller University Jena, 07743 Jena, Germany; (P.S.); (T.V.)
- Cluster of Excellence Balance of the Microverse, Friedrich Schiller University Jena, 07743 Jena, Germany
| |
Collapse
|
16
|
Mosibo OK, Ferrentino G, Udenigwe CC. Microalgae Proteins as Sustainable Ingredients in Novel Foods: Recent Developments and Challenges. Foods 2024; 13:733. [PMID: 38472846 DOI: 10.3390/foods13050733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 02/04/2024] [Accepted: 02/21/2024] [Indexed: 03/14/2024] Open
Abstract
Microalgae are receiving increased attention in the food sector as a sustainable ingredient due to their high protein content and nutritional value. They contain up to 70% proteins with the presence of all 20 essential amino acids, thus fulfilling human dietary requirements. Microalgae are considered sustainable and environmentally friendly compared to traditional protein sources as they require less land and a reduced amount of water for cultivation. Although microalgae's potential in nutritional quality and functional properties is well documented, no reviews have considered an in-depth analysis of the pros and cons of their addition to foods. The present work discusses recent findings on microalgae with respect to their protein content and nutritional quality, placing a special focus on formulated food products containing microalgae proteins. Several challenges are encountered in the production, processing, and commercialization of foods containing microalgae proteins. Solutions presented in recent studies highlight the future research and directions necessary to provide solutions for consumer acceptability of microalgae proteins and derived products.
Collapse
Affiliation(s)
- Ornella Kongi Mosibo
- School of Nutrition Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, ON K1N 9A7, Canada
| | - Giovanna Ferrentino
- Faculty of Agriculture, Environmental and Food Sciences, Free University of Bozen-Bolzano, Piazza Università 5, 39100 Bolzano, Italy
| | - Chibuike C Udenigwe
- School of Nutrition Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, ON K1N 9A7, Canada
| |
Collapse
|
17
|
Joshi JS, Langwald SV, Ehrmann A, Sabantina L. Algae-Based Biopolymers for Batteries and Biofuel Applications in Comparison with Bacterial Biopolymers-A Review. Polymers (Basel) 2024; 16:610. [PMID: 38475294 DOI: 10.3390/polym16050610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 02/12/2024] [Accepted: 02/21/2024] [Indexed: 03/14/2024] Open
Abstract
Algae-based biopolymers can be used in diverse energy-related applications, such as separators and polymer electrolytes in batteries and fuel cells and also as microalgal biofuel, which is regarded as a highly renewable energy source. For these purposes, different physical, thermochemical, and biochemical properties are necessary, which are discussed within this review, such as porosity, high temperature resistance, or good mechanical properties for batteries and high energy density and abundance of the base materials in case of biofuel, along with the environmental aspects of using algae-based biopolymers in these applications. On the other hand, bacterial biopolymers are also often used in batteries as bacterial cellulose separators or as biopolymer network binders, besides their potential use as polymer electrolytes. In addition, they are also regarded as potential sustainable biofuel producers and converters. This review aims at comparing biopolymers from both aforementioned sources for energy conversion and storage. Challenges regarding the production of algal biopolymers include low scalability and low cost-effectiveness, and for bacterial polymers, slow growth rates and non-optimal fermentation processes often cause challenges. On the other hand, environmental benefits in comparison with conventional polymers and the better biodegradability are large advantages of these biopolymers, which suggest further research to make their production more economical.
Collapse
Affiliation(s)
- Jnanada Shrikant Joshi
- Faculty of Engineering Sciences and Mathematics, Bielefeld University of Applied Sciences and Arts, 33619 Bielefeld, Germany
| | - Sarah Vanessa Langwald
- Faculty of Engineering Sciences and Mathematics, Bielefeld University of Applied Sciences and Arts, 33619 Bielefeld, Germany
| | - Andrea Ehrmann
- Faculty of Engineering Sciences and Mathematics, Bielefeld University of Applied Sciences and Arts, 33619 Bielefeld, Germany
| | - Lilia Sabantina
- Department of Apparel Engineering and Textile Processing, Berlin University of Applied Sciences-HTW Berlin, 12459 Berlin, Germany
- Department of Textile and Paper Engineering, Higher Polytechnic School of Alcoy, Polytechnic University of Valencia (UPV), 03801 Alcoy, Spain
| |
Collapse
|
18
|
Verspreet J, Schoeters F, Bastiaens L. The Impact of Non-Concentrated Storage on the Centrifugation Yield of Microchloropsis gaditana: A Pilot-Scale Study. Life (Basel) 2024; 14:131. [PMID: 38255748 PMCID: PMC10821389 DOI: 10.3390/life14010131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/22/2023] [Accepted: 01/11/2024] [Indexed: 01/24/2024] Open
Abstract
Non-concentrated algae storage can bridge the period between algae harvesting and processing while avoiding the stress conditions associated with the concentration step required for concentrate storage. This study aimed to examine organic matter losses during the non-concentrated storage of Microchloropsis gaditana at pilot-scale. Algae cultures (400-500 L) were stored for up to 12 days either at an 8 °C target temperature or at 19 °C as the average temperature. The centrifugation yield of stored algal cultures decreased from day 5 or day 8 onwards for all storage conditions. After 12 days, the centrifugation yields were between 57% and 93% of the initial yields. Large differences in centrifugation yields were noted between the algae batches. The batch-to-batch difference outweighed the effect of storage temperature, and the highest yield loss was observed for the 8 °C cooled algae batch. The analysis of stored algae before and after centrifugation suggested that the decreasing yields were not related to respiration losses, but rather, the decreasing efficiency with which organic matter is collected during the centrifugation step.
Collapse
Affiliation(s)
- Joran Verspreet
- Flemish Institute for Technological Research (VITO), Boeretang 200, 2400 Mol, Belgium;
| | - Floris Schoeters
- Radius, Thomas More University of Applied Sciences, 2440 Geel, Belgium;
| | - Leen Bastiaens
- Flemish Institute for Technological Research (VITO), Boeretang 200, 2400 Mol, Belgium;
| |
Collapse
|
19
|
Wang Z, Wang L, Yu X, Wang X, Zheng Y, Hu X, Zhang P, Sun Q, Wang Q, Li N. Effect of polysaccharide addition on food physical properties: A review. Food Chem 2024; 431:137099. [PMID: 37572481 DOI: 10.1016/j.foodchem.2023.137099] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 07/18/2023] [Accepted: 08/02/2023] [Indexed: 08/14/2023]
Abstract
The texture, flavor, performance and nutrition of foods are affected by their physical properties during processing, cooking, storage, and shelf life. In addition to chemical, physical, and enzymatic modification methods, polysaccharide addition is also considered a safe, effective, and convenient food modification strategy. However, thus far, literature review on the effects of polysaccharides on the physical properties of foods is few. Therefore, the present work reviews the effects of polysaccharides on water retention capacity, rheological property, suspension ability, viscoelasticity, emulsifying property, gelling property, stability, and starch regeneration and digestion. Furthermore, the existing problems and future recommendations during food physical property modification by polysaccharides are presented. This work aims to provide some theoretical references for future research, development, and application of polysaccharides on food physical property modification.
Collapse
Affiliation(s)
- Zichao Wang
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Lu Wang
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Xiaoxue Yu
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Xueqin Wang
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Yi Zheng
- School of International Education, Henan University of Technology, Zhengzhou 450001, China
| | - Xilei Hu
- School of International Education, Henan University of Technology, Zhengzhou 450001, China
| | - Peiyao Zhang
- School of International Education, Henan University of Technology, Zhengzhou 450001, China
| | - Qi Sun
- College of Life Sciences, Chongqing Normal University, Chongqing 401331, China.
| | - Qi Wang
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China.
| | - Na Li
- Henan Provincial Key Laboratory of Ultrasound Imaging and Artificial Intelligence, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Zhengzhou University, Zhengzhou 450001, China; Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China.
| |
Collapse
|
20
|
Wan P, Liu H, Ding M, Zhang K, Shang Z, Wang Y, Ma Y. Physicochemical characterization, digestion profile and gut microbiota regulation activity of intracellular polysaccharides from Chlorella zofingiensis. Int J Biol Macromol 2023; 253:126881. [PMID: 37709223 DOI: 10.1016/j.ijbiomac.2023.126881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 09/08/2023] [Accepted: 09/11/2023] [Indexed: 09/16/2023]
Abstract
A number of studies have shown that the polysaccharides from microalgae exhibit diverse biological activities, however, little is known about their digestibility and impact on human gut microbiota. In this study, a simulating digestion and fermentation system were established to investigate the digestibility and fermentation of intracellular polysaccharides from Chlorella zofingiensis (CZIP-S3). The results indicated that CZIP-S3 is a macromolecular polysaccharide composed of mannose, glucose, galactose and rhamnose, consisting of a main chain and two branched repeating units. CZIP-S3 could not be digested in the upper gastrointestinal tract. However, CZIP-S3 could be metabolized into smaller molecules by the gut microbiota. The pH values continuously decrease during fermentation, whereas, the amount of short-chain fatty acids steadily increase. Furthermore, CZIP-S3 could modulate the composition of gut microbiota, via lowering the ratio of Firmicutes/Bacteroidetes and increasing the relative abundance of Bacteroides, Bifidobacterium and Akkermansia. The data suggested that CZIP-S3 could potentially be used as an ingredient for functional foods or prebiotics to improve human health by promoting the relative abundances of beneficial bacteria.
