1
|
Li B, Luo M, Liu X, Shi W, Qi J, Zhou S, Wang G. The Spodoptera frugiperda L-aminoacylase degrades fatty acid-amino acid conjugates and promotes larvae growth on Zea mays. Commun Biol 2025; 8:641. [PMID: 40263587 PMCID: PMC12015422 DOI: 10.1038/s42003-025-08048-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 04/07/2025] [Indexed: 04/24/2025] Open
Abstract
Oral secretions (OS) contain diverse functional molecules that play important roles in the molecular interactions between insect herbivores and their host plants. Components of OS have been hypothesized to facilitate adaptation of specialized herbivores towards their preferred hosts. In this study, we identified an L-aminoacylase-encoding gene, SfruACY, that was preferentially up-regulated in the salivary glands of Spodoptera frugiderpa larvae when feeding on maize leaves compared to artificial diet. The protein product was confirmed to catalyze the in vitro degradation of fatty acid-amino acid conjugates (FACs), the classic plant defense elicitors commonly found in the OS of lepidopteran caterpillars. Generation of a homozygous SfruACY knock-out line with the CRISPR-Cas9 technology further revealed that the activity of this gene could promote the growth of S. frugiperda larvae on maize leaves but was not required for larvae growth on artificial diet. Finally, comparative transcriptomic analyses of maize leaves showed more pronounced inducible defense responses when attacked by the SfruACY knocked-out larvae than the wildtype intruders. These experimental evidences support that the inducible expression of SfruACY by maize leaf diet in the salivary glands of S. frugiperda larvae can lower the FAC contents in their OS, and hence facilitate larvae growth likely by inducing weaker plant defense responses. Our findings provide a mechanistic explanation for a longstanding observation that S. frugiperda larvae induce weaker plant defense responses, and shed light on transcriptional regulation as a potential mean for insect herbivores to adapt towards their preferred host plant species.
Collapse
Affiliation(s)
- Bin Li
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong, China
- Key Laboratory of Pest Monitoring and Green Management, Ministry of Agriculture and Rural Affairs, Department of Entomology, China Agricultural University, Beijing, China
| | - Mei Luo
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong, China
| | - Xiaofeng Liu
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong, China
- Faculty of Health Sciences, University of Macau, Macau, SAR, China
| | - Wangpeng Shi
- Key Laboratory of Pest Monitoring and Green Management, Ministry of Agriculture and Rural Affairs, Department of Entomology, China Agricultural University, Beijing, China
| | - Jinfeng Qi
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Shaoqun Zhou
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong, China.
| | - Guirong Wang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong, China.
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China.
| |
Collapse
|
2
|
Nasfi S, Shahbazi S, Bitterlich K, Šečić E, Kogel KH, Steinbrenner J. A pipeline for validation of Serendipita indica effector-like sRNA suggests cross-kingdom communication in the symbiosis with Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2025; 76:1811-1829. [PMID: 39721982 PMCID: PMC11981902 DOI: 10.1093/jxb/erae515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 12/19/2024] [Indexed: 12/28/2024]
Abstract
Bidirectional communication between pathogenic microbes and their plant hosts via small RNA (sRNA)-mediated cross-kingdom RNAi (ckRNAi) is a key element for successful host colonization. Whether mutualistic fungi of the Serendipitaceae family, known for their extremely broad host range, use sRNAs to colonize plant roots is still under debate. To address this question, we developed a pipeline to validate the accumulation, translocation, and activity of fungal sRNAs in post-transcriptional silencing of Arabidopsis thaliana genes. Using stem-loop quantitative reverse transcription-PCR, we detected the expression of a specific set of Serendipita indica (Si) sRNAs, targeting host genes involved in cell wall organization, hormonal signalling regulation, immunity, and gene regulation. To confirm the gene silencing activity of these sRNAs in plant cells, SisRNAs were transiently expressed in protoplasts. Stem-loop PCR confirmed sRNA expression and accumulation, while qPCR validated post-transcriptional gene silencing of their predicted target genes. Furthermore, Arabidopsis ARGONAUTE 1 immunoprecipitation revealed the loading of fungal SisRNAs into the plant RNAi machinery, suggesting the translocation of SisRNA from the fungus into root cells. In conclusion, this study provides a blueprint for rapid selection and analysis of sRNA effectors and further supports the model of cross-kingdom communication in the Sebacinoid symbiosis.
Collapse
Affiliation(s)
- Sabrine Nasfi
- Institute of Phytopathology, Research Centre for BioSystems, Land Use and Nutrition, Justus-Liebig-University Giessen, Heinrich-Buff-Ring 26, D-35392 Giessen, Germany
| | - Saba Shahbazi
- Institute of Phytopathology, Research Centre for BioSystems, Land Use and Nutrition, Justus-Liebig-University Giessen, Heinrich-Buff-Ring 26, D-35392 Giessen, Germany
| | - Katharina Bitterlich
- Institute of Phytopathology, Research Centre for BioSystems, Land Use and Nutrition, Justus-Liebig-University Giessen, Heinrich-Buff-Ring 26, D-35392 Giessen, Germany
| | - Ena Šečić
- Institute of Phytopathology, Research Centre for BioSystems, Land Use and Nutrition, Justus-Liebig-University Giessen, Heinrich-Buff-Ring 26, D-35392 Giessen, Germany
| | - Karl-Heinz Kogel
- Institute of Phytopathology, Research Centre for BioSystems, Land Use and Nutrition, Justus-Liebig-University Giessen, Heinrich-Buff-Ring 26, D-35392 Giessen, Germany
- Institut de Biologie Moléculaire des Plantes, CNRS, Université de Strasbourg, 12 rue du Général Zimmer, 67084 Strasbourg, France
| | - Jens Steinbrenner
- Institute of Phytopathology, Research Centre for BioSystems, Land Use and Nutrition, Justus-Liebig-University Giessen, Heinrich-Buff-Ring 26, D-35392 Giessen, Germany
| |
Collapse
|
3
|
Feng X, Shi Y, Sun Z, Li L, Imran M, Zhang G, Zhang G, Li C. Control of Fusarium graminearum Infection in Wheat by dsRNA-Based Spray-Induced Gene Silencing. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025. [PMID: 40179250 DOI: 10.1021/acs.jafc.4c12665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/05/2025]
Abstract
Spray-induced gene silencing (SIGS) has become a new technology for pest and disease control in plants. This study synthesized three double-strand RNAs (dsRNAs) targeting Fusarium graminearum (F. graminearum), the major pathogen causing Fusarium head blight (FHB). Co-incubation showed weak uptake of dsRNA by F. graminearum, and some dsRNAs influence spore germination and hyphae growth. In contrast, exogenous dsRNA quickly and efficiently penetrates wheat leaves. Treatment of wheat leaves and detached wheat heads with these dsRNAs has a negative effect on the pathogenicity of F. graminearum. Foliar spraying of dsCHS3b or dsMGV1 decreased the amount of artificially inoculated F. graminearum, the incidence rate, and disease severity in the field. Under natural conditions, spraying dsRNAs significantly decreased the FHB disease index and deoxynivalenol content. Twice spray achieved more than 90% control of FHB. In conclusion, SIGS effectively prevents the infection of F. graminearum in wheat, providing a green way for FHB control.
Collapse
Affiliation(s)
- Xianyang Feng
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Yini Shi
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Zhongke Sun
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Linyan Li
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Mahammad Imran
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Gaoyang Zhang
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Guoyan Zhang
- Plant Protection and Quarantine Station of Henan Province, Zhengzhou 450002, China
| | - Chengwei Li
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
- College of Life Science, Henan Agriculture University, Zhengzhou 450046, China
| |
Collapse
|
4
|
Diaz C, Ayobahan SU, Simon S, Zühl L, Schiermeyer A, Eilebrecht E, Eilebrecht S. Classification of and detection techniques for RNAi-induced effects in GM plants. FRONTIERS IN PLANT SCIENCE 2025; 16:1535384. [PMID: 40123947 PMCID: PMC11925957 DOI: 10.3389/fpls.2025.1535384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Accepted: 02/08/2025] [Indexed: 03/25/2025]
Abstract
RNA interference (RNAi) is a biotechnological tool used for gene silencing in plants, with both endogenous and exogenous applications. Endogenous approaches, such as host-induced gene silencing (HIGS), involve genetically modified (GM) plants, while exogenous methods include spray-induced gene silencing (SIGS). The RNAi mechanism hinges on the introduction of double-stranded RNA (dsRNA), which is processed into short interfering RNAs (siRNAs) that degrade specific messenger RNAs (mRNAs). However, unintended effects on non-target organisms and GM plants are a concern due to sequence homologies or siRNA-induced epigenetic changes. Regulatory bodies such as the EPA and EFSA emphasize the need for comprehensive risk assessments. Detecting unintended effects is complex, often relying on bioinformatic tools and untargeted analyses like transcriptomics and metabolomics, though these methods require extensive genomic data. This review aims to classify mechanisms of RNAi effects induced by short interfering RNA from different sources in plants and to identify technologies that can be used to detect these effects. In addition, practical case studies are summarized and discussed in which previously unintended RNAi effects in genetically modified plants have been investigated. Current literature is limited but suggests RNAi is relatively specific, with few unintended effects observed in GM crops. However, further studies are needed to fully understand and mitigate potential risks, particularly those related to transcriptional gene silencing (TGS) mechanisms, which are less predictable than post-transcriptional gene silencing (PTGS). Particularly the application of untargeted approaches such as small RNA sequencing and transcriptomics is recommended for thorough and comprehensive risk assessments.
Collapse
Affiliation(s)
- Cecilia Diaz
- Department Ecotoxicology, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Schmallenberg, Germany
| | - Steve U. Ayobahan
- Department Ecotoxicogenomics, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Schmallenberg, Germany
| | - Samson Simon
- Division I 3.2 Synthetic Biology Assessment, Enforcement of Genetic Engineering Act, Federal Agency for Nature Conservation (BfN), Bonn, Germany
| | - Luise Zühl
- Division I 3.2 Synthetic Biology Assessment, Enforcement of Genetic Engineering Act, Federal Agency for Nature Conservation (BfN), Bonn, Germany
| | - Andreas Schiermeyer
- Department Plant Sciences & Bio-Hybrids, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Aachen, Germany
| | - Elke Eilebrecht
- Department Ecotoxicology, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Schmallenberg, Germany
| | - Sebastian Eilebrecht
- Department Ecotoxicogenomics, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Schmallenberg, Germany
| |
Collapse
|
5
|
Panozzo S, Milani A, Bordignon S, Scarabel L, Varotto S. RNAi technology development for weed control: all smoke and no fire? PEST MANAGEMENT SCIENCE 2025. [PMID: 39980431 DOI: 10.1002/ps.8729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 01/29/2025] [Accepted: 02/06/2025] [Indexed: 02/22/2025]
Abstract
RNA interference (RNAi) technology, specifically Spray-Induced Gene Silencing (SIGS), holds potential as an innovative approach for selective weed control, promising environmentally friendly alternatives to traditional herbicides. Although the development of RNAi-based crop protection agents against pathogens, insects and viruses is advancing rapidly, RNAi-based weed control remains in the nascent stages, with challenges in gene target specificity and effective delivery mechanisms. It is potentially a game-changer in agriculture, yet SIGS's applicability is limited by the lack of scientific evidence. The overall aim of this review is to focus attention on critical points that need to be addressed to advance the knowledge about and development of RNAi herbicides, and overcome the poor progress achieved so far. Enhancing RNAi delivery methods and focusing on high impact weed species could transform SIGS into a viable tool for sustainable agriculture. © 2025 The Author(s). Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Silvia Panozzo
- Institute for Sustainable Plant Protection (IPSP), National Research Council of Italy (CNR), Legnaro, Italy
| | - Andrea Milani
- Institute for Sustainable Plant Protection (IPSP), National Research Council of Italy (CNR), Legnaro, Italy
| | - Serena Bordignon
- Department of Agronomy Food Natural Resources, Animals and Environment (DAFNAE), University of Padova, Legnaro, Italy
| | - Laura Scarabel
- Institute for Sustainable Plant Protection (IPSP), National Research Council of Italy (CNR), Legnaro, Italy
| | - Serena Varotto
- Department of Agronomy Food Natural Resources, Animals and Environment (DAFNAE), University of Padova, Legnaro, Italy
| |
Collapse
|
6
|
Ji Q, Kowalski KP, Golenberg EM, Chung SH, Barker ND, Bickford WA, Gong P. Cell-Penetrating Peptide-Mediated Delivery of Gene-Silencing Nucleic Acids to the Invasive Common Reed Phragmites australis via Foliar Application. PLANTS (BASEL, SWITZERLAND) 2025; 14:458. [PMID: 39943020 PMCID: PMC11820330 DOI: 10.3390/plants14030458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 01/18/2025] [Accepted: 01/21/2025] [Indexed: 02/16/2025]
Abstract
As a popular tool for gene function characterization and gene therapy, RNA interference (RNAi)-based gene silencing has been increasingly explored for potential applications to control invasive species. At least two major hurdles exist when applying this approach to invasive plants: (1) the design and screening of species- and gene-specific biomacromolecules (i.e., gene-silencing agents or GSAs) made of DNA, RNA, or peptides that can suppress the expression of target genes efficiently, and (2) the delivery vehicle needed to penetrate plant cell walls and other physical barriers (e.g., leaf cuticles). In this study, we investigated the cell-penetrating peptide (CPP)-mediated delivery of multiple types of GSAs (e.g., double-stranded RNA (dsRNA), artificial microRNA (amiRNA), and antisense oligonucleotide (ASO)) to knock down a putative phytoene desaturase (PDS) gene in the invasive common reed (Phragmites australis spp. australis). Both microscopic and quantitative gene expression evidence demonstrated the CPP-mediated internalization of GSA cargos and transient suppression of PDS expression in both treated and systemic leaves up to 7 days post foliar application. Although various GSA combinations and application rates and frequencies were tested, we observed limitations, including low gene-silencing efficiency and a lack of physiological trait alteration, likely owing to low CPP payload capacity and the incomplete characterization of the PDS-coding genes (e.g., the recent discovery of two PDS paralogs) in P. australis. Our work lays a foundation to support further research toward the development of convenient, cost-effective, field-deployable, and environmentally benign gene-silencing technologies for invasive P. australis management.
Collapse
Affiliation(s)
- Qing Ji
- Bennett Aerospace, Inc., Raleigh, NC 27603, USA;
| | - Kurt P. Kowalski
- U.S. Geological Survey, Great Lakes Science Center, Ann Arbor, MI 48105, USA; (K.P.K.); (W.A.B.)
| | - Edward M. Golenberg
- Department of Biological Sciences, Wayne State University, Detroit, MI 48201, USA;
| | - Seung Ho Chung
- Environmental Laboratory, U.S. Army Engineer Research and Development Center, Vicksburg, MS 39180, USA; (S.H.C.); (N.D.B.)
| | - Natalie D. Barker
- Environmental Laboratory, U.S. Army Engineer Research and Development Center, Vicksburg, MS 39180, USA; (S.H.C.); (N.D.B.)
| | - Wesley A. Bickford
- U.S. Geological Survey, Great Lakes Science Center, Ann Arbor, MI 48105, USA; (K.P.K.); (W.A.B.)
| | - Ping Gong
- Environmental Laboratory, U.S. Army Engineer Research and Development Center, Vicksburg, MS 39180, USA; (S.H.C.); (N.D.B.)
| |
Collapse
|
7
|
Zheng Y, Moorlach B, Jakobs-Schönwandt D, Patel A, Pastacaldi C, Jacob S, Sede AR, Heinlein M, Poranen MM, Kogel KH, Ladera Carmona M. Exogenous dsRNA triggers sequence-specific RNAi and fungal stress responses to control Magnaporthe oryzae in Brachypodium distachyon. Commun Biol 2025; 8:121. [PMID: 39863769 PMCID: PMC11762700 DOI: 10.1038/s42003-025-07554-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 01/15/2025] [Indexed: 01/27/2025] Open
Abstract
In vertebrates and plants, dsRNA plays crucial roles as PAMP and as a mediator of RNAi. How higher fungi respond to dsRNA is not known. We demonstrate that Magnaporthe oryzae (Mo), a globally significant crop pathogen, internalizes dsRNA across a broad size range of 21 to about 3000 bp. Incubation of fungal conidia with 10 ng/µL dsRNA, regardless of size or sequence, induced aberrant germ tube elongation, revealing a strong sequence-unspecific effect of dsRNA in this fungus. Accordingly, the synthetic dsRNA analogue poly(I:C) and dsRNA of various sizes and sequences elicited canonical fungal stress pathways, including nuclear accumulation of the stress marker mitogen-activated protein kinase Hog1p and production of ROS. Leaf application of dsRNA to the cereal model species Brachypodium distachyon suppressed the progression of leaf blast disease. Notably, the sequence-unspecific effect of dsRNA depends on higher doses, while pure sequence-specific effects were observed at low concentrations of dsRNA ( < 0.03 ng/µL). The protective effects of dsRNA were further enhanced by maintaining a gap of at least seven days between dsRNA application and inoculation, and by stabilising the dsRNA in alginate-chitosan nanoparticles. Overall, our study opens up additional possibilities for the development and use of dsRNA pesticides in agriculture.
