1
|
Zang Y, Cao B, Yi X, Zha F, Ge Y, Liu H, Yi Y. Enhancing water toxicity determination sensitivity by using TMAO as electron acceptor of inward extracellular electron transfer in electrochemically active bacteria. Bioelectrochemistry 2025; 164:108925. [PMID: 39893835 DOI: 10.1016/j.bioelechem.2025.108925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 01/17/2025] [Accepted: 01/29/2025] [Indexed: 02/04/2025]
Abstract
Toxicity determination based on electrochemically active bacteria (EAB) shows great prospects for early warning of sudden water pollution. However, the main bottleneck for practical application is the low sensitivity. Extracellular electron transfer (EET) is a key parameter influencing sensitivity. Our previous research has demonstrated that EAB exhibit higher sensitivity when performing inward EET compared with outward EET. Inward EET relies on electron acceptors, but the effects of electron acceptors on sensitivity remain unclear. In this study, the sensitivity of toxicity determination with different electron acceptors was compared. Results indicated that the choice of electron acceptors significantly changed the sensitivity. When Trimethylamine N-oxide (TMAO) was chosen as the electron acceptor, EAB exhibited the highest sensitivity, with a lower response limit of 0.05 mg/L Cd2+. The main reason was that the utilization of TMAO for inward EET increases the membrane permeability of EAB cells, facilitates toxic pollutant penetration, and results in high mortality after toxicity exposure.
Collapse
Affiliation(s)
- Yuxuan Zang
- School of Medical, Shanxi Datong University, Datong 037009, China
| | - Bo Cao
- Institute of Environmental Biology and Life Support Technology, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China; International Joint Research Center of Aerospace Biotechnology and Medical Engineering, Beihang University, Beijing 100191, China
| | - Xuemei Yi
- School of Life, Beijing Institute of Technology, Beijing 100081, China
| | - Fan Zha
- Infore Environment Technology Group, Foshan 528000, China
| | - Yanhong Ge
- Infore Environment Technology Group, Foshan 528000, China
| | - Hong Liu
- Institute of Environmental Biology and Life Support Technology, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China; International Joint Research Center of Aerospace Biotechnology and Medical Engineering, Beihang University, Beijing 100191, China.
| | - Yue Yi
- School of Life, Beijing Institute of Technology, Beijing 100081, China.
| |
Collapse
|
2
|
Li D, Huang T, Wu B, Wang C, Jiang X, Huang S, Dai X, Chai X. Facilitating anaerobic digestion of kitchen waste through diatomite-mediated spatial ecological niches construction. WASTE MANAGEMENT (NEW YORK, N.Y.) 2025; 201:114792. [PMID: 40222284 DOI: 10.1016/j.wasman.2025.114792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 03/13/2025] [Accepted: 04/04/2025] [Indexed: 04/15/2025]
Abstract
Anaerobic digestion (AD) presents an effective strategy for sustainable management of kitchen waste (KW), yet its widespread application remains constrained by suboptimal organic conversion efficiency and process instability. This study elucidates the critical role of diatomite (DE)-mediated spatial ecological niches construction in enhancing AD performance through microbial community regulation. Experimental results revealed that DE supplementation with optimal dosage of 10 g/L significantly improved methane production by 11.76 %, and maintained system stability through effective mitigation of volatile fatty acid accumulation and ammonia nitrogen inhibition. Further analysis demonstrated that DE served as an optimal surface for microbial attachment, enhancing biofilm formation and extracellular polymeric substance secretion, which in turn facilitated the selective enrichment and spatial organization of functional microbial communities. Microbial characterization showed that fermentative bacteria predominantly occupied the tightly-adsorbed community, while acetoclastic and hydrogenotrophic methanogens were enriched in the suspended community. Finally, the established ecological niches enhanced electron transfer and promoted syntrophic metabolism among methanogenesis-associated microorganisms. These findings provide mechanistic insights into material-mediated niche engineering strategies, establishing DE as an effective biofilm carrier for optimizing microbial resource utilization in AD systems.
Collapse
Affiliation(s)
- Dong Li
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Tao Huang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Boran Wu
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Chengxian Wang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Xiupeng Jiang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Sheng Huang
- Shanghai Municipal Engineering Design Institute (Group) Co., Ltd, Shanghai 200092, China
| | - Xiaohu Dai
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Xiaoli Chai
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| |
Collapse
|
3
|
Wang P, He D, Zhao J, Xiao Z, Tan J, Ma J, Zheng M. Transition from Anammox to Feammox metabolic modes: Regulation strategies for nitrite in Anammox enrichment cultures. BIORESOURCE TECHNOLOGY 2025; 432:132674. [PMID: 40368316 DOI: 10.1016/j.biortech.2025.132674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2025] [Revised: 04/25/2025] [Accepted: 05/11/2025] [Indexed: 05/16/2025]
Abstract
This studyachievedthe metabolic transition from anaerobic ammonium oxidation (Anammox) to Fe(III)-mediated ammonium oxidation (Feammox)usingiron-carbon micro-electrolytic spheres as a slow-release iron sourcethrougha stepwise reductionin influent NO2--N concentration. The results demonstrated that sustained Feammox activitywas governed bynitrate-dependent ferrous oxidation (NDFO) metabolismcombined withoxygen-regulated Fe(III) regeneration,resulting ina peak total nitrogen removal efficiency of 91.6 %at40 mg/L NO2--N.Whileexclusive NH4+-N feeding inhibited Feammox activity,this suppression was reversible upon NO2--N supplementation. Intriguingly, Anammox activityremained robustdespite decreasing NO2--N levelsand showedsignificant positive correlation with Feammox activity,suggesting shared metabolic modules. Metagenomic profilingfurther identifiedCa. Brocadia as the core functional genus driving NH4+-N oxidation,highlighting its niche adaptationin iron-mediated systems.These mechanistic insights establish a framework fordesigning energy-efficient nitrogen removal processesleveraging iron-redox cycling.
Collapse
Affiliation(s)
- Peng Wang
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, PR. China.
| | - Di He
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, PR. China.
| | - Jianshu Zhao
- School of Civil and Environmental Engineering, Harbin Institute of Technology, Shenzhen 518055, PR China; Shenzhen Pangu Environmental Protection Technology Co. Ltd, Shenzhen 518055, PR China.
| | - Zhenxiong Xiao
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, PR. China.
| | - Jun Tan
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, PR. China.
| | - Jinxing Ma
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, PR. China.
| | - Min Zheng
- Water Research Centre, School of Civil and Environmental Engineering, The University of New South Wales, Sydney, NSW 2052, Australia.
| |
Collapse
|
4
|
Qian Y, Liu T, Yang L, Meng X, Jia F, Liu Z. Electroactivity of Shewanella putrefaciens induced by shrimp matrix: Catalyst for spoilage acceleration. Int J Food Microbiol 2025; 434:111119. [PMID: 40049065 DOI: 10.1016/j.ijfoodmicro.2025.111119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 02/14/2025] [Accepted: 02/17/2025] [Indexed: 03/26/2025]
Abstract
The bacterium Shewanella is commonly found in fishery products along the whole cold chain transportation system and poses a significant threat to public health and the global economy due to its propensity for contaminating food and causing spoilage. In this research, four specific spoilage organisms (SSO) (Shewanella spp.) isolated from various refrigerated aquatic products were found to exhibit electrochemical properties. When modifying the conventional microbial fuel cells with shrimp meat extract as the donor-acceptor, an interesting result was found in the current output of the "shrimp battery", where it exhibits a significant activation effect and the accumulation of total volatile basic nitrogen, Trimethylamine N-oxide and bioamines. The transcriptomic analysis reveals that the extracellular electron transport pathway of Shewanella putrefaciens-329 in aquatic environments underwent a transfer from Mtr cluster to cbb3-type, with its metabolic focus transitioning toward the accumulation of amines, sulfides, and biofilms. Our findings demonstrate that the electrochemical characteristics of Shewanella in aquatic environments play a crucial role in accelerating low-temperature spoilage of aquatic products, thereby offering a novel target for mitigating the detrimental loss of aquatic products caused by Shewanella.