Collapse
Affiliation(s)
- Peng Wan
- Zhang Zhongjing College of Chinese Medicine, Nanyang Institute of Technology, Nanyang 473000, China; Henan Key Laboratory of Zhang Zhongjing Formulae and Herbs for Immunoregulation, Henan Key Laboratory of Industrial Microbial Resources and Fermentation Technology, Nanyang Institute of Technology, Nanyang 473000, China.
| | - Han Liu
- College of Food Science and Technology, Hebei Agricultural University, Baoding 071000, China
| | - Mengyan Ding
- Zhang Zhongjing College of Chinese Medicine, Nanyang Institute of Technology, Nanyang 473000, China; Henan Key Laboratory of Zhang Zhongjing Formulae and Herbs for Immunoregulation, Henan Key Laboratory of Industrial Microbial Resources and Fermentation Technology, Nanyang Institute of Technology, Nanyang 473000, China
| | - Kailu Zhang
- Zhang Zhongjing College of Chinese Medicine, Nanyang Institute of Technology, Nanyang 473000, China; Henan Key Laboratory of Zhang Zhongjing Formulae and Herbs for Immunoregulation, Henan Key Laboratory of Industrial Microbial Resources and Fermentation Technology, Nanyang Institute of Technology, Nanyang 473000, China
| | - Zhen Shang
- Zhang Zhongjing College of Chinese Medicine, Nanyang Institute of Technology, Nanyang 473000, China; Henan Key Laboratory of Zhang Zhongjing Formulae and Herbs for Immunoregulation, Henan Key Laboratory of Industrial Microbial Resources and Fermentation Technology, Nanyang Institute of Technology, Nanyang 473000, China
| | - Yuanli Wang
- Zhang Zhongjing College of Chinese Medicine, Nanyang Institute of Technology, Nanyang 473000, China; Henan Key Laboratory of Zhang Zhongjing Formulae and Herbs for Immunoregulation, Henan Key Laboratory of Industrial Microbial Resources and Fermentation Technology, Nanyang Institute of Technology, Nanyang 473000, China
| | - Yanli Ma
- Zhang Zhongjing College of Chinese Medicine, Nanyang Institute of Technology, Nanyang 473000, China; Henan Key Laboratory of Zhang Zhongjing Formulae and Herbs for Immunoregulation, Henan Key Laboratory of Industrial Microbial Resources and Fermentation Technology, Nanyang Institute of Technology, Nanyang 473000, China
| |
Collapse
|
21
|
Toucheteau C, Deffains V, Gaignard C, Rihouey C, Laroche C, Pierre G, Lépine O, Probert I, Le Cerf D, Michaud P, Arnaudin-Fruitier I, Bridiau N, Maugard T. Role of some structural features in EPS from microalgae stimulating collagen production by human dermal fibroblasts. Bioengineered 2023; 14:2254027. [PMID: 37700452 PMCID: PMC10498797 DOI: 10.1080/21655979.2023.2254027] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 08/25/2023] [Accepted: 08/28/2023] [Indexed: 09/14/2023] Open
Abstract
Exopolysaccharides (EPS) from the microalgae Porphyridium cruentum, Chrysotila dentata, Pavlova sp., Diacronema sp., Glossomastix sp., Phaeodactylum tricornutum, and Synechococcus sp. were isolated and depolymerized. First, EPS were submitted to a high pressure pre-treatment step, followed by a solid acid-catalyzed hydrolysis step carried out in a batch or recycle fixed-bed reactor, using a strong acidic cation-exchange resin. Twenty-eight different EPS forms were thus obtained. After characterization of their main structural features (weight- and number-averaged molecular weight, polydispersity index, sulfate and uronic acid contents), we investigated the structure-function relationship of their pro-collagen activity. We found that native microalgae EPS were able to inhibit until 27% of human matrix metalloproteinase-1 (MMP-1) activity while the depolymerized forms were able to enhance collagen production by two different human fibroblast lines, used as cell models due to their major role in dermal collagen biosynthesis. The most active EPS forms, obtained by depolymerization in the recycle fixed-bed reactor of D. ennorea and Glossomastix sp. EPS, led to 390% increase in collagen production. Finally, principal component (PCA) and Pearson analyses indicated that MMP-1 inhibition was strongly correlated to the sulfate group content of EPS whereas collagen production by fibroblasts was mostly related to their proportion of low molecular weight polysaccharides (<10 kDa). Uronic acid content of EPS was also shown essential but only if the size of EPS was reduced in the first place. Altogether, these results gave new insights of the dermo-cosmetic potential of microalgae EPS as well as the key parameters of their activity.
Collapse
Affiliation(s)
- Claire Toucheteau
- La Rochelle Université, UMR CNRS 7266 LIENSs, Equipe Biotechnologie et Chimie des Bioressources pour la Santé, La Rochelle, France
| | - Valentine Deffains
- La Rochelle Université, UMR CNRS 7266 LIENSs, Equipe Biotechnologie et Chimie des Bioressources pour la Santé, La Rochelle, France
| | - Clément Gaignard
- Université Clermont Auvergne, CNRS, Institut Pascal, Aubière, France
| | - Christophe Rihouey
- Université de Rouen Normandie, PBS Laboratory, Mont Saint Aignan, France
| | - Céline Laroche
- Université Clermont Auvergne, CNRS, Institut Pascal, Aubière, France
| | - Guillaume Pierre
- Université Clermont Auvergne, CNRS, Institut Pascal, Aubière, France
| | - Olivier Lépine
- Algosource Technologies, 37 Bd de l’Université, Saint-Nazaire, France
| | - Ian Probert
- Roscoff marine station, CNRS/Sorbonne Université, Roscoff, France
| | - Didier Le Cerf
- Université de Rouen Normandie, PBS Laboratory, Mont Saint Aignan, France
| | - Philippe Michaud
- Université Clermont Auvergne, CNRS, Institut Pascal, Aubière, France
| | - Ingrid Arnaudin-Fruitier
- La Rochelle Université, UMR CNRS 7266 LIENSs, Equipe Biotechnologie et Chimie des Bioressources pour la Santé, La Rochelle, France
| | - Nicolas Bridiau
- La Rochelle Université, UMR CNRS 7266 LIENSs, Equipe Biotechnologie et Chimie des Bioressources pour la Santé, La Rochelle, France
| | - Thierry Maugard
- La Rochelle Université, UMR CNRS 7266 LIENSs, Equipe Biotechnologie et Chimie des Bioressources pour la Santé, La Rochelle, France
| |
Collapse
|
22
|
de Cassia Soares Brandão B, Oliveira CYB, Dos Santos EP, de Abreu JL, Oliveira DWS, da Silva SMBC, Gálvez AO. Microalgae-based domestic wastewater treatment: a review of biological aspects, bioremediation potential, and biomass production with biotechnological high-value. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:1384. [PMID: 37889346 DOI: 10.1007/s10661-023-12031-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 10/23/2023] [Indexed: 10/28/2023]
Abstract
This review aims to perform an updated bibliographical survey on the cultivation of microalgae in domestic wastewater with a focus on biotechnological aspects. It was verified that the largest number of researches developed was about cultures in microalgae-bacteria consortium and mixed cultures of microalgae, followed by researches referring to the species Chlorella vulgaris and to the family Scenedesmaceae. According to published studies, these microorganisms are efficient in the biological treatment of domestic wastewater, as well as in the production of high value-added biomass, as they are capable of biosorbing the organic and inorganic compounds present in the culture medium, thus generating cells with high levels of lipids, proteins, and carbohydrates. These compounds are of great importance for different industry sectors, such as pharmaceuticals, food, and also for agriculture and aquaculture. In addition, biomolecules produced by microalgae can be extracted for several biotechnological applications; however, most studies focus on the production of biofuels, with biodiesel being the main one. There are also other emerging applications that still require more in-depth research, such as the use of biomass as a biofertilizer and biostimulant in the production of bioplastic. Therefore, it is concluded that the cultivation of microalgae in domestic wastewater is a sustainable way to promote effluent bioremediation and produce valuable biomass for the biobased industry, contributing to the development of technology for the green economy.