Collapse
Affiliation(s)
- Ying Zheng
- Institute of Phytopathology, Research Centre for BioSystems, Land Use and Nutrition, Justus Liebig University Giessen, Heinrich-Buff-Ring 26, 35392, Giessen, Germany
| | - Benjamin Moorlach
- Fermentation and Formulation of Biologicals and Chemicals, Bielefeld Institute of Applied Materials Research, Bielefeld University of Applied Sciences, Interaktion 1, 33619, Bielefeld, Germany
| | - Desiree Jakobs-Schönwandt
- Fermentation and Formulation of Biologicals and Chemicals, Bielefeld Institute of Applied Materials Research, Bielefeld University of Applied Sciences, Interaktion 1, 33619, Bielefeld, Germany
| | - Anant Patel
- Fermentation and Formulation of Biologicals and Chemicals, Bielefeld Institute of Applied Materials Research, Bielefeld University of Applied Sciences, Interaktion 1, 33619, Bielefeld, Germany
| | - Chiara Pastacaldi
- Institute of Phytopathology, Research Centre for BioSystems, Land Use and Nutrition, Justus Liebig University Giessen, Heinrich-Buff-Ring 26, 35392, Giessen, Germany
| | - Stefan Jacob
- Institute of Biotechnology and Drug Research, Hanns-Dieter-Hüsch-Weg 17, 55128, Mainz, Germany
| | - Ana R Sede
- Institut de biologie moléculaire des plantes, CNRS, Université de Strasbourg, 12 rue du Général Zimmer, 67084, Strasbourg, France
| | - Manfred Heinlein
- Institut de biologie moléculaire des plantes, CNRS, Université de Strasbourg, 12 rue du Général Zimmer, 67084, Strasbourg, France
| | - Minna M Poranen
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Karl-Heinz Kogel
- Institut de biologie moléculaire des plantes, CNRS, Université de Strasbourg, 12 rue du Général Zimmer, 67084, Strasbourg, France.
| | - Maria Ladera Carmona
- Institute of Phytopathology, Research Centre for BioSystems, Land Use and Nutrition, Justus Liebig University Giessen, Heinrich-Buff-Ring 26, 35392, Giessen, Germany.
| |
Collapse
|
8
|
Sundararajan P, Ghosh S, Kelbessa BG, Whisson SC, Dubey M, Chawade A, Vetukuri RR. The impact of spray-induced gene silencing on cereal phyllosphere microbiota. ENVIRONMENTAL MICROBIOME 2025; 20:1. [PMID: 39780216 PMCID: PMC11716504 DOI: 10.1186/s40793-024-00660-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 12/18/2024] [Indexed: 01/11/2025]
Abstract
BACKGROUND Fusarium head blight (FHB) is a major disease affecting cereal crops including wheat, barley, rye, oats and maize. Its predominant causal agent is the ascomycete fungus Fusarium graminearum, which infects the spikes and thereby reduces grain yield and quality. The frequency and severity of FHB epidemics has increased in recent years, threatening global food security. Spray-induced gene silencing (SIGS) is an alternative technique for tackling this devastating disease through foliar spraying with exogenous double-stranded RNA (dsRNA) to silence specific pathogen genes via RNA interference. This has the advantage of avoiding transgenic approaches, but several aspects of the technology require further development to make it a viable field-level management tool. One such existing knowledge gap is how dsRNA spraying affects the microbiota of the host plants. RESULTS We found that the diversity, structure and composition of the bacterial microbiota are subject to changes depending on dsRNA targeted and host studied, while the fungal microbiota in the phyllosphere remained relatively unchanged upon spraying with dsRNA. Analyses of fungal co-occurrence patterns also showed that F. graminearum established itself among the fungal communities through negative interactions with neighbouring fungi. Through these analyses, we have also found bacterial and fungal genera ubiquitous in the phyllosphere, irrespective of dsRNA treatment. These results suggest that although rarer and less abundant microbial species change upon dsRNA spray, the ubiquitous bacterial and fungal components of the phyllosphere in wheat and barley remain unchanged. CONCLUSION We show for the first time the effects of exogenous dsRNA spraying on bacterial and fungal communities in the wheat and barley phyllospheres using a high-throughput amplicon sequencing approach. The results obtained further validate the safety and target-specificity of SIGS and emphasize its potential as an environmentally friendly option for managing Fusarium head blight in wheat and barley.
Collapse
Affiliation(s)
- Poorva Sundararajan
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Alnarp, Sweden
| | - Samrat Ghosh
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Alnarp, Sweden
| | - Bekele Gelena Kelbessa
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Alnarp, Sweden
| | - Stephen C Whisson
- Cell and Molecular Sciences, The James Hutton Institute, Invergowrie, Dundee, UK
| | - Mukesh Dubey
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Aakash Chawade
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Alnarp, Sweden
| | - Ramesh Raju Vetukuri
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Alnarp, Sweden.
| |
Collapse
|
9
|
Ouyang W, Sun H, Wang Y. Unlocking the small RNAs: local and systemic modulators for advancing agronomic enhancement. J Genet Genomics 2024:S1673-8527(24)00364-3. [PMID: 39716571 DOI: 10.1016/j.jgg.2024.12.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 12/17/2024] [Accepted: 12/17/2024] [Indexed: 12/25/2024]
Abstract
Small regulatory RNAs (sRNAs) are essential regulators of gene expression across a wide range of organisms to precisely modulate gene activity based on sequence-specific recognition. In model plants like Arabidopsis thaliana, extensive research has primarily concentrated on 21 to 24-nucleotide (nt) sRNAs, particularly microRNAs (miRNAs). Recent advancements in cell and tissue isolation techniques, coupled with advanced sequencing technologies, are revealing a diverse array of preciously uncharacterized sRNA species. These include previously novel structural RNA fragments as well as numerous cell- and tissue-specific sRNAs that are active during distinct developmental stages, thereby enhancing our understanding of the precise and dynamic regulatory roles of sRNAs in plant development regulation. Additionally, a notable feature of sRNAs is their capacity for amplification and movement between cells and tissues, which facilitates long-distance communication-an adaptation critical to plants due to their sessile nature. In this review, we will discuss the classification and mechanisms of action of sRNAs, using legumes as a primary example due to their essential engagement for the unique organ establishment of root nodules and long-distance signaling, and further illustrating the potential applications of sRNAs in modern agricultural breeding and environmentally sustainable plant protection strategies.
Collapse
Affiliation(s)
- Wenqi Ouyang
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; College of Tropical Crops, Hainan University, Haikou, Hainan 570288, China
| | - Hongda Sun
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing, China
| | - Yuan Wang
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; CAS-JIC Centre of Excellence for Plant and Microbial Science (CEPAMS), Institute of Genetics and Developmental Biology, CAS, Beijing 100101, China.
| |
Collapse
|
10
|
Jinshi Z, Mei L, Jinjin L, Weilin Z. Genome-wide selection of potential target candidates for RNAi against Nilaparvata lugens. BMC Genomics 2024; 25:1036. [PMID: 39501148 PMCID: PMC11536790 DOI: 10.1186/s12864-024-10940-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 10/23/2024] [Indexed: 11/09/2024] Open
Abstract
BACKGROUND Nilaparvata lugens is one of the most destructive pests of rice. RNAi-based N. lugens control offers one alternative strategy to traditional chemical insecticides. However, selection of potential target for RNAi against N. lugens remains a major challenge. Only two target genes for nuclear transgenic N. lugens-resistant plants have been screened. Importantly, only one or few potential target genes against N. lugens were screened every time by knowledge of essential genes from model organisms in previous study. RESULTS Here, in silico genome-wide selection of potential target genes against N. lugens through homology comparison was performed. Through genome synteny comparisons, about 3.5% of Drosophila melanogaster genome was found to have conserved genomic synteny with N. lugens genome. By using N. lugens proteins to search D. melanogaster homologs defining lethal or sterile phenotype, 358 N. lugens genes were first screened as putative target genes. Transgenic rice lines expressing dsRNA of randomly selected gene (NlRan or NlSRP54) from 358 putative target genes enhanced resistance to N. lugens. After expression check and safety check, 115 N. lugens genes were screened as potential target candidates. CONCLUSION The combined efforts in this study firstly provide one in silico genome-wide homology-based screening approach for RNAi-based target genes against N. lugens, which not only offer one new opportunity to batch select potential target candidates in pests of interest, but also will facilitate the selection of RNAi target in many pest species by providing more than one hundred potential target candidates.
Collapse
Affiliation(s)
- Zhang Jinshi
- College of Life Sciences, Zhejiang Normal University, Jinhua, 321004, P. R. China
| | - Li Mei
- Analysis Center of Agriculture, Life and Environmental Sciences, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Lian Jinjin
- College of Life Sciences, Zhejiang Normal University, Jinhua, 321004, P. R. China
| | - Zhang Weilin
- College of Life Sciences, Zhejiang Normal University, Jinhua, 321004, P. R. China.
| |
Collapse
|
11
|
Shao ZL, Lan CP, Yu XP, Wang ZL. RNAi-mediated silencing of NlGRP3 augments the insecticidal virulence of Metarhizium anisopliae to the brown planthopper Nilaparvata lugens. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 205:106141. [PMID: 39477594 DOI: 10.1016/j.pestbp.2024.106141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/11/2024] [Accepted: 09/17/2024] [Indexed: 11/07/2024]
Abstract
The rapid development of insecticide resistance reinforces the urgent need to develop eco-friendly strategies for controlling Nilaparvata lugens (brown planthopper, BPH), the most destructive insect pest of rice. Both entomopathogens and RNA interference (RNAi) provide attractive alternatives to chemical insecticides. In this study, we demonstrated the synergistic potential of the combination use of entomopathogen- and RNAi-mediated approaches to control BPH. The β-1, 3-glucan recognition protein (βGRP) encoding gene NlGRP3 was identified and its potential role in immune defense was characterized in BPH. The open reading frame (ORF) of NlGRP3 is 1740 bp in length, encoding a 65.8 kDa protein with conserved CBM39 and GH16 domains that typically existed in the βGRP family members. NlGRP3 was shown to be differentially expressed across developmental stages and highly transcribed in the immune responsive tissues haemolymph and fat body. Topical infection with a fungal entomopathogen Metarhizium anisopliae could significantly up-regulate its expression level. RNAi-mediated silencing of NlGRP3 resulted in significantly decreased survival rate and increased susceptibility to fungal challenge in the fifth-instar BPH nymphs. The greatly enhanced mortality of NlGRP3-silenced BPH following fungal infection might be in part directly due to the immune suppression by down-regulating expressions of antimicrobial peptide genes and the imbalance of the bacterial community harboring in BPH body. Our results highly demonstrated that suppressing the insect innate immune defense through RNAi targeting the immune-related genes could effectively strengthen the biocontrol efficacy of fungal entomopathogens, providing clues to the combination use of RNAi and entomopathogens as a promising approach for BPH control.
Collapse
Affiliation(s)
- Zhu-Long Shao
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, Zhejiang 310018, People's Republic of China
| | - Chen-Ping Lan
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, Zhejiang 310018, People's Republic of China
| | - Xiao-Ping Yu
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, Zhejiang 310018, People's Republic of China
| | - Zheng-Liang Wang
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, Zhejiang 310018, People's Republic of China.
| |
Collapse
|
12
|
Drcelic M, Skiljaica A, Polak B, Bauer N, Seruga Music M. ' Candidatus Phytoplasma solani' Predicted Effector SAP11-like Alters Morphology of Transformed Arabidopsis Plants and Interacts with AtTCP2 and AtTCP4 Plant Transcription Factors. Pathogens 2024; 13:893. [PMID: 39452764 PMCID: PMC11510232 DOI: 10.3390/pathogens13100893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 10/06/2024] [Accepted: 10/09/2024] [Indexed: 10/26/2024] Open
Abstract
Phytoplasmas are obligate intracellular pathogens that profoundly modify the development, physiology and behavior of their hosts by secreting effector proteins that disturb signal pathways and interactions both in plant and insect hosts. The characterization of effectors and their host-cell targets was performed for only a few phytoplasma species where it was shown that the SAP11 effector alters plant morphology by destabilizing plant transcription factors: TEOSINTE BRANCHED 1-CYCLOIDEA-PROLIFERATING CELL FACTOR (TCPs). To explore the possible role of the SAP11-like effector from 'Ca. P. solani', we used Arabidopsis thaliana as a model plant. The SAP11-like effector gene from 'Ca. P. solani' was introduced into arabidopsis by floral dip and transgenic lines were regenerated. In planta bimolecular fluorescence complementation (BIFC) assays in agroinfiltrated Nicotiana benthamiana leaf cells were conducted to detect interactions between SAP11-like and AtTCP2 and AtTCP4 using confocal microscopy. SAP11-like from 'Ca. P. solani' induced significant phenotypic changes in arabidopsis, including crinkled leaves with reduced size, lower biomass, more axillary branches, changes in root morphology, and crinkled and smaller siliques. The BIFC assays proved in planta interaction of SAP11-like effector with AtTCP2 and AtTCP4. To our knowledge, this is the first characterization of the interaction between the 'Ca. P. solani' effector and plant transcription factors, suggesting a potential mechanism of modulating plant development and induction of characteristic symptoms in 'Ca. P. solani'-infected plants.