Collapse
Affiliation(s)
- Yilin Qian
- College of Food Science and Engineering, Ocean University of China, 1299 Sansha Road, Qingdao, Shandong Province, 266404, China
| | - Taige Liu
- College of Food Science and Engineering, Ocean University of China, 1299 Sansha Road, Qingdao, Shandong Province, 266404, China
| | - Liu Yang
- College of Food Science and Engineering, Ocean University of China, 1299 Sansha Road, Qingdao, Shandong Province, 266404, China
| | - Xianghong Meng
- College of Food Science and Engineering, Ocean University of China, 1299 Sansha Road, Qingdao, Shandong Province, 266404, China
| | - Fei Jia
- College of Food Science and Engineering, Ocean University of China, 1299 Sansha Road, Qingdao, Shandong Province, 266404, China.
| | - Zunying Liu
- College of Food Science and Engineering, Ocean University of China, 1299 Sansha Road, Qingdao, Shandong Province, 266404, China.
| |
Collapse
|
5
|
Yu D, Jiang Q, Zhu H, Chen Y, Xu L, Ma H, Pu S. Electrochemical reduction for chlorinated hydrocarbons contaminated groundwater remediation: Mechanisms, challenges, and perspectives. WATER RESEARCH 2025; 274:123149. [PMID: 39854779 DOI: 10.1016/j.watres.2025.123149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 01/03/2025] [Accepted: 01/15/2025] [Indexed: 01/26/2025]
Abstract
Electrochemical reduction technology is a promising method for addressing the persistent contamination of groundwater by chlorinated hydrocarbons. Current research shows that electrochemical reductive dechlorination primarily relies on direct electron transfer (DET) and active hydrogen (H⁎) mediated indirect electron transfer processes, thereby achieving efficient dechlorination and detoxification. This paper explores the influence of the molecular charge structure of chlorinated hydrocarbons, including chlorolefin, chloroalkanes, chlorinated aromatic hydrocarbons, and chloro-carboxylic acid, on reductive dechlorination from the perspective of molecular electrostatic potential and local electron affinity. It reveals the affinity characteristics of chlorinated hydrocarbon pollutants, the active dechlorination sites, and the roles of substituent groups. It also comprehensively discusses the current progress on electrochemical reductive dechlorination using metal, carbon-based, and 3D electrode catalysts, with an emphasis on the design and optimization of electrode materials and the impact of catalyst microstructure regulation on dechlorination performance. It delves into the current application status of coupling electrochemical reduction technology with biodegradation and electrochemical circulating well technology for the remediation of groundwater contaminated by chlorinated hydrocarbons. The paper discusses practical application challenges such as electron transfer, electrode corrosion, water chemistry environment, and aquifer heterogeneity. Finally, considerations are presented from the perspectives of environmental impact and sustainable application, along with a summary and analysis of potential future research directions and technological prospects.
Collapse
Affiliation(s)
- Dong Yu
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection (Chengdu University of Technology), 1#, Dongsanlu, Erxianqiao, Chengdu 610059, Sichuan, PR China; State Environmental Protection Key Laboratory of Synergetic Control and Joint Remediation for Soil & Water Pollution (Chengdu University of Technology), 1#, Dongsanlu, Erxianqiao, Chengdu 610059, Sichuan, PR China
| | - Qing Jiang
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection (Chengdu University of Technology), 1#, Dongsanlu, Erxianqiao, Chengdu 610059, Sichuan, PR China; State Environmental Protection Key Laboratory of Synergetic Control and Joint Remediation for Soil & Water Pollution (Chengdu University of Technology), 1#, Dongsanlu, Erxianqiao, Chengdu 610059, Sichuan, PR China
| | - Hongqing Zhu
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection (Chengdu University of Technology), 1#, Dongsanlu, Erxianqiao, Chengdu 610059, Sichuan, PR China; State Environmental Protection Key Laboratory of Synergetic Control and Joint Remediation for Soil & Water Pollution (Chengdu University of Technology), 1#, Dongsanlu, Erxianqiao, Chengdu 610059, Sichuan, PR China
| | - Ying Chen
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection (Chengdu University of Technology), 1#, Dongsanlu, Erxianqiao, Chengdu 610059, Sichuan, PR China; State Environmental Protection Key Laboratory of Synergetic Control and Joint Remediation for Soil & Water Pollution (Chengdu University of Technology), 1#, Dongsanlu, Erxianqiao, Chengdu 610059, Sichuan, PR China
| | - Lanxin Xu
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection (Chengdu University of Technology), 1#, Dongsanlu, Erxianqiao, Chengdu 610059, Sichuan, PR China; State Environmental Protection Key Laboratory of Synergetic Control and Joint Remediation for Soil & Water Pollution (Chengdu University of Technology), 1#, Dongsanlu, Erxianqiao, Chengdu 610059, Sichuan, PR China
| | - Hui Ma
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection (Chengdu University of Technology), 1#, Dongsanlu, Erxianqiao, Chengdu 610059, Sichuan, PR China; State Environmental Protection Key Laboratory of Synergetic Control and Joint Remediation for Soil & Water Pollution (Chengdu University of Technology), 1#, Dongsanlu, Erxianqiao, Chengdu 610059, Sichuan, PR China
| | - Shengyan Pu
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection (Chengdu University of Technology), 1#, Dongsanlu, Erxianqiao, Chengdu 610059, Sichuan, PR China; State Environmental Protection Key Laboratory of Synergetic Control and Joint Remediation for Soil & Water Pollution (Chengdu University of Technology), 1#, Dongsanlu, Erxianqiao, Chengdu 610059, Sichuan, PR China.
| |
Collapse
|
6
|
Li Q, Gong L, Chen X, Gadd GM, Liu D. Dual role of microorganisms in metal corrosion: a review of mechanisms of corrosion promotion and inhibition. Front Microbiol 2025; 16:1552103. [PMID: 40270819 PMCID: PMC12017684 DOI: 10.3389/fmicb.2025.1552103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Accepted: 03/19/2025] [Indexed: 04/25/2025] Open
Abstract
The dual role of microorganisms in metal corrosion and corrosion inhibition reflects their complex biochemical interactions. In terms of corrosion, certain microorganisms accelerate metal oxidation by producing acidic metabolites or facilitating electrochemical processes, thereby causing damage to the material. Conversely, under specific conditions, they can form biofilms and/or biominerals that create protective layers, reducing the oxidation rate and delaying corrosion. This paper provides a comprehensive illustration of microbial corrosion promotion and inhibition, emphasizing the importance of key microorganisms involved in these corrosive processes. Microorganisms, including sulfate-reducing bacteria, nitrate-reducing bacteria, iron-oxidizing and iron-reducing bacteria and certain fungi, contribute to corrosion through their metabolic activities. Microbial corrosion mechanisms can be classified into extracellular electron transfer, microbial metabolism corrosion and the oxygen concentration cell theory. In contrast, microorganisms can effectively mitigate metal corrosion through a range of mechanisms including reduction of dissolved oxygen levels, secretion of antimicrobial substances, biological competition and biomineralization. Microbial corrosion and inhibition generally arise from multiple mechanisms working together, rather than a single cause. A deeper understanding of these mechanisms can provide a theoretical basis and practical guidance for the development of new anti-corrosion strategies.