Collapse
Affiliation(s)
| | - Carlos Yure B Oliveira
- Departamento de Botânica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | | | - Jéssika Lima de Abreu
- Departamento de Pesca e Aquicultura, Universidade Federal Rural de Pernambuco, Recife, Pernambuco, Brazil
| | | | | | - Alfredo Olivera Gálvez
- Departamento de Pesca e Aquicultura, Universidade Federal Rural de Pernambuco, Recife, Pernambuco, Brazil
| |
Collapse
|
23
|
Cazzaniga S, Kim M, Pivato M, Perozeni F, Sardar S, D'Andrea C, Jin E, Ballottari M. Photosystem II monomeric antenna CP26 plays a key role in nonphotochemical quenching in Chlamydomonas. PLANT PHYSIOLOGY 2023; 193:1365-1380. [PMID: 37403662 DOI: 10.1093/plphys/kiad391] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/17/2023] [Accepted: 06/06/2023] [Indexed: 07/06/2023]
Abstract
Thermal dissipation of excess excitation energy, called nonphotochemical quenching (NPQ), is 1 of the main photoprotective mechanisms in oxygenic photosynthetic organisms. Here, we investigated the function of the monomeric photosystem II (PSII) antenna protein CP26 in photoprotection and light harvesting in Chlamydomonas reinhardtii, a model organism for green algae. We used CRISPR/Cas9 genome editing and complementation to generate cp26 knockout mutants (named k6#) that did not negatively affect CP29 accumulation, which differed from previous cp26 mutants, allowing us to compare mutants specifically deprived of CP26, CP29, or both. The absence of CP26 partially affected PSII activity, causing reduced growth at low or medium light but not at high irradiances. However, the main phenotype observed in k6# mutants was a more than 70% reduction of NPQ compared to the wild type (Wt). This phenotype was fully rescued by genetic complementation and complemented strains accumulating different levels of CP26, demonstrating that ∼50% of CP26 content, compared to the Wt, was sufficient to restore the NPQ capacity. Our findings demonstrate a pivotal role for CP26 in NPQ induction, while CP29 is crucial for PSII activity. The genetic engineering of these 2 proteins could be a promising strategy to regulate the photosynthetic efficiency of microalgae under different light regimes.
Collapse
Affiliation(s)
- Stefano Cazzaniga
- Dipartimento di Biotecnologie, Università di Verona, Verona 37134, Italy
| | - Minjae Kim
- Department of Life Science, Research Institute for Natural Sciences, Hanyang University, Seoul 04763, South Korea
| | - Matteo Pivato
- Dipartimento di Biotecnologie, Università di Verona, Verona 37134, Italy
| | - Federico Perozeni
- Dipartimento di Biotecnologie, Università di Verona, Verona 37134, Italy
| | - Samim Sardar
- Istituto Italiano di Tecnologia, Center for Nano Science and Technology, Milano 20134, Italy
| | - Cosimo D'Andrea
- Istituto Italiano di Tecnologia, Center for Nano Science and Technology, Milano 20134, Italy
- Dipartimento di Fisica, Politecnico di Milano, Milano 20133, Italy
| | - EonSeon Jin
- Department of Life Science, Research Institute for Natural Sciences, Hanyang University, Seoul 04763, South Korea
| | - Matteo Ballottari
- Dipartimento di Biotecnologie, Università di Verona, Verona 37134, Italy
| |
Collapse
|
24
|
Liu M, Wang Y, Zhu L, Zhao X. Effects of Haematococcus pluvialis Addition on the Sensory Properties of Plant-Based Meat Analogues. Foods 2023; 12:3435. [PMID: 37761143 PMCID: PMC10528005 DOI: 10.3390/foods12183435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/29/2023] [Accepted: 09/13/2023] [Indexed: 09/29/2023] Open
Abstract
Due to the increase in population and the deficiency of land resources, the cost of raising livestock is gradually increasing. Plant-based meat analogues (PBMAs) are considered excellent substitutes for animal meat. Our research investigated the effect of Haematococcus pluvialis (HP) on gluten-based soybean and wheat PBMA with contents of 1%, 3%, 5%, and 7%. Compared with the control group, HP significantly improved the color of the extrudates, showed visual characteristics similar to red meat, and achieved a soft texture and apparent rheological properties. The 7% HP had negative effects on the organizational degree and viscosity. In addition, the E-nose indicated that the different contents of HP changed the flavor of the extrudates. The extrudates with 3% and 5% HP were most similar to each other among all of the extrudates for volatile compounds, and the extrudates with 1% HP and 7% HP had significantly different flavors compared to the control group. Furthermore, 20 different volatile compounds were compared according to their retention indices and retention areas. The results showed that the proportions of alcohol, ester, terpenes, acid, and furan were increased. When the threshold was referenced, HP was considered to provide PBMAs with grassy and healing grain flavor properties. Therefore, the results proved that the addition of HP can improve PBMAs sensory properties.
Collapse
Affiliation(s)
| | | | | | - Xiangzhong Zhao
- School of Food Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China; (M.L.); (Y.W.); (L.Z.)
| |
Collapse
|
25
|
Cruz JD, Delattre C, Felpeto AB, Pereira H, Pierre G, Morais J, Petit E, Silva J, Azevedo J, Elboutachfaiti R, Maia IB, Dubessay P, Michaud P, Vasconcelos V. Bioprospecting for industrially relevant exopolysaccharide-producing cyanobacteria under Portuguese simulated climate. Sci Rep 2023; 13:13561. [PMID: 37604835 PMCID: PMC10442320 DOI: 10.1038/s41598-023-40542-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 08/12/2023] [Indexed: 08/23/2023] Open
Abstract
Cyanobacterial exopolysaccharides (EPS) are potential candidates for the production of sustainable biopolymers. Although the bioactive and physicochemical properties of cyanobacterial-based EPS are attractive, their commercial exploitation is limited by the high production costs. Bioprospecting and characterizing novel EPS-producing strains for industrially relevant conditions is key to facilitate their implementation in various biotechnological applications and fields. In the present work, we selected twenty-five Portuguese cyanobacterial strains from a diverse taxonomic range (including some genera studied for the first time) to be grown in diel light and temperature, simulating the Portuguese climate conditions, and evaluated their growth performance and proximal composition of macronutrients. Synechocystis and Cyanobium genera, from marine and freshwater origin, were highlighted as fast-growing (0.1-0.2 g L-1 day-1) with distinct biomass composition. Synechocystis sp. LEGE 07367 and Chroococcales cyanobacterium LEGE 19970, showed a production of 0.3 and 0.4 g L-1 of released polysaccharides (RPS). These were found to be glucan-based polymers with high molecular weight and a low number of monosaccharides than usually reported for cyanobacterial EPS. In addition, the absence of known cyanotoxins in these two RPS producers was also confirmed. This work provides the initial steps for the development of cyanobacterial EPS bioprocesses under the Portuguese climate.
Collapse
Affiliation(s)
- José Diogo Cruz
- Faculty of Sciences, University of Porto, Rua do Campo Alegre, 4169-007, Porto, Portugal
- Interdisciplinary Center of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, S/N, 4450-208, Matosinhos, Portugal
| | - Cédric Delattre
- Université Clermont Auvergne, Clermont Auvergne INP, CNRS, Institut Pascal, 63000, Clermont-Ferrand, France
- Institut Universitaire de France (IUF), 75005, Paris, France
| | - Aldo Barreiro Felpeto
- Interdisciplinary Center of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, S/N, 4450-208, Matosinhos, Portugal
| | - Hugo Pereira
- GreenCoLab - Associação Oceano Verde, Universidade do Algarve, Campus de Gambelas, 8005-139, Faro, Portugal
| | - Guillaume Pierre
- Université Clermont Auvergne, Clermont Auvergne INP, CNRS, Institut Pascal, 63000, Clermont-Ferrand, France
| | - João Morais
- Faculty of Sciences, University of Porto, Rua do Campo Alegre, 4169-007, Porto, Portugal
- Interdisciplinary Center of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, S/N, 4450-208, Matosinhos, Portugal
| | - Emmanuel Petit
- UMRT INRAE 1158 BioEcoAgro, BIOlogie des Plantes et Innovation (BIOPI), Université de Picardie Jules Verne, IUT d'Amiens, Avenue des Facultés, Le Bailly, 80025, Amiens, France
| | - Joana Silva
- R&D Department, Allmicroalgae Natural Products S.A, Rua 25 de Abril 19, 2445-287, Pataias, Portugal
| | - Joana Azevedo
- Interdisciplinary Center of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, S/N, 4450-208, Matosinhos, Portugal
| | - Redouan Elboutachfaiti
- UMRT INRAE 1158 BioEcoAgro, BIOlogie des Plantes et Innovation (BIOPI), Université de Picardie Jules Verne, IUT d'Amiens, Avenue des Facultés, Le Bailly, 80025, Amiens, France
| | - Inês B Maia
- CCMAR - Centre of Marine Sciences, University of Algarve, 8005-139, Gambelas, Faro, Portugal
| | - Pascal Dubessay
- Université Clermont Auvergne, Clermont Auvergne INP, CNRS, Institut Pascal, 63000, Clermont-Ferrand, France
| | - Philippe Michaud
- Université Clermont Auvergne, Clermont Auvergne INP, CNRS, Institut Pascal, 63000, Clermont-Ferrand, France
| | - Vitor Vasconcelos
- Faculty of Sciences, University of Porto, Rua do Campo Alegre, 4169-007, Porto, Portugal.