Collapse
Affiliation(s)
| | | | | | | | - Martina Seruga Music
- Department of Biology, Faculty of Science, University of Zagreb, Horvatovac 102A, HR-10000 Zagreb, Croatia; (M.D.); (A.S.); (B.P.); (N.B.)
| |
Collapse
|
13
|
Kishk A, Stelinski LL, Gowda S, Killiny N. Citrus-mediated gene silencing of cytochrome P 450 suppresses insecticide resistance and increases mortality in Diaphorina citri. PEST MANAGEMENT SCIENCE 2024; 80:4980-4992. [PMID: 38843443 DOI: 10.1002/ps.8218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 04/08/2024] [Accepted: 05/20/2024] [Indexed: 10/12/2024]
Abstract
BACKGROUND Asian citrus psyllid, Diaphorina citri, is a hemipteran that vectors the causal pathogen of citrus greening disease, or huanglongbing (HLB). HLB is a tree killing disease that has severely limited citrus production globally. Unfortunately, there is no cure for this disease, and mitigation depends on multiple insecticide applications to reduce vector populations. Silencing of cytochrome P450 expression associated with detoxification enzymes by RNA interference is known to increase susceptibility of D. citri to insecticides. However, dsRNA was previously introduced into psyllids by topical applications. The possible application of this technology for pest management will require effective field delivery of the dsRNA. Therefore, we evaluated a virus vector (Citrus tristeza virus; 'mild strain' T36) to deliver gene silencing directly to this sap-sucking insect via plant phloem. Citrus macrophylla plants inoculated with CTV expressing a truncated consensus sequence of CYP450 (CTV-tCYP450) constantly produced small interfering RNA in the plant phloem that targeted five cytochrome p540 (CYP450) genes in D. citri. RESULTS Insecticide susceptible D. citri reared on citrus infected with CTV-tCYP450 were subsequently more susceptible to imidacloprid, fenpropathrin, carbaryl, and chlorpyrifos than those reared on citrus infected with wildtype CTV or non-infected negative controls. Additionally, nymph survival and adult lifespan were significantly reduced when psyllids were reared on CTV-tCYP450 citrus plants compared with controls. Interestingly, similar results were obtained after one and two generations of rearing. Finally, field-collected psyllids from areas with known broad-spectrum insecticide resistance were rendered more susceptible to imidacloprid and fenpropathrin after feeding on CTV-tCYP450 citrus trees as compared with those reared on controls. CONCLUSION The integration of citrus-mediated RNA inference targeting psyllid detoxification enzymes could function as a resistance management tool and reduce insecticide input in an integrated pest management program for HLB. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Abdelaziz Kishk
- Department of Plant Pathology, Citrus Research and Education Center, IFAS, University of Florida, Lake Alfred, FL, USA
- Department of Plant Protection, Faculty of Agriculture, Tanta University, Tanta, Egypt
| | - Lukasz L Stelinski
- Department of Entomology and Nematology, Citrus Research and Education Center, IFAS, University of Florida, Lake Alfred, FL, USA
| | - Siddarame Gowda
- Department of Plant Pathology, Citrus Research and Education Center, IFAS, University of Florida, Lake Alfred, FL, USA
| | - Nabil Killiny
- Department of Plant Pathology, Citrus Research and Education Center, IFAS, University of Florida, Lake Alfred, FL, USA
| |
Collapse
|
14
|
Cheng X, Zhou Q, Xiao J, Qin X, Zhang Y, Li X, Zheng W, Zhang H. Nanoparticle LDH enhances RNAi efficiency of dsRNA in piercing-sucking pests by promoting dsRNA stability and transport in plants. J Nanobiotechnology 2024; 22:544. [PMID: 39237945 PMCID: PMC11378424 DOI: 10.1186/s12951-024-02819-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 08/30/2024] [Indexed: 09/07/2024] Open
Abstract
Piercing-sucking pests are the most notorious group of pests for global agriculture. RNAi-mediated crop protection by foliar application is a promising approach in field trials. However, the effect of this approach on piercing-sucking pests is far from satisfactory due to the limited uptake and transport of double strand RNA (dsRNA) in plants. Therefore, there is an urgent need for more feasible and biocompatible dsRNA delivery approaches to better control piercing-sucking pests. Here, we report that foliar application of layered double hydroxide (LDH)-loaded dsRNA can effectively disrupt Panonychus citri at multiple developmental stages. MgAl-LDH-dsRNA targeting Chitinase (Chit) gene significantly promoted the RNAi efficiency and then increased the mortality of P. citri nymphs by enhancing dsRNA stability in gut, promoting the adhesion of dsRNA onto leaf surface, facilitating dsRNA internalization into leaf cells, and delivering dsRNA from the stem to the leaf via the vascular system of pomelo plants. Finally, this delivery pathway based on other metal elements such as iron (MgFe-LDH) was also found to significantly improve the protection against P. citri and the nymphs or larvae of Diaphorina citri and Aphis gossypii, two other important piercing-sucking hemipeteran pests, indicating the universality of nanoparticles LDH in promoting the RNAi efficiency and mortality of piercing-sucking pests. Collectively, this study provides insights into the synergistic mechanism for nano-dsRNA systemic translocation in plants, and proposes a potential eco-friendly control strategy for piercing-sucking pests.
Collapse
Affiliation(s)
- Xiaoqin Cheng
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Hubei Hongshan Laboratory, China-Australia Joint Research Centre for Horticultural and Urban Pests, Institute of Urban and Horticultural Entomology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Qi Zhou
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Hubei Hongshan Laboratory, China-Australia Joint Research Centre for Horticultural and Urban Pests, Institute of Urban and Horticultural Entomology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jiedan Xiao
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Hubei Hongshan Laboratory, China-Australia Joint Research Centre for Horticultural and Urban Pests, Institute of Urban and Horticultural Entomology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xueying Qin
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Hubei Hongshan Laboratory, China-Australia Joint Research Centre for Horticultural and Urban Pests, Institute of Urban and Horticultural Entomology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yuan Zhang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Hubei Hongshan Laboratory, China-Australia Joint Research Centre for Horticultural and Urban Pests, Institute of Urban and Horticultural Entomology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xiaoxue Li
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Hubei Hongshan Laboratory, China-Australia Joint Research Centre for Horticultural and Urban Pests, Institute of Urban and Horticultural Entomology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Weiwei Zheng
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Hubei Hongshan Laboratory, China-Australia Joint Research Centre for Horticultural and Urban Pests, Institute of Urban and Horticultural Entomology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Hongyu Zhang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Hubei Hongshan Laboratory, China-Australia Joint Research Centre for Horticultural and Urban Pests, Institute of Urban and Horticultural Entomology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
15
|
Opdensteinen P, Charudattan R, Hong JC, Rosskopf EN, Steinmetz NF. Biochemical and nanotechnological approaches to combat phytoparasitic nematodes. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:2444-2460. [PMID: 38831638 PMCID: PMC11332226 DOI: 10.1111/pbi.14359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 03/09/2024] [Accepted: 04/05/2024] [Indexed: 06/05/2024]
Abstract
The foundation of most food production systems underpinning global food security is the careful management of soil resources. Embedded in the concept of soil health is the impact of diverse soil-borne pests and pathogens, and phytoparasitic nematodes represent a particular challenge. Root-knot nematodes and cyst nematodes are severe threats to agriculture, accounting for annual yield losses of US$157 billion. The control of soil-borne phytoparasitic nematodes conventionally relies on the use of chemical nematicides, which can have adverse effects on the environment and human health due to their persistence in soil, plants, and water. Nematode-resistant plants offer a promising alternative, but genetic resistance is species-dependent, limited to a few crops, and breeding and deploying resistant cultivars often takes years. Novel approaches for the control of phytoparasitic nematodes are therefore required, those that specifically target these parasites in the ground whilst minimizing the impact on the environment, agricultural ecosystems, and human health. In addition to the development of next-generation, environmentally safer nematicides, promising biochemical strategies include the combination of RNA interference (RNAi) with nanomaterials that ensure the targeted delivery and controlled release of double-stranded RNA. Genome sequencing has identified more than 75 genes in root knot and cyst nematodes that have been targeted with RNAi so far. But despite encouraging results, the delivery of dsRNA to nematodes in the soil remains inefficient. In this review article, we describe the state-of-the-art RNAi approaches targeting phytoparasitic nematodes and consider the potential benefits of nanotechnology to improve dsRNA delivery.
Collapse
Affiliation(s)
- Patrick Opdensteinen
- Department of NanoEngineeringUniversity of California, San DiegoLa JollaCaliforniaUSA
- Center for Nano‐ImmunoEngineeringUniversity of California, San DiegoLa JollaCaliforniaUSA
- Shu and K.C. Chien and Peter Farrell CollaboratoryUniversity of California, San DiegoLa JollaCaliforniaUSA
| | | | - Jason C. Hong
- USDA‐ARS‐U.S. Horticultural Research LaboratoryFort PierceFloridaUSA
| | - Erin N. Rosskopf
- USDA‐ARS‐U.S. Horticultural Research LaboratoryFort PierceFloridaUSA
| | - Nicole F. Steinmetz
- Department of NanoEngineeringUniversity of California, San DiegoLa JollaCaliforniaUSA
- Center for Nano‐ImmunoEngineeringUniversity of California, San DiegoLa JollaCaliforniaUSA
- Shu and K.C. Chien and Peter Farrell CollaboratoryUniversity of California, San DiegoLa JollaCaliforniaUSA
- Department of BioengineeringUniversity of California, San DiegoLa JollaCaliforniaUSA
- Department of RadiologyUniversity of California, San DiegoLa JollaCaliforniaUSA
- Institute for Materials Discovery and Design, University of California, San DiegoLa JollaCaliforniaUSA
- Moores Cancer CenterUniversity of California, San DiegoLa JollaCaliforniaUSA
- Center for Engineering in Cancer, Institute of Engineering in MedicineUniversity of California, San DiegoLa JollaCaliforniaUSA
| |
Collapse
|
16
|
Chen Y, De Schutter K. Biosafety aspects of RNAi-based pests control. PEST MANAGEMENT SCIENCE 2024; 80:3697-3706. [PMID: 38520331 DOI: 10.1002/ps.8098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 03/14/2024] [Accepted: 03/23/2024] [Indexed: 03/25/2024]
Abstract
While the overuse of classical chemical pesticides has had a detrimental impact on the environment and human health, the discovery of RNA interference (RNAi) offered the opportunity to develop new and sustainable approaches for pest management. RNAi is a naturally occurring regulation and defense mechanism that can be exploited to effectively protect crops by silencing key genes affecting the growth, development, behavior or fecundity of pests. However, as with all technologies, there is a range of potential risks and challenges associated with the application of RNAi, such as dsRNA stability, the potential for off-target effects, the safety of non-target organisms, and other application challenges. A better understanding of the molecular mechanisms involved in RNAi and in-depth discussion and analysis of these associated safety risks, is required to limit or mitigate potential adverse effects. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yimeng Chen
- Molecular Entomology Lab, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Kristof De Schutter
- Molecular Entomology Lab, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| |
Collapse
|
17
|
Saakre M, Jaiswal S, Rathinam M, Raman KV, Tilgam J, Paul K, Sreevathsa R, Pattanayak D. Host-Delivered RNA Interference for Durable Pest Resistance in Plants: Advanced Methods, Challenges, and Applications. Mol Biotechnol 2024; 66:1786-1805. [PMID: 37523020 DOI: 10.1007/s12033-023-00833-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Accepted: 07/17/2023] [Indexed: 08/01/2023]
Abstract
Insect-pests infestation greatly affects global agricultural production and is projected to become more severe in upcoming years. There is concern about pesticide application being ineffective due to insect resistance and environmental toxicity. Reduced effectiveness of Bt toxins also made the scientific community shift toward alternative strategies to control devastating agricultural pests. With the advent of host-delivered RNA interference, also known as host-induced gene silencing, targeted insect genes have been suppressed through genetic engineering tools to deliver a novel insect-pest resistance strategy for combating a number of agricultural pests. This review recapitulates the possible mechanism of host-delivered RNA interference (HD-RNAi), in particular, the silencing of target genes of insect-pests. We emphasize the development of the latest strategies against evolving insect targets including designing of artificial microRNAs, vector constructs, and the benefit of using plastid transformation to transform target RNA-interfering genes. Advantages of using HD-RNAi over other small RNA delivery modes and also the supremacy of HD-RNAi over the CRISPR-Cas system particularly for insect resistance have been described. However, the broader application of this technology is restricted due to its several limitations. Using artificial miRNA designs, the host-delivered RNAi + Bt combinatorial approach and chloroplast transformation can overcome limitations of RNAi. With careful design and delivery approaches, RNAi promises to be extremely valuable and effective plant protection strategy to attain durable insect-pest resistance in crops.
Collapse
Affiliation(s)
- Manjesh Saakre
- Division of Molecular Biology and Biotechnology, ICAR-National Institute for Plant Biotechnology, IARI Pusa Campus, New Delhi, 110012, India
| | - Sandeep Jaiswal
- Division of Molecular Biology and Biotechnology, ICAR-National Institute for Plant Biotechnology, IARI Pusa Campus, New Delhi, 110012, India
- ICAR-Research Complex for NEH Region, Umiam, Meghalaya- 793103, India
| | - Maniraj Rathinam
- ICAR-National Institute for Plant Biotechnology, IARI Pusa Campus, New Delhi, 110012, India
| | - K Venkat Raman
- ICAR-National Institute for Plant Biotechnology, IARI Pusa Campus, New Delhi, 110012, India
| | - Jyotsana Tilgam
- Division of Molecular Biology and Biotechnology, ICAR-National Institute for Plant Biotechnology, IARI Pusa Campus, New Delhi, 110012, India
| | - Krishnayan Paul
- Division of Molecular Biology and Biotechnology, ICAR-National Institute for Plant Biotechnology, IARI Pusa Campus, New Delhi, 110012, India
| | - Rohini Sreevathsa
- ICAR-National Institute for Plant Biotechnology, IARI Pusa Campus, New Delhi, 110012, India
| | - Debasis Pattanayak
- ICAR-National Institute for Plant Biotechnology, IARI Pusa Campus, New Delhi, 110012, India.
| |
Collapse
|
18
|
Zhao JH, Liu QY, Xie ZM, Guo HS. Exploring the challenges of RNAi-based strategies for crop protection. ADVANCED BIOTECHNOLOGY 2024; 2:23. [PMID: 39883232 PMCID: PMC11740845 DOI: 10.1007/s44307-024-00031-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 06/28/2024] [Accepted: 07/01/2024] [Indexed: 01/31/2025]
Abstract
RNA silencing (or RNA interference, RNAi) initiated by double-stranded RNAs is a conserved mechanism for regulating gene expression in eukaryotes. RNAi-based crop protection strategies, including host-induced gene silencing (HIGS), spray-induced gene silencing (SIGS) and microbe-induced gene silencing (MIGS), have been successfully used against various pests and pathogens. Here, we highlight the challenges surrounding dsRNA design, large-scale production of dsRNA and dsRNA delivery systems. Addressing these questions will accelerate the lab-to-field transition of RNAi-based strategies. Moreover, based on studies of exogenous dsRNA-induced RNAi inheritance in Caenorhabditis elegans, we speculate that RNAi-based strategies would confer longer-lasting protection for crops against pests or fungal pathogens.
Collapse
Affiliation(s)
- Jian-Hua Zhao
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Qing-Yan Liu
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Zong-Ming Xie
- Institute of Cotton Research, Xinjiang Academy of Agricultural and Reclamation Science, Shihezi, China
| | - Hui-Shan Guo
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
19
|
Cedden D, Güney G, Debaisieux X, Scholten S, Rostás M, Bucher G. Effective target genes for RNA interference-based management of the cabbage stem flea beetle. INSECT MOLECULAR BIOLOGY 2024. [PMID: 38970375 DOI: 10.1111/imb.12942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 06/22/2024] [Indexed: 07/08/2024]
Abstract
The cabbage stem flea beetle (CSFB, Psylliodes chrysocephala) is a key pest of oilseed rape. The ban on neonicotinoids in the European Union due to environmental concerns and the emergence of pyrethroid-resistant populations have made the control of CSFB extremely challenging. In search of a solution, we have recently shown that RNA interference (RNAi) has potential in the management of CSFB. However, the previously tested target genes for RNAi-mediated pest control (subsequently called target genes) exhibited moderate and slow-acting lethal effects. In this study, 27 double-stranded RNAs (dsRNAs) were orally delivered to identify highly effective target genes in CSFB adults by leveraging the findings of a genome-wide RNAi screen in Tribolium castaneum. Our screen using 500 ng of dsRNA identified 10 moderately effective (> 50% mortality) and 4 highly effective target genes (100% mortality in 8-13 days). The latter mainly included proteasome subunits. Gene expression measurements confirmed target gene silencing and dose-response studies revealed LD50 values as low as ~20 ng in 14 days following a single exposure to dsRNA. Four highly effective dsRNAs also inhibited leaf damage (up to ~75%) and one affected locomotion. The sequences of promising target genes were subjected to in silico target prediction in non-target organisms, for example, beneficials such as honeybees, to design environmentally friendly dsRNAs. Overall, the study provides valuable insights for the development of dsRNA-based insecticides against CSFB.