Collapse
Affiliation(s)
- Qianwei Li
- State Key Laboratory of Petroleum Pollution Control, China University of Petroleum, Beijing, China
| | - Lingli Gong
- State Key Laboratory of Petroleum Pollution Control, China University of Petroleum, Beijing, China
| | - Xiaoji Chen
- State Key Laboratory of Petroleum Pollution Control, China University of Petroleum, Beijing, China
| | - Geoffrey Michael Gadd
- State Key Laboratory of Petroleum Pollution Control, China University of Petroleum, Beijing, China
- Geomicrobiology Group, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Daoqing Liu
- State Key Laboratory of Petroleum Pollution Control, China University of Petroleum, Beijing, China
| |
Collapse
|
7
|
Bai X, Yu Q, Sun J, Xie Y, Yuan Y. Photoheterotrophic extracellular reduction of ferrihydrite activates diverse intracellular metabolic pathways in Rhodopseudomonas palustris for enhanced antibiotic degradation. WATER RESEARCH 2025; 273:123088. [PMID: 39787749 DOI: 10.1016/j.watres.2025.123088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 11/29/2024] [Accepted: 01/02/2025] [Indexed: 01/12/2025]
Abstract
Anoxygenic photosynthetic bacteria (APB) have been frequently detected as a photoautotrophic Fe-carbon cycling drivers in photic and anoxic environment. However, the potential capacity of these bacteria for photoheterotrophic extracellular reduction of iron-containing minerals and their impact on the transformation of organic pollutants remain currently unknown. This study investigated the capacity of R. palustris, a purple non-sulfur anoxygenic photosynthetic bacterium, to reduce ferrihydrite (Fh) and its correlation with sulfamethazine (SDZ) degradation were firstly investigated. The results revealed that R. palustris could undergo photoheterotrophic extracellular reduction of Fh to form goethite through direct contact, facilitating the formation of conductive bands and enter the interior of cells with a maximum Fe(II)/Fe(T) ratio of up to 39 % within 8 days which led to 13 % increase in assimilation rate of acetate carbon and 53.2 % increase in SDZ degradation rates, as compared with those by R. palustris alone. Moreover, the intermediates generated during the degradation of SDZ by R. palustris-Fh exhibited relatively lower developmental toxicity compared with the original SDZ molecule. The extracellular reduction of Fh significantly up-regulated the expression of genes related to photosynthetic metabolic enzymes, extracellular electron transporters, and extracellular degrading enzymes in R. palustris. This enhancement promoted the photoheterotrophic metabolism and extracellular secretion of photosensitive active compounds in R. palustris, thereby enhancing both the biodegradation and photosensitive degradation of SDZ.
Collapse
Affiliation(s)
- Xiaoyan Bai
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China
| | - Qian Yu
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China
| | - Jian Sun
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China.
| | - Yulei Xie
- School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou, 510006, China
| | - Yong Yuan
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China.
| |
Collapse
|
8
|
Li F, Zhang B, Long X, Yu H, Shi S, You Z, Liu Q, Li C, Tang R, Wu S, An X, Li Y, Shi L, Nealson KH, Song H. Dynamic synthesis and transport of phenazine-1-carboxylic acid to boost extracellular electron transfer rate. Nat Commun 2025; 16:2882. [PMID: 40128539 PMCID: PMC11933291 DOI: 10.1038/s41467-025-57497-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 02/24/2025] [Indexed: 03/26/2025] Open
Abstract
Electron shuttle plays a decisive role in extracellular electron transfer (EET) of exoelectrogens. However, neither identifying the most efficient electron shuttle molecule nor programming its optimal synthesis level that boosts EET has been established. Here, the phenazine-1-carboxylic acid (PCA) biosynthesis pathway is first constructed to synthesize PCA at an optimal level for EET in Shewanella oneidensis MR-1. To facilitate PCA transport, the porin OprF is expressed to improve cell membrane permeability, the cytotoxicity of which, however, impaired cell growth. To mitigate cytotoxicity, PCA biosensor is designed to dynamically decouple PCA biosynthesis and transport, resulting in the maximum output power density reaching 2.85 ± 0.10 W m-2, 33.75-fold higher than wild-type strain. Moreover, extensive analyses of cellular electrophysiology, metabolism, and behaviors reveal PCA shuttles electrons from cell to electrode, which is the dominant mechanism underlying PCA-boosted EET. We conclude dynamic synthesis and transport of PCA is an efficient strategy for enhancing EET.
Collapse
Affiliation(s)
- Feng Li
- State Key Laboratory of Synthetic Biology, and School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Baocai Zhang
- State Key Laboratory of Synthetic Biology, and School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- College of Life and Health Sciences, Northeastern University, Shenyang, 110169, China
| | - Xizi Long
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Huan Yu
- State Key Laboratory of Synthetic Biology, and School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- College of Life and Health Sciences, Northeastern University, Shenyang, 110169, China
| | - Sicheng Shi
- State Key Laboratory of Synthetic Biology, and School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Zixuan You
- State Key Laboratory of Synthetic Biology, and School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Qijing Liu
- State Key Laboratory of Synthetic Biology, and School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Chao Li
- State Key Laboratory of Synthetic Biology, and School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Rui Tang
- State Key Laboratory of Synthetic Biology, and School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Shengbo Wu
- State Key Laboratory of Synthetic Biology, and School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Xingjuan An
- State Key Laboratory of Synthetic Biology, and School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Yuanxiu Li
- State Key Laboratory of Synthetic Biology, and School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Liang Shi
- Department of Biological Sciences and Technology, School of Environmental Studies, China University of Geoscience in Wuhan, Wuhan, Hubei, 430074, China
| | - Kenneth H Nealson
- Departments of Earth Science & Biological Sciences, University of Southern California, 4953 Harriman Ave., South Pasadena, CA, 91030, USA
| | - Hao Song
- State Key Laboratory of Synthetic Biology, and School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China.
- College of Life and Health Sciences, Northeastern University, Shenyang, 110169, China.
| |
Collapse
|
9
|
Guberman-Pfeffer MJ, Herron CL. Cytochrome "nanowires" are physically limited to sub-picoamp currents that suffice for cellular respiration. Front Chem 2025; 13:1549441. [PMID: 40144223 PMCID: PMC11936953 DOI: 10.3389/fchem.2025.1549441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Accepted: 02/12/2025] [Indexed: 03/28/2025] Open
Abstract
Mineral-respiring microorganisms from hydrothermal vents to terrestrial soils express filaments that electrically connect intracellular respiration to extracellular geochemistry. Filaments dubbed "cytochrome nanowires" (CNs) have been resolved by CryoEM, but whether they are the two-decades-long sought-after physiological "nanowires" remains unproven. To assess their functional competence, we analyzed biological redox conduction in all CNs by computing driving forces in the presence of redox anti-cooperativities, reorganization energies with electronic polarizability, and Marcus rates for diffusive and protein-limited flux models. The chain of heme cofactors in any CN must be densely packed to realize weak (≤0.01 eV) electronic coupling for electron transfer, as evidenced by a single Soret band produced from coincidental absorptions on multiple hemes. Dense packing, in turn, has three consequences: (1) limited driving forces (≤|0.3| eV) due to shared electrostatic microenvironments, (2) strong (≤0.12 eV) redox anti-cooperativities that would accentuate the free energy landscape if the linear heme arrangement did not dictate a contra-thermodynamic oxidation order, and (3) an entropic penalty that is offset by thioether 'tethers' of the hemes to the protein backbone. These linkages physically necessitate the rate-throttling T-stacked motif (10-fold slower than the other highly conserved slip-stacked motif). If the sequence of slip- and T-stacked hemes in the CNs had the fastest known nanosecond rates at every step, a micron-long filament would carry a diffusive 0.02 pA current at a physiological 0.1 V, or a protein-limited current of 0.2 pA. Actual CNs have sub-optimal (≤102-fold lower), but sufficient conductivities for cellular respiration, with at most thousands of filaments needed for total cellular metabolic flux. Reported conductivities once used to argue for metallic-like pili against the cytochrome hypothesis and now attributed to CNs remain inconsistent by 102-105-fold with the physical constraints on biological redox conduction through multiheme architectures.
Collapse
|
10
|
Li Y, Zong Y, Feng C, Zhao K. The Role of Anode Potential in Electromicrobiology. Microorganisms 2025; 13:631. [PMID: 40142523 PMCID: PMC11945658 DOI: 10.3390/microorganisms13030631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Revised: 03/06/2025] [Accepted: 03/08/2025] [Indexed: 03/28/2025] Open
Abstract
Electroactive microorganisms are capable of exchanging electrons with electrodes and thus have potential applications in many fields, including bioenergy production, microbial electrochemical synthesis of chemicals, environmental protection, and microbial electrochemical sensors. Due to the limitations of low electron transfer efficiency and poor stability, the application of electroactive microorganisms in industry is still confronted with significant challenges. In recent years, many studies have demonstrated that modulating anode potential is one of the effective strategies to enhance electron transfer efficiency. In this review, we have summarized approximately 100 relevant studies sourced from PubMed and Web of Science over the past two decades. We present the classification of electroactive microorganisms and their electron transfer mechanisms and elucidate the impact of anode potential on the bioelectricity behavior and physiology of electroactive microorganisms. Our review provides a scientific basis for researchers, especially those who are new to this field, to choose suitable anode potential conditions for practical applications to optimize the electron transfer efficiency of electroactive microorganisms, thus contributing to the application of electroactive microorganisms in industry.