- Interdisciplinary Center of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, S/N, 4450-208, Matosinhos, Portugal.
| |
Collapse
|
26
|
Cecchin M, Simicevic J, Chaput L, Hernandez Gil M, Girolomoni L, Cazzaniga S, Remacle C, Hoeng J, Ivanov NV, Titz B, Ballottari M. Acclimation strategies of the green alga Chlorella vulgaris to different light regimes revealed by physiological and comparative proteomic analyses. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:4540-4558. [PMID: 37155956 DOI: 10.1093/jxb/erad170] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 05/05/2023] [Indexed: 05/10/2023]
Abstract
Acclimation to different light regimes is at the basis of survival for photosynthetic organisms, regardless of their evolutionary origin. Previous research efforts largely focused on acclimation events occurring at the level of the photosynthetic apparatus and often highlighted species-specific mechanisms. Here, we investigated the consequences of acclimation to different irradiances in Chlorella vulgaris, a green alga that is one of the most promising species for industrial application, focusing on both photosynthetic and mitochondrial activities. Moreover, proteomic analysis of cells acclimated to high light (HL) or low light (LL) allowed identification of the main targets of acclimation in terms of differentially expressed proteins. The results obtained demonstrate photosynthetic adaptation to HL versus LL that was only partially consistent with previous findings in Chlamydomonas reinhardtii, a model organism for green algae, but in many cases similar to vascular plant acclimation events. Increased mitochondrial respiration measured in HL-acclimated cells mainly relied on alternative oxidative pathway dissipating the excessive reducing power produced due to enhanced carbon flow. Finally, proteins involved in cell metabolism, intracellular transport, gene expression, and signaling-including a heliorhodopsin homolog-were identified as strongly differentially expressed in HL versus LL, suggesting their key roles in acclimation to different light regimes.
Collapse
Affiliation(s)
- Michela Cecchin
- Dipartimento di Biotecnologie, Università di Verona, Strada Le Grazie 15, 37134 Verona, Italy
| | - Jovan Simicevic
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, 2000 Neuchâtel, Switzerland
| | - Louise Chaput
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, 2000 Neuchâtel, Switzerland
| | - Manuel Hernandez Gil
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, 2000 Neuchâtel, Switzerland
| | - Laura Girolomoni
- Dipartimento di Biotecnologie, Università di Verona, Strada Le Grazie 15, 37134 Verona, Italy
| | - Stefano Cazzaniga
- Dipartimento di Biotecnologie, Università di Verona, Strada Le Grazie 15, 37134 Verona, Italy
| | - Claire Remacle
- Genetics and Physiology of Microalgae, InBios/Phytosystems Research Unit, University of Liège, 4000 Liège, Belgium
| | - Julia Hoeng
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, 2000 Neuchâtel, Switzerland
| | - Nikolai V Ivanov
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, 2000 Neuchâtel, Switzerland
| | - Bjoern Titz
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, 2000 Neuchâtel, Switzerland
| | - Matteo Ballottari
- Dipartimento di Biotecnologie, Università di Verona, Strada Le Grazie 15, 37134 Verona, Italy
| |
Collapse
|
27
|
Wang M, Lu X, Zheng X, Li W, Wang L, Qian Y, Zeng M. Rheological and physicochemical properties of Spirulina platensis residues-based inks for extrusion 3D food printing. Food Res Int 2023; 169:112823. [PMID: 37254399 DOI: 10.1016/j.foodres.2023.112823] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 02/28/2023] [Accepted: 04/11/2023] [Indexed: 06/01/2023]
Abstract
Novel food matrices (such as microalgae, plants, fungi, and microbial proteins) with high protein content and biological value, good amino acid profile, and functionality have been explored. Phycocyanin and active polysaccharides extracted from Spirulina platensis are used as food additives, treatment of colitis, as well as obesity prevention. However, most of the remaining Spirulina platensis residues are mainly used as fish feed at present. 3D food printing is one of the promising development techniques used in the food industry. The aim of this study was to develop a novel 3D printing material of Spirulina platensis residues with shear thinning characteristics, high viscosity and rapid recovery. The effects of moisture content and pretreatment method on the rheological properties of Spirulina platensis residues were clarified. Scanning electron microscopy was used to observe the microstructure and texture profile analysis was used to determine the texture characteristics of Spirulina platensis residues, rheology was used to determine the key 3D printing factors such as viscosity and modulus of Spirulina platensis residues. More importantly, the printing process could be realized under ambient conditions. The development of microalgae residue ink promoted the high-value and comprehensive utilization of microalgae, and also broadened the application of microalgae in the food field.
Collapse
Affiliation(s)
- Mengwei Wang
- College of Food Science and Engineering, Qingdao Engineering Research Center for Preservation Technology of Marine Foods, Ocean University of China, Qingdao, Shandong 266003, China
| | - Xiangning Lu
- Fuqing King Dnarmsa Spirulina Co., Ltd, Fuzhou, Fujian 350300, China
| | - Xing Zheng
- Fuqing King Dnarmsa Spirulina Co., Ltd, Fuzhou, Fujian 350300, China
| | - Wei Li
- College of Food Science and Engineering, Qingdao Engineering Research Center for Preservation Technology of Marine Foods, Ocean University of China, Qingdao, Shandong 266003, China; Sanya Oceanographic Institution, Ocean University of China, Sanya 572000, China
| | - Lijuan Wang
- College of Food Science and Engineering, Qingdao Engineering Research Center for Preservation Technology of Marine Foods, Ocean University of China, Qingdao, Shandong 266003, China; Sanya Oceanographic Institution, Ocean University of China, Sanya 572000, China
| | - Yuemiao Qian
- College of Food Science and Engineering, Qingdao Engineering Research Center for Preservation Technology of Marine Foods, Ocean University of China, Qingdao, Shandong 266003, China; Sanya Oceanographic Institution, Ocean University of China, Sanya 572000, China
| | - Mingyong Zeng
- College of Food Science and Engineering, Qingdao Engineering Research Center for Preservation Technology of Marine Foods, Ocean University of China, Qingdao, Shandong 266003, China.
| |
Collapse
|
28
|
Verspreet J, Kuchendorf CM, Ackermann B, Bastiaens L. The Impact of Nutrient Limitation and Harvest Method on the Wet Preservation of Chlorella vulgaris Biomass. Bioengineering (Basel) 2023; 10:bioengineering10050600. [PMID: 37237670 DOI: 10.3390/bioengineering10050600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/12/2023] [Accepted: 05/13/2023] [Indexed: 05/28/2023] Open
Abstract
The temporary storage of wet algae concentrates enables the decoupling in time of algae harvests and their biorefinery. However, the impact of cultivation and of the harvest conditions on algae quality during preservation is largely unknown. This study aimed to determine the impact of nutrient limitation and of harvest methods on the preservation of Chlorella vulgaris biomass. Algae were either well-fed until harvest or received no nutrients for one week, and were harvested by either batch or continuous centrifugation. The organic acid formation, lipid levels, and lipolysis were monitored. Nutrient limitation had a large impact and resulted in lower pH values (4.9 ± 0.4), high levels of lactic acid and acetic acid, and a slightly higher degree of lipid hydrolysis. Concentrates of well-fed algae had a higher pH (7.4 ± 0.2) and another pattern of fermentation products with mainly acetic acid, succinic acid, and, to a smaller extent, lactic acid and propionic acid. The effect of the harvest method was smaller, with, most often, higher lactic acid and acetic acid levels for algae harvested by continuous centrifugation than for those obtained by batch centrifugation. In conclusion, nutrient limitation, a well-known method to enhance algae lipid levels, can impact several quality attributes of algae during their wet storage.