Collapse
Affiliation(s)
- Doga Cedden
- Johann-Friedrich-Blumenbach Institute, GZMB, Department of Evolutionary Developmental Genetics, University of Göttingen, Göttingen, Germany
- Agricultural Entomology, Department of Crop Sciences, University of Göttingen, Göttingen, Germany
| | - Gözde Güney
- Agricultural Entomology, Department of Crop Sciences, University of Göttingen, Göttingen, Germany
| | - Xavier Debaisieux
- Agricultural Entomology, Department of Crop Sciences, University of Göttingen, Göttingen, Germany
| | - Stefan Scholten
- Division of Crop Plant Genetics, Department of Crop Sciences, University of Göttingen, Göttingen, Germany
| | - Michael Rostás
- Agricultural Entomology, Department of Crop Sciences, University of Göttingen, Göttingen, Germany
| | - Gregor Bucher
- Johann-Friedrich-Blumenbach Institute, GZMB, Department of Evolutionary Developmental Genetics, University of Göttingen, Göttingen, Germany
| |
Collapse
|
20
|
Li MM, Yang Q, Chen LH, Li YY, Wu JX, Xu XL. Effect of short neuropeptide F signaling on larval feeding in Mythimna separata. INSECT SCIENCE 2024; 31:417-434. [PMID: 37464946 DOI: 10.1111/1744-7917.13246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 04/27/2023] [Accepted: 05/22/2023] [Indexed: 07/20/2023]
Abstract
Mythimna separata is a notorious phytophagous pest which poses serious threats to cereal crops owing to the gluttony of the larvae. Because short neuropeptide F (sNPF) and its receptor sNPFR are involved in a diversity of physiological functions, especially in functions related to feeding in insects, it is a molecular target for pest control. Herein, an sNPF and 2 sNPFRs were identified and cloned from M. separata. Bioinformatics analysis revealed that the sNPF and its receptors had a highly conserved RLRFamide C-terminus and 7 transmembrane domains, respectively. The sNPF and its receptor genes were distributed across larval periods and tissues, but 2 receptors had distinct expression patterns. The starvation-induced assay elucidated that sNPF and sNPFR expression levels were downregulated under food deprivation and recovered with subsequent re-feeding. RNA interference knockdown of sNPF, sNPFR1, and sNPFR2 by injection of double-stranded RNA into larvae not only suppressed food consumption and increased body size and weight, but also led to decrease of glycogen and total lipid contents, and increase of trehalose compared with double-stranded green fluorescent protein injection. Furthermore, molecular docking was performed on the interaction mode between sNPFR protein and its ligand sNPF based on the 3-dimensional models constructed by AlphaFold; the results indicated that both receptors were presumably activated by the mature peptide sNPF-2. These results revealed that sNPF signaling played a considerably vital role in the feeding regulation of M. separata and represents a potential control target for this pest.
Collapse
Affiliation(s)
- Mei-Mei Li
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Plant Protection, Northwest A & F University, Yangling, Shaanxi Province, China
| | - Qi Yang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Plant Protection, Northwest A & F University, Yangling, Shaanxi Province, China
| | - Li-Hui Chen
- School of Agricultural Sciences, Jiangxi Agricultural University, Nanchang, China
| | - Yan-Ying Li
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Plant Protection, Northwest A & F University, Yangling, Shaanxi Province, China
| | - Jun-Xiang Wu
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Plant Protection, Northwest A & F University, Yangling, Shaanxi Province, China
| | - Xiang-Li Xu
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Plant Protection, Northwest A & F University, Yangling, Shaanxi Province, China
| |
Collapse
|
21
|
Levanova AA, Poranen MM. Utilization of Bacteriophage phi6 for the Production of High-Quality Double-Stranded RNA Molecules. Viruses 2024; 16:166. [PMID: 38275976 PMCID: PMC10818839 DOI: 10.3390/v16010166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 01/12/2024] [Accepted: 01/18/2024] [Indexed: 01/27/2024] Open
Abstract
Double-stranded RNA (dsRNA) molecules are mediators of RNA interference (RNAi) in eukaryotic cells. RNAi is a conserved mechanism of post-transcriptional silencing of genes cognate to the sequences of the applied dsRNA. RNAi-based therapeutics for the treatment of rare hereditary diseases have recently emerged, and the first sprayable dsRNA biopesticide has been proposed for registration. The range of applications of dsRNA molecules will likely expand in the future. Therefore, cost-effective methods for the efficient large-scale production of high-quality dsRNA are in demand. Conventional approaches to dsRNA production rely on the chemical or enzymatic synthesis of single-stranded (ss)RNA molecules with a subsequent hybridization of complementary strands. However, the yield of properly annealed biologically active dsRNA molecules is low. As an alternative approach, we have developed methods based on components derived from bacteriophage phi6, a dsRNA virus encoding RNA-dependent RNA polymerase (RdRp). Phi6 RdRp can be harnessed for the enzymatic production of high-quality dsRNA molecules. The isolated RdRp efficiently synthesizes dsRNA in vitro on a heterologous ssRNA template of any length and sequence. To scale up dsRNA production, we have developed an in vivo system where phi6 polymerase complexes produce target dsRNA molecules inside Pseudomonas cells.
Collapse
Affiliation(s)
- Alesia A. Levanova
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, 00014 Helsinki, Finland;
| | | |
Collapse
|
22
|
Li Z, Ouyang L, Wu Q, Peng Q, Zhang B, Qian W, Liu B, Wan F. Cuticular proteins in codling moth (Cydia pomonella) respond to insecticide and temperature stress. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 270:115852. [PMID: 38141334 DOI: 10.1016/j.ecoenv.2023.115852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/05/2023] [Accepted: 12/15/2023] [Indexed: 12/25/2023]
Abstract
The insect cuticle consists of chitin and cuticular proteins (CPs), which stabilize the body shape and provide an effective physical barrier against the external environment. They are also potential target sites for developing environmentally friendly insect management through the utilization of physiology-based methods. The codling moth, Cydia pomonella, is a pest afflicting fruit orchards worldwide. This study used a comparative genomic approach, whole-genome resequencing, and transcriptome data to understand the role that CPs played in the environmental adaptation of the codling moth. A total of 182 putative CPs were identified in the codling moth genome, which were classified into 12 CP families. 119 CPR genes, including 54 RR-1, 60 RR-2, and 5 RR-3 genes were identified and accounted for 65.4% of the total CPs. Eight and seven gene clusters are formed in RR1 and RR2 subfamily and the ancestor-descendant relationship was explained. Five CPAP genes were highly expressed during the egg stage and exposed to high temperature, which indicated their potential role in aiding codling moth eggs in acclimating to varying external heat conditions. Moreover, six CPs belonging to the CPR and CPLCP families were identified in association with insecticide resistance by population resequencing. Their expression levels increased after exposure to insecticides, suggesting they might be involved in codling moth resistance to the insecticides azinphos-methyl or deltamethrin. Our results provide insight into the evolution of codling moth CPs and their association with high temperature adaptation and insecticide resistance, and provide an additional information required for further analysis of CPs in environmental adaptation.
Collapse
Affiliation(s)
- Zaiyuan Li
- College of Plant Health & Medicine, Qingdao Agricultural University, Qingdao 266109, China; Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Lan Ouyang
- College of Plant Health & Medicine, Qingdao Agricultural University, Qingdao 266109, China; Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Qiang Wu
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Qi Peng
- College of Plant Health & Medicine, Qingdao Agricultural University, Qingdao 266109, China; Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Bin Zhang
- College of Plant Health & Medicine, Qingdao Agricultural University, Qingdao 266109, China
| | - Wanqiang Qian
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China.
| | - Bo Liu
- College of Plant Health & Medicine, Qingdao Agricultural University, Qingdao 266109, China; Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China.
| | - Fanghao Wan
- College of Plant Health & Medicine, Qingdao Agricultural University, Qingdao 266109, China; Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China.
| |
Collapse
|
23
|
Keppanan R, Karuppannasamy A, Nagaraja BC, Thiruvengadam V, Kesavan S, Dhawane YA, Ramasamy A. Effectiveness of chitosan nanohydrogel mediated encapsulation of EcR dsRNA against the whitefly, Bemisia tabaci Asia-I (Gennedius) (Hemiptera: Aleyordidae). PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 198:105712. [PMID: 38225070 DOI: 10.1016/j.pestbp.2023.105712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/19/2023] [Accepted: 11/26/2023] [Indexed: 01/17/2024]
Abstract
Bemisia tabaci is a global invasive pest causing substantial loss on several economically important crops and has developed a very high level of resistance to insecticides making current management practices ineffective. Thus, the novel pest management strategy like RNA interference (RNAi) has emerged as a potential molecular tool in the management of insect pests particularly B. tabaci. The present study investigated RNAi mediated silencing of the Ecdysone Receptor (EcR) gene in B. tabaci Asia-I using biodegradable Chitosan Nanoparticles (CNPs) hydrogel containing EcR dsRNA. The formation of nanohydrogel and dsRNA loading were characterized by gel retardation assay, scanning electron microscopy (SEM); transmission electron microscopy (TEM) and Fourier transform infrared microscopy (FTIR). The stability of CNPs/dsRNA was assessed by exposure to direct sunlight and UV light for different time periods. The CNPs/dsRNA exhibited increased stability over the untreated control and further confirmed by bioassay studies which yielded mortality over 80% and effectively down regulated the expression of the EcR gene as confirmed by qRT-PCR analysis. These investigations provide potential avenues for advancing innovative pest management strategies using biopolymer CNPs hydrogel, which can enhance the efficiency of dsRNA as a safe and targeted solution in the management of whiteflies.
Collapse
Affiliation(s)
- Ravindran Keppanan
- ICAR - Indian Institute of Horticultural Research, Bengaluru 560089, India
| | - Ashok Karuppannasamy
- ICAR - Indian Institute of Horticultural Research, Bengaluru 560089, India; Tamil Nadu Agricultural University, Coimbatore 641003, Tamil Nadu, India; Tata Institute for Genetics and Society, Bengaluru 560065, Karnataka, India.
| | - Bhargava Chikmagalur Nagaraja
- ICAR - Indian Institute of Horticultural Research, Bengaluru 560089, India; University of Agricultural Sciences, Bengaluru 560065, Karnataka, India
| | | | - Subaharan Kesavan
- ICAR - National Bureau of Agricultural Insect Resources, Bengaluru 560024, Karnataka, India
| | - Yogi Arun Dhawane
- ICAR - Indian Institute of Horticultural Research, Bengaluru 560089, India
| | - Asokan Ramasamy
- ICAR - Indian Institute of Horticultural Research, Bengaluru 560089, India.
| |
Collapse
|
24
|
Duan S, Wang G. Inducible Expression of dsRNA in Escherichia coli. Methods Mol Biol 2024; 2771:57-64. [PMID: 38285391 DOI: 10.1007/978-1-0716-3702-9_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2024]
Abstract
Double-stranded RNA (dsRNA) is a valuable tool for reverse genetics research and gene silencing applications. It is also an important management method for pests and diseases in agriculture. It can be synthesized both in vivo and in vitro. The latter presents the drawback of high production cost, the former is less expensive and suitable for scalable production. In general, dsRNAs are obtained in vivo from Escherichia coli heterologous systems that require the IPTG-inducible T7 RNA polymerase. In this report, we describe the construction of an RNAi system for the expression of dsRNA using the HT115 bacterial strain and the L4440 plasmid, and the extraction and identification of dsRNA.
Collapse
Affiliation(s)
- Saiya Duan
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- Scientific Observation and Experimental Station of Pests in Xilin Gol Rangeland, Ministry of Agriculture and Rural Affairs, Xilinhot, China
| | - Guangjun Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China.
- Scientific Observation and Experimental Station of Pests in Xilin Gol Rangeland, Ministry of Agriculture and Rural Affairs, Xilinhot, China.
| |
Collapse
|
25
|
Barathi S, Sabapathi N, Kandasamy S, Lee J. Present status of insecticide impacts and eco-friendly approaches for remediation-a review. ENVIRONMENTAL RESEARCH 2024; 240:117432. [PMID: 37865327 DOI: 10.1016/j.envres.2023.117432] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 10/12/2023] [Accepted: 10/16/2023] [Indexed: 10/23/2023]
Abstract
Insecticides are indispensable for modern agriculture to ensuring crop protection and optimal yields. However, their excessive use raises concerns regarding their adverse effects on agriculture and the environment. This study examines the impacts of insecticides on agriculture and proposes remediation strategies. Excessive insecticide application can lead to the development of resistance in target insects, necessitating higher concentrations or stronger chemicals, resulting in increased production costs and disruption of natural pest control mechanisms. In addition, non-target organisms, such as beneficial insects and aquatic life, suffer from the unintended consequences of insecticide use, leading to ecosystem imbalances and potential food chain contamination. To address these issues, integrated pest management (IPM) techniques that combine judicious insecticide use with biological control and cultural practices can reduce reliance on chemicals. Developing and implementing selective insecticides with reduced environmental persistence is crucial. Promoting farmer awareness of responsible insecticide use, offering training and resources, and adopting precision farming technologies can minimize overall insecticide usage.
Collapse
Affiliation(s)
- Selvaraj Barathi
- School of Chemical Engineering, Yeungnam University, Gyeongsan, 38541, Republic of Korea.
| | - Nadana Sabapathi
- Centre of Translational Research, Shenzhen Bay Laboratory, Guangming, 518107, China
| | - Sabariswaran Kandasamy
- Department of Biotechnology, PSGR Krishnammal College for Women, Coimbatore, 641004, India
| | - Jintae Lee
- School of Chemical Engineering, Yeungnam University, Gyeongsan, 38541, Republic of Korea.
| |
Collapse
|
26
|
Li XC, Ma YC, Long J, Yan X, Peng NN, Cai CH, Zhong WF, Huang YB, Qiao X, Zhou LX, Cai QC, Cheng CX, Zhou GF, Han YF, Liu HY, Zhang Q, Tang HM, Meng JH, Luo KJ. Simulating immunosuppressive mechanism of Microplitis bicoloratus bracovirus coordinately fights Spodoptera frugiperda. Front Immunol 2023; 14:1289477. [PMID: 38146373 PMCID: PMC10749342 DOI: 10.3389/fimmu.2023.1289477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 11/27/2023] [Indexed: 12/27/2023] Open
Abstract
Parasitoid wasps control pests via a precise attack leading to the death of the pest. However, parasitoid larvae exhibit self-protection strategies against bracovirus-induced reactive oxygen species impairment. This has a detrimental effect on pest control. Here, we report a strategy for simulating Microplitis bicoloratus bracovirus using Mix-T dsRNA targeting 14 genes associated with transcription, translation, cell-cell communication, and humoral signaling pathways in the host, and from wasp extracellular superoxide dismutases. We implemented either one-time feeding to the younger instar larvae or spraying once on the corn leaves, to effectively control the invading pest Spodoptera frugiperda. This highlights the conserved principle of "biological pest control," as elucidated by the triple interaction of parasitoid-bracovirus-host in a cooperation strategy of bracovirus against its pest host.