Collapse
Affiliation(s)
- Yanran Li
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China;
- State Key Laboratory of Synthetic Biology, and Frontiers Science Center for Synthetic Biology, Tianjin 300000, China
- Frontiers Research Institute for Synthetic Biology, Tianjin University, Tianjin 301799, China
| | - Yiwu Zong
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China;
- State Key Laboratory of Synthetic Biology, and Frontiers Science Center for Synthetic Biology, Tianjin 300000, China
- Frontiers Research Institute for Synthetic Biology, Tianjin University, Tianjin 301799, China
| | - Chunying Feng
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China;
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Scientific Research Center, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China
| | - Kun Zhao
- The Sichuan Provincial Key Laboratory for Human Disease Gene Study, and The Institute of Laboratory Medicine, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu 610054, China
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, China
| |
Collapse
|
11
|
Mahto KU, Das S. Electroactive biofilm communities in microbial fuel cells for the synergistic treatment of wastewater and bioelectricity generation. Crit Rev Biotechnol 2025; 45:434-453. [PMID: 39009474 DOI: 10.1080/07388551.2024.2372070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 03/28/2024] [Accepted: 06/09/2024] [Indexed: 07/17/2024]
Abstract
Increasing industrialization and urbanization have contributed to a significant rise in wastewater discharge and exerted extensive pressure on the existing natural energy resources. Microbial fuel cell (MFC) is a sustainable technology that utilizes wastewater for electricity generation. MFC comprises a bioelectrochemical system employing electroactive biofilms of several aerobic and anaerobic bacteria, such as Geobacter sulfurreducens, Shewanella oneidensis, Pseudomonas aeruginosa, and Ochrobacterum pseudiintermedium. Since the electroactive biofilms constitute a vital part of the MFC, it is crucial to understand the biofilm-mediated pollutant metabolism and electron transfer mechanisms. Engineering electroactive biofilm communities for improved biofilm formation and extracellular polymeric substances (EPS) secretion can positively impact the bioelectrochemical system and improve fuel cell performance. This review article summarizes the role of electroactive bacterial communities in MFC for wastewater treatment and bioelectricity generation. A significant focus has been laid on understanding the composition, structure, and function of electroactive biofilms in MFC. Various electron transport mechanisms, including direct electron transfer (DET), indirect electron transfer (IET), and long-distance electron transfer (LDET), have been discussed. A detailed summary of the optimization of process parameters and genetic engineering strategies for improving the performance of MFC has been provided. Lastly, the applications of MFC for wastewater treatment, bioelectricity generation, and biosensor development have been reviewed.
Collapse
Affiliation(s)
- Kumari Uma Mahto
- Laboratory of Environmental Microbiology and Ecology (LEnME), Department of Life Science, National Institute of Technology, Rourkela, Odisha, India
| | - Surajit Das
- Laboratory of Environmental Microbiology and Ecology (LEnME), Department of Life Science, National Institute of Technology, Rourkela, Odisha, India
| |
Collapse
|
12
|
Zhang Z, Li Z, Nan J, Ouyang J, Chen X, Wang H, Wang A. Evaluating advancements and opportunities in electro-assisted biodehalogenation of emerging halogenated contaminants. BIORESOURCE TECHNOLOGY 2025; 419:132011. [PMID: 39725360 DOI: 10.1016/j.biortech.2024.132011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 12/06/2024] [Accepted: 12/20/2024] [Indexed: 12/28/2024]
Abstract
Electro-assisted biodehalogenation (EASB) as a biostimulation strategy can accelerate the slow attenuation of emerging halogenated contaminants (EHCs) in anaerobic aqueous environments. A timely review is urgent to evaluate the knowledge gaps and potential opportunities, further facilitating its design and application. Till now, EASB achieves promising progress in accelerating biohalogenation rates, promoting the detoxification of EHCs to cope with unfavourable environments and mitigating greenhouse gas emissions. However, EASB of EHCs still faces several knowledge gaps. Exploring crucial microbes and deciphering insights into dehalogenase characteristics and extracellular electron transfer (EET) pathways remain the prominent task for EASB of EHCs. Moreover, microbial ecological relationships and intricate environmental factors affecting performances and applications are largely underexplored. The emergence of emerging tools holds promises for sorting the intricate changes and addressing these knowledge gaps. Judicious use of emerging tools will rejuvenate EASB strategy, from EET to scale-up, to purposefully and effectively address cascading EHCs.
Collapse
Affiliation(s)
- Zimeng Zhang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Zhiling Li
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Jun Nan
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Jia Ouyang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Xueqi Chen
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Hongcheng Wang
- School of Civil & Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Aijie Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China; School of Civil & Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China.
| |
Collapse
|
13
|
Xiao J, Huang J, Chen Y, Wang Y, Qian X, Liu D, Cao Y. The introduction of nano zero-valent iron in constructed wetlands simultaneously enhanced the removal of perfluorooctanoic acid (PFOA) and nutrients. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 376:124285. [PMID: 39933384 DOI: 10.1016/j.jenvman.2025.124285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 12/24/2024] [Accepted: 01/19/2025] [Indexed: 02/13/2025]
Abstract
Constructed wetland (CW) serve as the final ecological barrier for hazardous materials entering the natural water environment. Due to the ecological toxicity and difficult bioutilization characteristics of perfluorooctanoic acid (PFOA) itself, CW technology faces great challenges in the field of PFOA remediation. In this study, nano zero-valent iron (nZVI) was introduced into CWs to explore the mechanism of the synergistic removal of PFOA and nutrients in nZVI-CW system. The results indicated that the addition of 10 mg/L nZVI improved the removal efficiency of CW for 1 and 10 mg/L PFOA, with an average removal rate increased by 3.53-8.70%. The transformation products in CW effluents were qualitatively detected using HPLC-Q-TOF-MS, suggesting that the degradation of PFOA may involve decarboxylation, hydrolysis, redox, elimination, substitution and intramolecular rearrangement processes. The presence of nZVI enhanced the average removal rates of NH4+-N, NO3--N and TP by 2.78-18.4% in CWs. The increase in key substrate enzyme activity confirmed the stimulating effect of nZVI on microbial activity. The addition of nZVI facilitated the growth and enrichment of hydroautotrophic denitrifying bacteria, nitrat-dependent iron-oxidizing bacteria, and dissimilatory iron-reducing bacteria. Two types of dissimilatory iron-reducing bacteria (Geobacter and Acinetobacter) may be potential PFOA-degrading bacteria. Additionally, signaling pathways related to carbohydrate metabolism, energy metabolism, and xenobiotic degradation and metabolism exhibited higher abundance in the nZVI treated groups.