Collapse
Affiliation(s)
- Joran Verspreet
- Flemish Institute for Technological Research (VITO), Boeretang 200, 2400 Mol, Belgium
| | - Christina M Kuchendorf
- Institute of Bio- and Geosciences, IBG-2, Forschungszentrum Jülich GmbH, Wilhelm-Johnen-Str., 52428 Jülich, Germany
| | - Bärbel Ackermann
- Institute of Bio- and Geosciences, IBG-2, Forschungszentrum Jülich GmbH, Wilhelm-Johnen-Str., 52428 Jülich, Germany
- Stadt Erftstadt, Stabsstelle Klimaschutz, Holzdamm 10, 50374 Erftstadt, Germany
| | - Leen Bastiaens
- Flemish Institute for Technological Research (VITO), Boeretang 200, 2400 Mol, Belgium
| |
Collapse
|
29
|
Liu R, Li Y, Zhou C, Tan M. Pickering emulsions stabilized with a spirulina protein-chitosan complex for astaxanthin delivery. Food Funct 2023; 14:4254-4266. [PMID: 37067860 DOI: 10.1039/d3fo00092c] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
Abstract
Astaxanthin (AXT) is a lipid-soluble carotenoid with good anti-oxidation, hepatic steatosis reduction, anti-inflammation, and intestinal microbiota regulation ability, whose poor stability and pH vulnerability limit its bioavailability. Spirulina protein (SP) derived from spirulina has good emulsifying ability with potential application in nutraceuticals, medicines, and cosmetics. In this study, Pickering emulsions were prepared using a SP-chitosan (CS) complex as an emulsifier. The particle size, zeta potential, and three-phase contact angle of the SP-CS complex with different SP to CS ratios were investigated. A mass ratio of 1 : 2.5 SP-CS complex showed a good emulsifying ability in preparing Pickering emulsion. A higher storage modulus and viscoelasticity were observed with higher SP-CS complex concentrations and oil fractions. The SP-CS Pickering emulsion significantly improved the stability of AXT in different environments. The lipid release rate and AXT bioavailability after digestion of 3 wt% SP-CS complex-stabilized Pickering emulsion reached 70.54 ± 1.59% and 36.60 ± 3.44%, respectively. The results indicated that the SP-CS complex could act as a Pickering emulsion stabilizer and had the potential to deliver protective hydrophobic AXT.
Collapse
Affiliation(s)
- Ronggang Liu
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Qinggongyuan 1, Ganjingzi District, Dalian 116034, Liaoning, China
- State Key Laboratory of Marine Food Processing and Safety Control, Dalian 116034, Liaoning, China
- National Engineering Research Center of Seafood, Dalian 116034, Liaoning, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian 116034, Liaoning, China.
| | - Yu Li
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Qinggongyuan 1, Ganjingzi District, Dalian 116034, Liaoning, China
- State Key Laboratory of Marine Food Processing and Safety Control, Dalian 116034, Liaoning, China
- National Engineering Research Center of Seafood, Dalian 116034, Liaoning, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian 116034, Liaoning, China.
| | - Chengfu Zhou
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Qinggongyuan 1, Ganjingzi District, Dalian 116034, Liaoning, China
- State Key Laboratory of Marine Food Processing and Safety Control, Dalian 116034, Liaoning, China
- National Engineering Research Center of Seafood, Dalian 116034, Liaoning, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian 116034, Liaoning, China.
| | - Mingqian Tan
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Qinggongyuan 1, Ganjingzi District, Dalian 116034, Liaoning, China
- State Key Laboratory of Marine Food Processing and Safety Control, Dalian 116034, Liaoning, China
- National Engineering Research Center of Seafood, Dalian 116034, Liaoning, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian 116034, Liaoning, China.
| |
Collapse
|
30
|
Mhlarhi N, Gitari WM, Ayinde WB, Tavengwa NT, Mudzielwana R, Izevbekhai OU. Biosorption of toxic metal ions (Cr +6, Cd 2+) and nutrients (PO 43-) from aqueous solution by diatom biomass. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2023; 58:483-497. [PMID: 37021346 DOI: 10.1080/10934529.2023.2196929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 03/08/2023] [Accepted: 03/17/2023] [Indexed: 06/19/2023]
Abstract
This paper evaluates diatom biomass as a biosorbent for removing Cr+6, Cd2+, and PO43- ions from water. The diatom was characterized by X-ray Diffraction (XRD), Fourier Transform Infrared (FTIR), and Scanning Electron Microscopy (SEM-EDS) for its crystallinity, functional groups, and morphology. A batch sorption study was conducted to evaluate the parameters influencing Cr+6, Cd2+, and PO43- ions adsorption, and the mechanisms were explored. The FTIR spectra revealed Si-O, O-H, N-H, and C-O as the main functional groups present on the surface of the adsorbent. The SEM showed a rough and irregular-shaped morphology, while the EDS indicated that the diatom biomass is an aluminosilicate material. The rate-limiting steps for Cr+6 and Cd2+ were pseudo-first order, and pseudo-second order sorption favored PO43- based on their R2 values. Moreover, the dominant adsorption model that best described the equilibrium data was the Freundlich isotherm. The maximum adsorption capacities obtained for Cr+6 was 5.66 (mg/g), and Cd2+ was 5.27 (mg/g) at 313 K while PO43- was 19.13 (mg/g) at 298 K. The thermodynamic data revealed that the reaction was endothermic for Cd2+ and exothermic for Cr+6 and PO43-, respectively. Diatom biomass was observed to be a promising bio-sorbent for removing Cr6+, Cd2+ and PO42- from wastewater.
Collapse
Affiliation(s)
- Nsovo Mhlarhi
- Department of Geography and Environmental Sciences, Faculty of Science, Engineering and Agriculture, University of Venda, Thohoyandou, South Africa
- Department of Water and Sanitation, Resource Quality Information Services (RQIS), Roodeplaat, Pretoria, South Africa
| | - Wilson Mugera Gitari
- Department of Geography and Environmental Sciences, Faculty of Science, Engineering and Agriculture, University of Venda, Thohoyandou, South Africa
- School of Chemical Sciences, Technical University of Kenya, Nairobi, Kenya
| | - Wasiu Babatunde Ayinde
- Department of Geography and Environmental Sciences, Faculty of Science, Engineering and Agriculture, University of Venda, Thohoyandou, South Africa
| | - Nikita Tawanda Tavengwa
- Department of Chemistry, Faculty of Science, Engineering and Agriculture, University of Venda, Thohoyandou, South Africa
| | - Rabelani Mudzielwana
- Department of Chemistry, Faculty of Science, Engineering and Agriculture, University of Venda, Thohoyandou, South Africa
| | - Oisaemi Uduagele Izevbekhai
- Department of Chemistry, Faculty of Science, Engineering and Agriculture, University of Venda, Thohoyandou, South Africa
| |
Collapse
|
31
|
Yang S, Fan Y, Cao Y, Wang Y, Mou H, Sun H. Technological readiness of commercial microalgae species for foods. Crit Rev Food Sci Nutr 2023; 64:7993-8017. [PMID: 36999969 DOI: 10.1080/10408398.2023.2194423] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/01/2023]
Abstract
Microalgae have great potential as a future source to meet the increasing global demand for foods. Several microalgae are permitted as safety sources in different countries and regions, and processed as commercial products. However, edible safety, economic feasibility, and acceptable taste are the main challenges for microalgal application in the food industry. Overcome such challenges by developing technology accelerates transition of microalgae into sustainable and nutritious diets. In this review, edible safety of Spirulina, Chlamydomonas reinhardtii, Chlorella, Haematococcus pluvialis, Dunaliella salina, Schizochytrium and Nannochloropsis is introduced, and health benefits of microalgae-derived carotenoids, amino acids, and fatty acids are discussed. Technologies of adaptive laboratory evolution, kinetic model, bioreactor design and genetic engineering are proposed to improve the organoleptic traits and economic feasibility of microalgae. Then, current technologies of decoloration and de-fishy are summarized to provide options for processing. Novel technologies of extrusion cooking, delivery systems, and 3D bioprinting are suggested to improve food quality. The production costs, biomass values, and markets of microalgal products are analyzed to reveal the economic feasibility of microalgal production. Finally, challenges and future perspectives are proposed. Social acceptance is the major limitation of microalgae-derived foods, and further efforts are required toward the improvement of processing technology.