Collapse
Affiliation(s)
- Xing-Cheng Li
- School of Life Sciences, Yunnan University, Kunming, China
- Yunnan International Joint Laboratory of Virology & Immunology, Yunnan University, Kunming, China
- Key Laboratory of the University in Yunnan Province for International Cooperation in Intercellular Communications and Regulations, Yunnan University, Kunming, China
| | - Yin-Chen Ma
- School of Life Sciences, Yunnan University, Kunming, China
- Yunnan International Joint Laboratory of Virology & Immunology, Yunnan University, Kunming, China
- Key Laboratory of the University in Yunnan Province for International Cooperation in Intercellular Communications and Regulations, Yunnan University, Kunming, China
| | - Jin Long
- School of Life Sciences, Yunnan University, Kunming, China
- Yunnan International Joint Laboratory of Virology & Immunology, Yunnan University, Kunming, China
- Key Laboratory of the University in Yunnan Province for International Cooperation in Intercellular Communications and Regulations, Yunnan University, Kunming, China
| | - Xiang Yan
- School of Life Sciences, Yunnan University, Kunming, China
- Yunnan International Joint Laboratory of Virology & Immunology, Yunnan University, Kunming, China
- Key Laboratory of the University in Yunnan Province for International Cooperation in Intercellular Communications and Regulations, Yunnan University, Kunming, China
| | - Nan-Nan Peng
- School of Life Sciences, Yunnan University, Kunming, China
- Yunnan International Joint Laboratory of Virology & Immunology, Yunnan University, Kunming, China
- Key Laboratory of the University in Yunnan Province for International Cooperation in Intercellular Communications and Regulations, Yunnan University, Kunming, China
| | - Cheng-Hui Cai
- School of Life Sciences, Yunnan University, Kunming, China
- Yunnan International Joint Laboratory of Virology & Immunology, Yunnan University, Kunming, China
- Key Laboratory of the University in Yunnan Province for International Cooperation in Intercellular Communications and Regulations, Yunnan University, Kunming, China
| | - Wen-Feng Zhong
- School of Life Sciences, Yunnan University, Kunming, China
- Yunnan International Joint Laboratory of Virology & Immunology, Yunnan University, Kunming, China
- Key Laboratory of the University in Yunnan Province for International Cooperation in Intercellular Communications and Regulations, Yunnan University, Kunming, China
| | - Yong-Biao Huang
- School of Life Sciences, Yunnan University, Kunming, China
- Yunnan International Joint Laboratory of Virology & Immunology, Yunnan University, Kunming, China
- Key Laboratory of the University in Yunnan Province for International Cooperation in Intercellular Communications and Regulations, Yunnan University, Kunming, China
| | - Xin Qiao
- School of Life Sciences, Yunnan University, Kunming, China
- Yunnan International Joint Laboratory of Virology & Immunology, Yunnan University, Kunming, China
- Key Laboratory of the University in Yunnan Province for International Cooperation in Intercellular Communications and Regulations, Yunnan University, Kunming, China
| | - Li-Xiang Zhou
- School of Life Sciences, Yunnan University, Kunming, China
- Yunnan International Joint Laboratory of Virology & Immunology, Yunnan University, Kunming, China
- Key Laboratory of the University in Yunnan Province for International Cooperation in Intercellular Communications and Regulations, Yunnan University, Kunming, China
| | - Qiu-Chen Cai
- School of Life Sciences, Yunnan University, Kunming, China
- Yunnan International Joint Laboratory of Virology & Immunology, Yunnan University, Kunming, China
- Key Laboratory of the University in Yunnan Province for International Cooperation in Intercellular Communications and Regulations, Yunnan University, Kunming, China
| | - Chang-Xu Cheng
- School of Life Sciences, Yunnan University, Kunming, China
- Yunnan International Joint Laboratory of Virology & Immunology, Yunnan University, Kunming, China
- Key Laboratory of the University in Yunnan Province for International Cooperation in Intercellular Communications and Regulations, Yunnan University, Kunming, China
| | - Gui-Fang Zhou
- School of Life Sciences, Yunnan University, Kunming, China
- Yunnan International Joint Laboratory of Virology & Immunology, Yunnan University, Kunming, China
- Key Laboratory of the University in Yunnan Province for International Cooperation in Intercellular Communications and Regulations, Yunnan University, Kunming, China
| | - Yun-Feng Han
- School of Life Sciences, Yunnan University, Kunming, China
- Yunnan International Joint Laboratory of Virology & Immunology, Yunnan University, Kunming, China
- Key Laboratory of the University in Yunnan Province for International Cooperation in Intercellular Communications and Regulations, Yunnan University, Kunming, China
| | - Hong-Yu Liu
- School of Life Sciences, Yunnan University, Kunming, China
- Yunnan International Joint Laboratory of Virology & Immunology, Yunnan University, Kunming, China
- Key Laboratory of the University in Yunnan Province for International Cooperation in Intercellular Communications and Regulations, Yunnan University, Kunming, China
| | - Qi Zhang
- School of Life Sciences, Yunnan University, Kunming, China
- Yunnan International Joint Laboratory of Virology & Immunology, Yunnan University, Kunming, China
- Key Laboratory of the University in Yunnan Province for International Cooperation in Intercellular Communications and Regulations, Yunnan University, Kunming, China
| | - Hong-Mei Tang
- School of Life Sciences, Yunnan University, Kunming, China
- Yunnan International Joint Laboratory of Virology & Immunology, Yunnan University, Kunming, China
- Key Laboratory of the University in Yunnan Province for International Cooperation in Intercellular Communications and Regulations, Yunnan University, Kunming, China
| | - Jiang-Hui Meng
- School of Life Sciences, Yunnan University, Kunming, China
- Yunnan International Joint Laboratory of Virology & Immunology, Yunnan University, Kunming, China
- Key Laboratory of the University in Yunnan Province for International Cooperation in Intercellular Communications and Regulations, Yunnan University, Kunming, China
| | - Kai-Jun Luo
- School of Life Sciences, Yunnan University, Kunming, China
- Yunnan International Joint Laboratory of Virology & Immunology, Yunnan University, Kunming, China
- Key Laboratory of the University in Yunnan Province for International Cooperation in Intercellular Communications and Regulations, Yunnan University, Kunming, China
| |
Collapse
|
27
|
Bulle M, Sheri V, Aileni M, Zhang B. Chloroplast Genome Engineering: A Plausible Approach to Combat Chili Thrips and Other Agronomic Insect Pests of Crops. PLANTS (BASEL, SWITZERLAND) 2023; 12:3448. [PMID: 37836188 PMCID: PMC10574609 DOI: 10.3390/plants12193448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 09/27/2023] [Accepted: 09/28/2023] [Indexed: 10/15/2023]
Abstract
The world population's growing demand for food is expected to increase dramatically by 2050. The agronomic productivity for food is severely affected due to biotic and abiotic constraints. At a global level, insect pests alone account for ~20% loss in crop yield every year. Deployment of noxious chemical pesticides to control insect pests always has a threatening effect on human health and environmental sustainability. Consequently, this necessitates for the establishment of innovative, environmentally friendly, cost-effective, and alternative means to mitigate insect pest management strategies. According to a recent study, using chloroplasts engineered with double-strand RNA (dsRNA) is novel successful combinatorial strategy deployed to effectively control the most vexing pest, the western flower thrips (WFT: Frankliniella occidentalis). Such biotechnological avenues allowed us to recapitulate the recent progress of research methods, such as RNAi, CRISPR/Cas, mini chromosomes, and RNA-binding proteins with plastid engineering for a plausible approach to effectively mitigate agronomic insect pests. We further discussed the significance of the maternal inheritance of the chloroplast, which is the major advantage of chloroplast genome engineering.
Collapse
Affiliation(s)
- Mallesham Bulle
- Agri Biotech Foundation, Agricultural University Campus, Rajendranagar, Hyderabad 500030, India
| | - Vijay Sheri
- Department of Biology, East Carolina University, Greenville, NC 27858, USA;
| | - Mahender Aileni
- Department of Biotechnology, Telangana University, Dichpally, Nizamabad 503322, India;
| | - Baohong Zhang
- Department of Biology, East Carolina University, Greenville, NC 27858, USA;
| |
Collapse
|
28
|
Bélanger S, Kramer MC, Payne HA, Hui AY, Slotkin RK, Meyers BC, Staub JM. Plastid dsRNA transgenes trigger phased small RNA-based gene silencing of nuclear-encoded genes. THE PLANT CELL 2023; 35:3398-3412. [PMID: 37309669 PMCID: PMC10473229 DOI: 10.1093/plcell/koad165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 05/16/2023] [Accepted: 06/12/2023] [Indexed: 06/14/2023]
Abstract
Plastid transformation technology has been widely used to express traits of potential commercial importance, though the technology has been limited to traits that function while sequestered in the organelle. Prior research indicates that plastid contents can escape from the organelle, suggesting a possible mechanism for engineering plastid transgenes to function in other cellular locations. To test this hypothesis, we created tobacco (Nicotiana tabacum cv. Petit Havana) plastid transformants that express a fragment of the nuclear-encoded Phytoene desaturase (PDS) gene capable of catalyzing post-transcriptional gene silencing if RNA escapes into the cytoplasm. We found multiple lines of direct evidence that plastid-encoded PDS transgenes affect nuclear PDS gene silencing: knockdown of the nuclear-encoded PDS mRNA and/or its apparent translational inhibition, biogenesis of 21-nucleotide (nt) phased small interfering RNAs (phasiRNAs), and pigment-deficient plants. Furthermore, plastid-expressed dsRNA with no cognate nuclear-encoded pairing partner also produced abundant 21-nt phasiRNAs in the cytoplasm, demonstrating that a nuclear-encoded template is not required for siRNA biogenesis. Our results indicate that RNA escape from plastids to the cytoplasm occurs generally, with functional consequences that include entry into the gene silencing pathway. Furthermore, we uncover a method to produce plastid-encoded traits with functions outside of the organelle and open additional fields of study in plastid development, compartmentalization, and small RNA biogenesis.
Collapse
Affiliation(s)
- Sébastien Bélanger
- Donald Danforth Plant Science Center, 975 N. Warson Road, St. Louis, MO 63132, USA
| | - Marianne C Kramer
- Donald Danforth Plant Science Center, 975 N. Warson Road, St. Louis, MO 63132, USA
| | - Hayden A Payne
- Donald Danforth Plant Science Center, 975 N. Warson Road, St. Louis, MO 63132, USA
| | - Alice Y Hui
- Plastomics Inc, 1100 Corporate Square Drive, St. Louis, MO 63132, USA
| | - R Keith Slotkin
- Donald Danforth Plant Science Center, 975 N. Warson Road, St. Louis, MO 63132, USA
- Division of Biological Sciences, University of Missouri, Columbia, MO 65211, USA
| | - Blake C Meyers
- Donald Danforth Plant Science Center, 975 N. Warson Road, St. Louis, MO 63132, USA
- Division of Plant Science and Technology, University of Missouri, Columbia, MO 65211, USA
| | - Jeffrey M Staub
- Plastomics Inc, 1100 Corporate Square Drive, St. Louis, MO 63132, USA
| |
Collapse
|
29
|
Mwaka HS, Bauters L, Namaganda J, Marcou S, Bwesigye PN, Kubiriba J, Smagghe G, Tushemereirwe WK, Gheysen G. Transgenic East African Highland Banana Plants Are Protected against Radopholus similis through Host-Delivered RNAi. Int J Mol Sci 2023; 24:12126. [PMID: 37569502 PMCID: PMC10418933 DOI: 10.3390/ijms241512126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 07/22/2023] [Accepted: 07/26/2023] [Indexed: 08/13/2023] Open
Abstract
The burrowing nematode Radopholus similis is considered a major problem of intensive banana cultivation. It can cause extensive root damage resulting in the toppling disease of banana, which means that plants fall to the ground. Soaking R. similis in double-stranded (ds) RNA of the nematode genes Rps13, chitin synthase (Chs-2), Unc-87, Pat-10 or beta-1,4-endoglucanase (Eng1a) suppressed reproduction on carrot discs, from 2.8-fold (Chs-2) to 7-fold (Rps13). The East African Highland Banana cultivar Nakitembe was then transformed with constructs for expression of dsRNA against the same genes, and for each construct, 30 independent transformants were tested with nematode infection. Four months after transfer from in vitro culture to the greenhouse, the banana plants were transferred to a screenhouse and inoculated with 2000 nematodes per plant, and thirteen weeks later, they were analyzed for several parameters including plant growth, root necrosis and final nematode population. Plants with dsRNA constructs against the nematode genes were on average showing lower nematode multiplication and root damage than the nontransformed controls or the banana plants expressing dsRNA against the nonendogenous gene. In conclusion, RNAi seems to efficiently protect banana against damage caused by R. similis, opening perspectives to control this pest.
Collapse
Affiliation(s)
- Henry Shaykins Mwaka
- Department of Biotechnology, Ghent University, 9000 Ghent, Belgium; (H.S.M.); (L.B.)
- Department of Plants and Crops, Ghent University, 9000 Ghent, Belgium; (S.M.)
- National Agricultural Research Laboratories, Kawanda, Kampala P.O. Box 7065, Uganda; (J.N.); (P.N.B.); (J.K.); (W.K.T.)
| | - Lander Bauters
- Department of Biotechnology, Ghent University, 9000 Ghent, Belgium; (H.S.M.); (L.B.)
| | - Josephine Namaganda
- National Agricultural Research Laboratories, Kawanda, Kampala P.O. Box 7065, Uganda; (J.N.); (P.N.B.); (J.K.); (W.K.T.)
| | - Shirley Marcou
- Department of Plants and Crops, Ghent University, 9000 Ghent, Belgium; (S.M.)
| | - Priver Namanya Bwesigye
- National Agricultural Research Laboratories, Kawanda, Kampala P.O. Box 7065, Uganda; (J.N.); (P.N.B.); (J.K.); (W.K.T.)
| | - Jerome Kubiriba
- National Agricultural Research Laboratories, Kawanda, Kampala P.O. Box 7065, Uganda; (J.N.); (P.N.B.); (J.K.); (W.K.T.)
| | - Guy Smagghe
- Department of Plants and Crops, Ghent University, 9000 Ghent, Belgium; (S.M.)
| | | | - Godelieve Gheysen
- Department of Biotechnology, Ghent University, 9000 Ghent, Belgium; (H.S.M.); (L.B.)
| |
Collapse
|
30
|
Wang H, Shi S, Hua W. Advances of herbivore-secreted elicitors and effectors in plant-insect interactions. FRONTIERS IN PLANT SCIENCE 2023; 14:1176048. [PMID: 37404545 PMCID: PMC10317074 DOI: 10.3389/fpls.2023.1176048] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 03/31/2023] [Indexed: 07/06/2023]
Abstract
Diverse molecular processes regulate the interactions between insect herbivores and their host plants. When plants are exposed to insects, elicitors induce plant defenses, and complex physiological and biochemical processes are triggered, such as the activation of the jasmonic acid (JA) and salicylic acid (SA) pathways, Ca2+ flux, reactive oxygen species (ROS) burst, mitogen-activated protein kinase (MAPK) activation, and other responses. For better adaptation, insects secrete a large number of effectors to interfere with plant defenses on multiple levels. In plants, resistance (R) proteins have evolved to recognize effectors and trigger stronger defense responses. However, only a few effectors recognized by R proteins have been identified until now. Multi-omics approaches for high-throughput elicitor/effector identification and functional characterization have been developed. In this review, we mainly highlight the recent advances in the identification of the elicitors and effectors secreted by insects and their target proteins in plants and discuss their underlying molecular mechanisms, which will provide new inspiration for controlling these insect pests.