Collapse
Affiliation(s)
- Jun Xiao
- College of Resources and Environment, Southwest University, Chongqing, China, (400715); School of Civil Engineering, Southeast University, Nanjing, Jiangsu, (211189), China
| | - Juan Huang
- School of Civil Engineering, Southeast University, Nanjing, Jiangsu, (211189), China.
| | - Yucheng Chen
- College of Resources and Environment, Southwest University, Chongqing, China, (400715)
| | - Ying Wang
- School of Civil Engineering, Southeast University, Nanjing, Jiangsu, (211189), China
| | - Xiuwen Qian
- School of Civil Engineering, Southeast University, Nanjing, Jiangsu, (211189), China
| | - Dengping Liu
- College of Resources and Environment, Southwest University, Chongqing, China, (400715)
| | - Yuan Cao
- College of Resources and Environment, Southwest University, Chongqing, China, (400715)
| |
Collapse
|
14
|
Liang Y, Dong M, Yang S, Lin L, Huang H, Li D, Ji M, Xu M. Electroactive bacteria-established long-distance electron transfer to oxygen facilitates bio-transformation of dissolved organic matter for sediment remediation. WATER RESEARCH 2025; 270:122829. [PMID: 39616684 DOI: 10.1016/j.watres.2024.122829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 10/22/2024] [Accepted: 11/19/2024] [Indexed: 01/06/2025]
Abstract
Electroactive bacteria (EAB) in sediment commonly establish long-distance electron transfer (LDET) to access O2, facilitating the degradation of organic contaminants, which we hypothesize is mediated by the bio-transformation of dissolved organic matter (DOM). This study confirmed that EAB-established LDET to O2 via a microbial electrochemical snorkel raised the electric potential of sediment by increasing HCl-extracted Fe(III) and NO3- concentrations while reducing DOM concentrations, which further modified microbial diversity and composition, notably reduced the relative abundance of fermentative bacteria. As a result, DOM showed the highest SUVA254 value (3.88) and SUVA280 value (1.61), preliminarily suggesting their enhanced aromaticity, humification and average molecular weight. Additionally, these DOM exhibited the highest electron transfer capacity (174.14±3.62 μmol e- /g C) and redox current. Based on these findings, we propose four possible avenues through which EAB-established LDET to O2 facilitates sediment remediation, mainly including DOM involved affinity, direct and indirect electron transfer, and induced photochemical reaction in degradation or humification process of organic contaminants. Although these proposed avenues require further verification, this work sheds light on deciphering the mechanisms underlying the augmented degradation of organic contaminants facilitated by EAB-established LDET to O2, offering fresh insights into sediment remediation.
Collapse
Affiliation(s)
- Yinxiu Liang
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, PR China; Guangdong Environmental Protection Key Laboratory of Microbiology and Ecological Safety Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, PR China
| | - Meijun Dong
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, PR China; Guangdong Environmental Protection Key Laboratory of Microbiology and Ecological Safety Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, PR China
| | - Shan Yang
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, PR China; Guangdong Environmental Protection Key Laboratory of Microbiology and Ecological Safety Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, PR China
| | - Lizhou Lin
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, PR China; Guangdong Environmental Protection Key Laboratory of Microbiology and Ecological Safety Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, PR China
| | - Haobin Huang
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, PR China; Guangdong Environmental Protection Key Laboratory of Microbiology and Ecological Safety Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, PR China
| | - Daobo Li
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, PR China; Guangdong Environmental Protection Key Laboratory of Microbiology and Ecological Safety Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, PR China
| | - Min Ji
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, PR China
| | - Meiying Xu
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, PR China; Guangdong Environmental Protection Key Laboratory of Microbiology and Ecological Safety Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, PR China.
| |
Collapse
|
15
|
Zhang Y, Dong ZH, Lu J, Lu CJ, Zhang ZZ, Jin RC. Recent advances in isolation and physiological characterization of planktonic anaerobic ammonia-oxidizing bacteria. BIORESOURCE TECHNOLOGY 2025; 418:131919. [PMID: 39626808 DOI: 10.1016/j.biortech.2024.131919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 11/28/2024] [Accepted: 11/29/2024] [Indexed: 12/06/2024]
Abstract
Anaerobic ammonia oxidation (anammox) is widely regarded as an efficient biological nitrogen removal technology and is increasingly applied in wastewater treatment processes. However, the long doubling time and sensitivity to environmental pressures of anaerobic ammonia-oxidizing bacteria (AnAOB) often lead to unstable nitrogen removal performance. Various combined processes are being explored to overcome these limitations, providing insights into the ecological, physiological, and biochemical characteristics of AnAOB. Nevertheless, due to the lack of AnAOB pure cultures, the mechanisms of nitrogen metabolism, growth regulation, and cell communication remain unclear. This review highlights the unique physiological structures of AnAOB, current techniques for isolating and enriching planktonic AnAOB, and the associated challenges. A deeper understanding of these aspects offers guidance for improving planktonic AnAOB enrichment and incubation.
Collapse
Affiliation(s)
- Yu Zhang
- School of Engineering, Hangzhou Normal University, Hangzhou 310018, China
| | - Zhi-Hui Dong
- School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Jing Lu
- School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Cheng-Jun Lu
- School of Engineering, Hangzhou Normal University, Hangzhou 310018, China
| | - Zheng-Zhe Zhang
- School of Engineering, Hangzhou Normal University, Hangzhou 310018, China
| | - Ren-Cun Jin
- School of Engineering, Hangzhou Normal University, Hangzhou 310018, China.
| |
Collapse
|
16
|
Huang Y, Zheng X, Zhao Z, Tao J, Hu T, Han Z, Lin T. Integration of manganese ores with activated carbon into constructed wetland for greenhouse gas emissions reduction. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 375:124205. [PMID: 39935055 DOI: 10.1016/j.jenvman.2025.124205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 12/20/2024] [Accepted: 01/17/2025] [Indexed: 02/13/2025]
Abstract
Manganese oxide and activated carbon (AC) are widely employed in constructed wetlands (CWs) to remove nutrients and reduce greenhouse gas (GHG) emissions, however, the effect and mechanism of AC combined with manganese ores (MO) on GHG emissions remain unclear. In this study, the mechanisms of nutrient removal and GHG emissions reduction were investigated by three vertical subsurface-flow CWs: gravel (CW-B), manganese ores (MO) uniformly mixing with gravel (CW-M), or activated carbon (CW-MC). The average removal efficiencies of chemical oxygen demand, total nitrogen and total phosphorus in CW-MC were markedly improved compared to CW-B and CW-M, reaching 82.72%, 95.72% and 93.43%, respectively. Moreover, the global warming potential (CO2 equivalent) of CW-MC was reduced by 52.80% and 36.88% relative to CW-B and CW-M, respectively. Mixing of MO with AC reduced the loss of manganese and further enhanced the manganese cycling process by X-ray photoelectron spectroscope and concentration of Mn(Ⅱ) in CWs analysis. The introduction of MO and AC enhanced the PN/PS ratio of extracellular polymeric substances and facilitated extracellular electron transfer (EET). Furthermore, metagenomic analysis showed that the abundances of denitrifying, manganese oxidizing and electroactive bacteria genera were enhanced in the CW-MC, which promoted the transformation of nitrogen and manganese. Meanwhile, high abundances of denitrification and EET related genes were observed in CW-MC, improving denitrification efficiency and reducing N2O emission. This study elucidated the impacts and mechanisms of MO and AC on GHG emissions, providing a new insight to improve manganese-based CW performance.
Collapse
Affiliation(s)
- Yu Huang
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing, 210098, PR China; College of Environment, Hohai University, Nanjing, 210098, PR China
| | - Xiaoying Zheng
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing, 210098, PR China; College of Environment, Hohai University, Nanjing, 210098, PR China
| | - Zhilin Zhao
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing, 210098, PR China; College of Environment, Hohai University, Nanjing, 210098, PR China
| | - Jiaqing Tao
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing, 210098, PR China; College of Environment, Hohai University, Nanjing, 210098, PR China
| | - Tianxing Hu
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing, 210098, PR China; College of Environment, Hohai University, Nanjing, 210098, PR China
| | - Zongshuo Han
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing, 210098, PR China; College of Environment, Hohai University, Nanjing, 210098, PR China
| | - Tao Lin
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing, 210098, PR China; College of Environment, Hohai University, Nanjing, 210098, PR China
| |
Collapse
|
17
|
Hiebl C, Fuchs W. Electro-Enhanced Gas Fermentation for Bioproduction of Volatile Fatty Acids and Alcohols. Microorganisms 2025; 13:249. [PMID: 40005616 PMCID: PMC11857620 DOI: 10.3390/microorganisms13020249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 12/28/2024] [Accepted: 01/20/2025] [Indexed: 02/27/2025] Open
Abstract
This study investigates sub-stoichiometric electron supply, also termed electro-fermentation, to influence product formation in gas fermentation. Two species, Clostridium carboxidivorans and Alkalibaculum bacchi, as well as a co-culture of A. bacchi and Clostridium kluyveri, were tested in batch cultures with and without an external cell potential of 800 mV. The supplied gas mixture was 50:40:10 N2:H2:CO2. The test unit was a single-chamber reactor with a cathode made from an electrically conducting composite of PP and black carbon. The observed current densities were generally very low, around 0.22 mA/m2. Despite that, a significant and reproducible change in product patterns and formation rates occurred. C. carboxidivorans increased the formation of acetate (+32%), butyrate (+300% relative to the control), and caproate (+600% relative to the control). In a similar manner, A. bacchi produced more acetate (+38%), butyrate (13 times more than the control), and caproate (only observed in the electrified setup). Additional trials using a modified gas phase composition, 80:20 H2:CO2, confirmed the finding that the application of an electric potential enhances chain elongation as well as alcohol formation. Moreover, an experiment with reversed electric polarity showed that a high cathode surface area is essential for inducing metabolic modifications. The results demonstrate that electro-fermentation holds significant potential for improving bioconversion processes aimed at producing green chemicals.