Collapse
Affiliation(s)
- Shufang Yang
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, China
- Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen, China
| | - Yuwei Fan
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Yue Cao
- Nanomaterials and Technology, Beijing Jiao Tong University, Beijing, China
| | - Yuxin Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Haijin Mou
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Han Sun
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, China
- Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen, China
| |
Collapse
|
32
|
Kraseasintra O, Sensupa S, Mahanil K, Yoosathaporn S, Pekkoh J, Srinuanpan S, Pathom-Aree W, Pumas C. Optimization of Melanin Production by Streptomyces antibioticus NRRL B-1701 Using Arthrospira (Spirulina) platensis Residues Hydrolysates as Low-Cost L-tyrosine Supplement. BIOTECH 2023; 12:biotech12010024. [PMID: 36975314 PMCID: PMC10046677 DOI: 10.3390/biotech12010024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/14/2023] [Accepted: 03/17/2023] [Indexed: 03/29/2023] Open
Abstract
Melanin is a functional pigment that is used in various products. It can be produced by Streptomyces antibioticus NRRL B-1701 when supplemented with L-tyrosine. Arthrospira (Spirulina) platensis is a cyanobacterium with high protein content, including the protein phycocyanin (PC). During PC's extraction, biomass residues are generated, and these residues still contain various amino acids, especially L-tyrosine, which can be used as a low-cost supplement for melanin production. Thus, this study employed a hydrolysate of A. platensis biomass residue for L-tyrosine substitution. The effects of two drying methods, namely, lyophilization and dying via a hot air oven, on the proximate composition and content of L-tyrosine in the biomass residue were evaluated. The highest L-tyrosine (0.268 g L-tyrosine/100 g dried biomass) concentration was obtained from a hot-air-oven-dried biomass residue hydrolysate (HAO-DBRH). The HAO-DBRH was then used as a low-cost L-tyrosine supplement for maximizing melanin production, which was optimized by the response surface methodology (RSM) through central composite design (CCD). Using the RSM-CCD, the maximum level of melanin production achieved was 0.24 g/L, which is approximately four times higher than it was before optimization. This result suggests that A. platensis residue hydrolysate could be an economically feasible and low-cost alternative source of L-tyrosine for the production of melanin.
Collapse
Affiliation(s)
- Oranit Kraseasintra
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
- Doctor of Philosophy Program in Applied Microbiology (International Program) in Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Sritip Sensupa
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Kanjana Mahanil
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Sada Yoosathaporn
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Jeeraporn Pekkoh
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
- Environmental Science Research Centre, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
- Research Center of Microbial Diversity and Sustainable Utilization, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Sirasit Srinuanpan
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
- Research Center of Microbial Diversity and Sustainable Utilization, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Wasu Pathom-Aree
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
- Research Center of Microbial Diversity and Sustainable Utilization, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Chayakorn Pumas
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
- Environmental Science Research Centre, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
- Research Center in Bioresources for Agriculture, Industry and Medicine, Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
33
|
Microalgae play a structuring role in food: Effect of spirulina platensis on the rheological, gelling characteristics, and mechanical properties of soy protein isolate hydrogel. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2022.108244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
34
|
Tzima S, Georgiopoulou I, Louli V, Magoulas K. Recent Advances in Supercritical CO 2 Extraction of Pigments, Lipids and Bioactive Compounds from Microalgae. Molecules 2023; 28:molecules28031410. [PMID: 36771076 PMCID: PMC9920624 DOI: 10.3390/molecules28031410] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/19/2023] [Accepted: 01/26/2023] [Indexed: 02/05/2023] Open
Abstract
Supercritical CO2 extraction is a green method that combines economic and environmental benefits. Microalgae, on the other hand, is a biomass in abundance, capable of providing a vast variety of valuable compounds, finding applications in the food industry, cosmetics, pharmaceuticals and biofuels. An extensive study on the existing literature concerning supercritical fluid extraction (SFE) of microalgae has been carried out focusing on carotenoids, chlorophylls, lipids and fatty acids recovery, as well as the bioactivity of the extracts. Moreover, kinetic models used to describe SFE process and experimental design are included. Finally, biomass pretreatment processes applied prior to SFE are mentioned, and other extraction methods used as benchmarks are also presented.
Collapse
|
35
|
Couto D, Conde TA, Melo T, Neves B, Costa M, Silva J, Domingues R, Domingues P. The chemodiversity of polar lipidomes of microalgae from different taxa. ALGAL RES 2023. [DOI: 10.1016/j.algal.2023.103006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
|
36
|
Yin Z, Wang M, Zeng M. Novel Pickering emulsion stabilized by natural fiber polysaccharide-protein extracted from Haematococcus pluvialis residues. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2022.108048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
37
|
Pickering high internal phase emulsions with excellent UV protection property stabilized by Spirulina protein isolate nanoparticles. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.108369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
38
|
Chanquia SN, Vernet G, Kara S. Photobioreactors for cultivation and synthesis: Specifications, challenges, and perspectives. Eng Life Sci 2022; 22:712-724. [PMID: 36514531 PMCID: PMC9731602 DOI: 10.1002/elsc.202100070] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 09/06/2021] [Accepted: 09/10/2021] [Indexed: 12/16/2022] Open
Abstract
Due to their versatility and the high biomass yield produced, cultivation of phototrophic organisms is an increasingly important field. In general, open ponds are chosen to do it because of economic reasons; however, this strategy has several drawbacks such as poor control of culture conditions and a considerable risk of contamination. On the other hand, photobioreactors are an attractive choice to perform cultivation of phototrophic organisms, many times in a large scale and an efficient way. Furthermore, photobioreactors are being increasingly used in bioprocesses to obtain valuable chemical products. In this review, we briefly describe different photobioreactor set-ups, including some of the recent designs, and their characteristics. Additionally, we discuss the current challenges and advantages that each different type of photobioreactor presents, their applicability in biocatalysis and some modern modeling tools that can be applied to further enhance a certain process.
Collapse
Affiliation(s)
- Santiago N. Chanquia
- Biocatalysis and Bioprocessing GroupDepartment of Biological and Chemical EngineeringAarhus UniversityAarhusDenmark
| | - Guillem Vernet
- Biocatalysis and Bioprocessing GroupDepartment of Biological and Chemical EngineeringAarhus UniversityAarhusDenmark
| | - Selin Kara
- Biocatalysis and Bioprocessing GroupDepartment of Biological and Chemical EngineeringAarhus UniversityAarhusDenmark
| |
Collapse
|
39
|
Quantification of extracellular and biomass carbohydrates by Arthrospira under nitrogen starvation at lab-scale. ALGAL RES 2022. [DOI: 10.1016/j.algal.2022.102907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
40
|
Wang M, Yin Z, Zeng M. Construction of 3D printable Pickering emulsion gels using complexes of fiber polysaccharide-protein extracted from Haematococcus pluvialis residues and gelatin for fat replacer. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.108350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
41
|
Syed MA, Hanif S, Ain NU, Syed HK, Zahoor AF, Khan IU, Abualsunun WA, Jali AM, Qahl SH, Sultan MH, Madkhali OA, Ahmed RA, Abbas N, Hussain A, Qayyum MA, Irfan M. Assessment of Binary Agarose-Carbopol Buccal Gels for Mucoadhesive Drug Delivery: Ex Vivo and In Vivo Characterization. Molecules 2022; 27:7004. [PMID: 36296596 PMCID: PMC9608223 DOI: 10.3390/molecules27207004] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 10/11/2022] [Accepted: 10/14/2022] [Indexed: 07/30/2023] Open
Abstract
Agarose (AG) is a naturally occurring biocompatible marine seaweed extract that is converted to hydrocolloid gel in hot water with notable gel strength. Currently, its mucoadhesion properties have not been fully explored. Therefore, the main aim of this study was to evaluate the mucoadhesive potential of AG binary dispersions in combination with Carbopol 934P (CP) as mucoadhesive gel preparations. The gels fabricated via homogenization were evaluated for ex vivo mucoadhesion, swelling index (SI), dissolution and stability studies. The mucoadhesive properties of AG were concentration dependent and it was improved by the addition of CP. Maximum mucoadhesive strength (MS) (27.03 g), mucoadhesive flow time (FT) (192.2 min), mucoadhesive time in volunteers (MT) (203.2 min) and SI (23.6% at 4 h) were observed with formulation F9. The mucoadhesive time investigated in volunteers (MT) was influenced by AG concentration and was greater than corresponding FT values. Formulations containing 0.3%, w/v AG (F3 and F9) were able to sustain the release (~99%) for both drugs till 3 h. The optimized formulation (F9) did not evoke any inflammation, irritation or pain in the buccal cavity of healthy volunteers and was also stable up to 6 months. Therefore, AG could be considered a natural and potential polymer with profound mucoadhesive properties to deliver drugs through the mucosal route.