Collapse
Affiliation(s)
- Huiying Wang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Shaojie Shi
- Hubei Hongshan Laboratory, Wuhan, China
- Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Key Laboratory of Crop Molecular Breeding, Ministry of Agriculture and Rural Affairs, Institute of Food Crops, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Wei Hua
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| |
Collapse
|
31
|
Wang ZL, Wang YD, Cheng YQ, Ye ZH, Liu GF, Yu XP. Characterization and transcriptomic analysis of a native fungal pathogen against the rice pest Nilaparvata lugens. Front Microbiol 2023; 14:1162113. [PMID: 37275152 PMCID: PMC10232905 DOI: 10.3389/fmicb.2023.1162113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 05/05/2023] [Indexed: 06/07/2023] Open
Abstract
The brown planthopper (BPH), Nilaparvata lugens, is one of the most destructive pests of rice. Given the threats posed by insecticide resistance to its control, eco-friendly strategies based on microbial pathogens emerged as a promising biocontrol alternative. In the present study, we isolated a native fungal pathogen against BPH from infected BPH cadavers and preliminarily identified as a strain of Aspergillus fumigatus based on morphological and molecular methods. Laboratory bioassay revealed that this fungal strain was highly virulent to BPH both at nymphal and adult stages, with the median lethal times (LT50) of 7.5 and 5.8 days under high conidial concentration of 1 × 109 conidia mL-1. A genome-wide view of gene expressions in BPH against fungal attack was analyzed by transcriptomic sequencing and consequently a large number of differentially expressed genes that mainly involved in host immune defense and cell detoxification were found. RNAi-mediated knockdown of an upregulated gene encoding a serine protease (NlSPN) could cause a significant decrease in BPH survival. Combination of dsRNA injection and fungal infection showed an additive effect on BPH mortality, which provided clues to develop new pest management strategies against BPH.
Collapse
|
32
|
Sana S, Vollhardt I, Kubon K, Rostás M, Scholten S. De novo transcriptome assemblies of five major European oilseed rape insect pests. BMC Genom Data 2023; 24:15. [PMID: 36899327 PMCID: PMC10007812 DOI: 10.1186/s12863-023-01115-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 02/17/2023] [Indexed: 03/12/2023] Open
Abstract
OBJECTIVE Insect pests can cause severe losses in oilseed rape yields across Europe. Genomic and transcriptomic information is very limited for these insects. The aim of our study was to provide transcriptomic resources on several oilseed rape herbivores that will support research into their biology and help develop new methods of sustainable pest management. DATA Transcriptomes for larval stages of five major European pest species were de novo assembled by Trinity assembler. Total number of transcripts ranged from 112,247 for Ceutorhynchus pallidactylus to 225,110 for Ceutorhyncus napi. Intermediate numbers of 140,588, 140,998 and 144,504, were found for Psylliodes chrysocephala, Dasineura brassicae, and Brassicogethes aeneus, respectively. Bench-marking universal single-copy orthologues analyses for each dataset indicated high degree of completeness for all five species. The transcriptomes extend the list of genomic data on insect larvae that constitute major pests of oilseed rape. The data provide information on larval physiology and form a basis to develop highly specific RNA interference-based plant protection.
Collapse
Affiliation(s)
- Salma Sana
- Division of Crop Plant Genetics, Department of Crop Science, Georg-August-University Goettingen, Goettingen, Germany
| | - Ines Vollhardt
- Division of Agricultural Entomology, Department of Crop Science, Georg-August-University Goettingen, Goettingen, Germany
| | - Katharina Kubon
- Division of Crop Plant Genetics, Department of Crop Science, Georg-August-University Goettingen, Goettingen, Germany
| | - Michael Rostás
- Division of Agricultural Entomology, Department of Crop Science, Georg-August-University Goettingen, Goettingen, Germany
| | - Stefan Scholten
- Division of Crop Plant Genetics, Department of Crop Science, Georg-August-University Goettingen, Goettingen, Germany.
- Center for integrated Breeding Research (CiBreed), Goettingen, Germany.
| |
Collapse
|
33
|
Guo H, Liu XZ, Long GJ, Gong LL, Zhang MQ, Ma YF, Hull JJ, Dewer Y, He M, He P. Functional characterization of developmentally critical genes in the white-backed planthopper: Efficacy of nanoparticle-based dsRNA sprays for pest control. PEST MANAGEMENT SCIENCE 2023; 79:1048-1061. [PMID: 36325939 DOI: 10.1002/ps.7271] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 09/30/2022] [Accepted: 11/03/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Epidermal growth factor receptor (EGFR), zinc finger homeodomain-2 (zfh-2), Abdominal-A (Abd-A), and Abdominal-B (Abd-B) regulate the growth and development of the insect abdomen. However, their potential roles in pest control have not been fully assessed. The development of insecticide resistance to multiple chemistries in the white-backed planthopper (WBPH), a major pest of rice, has prompted interest in novel pest control approaches that are ecologically friendly. Although pest management approaches based on double-stranded RNA (dsRNA)-mediated RNA interference (RNAi) have potential, their susceptibility to degradation limits large-scale field applications. These limitations, however, can be overcome with nanoparticle-dsRNA complexes that have greater environmental stability and improved cellular uptake. RESULTS In this study, at 5 days post-injection, transcripts for the four gene targets were reduced relative to controls and all of the experimental groups exhibited significant phenotypic defects and increased mortality. To evaluate the potential of these gene targets for field applications, a nanocarrier-dsRNA spray delivery system was assessed for RNAi efficacy. At 11 days post-spray, significant phenotypic defects and increased mortality were observed in all experimental groups. CONCLUSION Taken together, the results confirm the suitability of the target genes (SfEGFR, Sfzfh-2, SfAbd-A, and SfAbd-B) for pest management and demonstrate the efficacy of the nanocarrier spray system for inducing RNAi-mediated knockdown. As such, the study lays the foundation for the further development and optimization of this technology for large-scale field applications. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Huan Guo
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, P. R. China
| | - Xuan-Zheng Liu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, P. R. China
| | - Gui-Jun Long
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, P. R. China
| | - Lang-Lang Gong
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, P. R. China
| | - Meng-Qi Zhang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, P. R. China
| | - Yun-Feng Ma
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, P. R. China
| | - J Joe Hull
- Pest Management and Biocontrol Research Unit, US Arid Land Agricultural Research Center, USDA Agricultural Research Services, Maricopa, AZ, USA
| | - Youssef Dewer
- Phytotoxicity Research Department, Central Agricultural Pesticide Laboratory, Agricultural Research Center, Giza, Egypt
| | - Ming He
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, P. R. China
| | - Peng He
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, P. R. China
| |
Collapse
|
34
|
Bi F, Yu D, Wei Z, Wei H, Ren H, Wang Y, Ren D, Hua Z, Huang B, Yang G. Core-Shell Polymeric Nanostructures with Intracellular ATP-Fueled dsRNA Delivery toward Genetic Control of Insect Pests. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:2762-2772. [PMID: 36745409 DOI: 10.1021/acs.jafc.2c05737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Transgenic RNA interference (RNAi) represents a burgeoning and promising alternative avenue to manage plant diseases and insect pests in plants. Nonviral nanostructured dsRNA carriers have been demonstrated to possess great potential to facilitate the application of RNAi. However, it remains a critical challenge to achieve the targeted and effective release of dsRNA into the pest cells, limiting the efficiency of the biological control of pests and diseases in practical applications. In this study, we designed and constructed a new type of core-shell polymeric nanostructure (CSPN) with controllable structure, eco-friendliness, and good biocompatibility, on which dsRNA can be efficiently loaded. Once loaded into CSPNs, the dsRNA can be effectively prevented from nonsense degradation by enzymes before entering cells, and it shows targeted and image-guided release triggered by intracellular ATP, which significantly increases the efficiency of gene transfection. Significantly, the in vivo study of the typical lepidoptera silkworm after oral feeding demonstrates the potential of dsCHT10 in CSPNs for a much better knockdown efficiency than that of naked dsCHT10. This innovation enables the nanotechnology developed for the disease microenvironment-triggered release of therapeutic genes for application in sustainable crop protection.
Collapse
Affiliation(s)
- Feihu Bi
- Biomass Molecular Engineering Center and Department of Materials Science and Engineering, Anhui Agricultural University, Hefei 230036, Anhui, China
| | - Deshui Yu
- Anhui Provincial Key Laboratory of Microbial Pest Control, Anhui Agricultural University, Hefei 230036, Anhui, China
| | - Zengming Wei
- Biomass Molecular Engineering Center and Department of Materials Science and Engineering, Anhui Agricultural University, Hefei 230036, Anhui, China
| | - Hanchen Wei
- Biomass Molecular Engineering Center and Department of Materials Science and Engineering, Anhui Agricultural University, Hefei 230036, Anhui, China
| | - Hui Ren
- Biomass Molecular Engineering Center and Department of Materials Science and Engineering, Anhui Agricultural University, Hefei 230036, Anhui, China
| | - Yulong Wang
- Anhui Provincial Key Laboratory of Microbial Pest Control, Anhui Agricultural University, Hefei 230036, Anhui, China
| | - Dalong Ren
- Anhui Province Key Laboratory of Local Livestock and Poultry Genetic Resource Conservation and Bio-breeding, Anhui Agricultural University, Hefei 230036, Anhui, China
| | - Zan Hua
- Biomass Molecular Engineering Center and Department of Materials Science and Engineering, Anhui Agricultural University, Hefei 230036, Anhui, China
| | - Bo Huang
- Anhui Provincial Key Laboratory of Microbial Pest Control, Anhui Agricultural University, Hefei 230036, Anhui, China
| | - Guang Yang
- Biomass Molecular Engineering Center and Department of Materials Science and Engineering, Anhui Agricultural University, Hefei 230036, Anhui, China
- Anhui Provincial Key Laboratory of Microbial Pest Control, Anhui Agricultural University, Hefei 230036, Anhui, China
| |
Collapse
|
35
|
Chen S, Luo X, Nanda S, Yang C, Li Z, Zhang Y, Zhou X, Pan H. RNAi-Based Biopesticides Against 28-Spotted Ladybeetle Henosepilachna vigintioctopunctata Does Not Harm the Insect Predator Propylea japonica. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:3373-3384. [PMID: 36762732 DOI: 10.1021/acs.jafc.2c08473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
RNA interference (RNAi)-mediated control of the notorious pest Henosepilachna vigintioctopunctata is an emerging environment friendly research area. However, the characterization of key target genes in H. vigintioctopunctata is crucial for this. Additionally, assessing the risk of RNAi to nontarget organisms (NTOs) is necessary for environmental safety. In this study, the potential of RNAi technology in controlling H. vigintioctopunctata infestation has been investigated by the oral delivery of double-stranded RNA (dsRNA). The results revealed that the silencing of six genes, including HvABCH1, HvHel25E, HvProsbeta5, HvProsalpha6, HvProsbeta6, and HvSrp54k, was highly lethal to H. vigintioctopunctata. The LC50 values of the dsRNAs used to silence these six genes were found to be less than 13 ng/μL. Moreover, the use of the bacterially expressed dsRNAs caused high mortality in the lab and field populations of H. vigintioctopunctata. Further, administration of HvHel25E and HvSrp54k dsRNAs in the predatory lady beetle Propylea japonica confirmed no transcriptional or organismal levels effects. This risk-assessment result ensured no off-target RNAi effects on the NTOs. Overall, the findings of the study suggested that HvABCH1, HvHel25E, HvProsbeta5, HvProsalpha6, HvProsbeta6, and HvSrp54k can be novel promising molecular targets with high specificity for H. vigintioctopunctata management with negligible effects on the NTOs.
Collapse
Affiliation(s)
- Shimin Chen
- Key Laboratory of Bio-Pesticide Innovation and Application of Guangdong Province, South China Agricultural University, Guangzhou 510642, China
| | - Xuming Luo
- Key Laboratory of Bio-Pesticide Innovation and Application of Guangdong Province, South China Agricultural University, Guangzhou 510642, China
| | - Satyabrata Nanda
- MS Swaminathan School of Agriculture, Centurion University of Technology and Management, Paralakhemundi 761200, India
| | - Chunxiao Yang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou 510642, China
| | - Zhaoyang Li
- Key Laboratory of Bio-Pesticide Innovation and Application of Guangdong Province, South China Agricultural University, Guangzhou 510642, China
| | - Youjun Zhang
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xuguo Zhou
- Department of Entomology, University of Kentucky, Lexington, Kentucky 40546, United States
| | - Huipeng Pan
- Key Laboratory of Bio-Pesticide Innovation and Application of Guangdong Province, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
36
|
Tatineni S, Hein GL. Plant Viruses of Agricultural Importance: Current and Future Perspectives of Virus Disease Management Strategies. PHYTOPATHOLOGY 2023; 113:117-141. [PMID: 36095333 DOI: 10.1094/phyto-05-22-0167-rvw] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Plant viruses cause significant losses in agricultural crops worldwide, affecting the yield and quality of agricultural products. The emergence of novel viruses or variants through genetic evolution and spillover from reservoir host species, changes in agricultural practices, mixed infections with disease synergism, and impacts from global warming pose continuous challenges for the management of epidemics resulting from emerging plant virus diseases. This review describes some of the most devastating virus diseases plus select virus diseases with regional importance in agriculturally important crops that have caused significant yield losses. The lack of curative measures for plant virus infections prompts the use of risk-reducing measures for managing plant virus diseases. These measures include exclusion, avoidance, and eradication techniques, along with vector management practices. The use of sensitive, high throughput, and user-friendly diagnostic methods is crucial for defining preventive and management strategies against plant viruses. The advent of next-generation sequencing technologies has great potential for detecting unknown viruses in quarantine samples. The deployment of genetic resistance in crop plants is an effective and desirable method of managing virus diseases. Several dominant and recessive resistance genes have been used to manage virus diseases in crops. Recently, RNA-based technologies such as dsRNA- and siRNA-based RNA interference, microRNA, and CRISPR/Cas9 provide transgenic and nontransgenic approaches for developing virus-resistant crop plants. Importantly, the topical application of dsRNA, hairpin RNA, and artificial microRNA and trans-active siRNA molecules on plants has the potential to develop GMO-free virus disease management methods. However, the long-term efficacy and acceptance of these new technologies, especially transgenic methods, remain to be established.
Collapse
Affiliation(s)
- Satyanarayana Tatineni
- U.S. Department of Agriculture-Agricultural Research Service and Department of Plant Pathology, University of Nebraska-Lincoln, Lincoln, NE 68583
| | - Gary L Hein
- Department of Entomology, University of Nebraska-Lincoln, Lincoln, NE 68583
| |
Collapse
|
37
|
Li Q, Cheng Y, Fan J, Chen J. Metabolic relay gene of aphid and primary symbiont as RNAi target loci for aphid control. FRONTIERS IN PLANT SCIENCE 2023; 13:1092638. [PMID: 36743566 PMCID: PMC9890070 DOI: 10.3389/fpls.2022.1092638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 12/23/2022] [Indexed: 06/18/2023]
Abstract
INTRODUCTION Aphids form a stable and mutually beneficial relationship with their primary symbiont Buchnera aphidicola, which play an important role in providing the missing nutrients to the host aphid. Based on the genome sequence of wheat aphid Siotobion miscanthi and its primary symbiont Buchnera that we obtained in our previously study, we identified a metabolic relay gene, ilvA, involved in the isoleucine synthesis pathway between aphids and Buchnera. METHOD In this study, we identified the location and sequence structure of ilvA gene in aphid genome, the expression level in different instars and tissues of aphids, and the effect of reducing ilvA expression on the growth and development of aphids by bioinformatics analysis, quantitative PCR, RNAi and bioassay experiments. RESULT Our study showed that ilvA was expressed at the highest level in the 2nd instar of the aphid, while the expression of this gene was significantly higher in the aphid bacteriocytes than in other tissues. Notably, this gene is localized on the aphid sex chromosome and remains highly conserved and collinearity across different aphid genomes. Knocking down the expression of ilvA reduced the aphid body weight and production. However, the indices of mortality decreased slightly, but were not significantly different, compared to the control. DISCUSSION The results show that the relay genes between aphids and their symbionts in the metabolism of essential nutrients have potential roles in the growth and development of aphids, meanwhile, providing target loci and new ideas for RNAi-based aphid green control strategies.