Collapse
Affiliation(s)
| | - Werner Fuchs
- Department IFA-Tulln, Institute of Environmental Biotechnology, BOKU University, Konrad Lorenz Strasse 20, 3430 Tulln, Austria;
| |
Collapse
|
18
|
Zhou L, Li J, Lu X, Zhang W, Pan B, Hua M. Simultaneous effects of nanoscale zero-valent iron on wastewater decontamination and energy generation: Mechanisms of sulfamethoxazole degradation and methanogenesis. JOURNAL OF HAZARDOUS MATERIALS 2025; 481:136569. [PMID: 39566455 DOI: 10.1016/j.jhazmat.2024.136569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 10/15/2024] [Accepted: 11/17/2024] [Indexed: 11/22/2024]
Abstract
The presence of sulfamethoxazole (SMX) can adversely affect the anaerobic digestion process, reducing the efficiency of wastewater treatment and methane production. In this study, the addition of exogenous nanoscale zero-valent iron (nZVI) enhanced the efficient treatment of SMX and promoted the energy recovery from antibiotic wastewater. The results showed that the removal of SMX in the reactor pairs with 0.5 g/L nZVI increased by 20 %, 35 %, and 27 %, and the methane production increased by 21.6 %, 40.9 %, and 26.6 %, respectively, compared with the control reactor at different SMX influent concentrations (50, 100, and 200 mg/L). The microbial community distribution indicated that the nZVI facilitated efficient cooperation between acid-producing and methanogens by regulating the relative abundance of functional bacteria, such as Anaerolinea and Methanothrix. Meanwhile, nZVI can effectively facilitate the direct interspecies electron transfer (DIET) and enhance electron transport system (ETS) activity by functioning as a conductive particle and increasing the abundance of genes related to cytochrome C (Cyt C) and type IV pili. In addition, nZVI can reduce the risk of antibiotic resistance genes (ARGs) transmission by decreasing the relative abundance of ARGs. In summary, this study could provide new insights and theoretical support for efficient anaerobic bioremediation and energy recovery of antibiotic wastewater containing SMX.
Collapse
Affiliation(s)
- Lingyun Zhou
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, PR China
| | - Jibin Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, PR China
| | - Xingcheng Lu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, PR China
| | - Weiming Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, PR China
| | - Bingcai Pan
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, PR China
| | - Ming Hua
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, PR China.
| |
Collapse
|
19
|
Huang Z, Yi G, Wang Q, Wang S, Xu Q, Huan C, Wang Y, Zhang W, Wang A, Liu W. Improving microbial activity in high-salt wastewater: A review of innovative approaches. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176278. [PMID: 39278494 DOI: 10.1016/j.scitotenv.2024.176278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 09/10/2024] [Accepted: 09/12/2024] [Indexed: 09/18/2024]
Abstract
The Zero discharge technology has become an important pathroute for sustainable development of high salt wastewater treatment. However, the cohabitation of organic and inorganic debris can cause serious problems such membrane clogging and the formation of hazardous impurity salts that further restrict the recovery of all salt varieties by evaporating and crystallizing. In highly salinized wastewater, biological treatments offer advantages in terms of cost and sustainability when used as a pre-treatment step to eliminate organic debris. On the other hand, high salinity is always a major obstacle to microbial diversity, abundance, and activity, which can result in low organic matter removal effectiveness or the failure of the microbial treatment system. Biofortification techniques can attenuate the negative effects of salt stress and other unfavourable conditions on microorganisms, while the regulation mechanisms of microbial and community collaboration by fortification methods have been an open question. Therefore, a comprehensive summary of the types, mechanisms, and effects of the major biofortification techniques is proposed. This review dialyzes the characteristics and sources of hypersaline wastewater and the main treatment methods. Then, the mechanisms of microbial salt tolerance are summarized and discussed based on microbial characteristics and the protective effects provided by the processes. Finally, the research and application of the main bioaugmentation methods are developed in detail, describing the characteristics, advantages and disadvantages of the different enhancement methods in their implementation. This review provides a more comprehensive perspective on the future engineering applications of bioaugmentation technology, and explores in depth the possibilities of applying biological methods to high-salinity wastewater treatment.
Collapse
Affiliation(s)
- Zongyi Huang
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China
| | - Genping Yi
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China
| | - Qiandi Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China; Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Sihui Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China
| | - Qiongying Xu
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China
| | - Changan Huan
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China
| | - Yuqi Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China
| | - Wenzhe Zhang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; China Testing & Certification International Group Co.,Ltd., Beijng 100024, China
| | - Aijie Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China; State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Wenzong Liu
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China.
| |
Collapse
|
20
|
Chung TH, Dhillon SK, Shin C, Pant D, Dhar BR. Microbial electrosynthesis technology for CO 2 mitigation, biomethane production, and ex-situ biogas upgrading. Biotechnol Adv 2024; 77:108474. [PMID: 39521393 DOI: 10.1016/j.biotechadv.2024.108474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 09/07/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024]
Abstract
Currently, global annual CO2 emissions from fossil fuel consumption are extremely high, surpassing tens of billions of tons, yet our capacity to capture and utilize CO2 remains below a small fraction of the amount generated. Microbial electrosynthesis (MES) systems, an integration of microbial metabolism with electrochemistry, have emerged as a highly efficient and promising bio-based carbon-capture-and-utilization technology over other conventional techniques. MES is a unique technology for lowering the atmospheric CO2 as well as CO2 in the biogas, and also simultaneously convert them to renewable bioenergy, such as biomethane. As such, MES techniques could be applied for biogas upgrading to generate high purity biomethane, which has the potential to meet natural gas standards. This article offers a detailed overview and assessment of the latest advancements in MES for biomethane production and biogas upgrading, in terms of selecting optimal methane production pathways and associated electron transfer processes, different electrode materials and types, inoculum sources and microbial communities, ion-exchange membrane, externally applied energy level, operating temperature and pH, mode of operation, CO2 delivery method, selection of inorganic carbon source and its concentration, start-up time, and system pressure. It also highlights the current MES challenges associated with upscaling, design and configuration, long-term stability, energy demand, techno-economics, achieving net negative carbon emission, and other operational issues. Moreover, we provide a summary of current and future opportunities to integrate MES with other unique biosystems, such as methanotrophic bioreactors, and incorporate quorum sensing, 3D printing, and machine learning to further develop MES as a better biomethane-producer and biogas upgrading technique.