Collapse
Affiliation(s)
- Muhammad Ali Syed
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad 38000, Pakistan or
- Faculty of Pharmacy, The University of Lahore, Lahore 54590, Pakistan or
| | - Sana Hanif
- Faculty of Pharmacy, The University of Lahore, Lahore 54590, Pakistan or
| | - Noor ul Ain
- Department of Medicine, Fatima Jinnah Medical University Lahore, Lahore 54000, Pakistan
| | - Haroon Khalid Syed
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad 38000, Pakistan or
| | - Ameer Fawad Zahoor
- Department of Chemistry, Government College University Faisalabad, Faisalabad 54590, Pakistan
| | - Ikram Ullah Khan
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad 38000, Pakistan or
| | - Walaa A. Abualsunun
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Abdulmajeed M. Jali
- Department of Pharmacology and Toxicology, College of Pharmacy, Jazan University, P.O. Box 114, Jazan 45142, Saudi Arabia
| | - Safa H. Qahl
- Department of Biology, College of Science, University of Jeddah, P.O. Box 80327, Jeddah 21589, Saudi Arabia
| | - Muhammad H. Sultan
- Department of Pharmaceutics, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| | - Osama A. Madkhali
- Department of Pharmaceutics, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| | - Rayan A. Ahmed
- Department of Pharmacology and Toxicology, College of Pharmacy, Jazan University, P.O. Box 114, Jazan 45142, Saudi Arabia
| | - Nasir Abbas
- University College of Pharmacy, University of The Punjab, Lahore 38000, Pakistan
| | - Amjad Hussain
- University College of Pharmacy, University of The Punjab, Lahore 38000, Pakistan
| | - Muhammad Abdul Qayyum
- Department of Chemistry, Division of Science & Technology, University of Education, Lahore 5600, Pakistan
| | - Muhammad Irfan
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad 38000, Pakistan or
| |
Collapse
|
42
|
Caetano PA, do Nascimento TC, Fernandes AS, Nass PP, Vieira KR, Maróstica Junior MR, Jacob-Lopes E, Zepka LQ. Microalgae-based polysaccharides: Insights on production, applications, analysis, and future challenges. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2022. [DOI: 10.1016/j.bcab.2022.102491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
43
|
Microalgae as a promising structure ingredient in food: Obtained by simple thermal and high-speed shearing homogenization. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107743] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
44
|
Li S, Lin S, Jiang P, Bao Z, Li S, Sun N. Insight into the Gel Properties of Antarctic Krill and Pacific White Shrimp Surimi Gels and the Feasibility of Polysaccharides as Texture Enhancers of Antarctic Krill Surimi Gels. Foods 2022; 11:foods11162517. [PMID: 36010517 PMCID: PMC9407480 DOI: 10.3390/foods11162517] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/17/2022] [Accepted: 08/17/2022] [Indexed: 11/16/2022] Open
Abstract
Antarctic krill is a potential and attractive resource for consumption. However, most Antarctic krill meat is used to produce primary products with low commercial value, with few highly processed products. This study aimed to evaluate and improve the gelling properties of Antarctic krill surimi, with Pacific white shrimp surimi as control. Compared with Pacific white shrimp surimi, the lower β-sheet content and protein aggregation degree had a severe impact on the formation of the gel network of Antarctic krill surimi, which resulted in weaker breaking force, gel strength, and viscoelasticity (p < 0.05). Moreover, water retention capacity and molecular forces had a positive effect on the stability of the gel matrix of shrimp surimi. Thus, the high α-helix/β-sheet ratio, weak intermolecular interactions, and low level of protein network cross-linkage were the main reasons for the poor quality of Antarctic krill surimi. On this basis, the effects of six polysaccharides on the texture properties of Antarctic krill surimi were studied. Chitosan, konjac glucomannan, sodium carboxyl methyl cellulose, and waxy maize starch resulted in no significant improvement in the texture properties of Antarctic krill surimi (p > 0.05). However, the addition of ι-carrageenan (2%) or κ-carrageenan (1~2%) is an effective way to improve the texture properties of Antarctic krill surimi (p < 0.05). These findings will contribute to the development of reconstituted Antarctic krill surimi products with high nutritional quality and the promotion of deep-processing products of Antarctic krill meat.
Collapse
Affiliation(s)
- Shuang Li
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Songyi Lin
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Pengfei Jiang
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Zhijie Bao
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Sibo Li
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Na Sun
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
- Correspondence: ; Tel.: +86-411-86318753; Fax: +86-411-86318655
| |
Collapse
|
45
|
Hassoun A, Cropotova J, Trif M, Rusu AV, Bobiş O, Nayik GA, Jagdale YD, Saeed F, Afzaal M, Mostashari P, Khaneghah AM, Regenstein JM. Consumer acceptance of new food trends resulting from the fourth industrial revolution technologies: A narrative review of literature and future perspectives. Front Nutr 2022; 9:972154. [PMID: 36034919 PMCID: PMC9399420 DOI: 10.3389/fnut.2022.972154] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 07/15/2022] [Indexed: 12/11/2022] Open
Abstract
The growing consumer awareness of climate change and the resulting food sustainability issues have led to an increasing adoption of several emerging food trends. Some of these trends have been strengthened by the emergence of the fourth industrial revolution (or Industry 4.0), and its innovations and technologies that have fundamentally reshaped and transformed current strategies and prospects for food production and consumption patterns. In this review a general overview of the industrial revolutions through a food perspective will be provided. Then, the current knowledge base regarding consumer acceptance of eight traditional animal-proteins alternatives (e.g., plant-based foods and insects) and more recent trends (e.g., cell-cultured meat and 3D-printed foods) will be updated. A special focus will be given to the impact of digital technologies and other food Industry 4.0 innovations on the shift toward greener, healthier, and more sustainable diets. Emerging food trends have promising potential to promote nutritious and sustainable alternatives to animal-based products. This literature narrative review showed that plant-based foods are the largest portion of alternative proteins but intensive research is being done with other sources (notably the insects and cell-cultured animal products). Recent technological advances are likely to have significant roles in enhancing sensory and nutritional properties, improving consumer perception of these emerging foods. Thus, consumer acceptance and consumption of new foods are predicted to continue growing, although more effort should be made to make these food products more convenient, nutritious, and affordable, and to market them to consumers positively emphasizing their safety and benefits.
Collapse
Affiliation(s)
- Abdo Hassoun
- Sustainable AgriFoodtech Innovation and Research (SAFIR), Arras, France
- Syrian Academic Expertise (SAE), Gaziantep, Turkey
| | - Janna Cropotova
- Department of Biological Sciences Ålesund, Norwegian University of Science and Technology, Ålesund, Norway
| | - Monica Trif
- Department of Food Research, Centre for Innovative Process Engineering (CENTIV) GmbH, Syke, Germany
| | - Alexandru Vasile Rusu
- Life Science Institute, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Cluj-Napoca, Romania
- Genetics and Genetic Engineering, Faculty of Animal Science and Biotechnology, University of Animal Sciences and Veterinary Medicine Cluj-Napoca, Cluj-Napoca, Romania
| | - Otilia Bobiş
- Animal Science and Biotechnology Faculty, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Cluj-Napoca, Romania
| | - Gulzar Ahmad Nayik
- Department of Food Science and Technology, Government Degree College, Shopian, India
| | - Yash D. Jagdale
- MIT School of Food Technology, MIT ADT University, Pune, India
| | - Farhan Saeed
- Department of Food Sciences, Government College University Faisalabad, Faisalabad, Pakistan
| | - Muhammad Afzaal
- Department of Food Sciences, Government College University Faisalabad, Faisalabad, Pakistan
| | - Parisa Mostashari
- Department of Food Science and Technology, Faculty of Nutrition Sciences and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amin Mousavi Khaneghah
- Department of Fruit and Vegetable Product Technology, Prof. Wacław Dabrowski Institute of Agricultural and Food Biotechnology – State Research Institute, Warsaw, Poland
| | - Joe M. Regenstein
- Department of Food Science, Cornell University, Ithaca, NY, United States
| |
Collapse
|
46
|
Yang Y, Ge S, Chen Q, Lin S, Zeng S, Tan BK, Hu J. Chlorella unsaturated fatty acids suppress high-fat diet-induced obesity in C57/BL6J mice. J Food Sci 2022; 87:3644-3658. [PMID: 35822300 DOI: 10.1111/1750-3841.16246] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 06/06/2022] [Accepted: 06/14/2022] [Indexed: 11/27/2022]
Abstract
Chlorella has been identified as a rich source of unsaturated fatty acids. Since the antiobesity effects of unsaturated fatty acids have been well documented; therefore, we explored the antiobesity actions of chlorella unsaturated fatty acids (C.UFAs) in the current study. The obtained results demonstrated C.UFAs, which contain abundant linoleic acid, could retard body weight gain (reducing body weigh by 13.93% after 16 weeks of treatment), improve blood glucose (19.29% lower) and lipid profile (23.45% lower in TG, 8.76% lower in TC) compared to high-fat diet-fed C57BL/6J mice. The possible underlying mechanisms might involve reducing hepatic lipid accumulation via down-regulation of lipogenic genes (PPARγ, C/EBPα, LPL, aP2, FAS, and SREBP-1c) and up-regulation of lipolytic gene (adiponectin). We also demonstrate C.UFAs could reduce HFD-induced adipocyte hypertrophy via activation of AMPK signaling pathway in adipose tissue and liver. In summary, our study highlights the potential of C.UFAs as a functional food for obesity management. PRACTICAL APPLICATION: Chlorella has already been commercialized as a functional food antiobesity function. In the current study, the unsaturated fatty acids isolated from chlorella were found to exert beneficial effects on hyperglycemia, hyperlipidemia, hepatic steatosis, and adipocyte hypertrophy in high-fat diet-fed mice. This may provide theoretical foundation for developing novel chlorella-based functional foods.