Collapse
Affiliation(s)
- Qian Li
- College of Bioscience and Resource Environment/Key Laboratory of Urban Agriculture (North China), Ministry of Agriculture and Rural Affairs of the People’s Republic of China, Beijing University of Agriculture, Beijing, China
- The State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yu Cheng
- The State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jia Fan
- The State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Julian Chen
- The State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- Ministry of Agricultural and Rural Affairs -Center of Applied Biological International (MARA-CABI) Joint Laboratory for Bio-Safety, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
38
|
Complementary peptides represent a credible alternative to agrochemicals by activating translation of targeted proteins. Nat Commun 2023; 14:254. [PMID: 36650156 PMCID: PMC9845214 DOI: 10.1038/s41467-023-35951-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 01/10/2023] [Indexed: 01/18/2023] Open
Abstract
The current agriculture main challenge is to maintain food production while facing multiple threats such as increasing world population, temperature increase, lack of agrochemicals due to health issues and uprising of weeds resistant to herbicides. Developing novel, alternative, and safe methods is hence of paramount importance. Here, we show that complementary peptides (cPEPs) from any gene can be designed to target specifically plant coding genes. External application of synthetic peptides increases the abundance of the targeted protein, leading to related phenotypes. Moreover, we provide evidence that cPEPs can be powerful tools in agronomy to improve plant traits, such as growth, resistance to pathogen or heat stress, without the needs of genetic approaches. Finally, by combining their activity they can also be used to reduce weed growth.
Collapse
|
39
|
Manna S, Roy S, Dolai A, Ravula AR, Perumal V, Das A. Current and future prospects of “all-organic” nanoinsecticides for agricultural insect pest management. FRONTIERS IN NANOTECHNOLOGY 2023. [DOI: 10.3389/fnano.2022.1082128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Graphical Abstract
Collapse
|
40
|
Ze LJ, Xu P, Wu JJ, Jin L, Ali Anjum A, Li GQ. Disruption of tetrahydrobiopterin (BH4) biosynthesis pathway affects cuticle pigmentation in Henosepilachna vigintioctopunctata. JOURNAL OF INSECT PHYSIOLOGY 2023; 144:104457. [PMID: 36427533 DOI: 10.1016/j.jinsphys.2022.104457] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 11/18/2022] [Accepted: 11/19/2022] [Indexed: 06/16/2023]
Abstract
Tetrahydrobiopterin (BH4) is produced from guanosine triphosphate (GTP) under catalyzation of GTP cyclohydrolase I (GTPCH), 6-pyruvoyltetrahydropterin synthase (PTPS) and sepiapterin reductase (SR), among others. In Drosophila melanogaster, BH4 and other pteridines are required for cuticle tanning and eye pigmentation. In this study, two Hvgtpch (Hvgtpch-a and Hvgtpch-b), an Hvptps and an Hvsr transcripts were identified in a serious defoliator Henosepilachna vigintioctopunctata. Hvgtpch-a and Hvgtpch-b were highly expressed just before and/or right after the molt, in contrast to Hvptps and Hvsr. RNA interference (RNAi) by injection of a dsgtpch targeting the common fragment of Hvgtpch-a and Hvgtpch-b into the third instar larvae caused albino fourth-instar larvae and pupae. Around 80% of the Hvgtpch RNAi larvae failed to pupate. The remaining 20% of Hvgtpch RNAi pupated beetles did not completely remove the larval/pupal exuviae after emerged as adults and eventually died. Depletion of Hvgtpch at the fourth instar stage resulted in under-pigmented pupae and adults, with significantly low pupation and emergence rates. The Hvgtpch RNAi adults rarely moved and fed on plant leaves; they died within a week after emergence. Silence of Hvptps or Hvsr at the third- and fourth-instar stages led to similar but less serious phenotypes, with lowest influence in the Hvsr RNAi ladybirds. Moreover, RNAi of Hvgtpch, Hvptps or Hvsr did not affect coloration of the larval ocelli and pupal/adult compound eyes. Therefore, our results demonstrated that pteridines are involved in melanin formation but not in eye pigmentation in H. vigintioctopunctata. Moreover, our findings will enable the development of a dsgtpch-based pesticide to control H. vigintioctopunctata larvae.
Collapse
Affiliation(s)
- Long-Ji Ze
- Education Ministry Key Laboratory of Integrated Management of Crop Diseases and Pests/State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China.
| | - Ping Xu
- Education Ministry Key Laboratory of Integrated Management of Crop Diseases and Pests/State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China.
| | - Jian-Jian Wu
- Education Ministry Key Laboratory of Integrated Management of Crop Diseases and Pests/State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China.
| | - Lin Jin
- Education Ministry Key Laboratory of Integrated Management of Crop Diseases and Pests/State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China.
| | - Ahmad Ali Anjum
- Education Ministry Key Laboratory of Integrated Management of Crop Diseases and Pests/State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China.
| | - Guo-Qing Li
- Education Ministry Key Laboratory of Integrated Management of Crop Diseases and Pests/State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
41
|
Rafique A, Afroz A, Zeeshan N, Rashid U, Khan MAU, Irfan M, Chatha W, Khan MR, Rehman N. Production of Sitobion avenae-resistant Triticum aestivum cvs using laccase as RNAi target and its systemic movement in wheat post dsRNA spray. PLoS One 2023; 18:e0284888. [PMID: 37163535 PMCID: PMC10171587 DOI: 10.1371/journal.pone.0284888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 04/11/2023] [Indexed: 05/12/2023] Open
Abstract
Among the wheat biotic stresses, Sitobion avenae is one of the main factors devastating the wheat yield per hectare. The study's objective was to find out the laccase (lac) efficacy; as a potential RNAi target against grain aphids. The Sitobion avenae lac (Salac) was confirmed by Reverse Transcriptase-PCR. Gene was sequenced and accession number "ON703252" was allotted by GenBank. ERNAi tool was used to design 143 siRNA and one dsRNA target. 69% mortality and 61% reduction in lac expression were observed 8D-post lac DsRNA feeding. Phylogenetic analysis displayed the homology of grain aphid lac gene with peach potato, pea, and Russian wheat aphids. While Salac protein was found similar to the Russian grain, soybean, pea, and cedar bark aphid lac protein multi-copper oxidase. The dsRNAlac spray-induced silencing shows systematic translocation from leaf to root; with maximum lac expression found in the root, followed by stem and leaf 9-13D post-spray; comparison to control. RNAi-GG provides the Golden Gate cloning strategy with a single restriction ligation reaction used to achieve lac silencing. Agrobacterium tumefaciens mediated in planta and in-vitro transformation was used in the study. In vitro transformation, Galaxy 2012 yielded a maximum transformation efficiency (1.5%), followed by Anaj 2017 (0.8%), and Punjab (0.2%). In planta transformation provides better transformation efficiencies with a maximum in Galaxy 2012 (16%), and a minimum for Punjab (5%). Maximum transformation efficiency was achieved for all cultivars with 250 μM acetosyringone and 3h co-cultivation. Galaxy 2012 exhibited maximum transformation efficiency, and aphid mortality post-feeding transgenic wheat.
Collapse
Affiliation(s)
- Asma Rafique
- Department of Biochemistry and Biotechnology, University of Gujrat, Gujrat, Punjab, Pakistan
| | - Amber Afroz
- Department of Biochemistry and Biotechnology, University of Gujrat, Gujrat, Punjab, Pakistan
| | - Nadia Zeeshan
- Department of Biochemistry and Biotechnology, University of Gujrat, Gujrat, Punjab, Pakistan
| | - Umer Rashid
- Department of Biochemistry and Biotechnology, University of Gujrat, Gujrat, Punjab, Pakistan
| | | | - Muhammad Irfan
- Department of Biochemistry and Biotechnology, University of Gujrat, Gujrat, Punjab, Pakistan
| | - Waheed Chatha
- Department of Biochemistry and Biotechnology, University of Gujrat, Gujrat, Punjab, Pakistan
| | - Muhammad Ramzan Khan
- National Institute for Genomics and Advanced Biotechnology, National Agricultural Research Centre, Islamabad, Pakistan
| | - Nazia Rehman
- National Institute for Genomics and Advanced Biotechnology, National Agricultural Research Centre, Islamabad, Pakistan
| |
Collapse
|
42
|
Lucena-Leandro VS, Abreu EFA, Vidal LA, Torres CR, Junqueira CICVF, Dantas J, Albuquerque ÉVS. Current Scenario of Exogenously Induced RNAi for Lepidopteran Agricultural Pest Control: From dsRNA Design to Topical Application. Int J Mol Sci 2022; 23:ijms232415836. [PMID: 36555476 PMCID: PMC9785151 DOI: 10.3390/ijms232415836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/24/2022] [Accepted: 11/25/2022] [Indexed: 12/24/2022] Open
Abstract
Invasive insects cost the global economy around USD 70 billion per year. Moreover, increasing agricultural insect pests raise concerns about global food security constraining and infestation rising after climate changes. Current agricultural pest management largely relies on plant breeding-with or without transgenes-and chemical pesticides. Both approaches face serious technological obsolescence in the field due to plant resistance breakdown or development of insecticide resistance. The need for new modes of action (MoA) for managing crop health is growing each year, driven by market demands to reduce economic losses and by consumer demand for phytosanitary measures. The disabling of pest genes through sequence-specific expression silencing is a promising tool in the development of environmentally-friendly and safe biopesticides. The specificity conferred by long dsRNA-base solutions helps minimize effects on off-target genes in the insect pest genome and the target gene in non-target organisms (NTOs). In this review, we summarize the status of gene silencing by RNA interference (RNAi) for agricultural control. More specifically, we focus on the engineering, development and application of gene silencing to control Lepidoptera through non-transforming dsRNA technologies. Despite some delivery and stability drawbacks of topical applications, we reviewed works showing convincing proof-of-concept results that point to innovative solutions. Considerations about the regulation of the ongoing research on dsRNA-based pesticides to produce commercialized products for exogenous application are discussed. Academic and industry initiatives have revealed a worthy effort to control Lepidoptera pests with this new mode of action, which provides more sustainable and reliable technologies for field management. New data on the genomics of this taxon may contribute to a future customized target gene portfolio. As a case study, we illustrate how dsRNA and associated methodologies could be applied to control an important lepidopteran coffee pest.
Collapse
Affiliation(s)
| | | | - Leonardo A. Vidal
- Embrapa Recursos Genéticos e Biotecnologia, Brasília 70770-917, DF, Brazil
- Department of Cellular Biology, Institute of Biological Sciences, Campus Darcy Ribeiro, Universidade de Brasília—UnB, Brasília 70910-9002, DF, Brazil
| | - Caroline R. Torres
- Embrapa Recursos Genéticos e Biotecnologia, Brasília 70770-917, DF, Brazil
- Department of Agronomy and Veterinary Medicine, Campus Darcy Ribeiro, Universidade de Brasília—UnB, Brasília 70910-9002, DF, Brazil
| | - Camila I. C. V. F. Junqueira
- Embrapa Recursos Genéticos e Biotecnologia, Brasília 70770-917, DF, Brazil
- Department of Agronomy and Veterinary Medicine, Campus Darcy Ribeiro, Universidade de Brasília—UnB, Brasília 70910-9002, DF, Brazil
| | - Juliana Dantas
- Embrapa Recursos Genéticos e Biotecnologia, Brasília 70770-917, DF, Brazil
| | | |
Collapse
|
43
|
Das PK, Panda G, Patra K, Jena N, Dash M. The role of polyplexes in developing a green sustainable approach in agriculture. RSC Adv 2022; 12:34463-34481. [PMID: 36545618 PMCID: PMC9709925 DOI: 10.1039/d2ra06541j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 11/15/2022] [Indexed: 12/05/2022] Open
Abstract
Rise in global population has increased the food demands and thus the competition among farmers to produce more and more. In the race to obtain higher productivity, farmers have resorted to injudicious farming practices that include the reckless use of nitrogenous fertilizers and intensive cropping on farmlands. Such practices have paved the path for large scale infestations of crops and plants by pests thus affecting the plant productivity and crop vigour. There are several traditional techniques to control pest infestations in plants such as the use of chemical or bio-pesticides, and integrated pest management practices which face several drawbacks. Delivery of gene/nucleic acid in plants through genetic engineering approaches is a more sustainable and effective method of protection against pests. The technology of RNA interference (RNAi) provides a sustainable solution to counter pest control problems faced by other traditional techniques. The RNAi technique involves delivery of dsDNA/dsRNA or other forms of nucleic acids into target organisms thereby bringing about gene silencing. However, RNAi is also limited to its use because of their susceptibility to degradation wherein the use of cationic polymers can provide a tangible solution. Cationic polymers form stable complexes with the nucleic acids known as "polyplexes", which may be attributed to their high positive charge densities thus protecting the exogenous nucleic acids from extracellular degradation. The current paper focuses on the utility of nucleic acids as a sustainable tool for pest control in crops and the use of cationic polymers for the efficient delivery of nucleic acids in pests thus protecting the plant from infestations.
Collapse
Affiliation(s)
| | | | | | - Nivedita Jena
- Institute of Life Sciences, DBT-ILSBhubaneswarOdishaIndia
| | - Mamoni Dash
- Institute of Life Sciences, DBT-ILSBhubaneswarOdishaIndia
| |
Collapse
|
44
|
Ribeiro TP, Vasquez DDN, Macedo LLP, Lourenço-Tessutti IT, Valença DC, Oliveira-Neto OB, Paes-de-Melo B, Rodrigues-Silva PL, Firmino AAP, Basso MF, Lins CBJ, Neves MR, Moura SM, Tripode BMD, Miranda JE, Silva MCM, Grossi-de-Sa MF. Stabilized Double-Stranded RNA Strategy Improves Cotton Resistance to CBW ( Anthonomus grandis). Int J Mol Sci 2022; 23:13713. [PMID: 36430188 PMCID: PMC9691246 DOI: 10.3390/ijms232213713] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/19/2022] [Accepted: 07/20/2022] [Indexed: 11/11/2022] Open
Abstract
Cotton is the most important crop for fiber production worldwide. However, the cotton boll weevil (CBW) is an insect pest that causes significant economic losses in infested areas. Current control methods are costly, inefficient, and environmentally hazardous. Herein, we generated transgenic cotton lines expressing double-stranded RNA (dsRNA) molecules to trigger RNA interference-mediated gene silencing in CBW. Thus, we targeted three essential genes coding for chitin synthase 2, vitellogenin, and ecdysis-triggering hormone receptor. The stability of expressed dsRNAs was improved by designing a structured RNA based on a viroid genome architecture. We transformed cotton embryos by inserting a promoter-driven expression cassette that overexpressed the dsRNA into flower buds. The transgenic cotton plants were characterized, and positive PCR transformed events were detected with an average heritability of 80%. Expression of dsRNAs was confirmed in floral buds by RT-qPCR, and the T1 cotton plant generation was challenged with fertilized CBW females. After 30 days, data showed high mortality (around 70%) in oviposited yolks. In adult insects fed on transgenic lines, chitin synthase II and vitellogenin showed reduced expression in larvae and adults, respectively. Developmental delays and abnormalities were also observed in these individuals. Our data remark on the potential of transgenic cotton based on a viroid-structured dsRNA to control CBW.