Collapse
Affiliation(s)
- Tae Hyun Chung
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta, Canada
| | - Simran Kaur Dhillon
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta, Canada
| | - Chungheon Shin
- Department of Civil and Environmental Engineering, Stanford University, Stanford, CA, United States; Codiga Resource Recovery Center (CR2C), Stanford, CA, United States
| | - Deepak Pant
- Electrochemistry Excellence Centre, Materials & Chemistry Unit, Flemish Institute for Technological Research (VITO), Mol, Belgium
| | - Bipro Ranjan Dhar
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
21
|
Ren WT, He ZL, Lv Y, Wang HZ, Deng L, Ye SS, Du JS, Wu QL, Guo WQ. Carbon chain elongation characterizations of electrode-biofilm microbes in electro-fermentation. WATER RESEARCH 2024; 267:122417. [PMID: 39299138 DOI: 10.1016/j.watres.2024.122417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 09/04/2024] [Accepted: 09/07/2024] [Indexed: 09/22/2024]
Abstract
The higher efficiency of electro-fermentation in synthesizing medium-chain fatty acids (MCFAs) compared to traditional fermentation has been acknowledged. However, the functional mechanisms of electrode-biofilm enhancing MCFAs synthesis remain research gaps. To address this, this study proposed a continuous flow electrode-biofilm reactor for chain elongation (CE). After 225 days of operation, stable electrode-biofilms formed and notably improved caproate yield by more than 38 %. The electrode-biofilm was enriched with more CE microorganisms and electroactive bacteria compared to the suspended sludge microorganisms, including Caproicibacterium, Oscillibacter and Pseudoramibacter. Besides, the upregulated CE pathways were evaluated by metagenomic analysis, and the results indicated that the pathways such as acetyl-CoA and malonyl-[acp] formation, reverse beta-oxidation, and fatty acid biosynthesis pathway were all markedly enhanced in cathodic biofilm, more than anodic biofilm and suspended microorganisms. Moreover, microbial community regulated processes like bacterial chemotaxis, flagellar assembly and quorum sensing, crucial for electrode-biofilm formation. Electron transfer, energy metabolism, and microbial interactions were found to be prominently upregulated in the cathodic biofilm, surpassing levels observed in anodic biofilm and suspended sludge microorganisms, which further enhanced CE efficiency. In addition, the statistical analyses further highlighted key microbial functions and interactions within the cathodic biofilm. Oscillospiraceae_bacterium was identified to be the most active microbe, alongside pivotal roles played by Caproiciproducens_sp._NJN-50, Clostridiales_bacterium, Prevotella_sp. and Pseudoclavibacter_caeni. Eventually, the proposed microbial collaboration mechanisms of cathodic biofilm were ascertained. Overall, this study uncovered the biological effects of the electrode-biofilm on MCFAs electrosynthesis, thereby advancing biochemicals production and filling the knowledge gaps in CE electroactive biofilm reactors.
Collapse
Affiliation(s)
- Wei-Tong Ren
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Zi-Lin He
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Yang Lv
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Hua-Zhe Wang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Lin Deng
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Shan-Shan Ye
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Juan-Shan Du
- Department of Energy Engineering, Korea Institute of Energy Technology (KENTECH), Naju 58330, Korea
| | - Qing-Lian Wu
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Wan-Qian Guo
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China.
| |
Collapse
|
22
|
Qin B, Yang G, Chen X, Wu X, Fang Y, Quan X, Zhuang L. Specific interaction of resorufin to outer-membrane cytochrome OmcE of Geobacter sulfurreducens: A new insight on artificial electron mediators in promoting extracellular electron transfer. WATER RESEARCH 2024; 266:122403. [PMID: 39278116 DOI: 10.1016/j.watres.2024.122403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/07/2024] [Accepted: 09/05/2024] [Indexed: 09/17/2024]
Abstract
Bioelectrochemical system (BES) is a unique biotechnology for wastewater treatment and energy recovery, and extracellular electron transfer (EET) between microbe and electrode is the key to optimize the performance of BESs. Resazurin is an effective artificial compound that can promote EET in BESs, but the way how it transports electrons is not fully understood. In this study differential pulse voltammetry revealed that the redox potential of resorufin (RR) (intermediate of resazurin reduction, actual electron mediator) within Geobacter sulfurreducens biofilm was positively shifted by 100 mV than that of free RR, and this shift was attenuated by the mutation of outer-membrane cytochrome gene omcE but not by omcS and omcZ mutation, indicating that RR specifically interacted with OmcE. By using heterologously expressed OmcE monomers in Escherichia coli, it was found that RR bonded with OmcE monomers with a moderate intensity (dissociation constant of 720 nM), and their interaction obviously increased the content of α helix in OmcE monomers. Biomolecular analysis indicated that heme II of OmcE monomer might be the binding site for RR (binding energy of -7.01 kJ/mol), which were favorable for electron transfer within OmcE-RR complex. Comparative transcriptomics showed that RZ addition significantly upregulated the expression of omcE, periplasmic cytochrome gene ppcB, and outer-membrane genes omaB, ombB and omcB, thus, it was hypothesized that OmcE-bound RR might serve as potential electron acceptor of OmbB-OmaB-OmcB porin complex which passes electrons across outer membrane. Our work demonstrated a new pathway of artificial electron mediators in facilitating EET in Geobacter species, which may guide the application of electron mediator in improving the performance of BESs.
Collapse
Affiliation(s)
- Baoli Qin
- College of Environment and Climate, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China
| | - Guiqin Yang
- College of Environment and Climate, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China.
| | - Xiaochun Chen
- College of Environment and Climate, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China
| | - Xian Wu
- College of Environment and Climate, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China
| | - Yanlun Fang
- College of Environment and Climate, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China
| | - Xiaoyun Quan
- College of Environment and Climate, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China
| | - Li Zhuang
- College of Environment and Climate, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
23
|
Li S, Xi Y, Chu Y, Li X, Li F, Ren N, Ho SH. Multi-dimensional perspectives into the pervasive role of microbial extracellular polymeric substances in electron transport processes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 949:175222. [PMID: 39098409 DOI: 10.1016/j.scitotenv.2024.175222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/17/2024] [Accepted: 07/31/2024] [Indexed: 08/06/2024]
Abstract
During the process of biological treatment, most microorganisms are encapsulated in extracellular polymeric substances (EPS), which protect the cell from adverse environments and aid in microbial attachment. Microorganisms utilize extracellular electron transfer (EET) for energy and information interchange with other cells and the outside environment. Understanding the role of steric EPS in EET is critical for studying microbiology and utilizing microorganisms in biogeochemical processes, pollutant transformation, and bioenergy generation. However, the current study shows that understanding the roles of EPS in the EET processes still needs a great deal of research. In view of recent research, this work aims to systematically summarize the production and functional group composition of microbial EPS. Additionally, EET pathways and the role of EPS in EET processes are detailed. Then factors impacting EET processes in EPS are then discussed, with a focus on the spatial structure and composition of EPS, conductive materials and environmental pollution, including antibiotics, pH and minerals. Finally, strategies to enhance EET, as well as current challenges and future prospects are outlined in detail. This review offers novel insights into the roles of EPS in biological electron transport and the application of microorganisms in pollutant transformation.
Collapse
Affiliation(s)
- Shengnan Li
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province 150090, China
| | - Yucan Xi
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province 150090, China
| | - Yuhao Chu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province 150090, China
| | - Xue Li
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province 150090, China
| | - Fengxiang Li
- College of Environmental Science and Engineering, Nankai University, 38 Tongyan Road, Jinnan District, Tianjin 300350, China
| | - Nanqi Ren
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province 150090, China
| | - Shih-Hsin Ho
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province 150090, China.
| |
Collapse
|
24
|
Zheng L, Cai X, Tang J, Qin H, Li J. Bioelectrochemical technologies for soil and sediment remediation: Recent advances and future perspectives. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122602. [PMID: 39316876 DOI: 10.1016/j.jenvman.2024.122602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/31/2024] [Accepted: 09/17/2024] [Indexed: 09/26/2024]
Abstract
Soil and sediment serve as the ultimate repositories of pollutants, presenting a significant environmental concern on a global scale. However, there is no effective measure due to the low mobility, high resistance and high cost of contaminated soil or sediment. The bioelectrochemical systems (BESs) combine microbial and electrochemical technology to achieve efficient and rapid degradation of pollutants by enriching electroactive microbial membranes with electrodes. Specifically, BESs offer an ideal solution for in-situ remediation, eliminating the secondary pollution and high energy consumption issues associated with traditional technologies. However, in soil or sediment bioelectrochemical systems (SBESs), further summarization and improvement are required to address the influencing factors during the process of pollutant remediation, given the fragility of complex geographical and natural environments. This paper provides a comprehensive overview and analysis of the removal mechanisms of organic pollutants, heavy metals and emerging contaminants within contaminated soil or sediment, elucidating the influential factors and strategies aimed at enhancing pollutant removal processes within SBESs. The current emerging problems and limitations of microbial electrochemical remediation technology are summarized, and it is suggested that future development should focus on microorganisms, reactors and practical applications.