Collapse
Affiliation(s)
- Yang Yang
- Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou, China
| | - Shenhan Ge
- Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou, China
| | - Qingyan Chen
- Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou, China
| | - Shaoling Lin
- Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou, China.,College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Shaoxiao Zeng
- Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou, China
| | - Bee K Tan
- Department of Cardiovascular Sciences and Diabetes Research Centre, University of Leicester, Leicester, UK
| | - Jiamiao Hu
- Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou, China
| |
Collapse
|
47
|
Li Z, Liu Y, Zhou T, Cao L, Cai Y, Wang Y, Cui X, Yan H, Ruan R, Zhang Q. Effects of Culture Conditions on the Performance of Arthrospira platensis and Its Production of Exopolysaccharides. Foods 2022; 11:foods11142020. [PMID: 35885263 PMCID: PMC9316341 DOI: 10.3390/foods11142020] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/16/2022] [Accepted: 06/30/2022] [Indexed: 12/10/2022] Open
Abstract
Exopolysaccharides (EPS) produced by Arthrospira platensis (A. platensis) has been widely applied in industry and commerce for its various activities but the accumulation of EPS in culture medium may influence the growth of A. platensis reversely. This work aims to explore the impacts of initial pH, nitrogen source and concentration, phosphate concentration and recycle times of the culture medium on the growth of A. platensis and the secretion of its EPS. The results showed that EPS accumulated with the increase in recycle times of culture medium. The optimal initial pH for the growth of A. platensis was 8.50, and high pH of 11.5 inhibited the growth of biomass while resulting in highest EPS content of 92.87 mg/g DW. Excessive and limited nitrogen (NaNO3 of 25.00 g/L and NaNO3 < 2.50 g/L) and phosphate (K2HPO4 of 5.00 g/L and K2HPO4 < 0.50 g/L) inhibited the biomass production of A. platensis by 1.28−30.77% and 14.29−45.05%, respectively. EPS yield of 97.57 mg/g DW and 40.90 mg/g DW were obtained under NaNO3 of 25.00 g/L and K2HPO4 of 5.00 g/L due to salt stress. These findings are beneficial in providing a theoretical basis for high yield EPS from A. platensis without affecting biomass yield.
Collapse
Affiliation(s)
- Zihan Li
- State Key Laboratory of Food Science and Technology, Engineering Research Center for Biomass Conversion, Ministry of Education, College of Food Science and Technology, Nanchang University, Nanchang 330047, China; (Z.L.); (Y.L.); (L.C.); (Y.C.); (Y.W.); (X.C.); (H.Y.)
| | - Yuhuan Liu
- State Key Laboratory of Food Science and Technology, Engineering Research Center for Biomass Conversion, Ministry of Education, College of Food Science and Technology, Nanchang University, Nanchang 330047, China; (Z.L.); (Y.L.); (L.C.); (Y.C.); (Y.W.); (X.C.); (H.Y.)
| | - Ting Zhou
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW 2007, Australia;
| | - Leipeng Cao
- State Key Laboratory of Food Science and Technology, Engineering Research Center for Biomass Conversion, Ministry of Education, College of Food Science and Technology, Nanchang University, Nanchang 330047, China; (Z.L.); (Y.L.); (L.C.); (Y.C.); (Y.W.); (X.C.); (H.Y.)
| | - Yihui Cai
- State Key Laboratory of Food Science and Technology, Engineering Research Center for Biomass Conversion, Ministry of Education, College of Food Science and Technology, Nanchang University, Nanchang 330047, China; (Z.L.); (Y.L.); (L.C.); (Y.C.); (Y.W.); (X.C.); (H.Y.)
| | - Yunpu Wang
- State Key Laboratory of Food Science and Technology, Engineering Research Center for Biomass Conversion, Ministry of Education, College of Food Science and Technology, Nanchang University, Nanchang 330047, China; (Z.L.); (Y.L.); (L.C.); (Y.C.); (Y.W.); (X.C.); (H.Y.)
| | - Xian Cui
- State Key Laboratory of Food Science and Technology, Engineering Research Center for Biomass Conversion, Ministry of Education, College of Food Science and Technology, Nanchang University, Nanchang 330047, China; (Z.L.); (Y.L.); (L.C.); (Y.C.); (Y.W.); (X.C.); (H.Y.)
| | - Hongbin Yan
- State Key Laboratory of Food Science and Technology, Engineering Research Center for Biomass Conversion, Ministry of Education, College of Food Science and Technology, Nanchang University, Nanchang 330047, China; (Z.L.); (Y.L.); (L.C.); (Y.C.); (Y.W.); (X.C.); (H.Y.)
| | - Roger Ruan
- Center for Biorefining, Department of Bioproducts and Biosystems Engineering and Department of Food Science and Nutrition, University of Minnesota, Saint Paul, MN 55108, USA;
| | - Qi Zhang
- State Key Laboratory of Food Science and Technology, Engineering Research Center for Biomass Conversion, Ministry of Education, College of Food Science and Technology, Nanchang University, Nanchang 330047, China; (Z.L.); (Y.L.); (L.C.); (Y.C.); (Y.W.); (X.C.); (H.Y.)
- Correspondence: ; Tel.: +86-18070118735
| |
Collapse
|
48
|
Gohara-Beirigo AK, Matsudo MC, Cezare-Gomes EA, Carvalho JCMD, Danesi EDG. Microalgae trends toward functional staple food incorporation: Sustainable alternative for human health improvement. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.04.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
49
|
Chen C, Tang T, Shi Q, Zhou Z, Fan J. The potential and challenge of microalgae as promising future food sources. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.06.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
50
|
Kubar AA, Ali A, Kumar S, Huo S, Ullah MW, Alabbosh KFS, Ikram M, Cheng J. Dynamic Foam Characteristics during Cultivation of Arthrospira platensis. Bioengineering (Basel) 2022; 9:bioengineering9060257. [PMID: 35735500 PMCID: PMC9220301 DOI: 10.3390/bioengineering9060257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 05/29/2022] [Accepted: 06/09/2022] [Indexed: 11/16/2022] Open
Abstract
This study is aimed at understanding the serious foaming problems during microalgal cultivation in industrial raceway ponds by studying the dynamic foam properties in Arthrospira platensis cultivation. A. platensis was cultivated in a 4 L bowl bioreactor for 4 days, during which the foam height above the algal solution increased from 0 to 30 mm with a bubble diameter of 1.8 mm, and biomass yield reached 1.5 g/L. The algal solution surface tension decreased from 55 to 45 mN/m, which favored the adsorption of microalgae on the bubble to generate more stable foams. This resulted in increased foam stability (FS) from 1 to 10 s, foam capacity (FC) from 0.3 to 1.2, foam expansion (FE) from 15 to 43, and foam maximum density (FMD) from 0.02 to 0.07. These results show a decrease in CO2 flow rate and operation temperature when using the Foamscan instrument, which minimized the foaming phenomenon in algal solutions to a significantly lower and acceptable level.
Collapse
Affiliation(s)
- Ameer Ali Kubar
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China;
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China;
| | - Amjad Ali
- Research School of Polymeric Materials, School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, China;
| | - Santosh Kumar
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China;
| | - Shuhao Huo
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China;
- Correspondence: (S.H.); (J.C.)
| | - Muhammad Wajid Ullah
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China;
| | | | - Muhammad Ikram
- Department of Pharmacy, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22060, Pakistan;
| | - Jun Cheng
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China;
- Correspondence: (S.H.); (J.C.)
| |
Collapse
|