Collapse
Affiliation(s)
- Thuanne P. Ribeiro
- Embrapa Genetic Resources and Biotechnology, Brasilia 70770-917, DF, Brazil
- Biotechnology and Molecular Biology Department, Federal University of Brasilia (UnB), Brasilia 70910-900, DF, Brazil
| | - Daniel D. N. Vasquez
- Embrapa Genetic Resources and Biotechnology, Brasilia 70770-917, DF, Brazil
- Genetic and Molecular Biology Department, Catholic University of Brasilia (UCB), Brasilia 71966-700, DF, Brazil
| | - Leonardo L. P. Macedo
- Embrapa Genetic Resources and Biotechnology, Brasilia 70770-917, DF, Brazil
- National Institute of Science and Technology (INCT Plant Stress Biotech), Embrapa, Brasilia 70770-917, DF, Brazil
| | - Isabela T. Lourenço-Tessutti
- Embrapa Genetic Resources and Biotechnology, Brasilia 70770-917, DF, Brazil
- National Institute of Science and Technology (INCT Plant Stress Biotech), Embrapa, Brasilia 70770-917, DF, Brazil
| | - David C. Valença
- Embrapa Genetic Resources and Biotechnology, Brasilia 70770-917, DF, Brazil
| | - Osmundo B. Oliveira-Neto
- Embrapa Genetic Resources and Biotechnology, Brasilia 70770-917, DF, Brazil
- National Institute of Science and Technology (INCT Plant Stress Biotech), Embrapa, Brasilia 70770-917, DF, Brazil
- Biochemistry and Molecular Biology Department, Integrated Faculties of the Educational Union of Planalto Central, Brasilia 70675-760, DF, Brazil
| | - Bruno Paes-de-Melo
- Embrapa Genetic Resources and Biotechnology, Brasilia 70770-917, DF, Brazil
- National Institute of Science and Technology (INCT Plant Stress Biotech), Embrapa, Brasilia 70770-917, DF, Brazil
| | | | - Alexandre A. P. Firmino
- Embrapa Genetic Resources and Biotechnology, Brasilia 70770-917, DF, Brazil
- Max Planck Institute Molecular Plant Physiol, 14476 Potsdam, Germany
| | - Marcos F. Basso
- Embrapa Genetic Resources and Biotechnology, Brasilia 70770-917, DF, Brazil
- National Institute of Science and Technology (INCT Plant Stress Biotech), Embrapa, Brasilia 70770-917, DF, Brazil
| | - Camila B. J. Lins
- Embrapa Genetic Resources and Biotechnology, Brasilia 70770-917, DF, Brazil
| | - Maysa R. Neves
- Embrapa Genetic Resources and Biotechnology, Brasilia 70770-917, DF, Brazil
| | - Stefanie M. Moura
- Embrapa Genetic Resources and Biotechnology, Brasilia 70770-917, DF, Brazil
- National Institute of Science and Technology (INCT Plant Stress Biotech), Embrapa, Brasilia 70770-917, DF, Brazil
| | | | | | - Maria C. M. Silva
- Embrapa Genetic Resources and Biotechnology, Brasilia 70770-917, DF, Brazil
- National Institute of Science and Technology (INCT Plant Stress Biotech), Embrapa, Brasilia 70770-917, DF, Brazil
| | - Maria F. Grossi-de-Sa
- Embrapa Genetic Resources and Biotechnology, Brasilia 70770-917, DF, Brazil
- Genetic and Molecular Biology Department, Catholic University of Brasilia (UCB), Brasilia 71966-700, DF, Brazil
- National Institute of Science and Technology (INCT Plant Stress Biotech), Embrapa, Brasilia 70770-917, DF, Brazil
| |
Collapse
|
45
|
Obermeier C, Mason AS, Meiners T, Petschenka G, Rostás M, Will T, Wittkop B, Austel N. Perspectives for integrated insect pest protection in oilseed rape breeding. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2022; 135:3917-3946. [PMID: 35294574 PMCID: PMC9729155 DOI: 10.1007/s00122-022-04074-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 03/01/2022] [Indexed: 05/02/2023]
Abstract
In the past, breeding for incorporation of insect pest resistance or tolerance into cultivars for use in integrated pest management schemes in oilseed rape/canola (Brassica napus) production has hardly ever been approached. This has been largely due to the broad availability of insecticides and the complexity of dealing with high-throughput phenotyping of insect performance and plant damage parameters. However, recent changes in the political framework in many countries demand future sustainable crop protection which makes breeding approaches for crop protection as a measure for pest insect control attractive again. At the same time, new camera-based tracking technologies, new knowledge-based genomic technologies and new scientific insights into the ecology of insect-Brassica interactions are becoming available. Here we discuss and prioritise promising breeding strategies and direct and indirect breeding targets, and their time-perspective for future realisation in integrated insect pest protection of oilseed rape. In conclusion, researchers and oilseed rape breeders can nowadays benefit from an array of new technologies which in combination will accelerate the development of improved oilseed rape cultivars with multiple insect pest resistances/tolerances in the near future.
Collapse
Affiliation(s)
- Christian Obermeier
- Department of Plant Breeding, Justus Liebig University, Heinrich-Buff-Ring 26-32, 35392, Giessen, Germany.
| | - Annaliese S Mason
- Plant Breeding Department, University of Bonn, Katzenburgweg 5, 53115, Bonn, Germany
| | - Torsten Meiners
- Institute for Ecological Chemistry, Plant Analysis and Stored Product Protection, Julius Kühn Institute, Koenigin-Luise-Str. 19, 14195, Berlin, Germany
| | - Georg Petschenka
- Department of Applied Entomology, University of Hohenheim, Otto-Sander-Straße 5, 70599, Stuttgart, Germany
| | - Michael Rostás
- Division of Agricultural Entomology, University of Göttingen, Grisebachstr. 6, 37077, Göttingen, Germany
| | - Torsten Will
- Insitute for Resistance Research and Stress Tolerance, Julius Kühn Insitute, Erwin-Baur-Str. 27, 06484, Quedlinburg, Germany
| | - Benjamin Wittkop
- Department of Plant Breeding, Justus Liebig University, Heinrich-Buff-Ring 26-32, 35392, Giessen, Germany
| | - Nadine Austel
- Institute for Ecological Chemistry, Plant Analysis and Stored Product Protection, Julius Kühn Institute, Koenigin-Luise-Str. 19, 14195, Berlin, Germany
| |
Collapse
|
46
|
Wang R, Li Y, Li D, Zhang W, Wang X, Wen X, Liu Z, Feng Y, Zhang X. Identification of the Extracellular Nuclease Influencing Soaking RNA Interference Efficiency in Bursaphelenchus xylophilus. Int J Mol Sci 2022; 23:ijms232012278. [PMID: 36293134 PMCID: PMC9603779 DOI: 10.3390/ijms232012278] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/08/2022] [Accepted: 10/10/2022] [Indexed: 11/28/2022] Open
Abstract
RNA interference (RNAi) efficiency dramatically varies among different nematodes, which impacts research on their gene function and pest control. Bursaphelenchus xylophilus is a pine wood nematode in which RNAi-mediated gene silencing has unstable interference efficiency through soaking in dsRNA solutions, the factors of which remain unknown. Using agarose gel electrophoresis, we found that dsRNA can be degraded by nematode secretions in the soaking system which is responsible for the low RNAi efficiency. Based on the previously published genome and secretome data of B. xylophilus, 154 nucleases were screened including 11 extracellular nucleases which are potential factors reducing RNAi efficacy. To confirm the function of nucleases in RNAi efficiency, eight extracellular nuclease genes (BxyNuc1-8) were cloned in the genome. BxyNuc4, BxyNuc6 and BxyNuc7 can be upregulated in response to dsGFP, considered as the major nuclease performing dsRNA degradation. After soaking with the dsRNA of nucleases BxyNuc4/BxyNuc6/BxyNuc7 and Pat10 gene (ineffective in RNAi) simultaneously for 24 h, the expression of Pat10 gene decreased by 23.25%, 26.05% and 11.29%, respectively. With soaking for 36 h, the expression of Pat10 gene decreased by 43.25% and 33.25% in dsBxyNuc6+dsPat10 and dsBxyNuc7+dsPat10 groups, respectively. However, without dsPat10, dsBxyNuc7 alone could cause downregulation of Pat10 gene expression, while dsBxyNuc6 could not disturb this gene. In conclusion, the nuclease BxyNuc6 might be a major barrier to the RNAi efficiency in B. xylophilus.
Collapse
Affiliation(s)
- Ruijiong Wang
- Key Laboratory of Forest Protection of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing l00091, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Yongxia Li
- Key Laboratory of Forest Protection of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing l00091, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
- Correspondence: ; Tel.: +86-010-62888578
| | - Dongzhen Li
- Key Laboratory of Forest Protection of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing l00091, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Wei Zhang
- Key Laboratory of Forest Protection of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing l00091, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Xuan Wang
- Key Laboratory of Forest Protection of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing l00091, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Xiaojian Wen
- Key Laboratory of Forest Protection of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing l00091, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Zhenkai Liu
- Key Laboratory of Forest Protection of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing l00091, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Yuqian Feng
- Key Laboratory of Forest Protection of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing l00091, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Xingyao Zhang
- Key Laboratory of Forest Protection of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing l00091, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
47
|
Hough J, Howard JD, Brown S, Portwood DE, Kilby PM, Dickman MJ. Strategies for the production of dsRNA biocontrols as alternatives to chemical pesticides. Front Bioeng Biotechnol 2022; 10:980592. [PMID: 36299286 PMCID: PMC9588923 DOI: 10.3389/fbioe.2022.980592] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 08/23/2022] [Indexed: 01/09/2023] Open
Abstract
Current crop pest control strategies rely on insecticidal and fungicidal sprays, plant genetic resistance, transgenes and agricultural practices. However, many insects, plant viruses, and fungi have no current means of control or have developed resistance against traditional pesticides. dsRNA is emerging as a novel sustainable method of plant protection as an alternative to traditional chemical pesticides. The successful commercialisation of dsRNA based biocontrols for effective pest management strategies requires the economical production of large quantities of dsRNA combined with suitable delivery methods to ensure RNAi efficacy against the target pest. A number of methods exist for the production and delivery of dsRNA based biocontrols and here we review alternative methods currently employed and emerging new approaches for their production. Additionally, we highlight potential challenges that will need to be addressed prior to widespread adoption of dsRNA biocontrols as novel sustainable alternatives to traditional chemical pesticides.
Collapse
Affiliation(s)
- James Hough
- Department of Chemical and Biological Engineering, University of Sheffield, Sheffield, United Kingtom
| | - John D. Howard
- Department of Chemical and Biological Engineering, University of Sheffield, Sheffield, United Kingtom
| | - Stephen Brown
- Sheffield RNAi Screening Facility, School of Biosciences, University of Sheffield, Sheffield, United Kingtom
| | - David E. Portwood
- Syngenta, Jealott’s Hill International Research Centre, Bracknell, United Kingdom
| | - Peter M. Kilby
- Syngenta, Jealott’s Hill International Research Centre, Bracknell, United Kingdom
| | - Mark J. Dickman
- Department of Chemical and Biological Engineering, University of Sheffield, Sheffield, United Kingtom
| |
Collapse
|
48
|
Sattelle DB. Invertebrate neurones, genomes, phenotypic and target-based screening; their contributions to the search for new chemical leads and new molecular targets for the control of pests, parasites and disease vectors. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2022; 187:105175. [PMID: 36127074 DOI: 10.1016/j.pestbp.2022.105175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 07/08/2022] [Accepted: 07/08/2022] [Indexed: 06/15/2023]
Abstract
Insect-borne diseases of humans, animals and plants can be devastating. The direct damage to crops by insect and nematode pests can also severely reduce crop yields and threaten harvests. Parasitic nematodes can impair human health and the health of farm livestock. Effective control for all such pests, vectors and pathogens is required as the economic and health burden can be substantial. Insecticides, nematicides and anthelmintics have been at the forefront of control and will remain important in the immediate future, even as we explore new and more sustainable methods to maintain the necessary disease control and the growth in food supply. Many important chemicals deployed for the control of invertebrate disease vectors and pathogens of humans, agricultural crops and farm livestock are active on ion channels, resulting in rapid actions. Understanding their modes of action has been accelerated by studies on the physiology of identifiable invertebrate excitable cells. Nematode and insect genetic model organisms and comparative genomics have contributed to defining the molecular targets of insecticides and anthelmintics, facilitating target-based screening. Automated phenotyping, which allows high-throughput screening of chemical libraries for new and re-purposed compounds, has been increasingly deployed in the search for new molecules of interest. With a growing world population to be fed and a 20-49% loss of global harvest to pests, we need to maintain control of the pests, parasites and pathogens that threaten global food supply and global health.
Collapse
Affiliation(s)
- David B Sattelle
- Division of Medicine, Rayne Building, University College London, 5 University Street, London WC1E 6JF, UK.
| |
Collapse
|
49
|
Kebede M, Fite T. RNA interference (RNAi) applications to the management of fall armyworm, Spodoptera frugiperda (Lepidoptera: Noctuidae): Its current trends and future prospects. Front Mol Biosci 2022; 9:944774. [PMID: 36158573 PMCID: PMC9490220 DOI: 10.3389/fmolb.2022.944774] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 08/01/2022] [Indexed: 11/13/2022] Open
Abstract
The fall armyworm Spodoptera frugiperda (Lepidoptera: Noctuidae) is among the invasive insect pests that damages maize and sorghum, the high-priority crops in newly colonized agro-ecologies, including African contexts. Owing to the increasing infestation of the pest and the limitations of current conventional methods for its management, there is a call for discovering advanced pest management approaches. RNA interference (RNAi) is an emerging molecular tool showing flexible potential for the management of S. frugiperda. We conducted a search of the recent application of RNAi literature using Google Scholar and Mendeley to find advanced papers on S. frugiperda management using RNAi molecular tools that led to growth inhibition, developmental aberrations, reduced fecundity, and mortality, mainly by disruption of normal biological processes of the pest. Although efforts have been made to accelerate the utility of RNAi, many factors limit the efficiency of RNAi to achieve successful control over S. frugiperda. Owing to RNAi’s potential bioactivity and economic and ecological acceptability, continued research efforts should focus on improving its broad applicability, including field conditions. Screening and identification of key target genes should be a priority task to achieve effective and sustainable management of this insect via RNAi. In addition, a clear understanding of the present status of RNAi utilization in S. frugiperda management is of paramount importance to improve its efficiency. Therefore, in this review, we highlight the biology of S. frugiperda and the RNAi mechanism as a foundation for the molecular management of the pest. Then, we discuss the current knowledge of the RNAi approach in S. frugiperda management and the factors affecting the efficiency of RNAi application. Finally, the prospects for RNAi-based insect pest management are highlighted for future research to achieve effective management of S. frugiperda.
Collapse
|
50
|
Li X, Mu K, Yang S, Wei J, Wang C, Yan W, Yuan F, Wang H, Han D, Kang Z, Zeng Q. Reduction of Rhizoctonia cerealis Infection on Wheat Through Host- and Spray-Induced Gene Silencing of an Orphan Secreted Gene. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2022; 35:803-813. [PMID: 36102883 DOI: 10.1094/mpmi-04-22-0075-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Rhizoctonia cerealis is a soilborne fungus that can cause sharp eyespot in wheat, resulting in massive yield losses found in many countries. Due to the lack of resistant cultivars, fungicides have been widely used to control this pathogen. However, chemical control is not environmentally friendly and is costly. Meanwhile, the lack of genetic transformation tools has hindered the functional characterization of virulence genes. In this study, we attempted to characterize the function of virulence genes by two transient methods, host-induced gene silencing (HIGS) and spray-induced gene silencing (SIGS), which use RNA interference to suppress the pathogenic development. We identified ten secretory orphan genes from the genome. After silencing these ten genes, only the RcOSP1 knocked-down plant significantly inhibited the growth of R. cerealis. We then described RcOSP1 as an effector that could impair wheat biological processes and suppress pathogen-associated molecular pattern-triggered immunity in the infection process. These findings confirm that HIGS and SIGS can be practical tools for researching R. cerealis virulence genes. [Formula: see text] Copyright © 2022 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Xiang Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, China
| | - Keqing Mu
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, China
| | - Shuqing Yang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, China
| | - Jiajing Wei
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, China
| | - Congnawei Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, China
| | - Weiyi Yan
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, China
| | - Fengping Yuan
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, China
| | - Haiying Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, China
| | - Dejun Han
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, China
| | - Zhensheng Kang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, China
- Yangling Seed Industry Innovation Center, Yangling, Shaanxi 712100, China
| | - Qingdong Zeng
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, China
| |
Collapse
|