Collapse
Affiliation(s)
- Linlan Zheng
- College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; State Key Laboratory of Organic Geochemistry and Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Xixi Cai
- Guangdong Key Laboratory of Ornamental Plant Germplasm Innovation and Utilization, Environmental Horticulture Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China; Key Laboratory of Urban Agriculture in South China, Ministry of Agriculture and Rural Affairs, Guangzhou, 510640, China.
| | - Jiahuan Tang
- Fujian Provincial Key Laboratory of Eco-Industrial Green Technology, College of Ecology and Resources Engineering, Wuyi University, Wuyishan, 354300, China.
| | - Hongjie Qin
- Guangdong Key Laboratory of Ornamental Plant Germplasm Innovation and Utilization, Environmental Horticulture Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China; Key Laboratory of Urban Agriculture in South China, Ministry of Agriculture and Rural Affairs, Guangzhou, 510640, China
| | - Jibing Li
- State Key Laboratory of Organic Geochemistry and Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China.
| |
Collapse
|
25
|
Zhou L, Wu F, Ou P, Li H, Zhuang WQ. Non-electroactive bacteria behave variously in AnMBR biofilm control using electric field. WATER RESEARCH 2024; 268:122646. [PMID: 39432995 DOI: 10.1016/j.watres.2024.122646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 10/10/2024] [Accepted: 10/15/2024] [Indexed: 10/23/2024]
Abstract
Electroactive bacteria are often regarded as key players responding to electric fields that are used to control biofilm development during AnMBR (anaerobic membrane bioreactor) operation. Consequently, little attention has been given to non-electroactive bacteria in the same systems because of their incapability to acquire and transfer electrons directly. However, in this study, we identified some functionally important non-electroactive bacteria from biofilm established under low-voltage (0, 0.3, 0.5 and 1 V) electric fields in AnMBRs, designated as E-AnMBRs in this study. During the whole experiment, non-electroactive bacteria, mainly belonging to Proteobacteria, Bacteroidetes, and Chloroflexi, were found in all biofilm samples taken from each E-AnMBR. Under 0.3 V and 1 V conditions, non-electroactive bacteria did not seem to contribute to the development of biofilm significantly. Whereas under 0.5 V conditions, the growth of non-electroactive bacteria contributed up to 0.61 kPa/day biofilm formation. Therefore, 0.5 V was identified as a critical voltage, leading to the most severe biofilm formation. The microbial community structure in the reactor with a 0.5 V electric field was distinctly unique, caused by the increase of non-electroactive bacterial activity and the upregulation of their metabolic pathways. Notably, functional genes involved in carbon metabolism and oxidative phosphorylation pathway were upregulated. Furthermore, the 0.5 V electric field enhanced the protein/polysaccharide ratio and increased zeta potential to 31.6 mV (p < 0.01) of the biofilm samples. This was because upregulating quorum sensing genes accelerated the coordinated gene regulations and functional activities among non-electroactive bacteria.
Collapse
Affiliation(s)
- Lijie Zhou
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, PR China.
| | - Fei Wu
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, PR China
| | - Pingxiang Ou
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, PR China
| | - Haixiang Li
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, Guangxi 541004, PR China
| | - Wei-Qin Zhuang
- Department of Civil and Environmental Engineering, The University of Auckland, Auckland 1142, New Zealand
| |
Collapse
|
26
|
Shi X, Liang Y, Wen G, Evlashin SA, Fedorov FS, Ma X, Feng Y, Zheng J, Wang Y, Shi J, Liu Y, Zhu W, Guo P, Kim BH. Review of cathodic electroactive bacteria: Species, properties, applications and electron transfer mechanisms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:174332. [PMID: 38950630 DOI: 10.1016/j.scitotenv.2024.174332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 06/24/2024] [Accepted: 06/25/2024] [Indexed: 07/03/2024]
Abstract
Cathodic electroactive bacteria (C-EAB) which are capable of accepting electrons from solid electrodes provide fresh avenues for pollutant removal, biosensor design, and electrosynthesis. This review systematically summarized the burgeoning applications of the C-EAB over the past decade, including 1) removal of nitrate, aromatic derivatives, and metal ions; 2) biosensing based on biocathode; 3) electrosynthesis of CH4, H2, organic carbon, NH3, and protein. In addition, the mechanisms of electron transfer by the C-EAB are also classified and summarized. Extracellular electron transfer and interspecies electron transfer have been introduced, and the electron transport mechanism of typical C-EAB, such as Shewanella oneidensis MR-1, has been combed in detail. By bringing to light this cutting-edge area of the C-EAB, this review aims to stimulate more interest and research on not only exploring great potential applications of these electron-accepting bacteria, but also developing steady and scalable processes harnessing biocathodes.
Collapse
Affiliation(s)
- Xinxin Shi
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Yutong Liang
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Gang Wen
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| | - Stanislav A Evlashin
- Center for Materials Technologies, Skolkovo Institute of Science and Technology, the territory of the Skolkovo Innovation Center, Bolshoy Boulevard, 30, p.1, Moscow 121205, Russia
| | - Fedor S Fedorov
- Center for Photonic Science and Engineering, Skolkovo Institute of Science and Technology, the territory of the Skolkovo Innovation Center, Bolshoy Boulevard, 30, p.1, Moscow 121205, Russia
| | - Xinyue Ma
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Yujie Feng
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, No 73 Huanghe Road, Nangang District, Harbin 150090, China
| | - Junjie Zheng
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Yixing Wang
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Julian Shi
- Xi'an Institute for Innovative Earth Environment Research, Xi'an 710061, China
| | - Yang Liu
- Shaanxi Land Engineering Construction Group Co., Ltd, Xi'an 710061, China
| | - Weihuang Zhu
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Pengfei Guo
- School of Civil Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Byung Hong Kim
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, No 73 Huanghe Road, Nangang District, Harbin 150090, China; Korea Institute of Science & Technology, Seongbug-ku, Seoul 02792, Republic of Korea
| |
Collapse
|
27
|
Zhao B, Zhang Z, Feng K, Peng X, Wang D, Cai W, Liu W, Wang A, Deng Y. Inoculum source determines the stress resistance of electroactive functional taxa in biofilms: A metagenomic perspective. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 945:174018. [PMID: 38906302 DOI: 10.1016/j.scitotenv.2024.174018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 05/20/2024] [Accepted: 06/13/2024] [Indexed: 06/23/2024]
Abstract
The inoculum has a crucial impact on bioreactor initialization and performance. However, there is currently a lack of guidance on selecting appropriate inocula for applications in environmental biotechnology. In this study, we applied microbial electrolysis cells (MECs) as models to investigate the differences in the functional potential of electroactive microorganisms (EAMs) within anodic biofilms developed from four different inocula (natural or artificial), using shotgun metagenomic techniques. We specifically focused on extracellular electron transfer (EET) function and stress resistance, which affect the performance and stability of MECs. Community profiling revealed that the family Geobacteraceae was the key EAM taxon in all biofilms, with Geobacter as the dominant genus. The c-type cytochrome gene imcH showed universal importance for Geobacteraceae EET and was utilized as a marker gene to evaluate the EET potential of EAMs. Additionally, stress response functional genes were used to assess the stress resistance potential of Geobacter species. Comparative analysis of imcH gene abundance revealed that EAMs with comparable overall EET potential could be enriched from artificial and natural inocula (P > 0.05). However, quantification of stress response gene copy numbers in the genomes demonstrated that EAMs originating from natural inocula possessed superior stress resistance potential (196 vs. 163). Overall, this study provides novel perspectives on the inoculum effect in bioreactors and offers theoretical guidance for selecting inoculum in environmental engineering applications.
Collapse
Affiliation(s)
- Bo Zhao
- CAS Key Laboratory for Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences (CAS), Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100190, China
| | - Zhaojing Zhang
- Institute of Marine Science and Technology, Shandong University, Qingdao 266237, China
| | - Kai Feng
- CAS Key Laboratory for Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences (CAS), Beijing 100085, China
| | - Xi Peng
- CAS Key Laboratory for Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences (CAS), Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100190, China
| | - Danrui Wang
- CAS Key Laboratory for Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences (CAS), Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100190, China
| | - Weiwei Cai
- School of Civil Engineering, Beijing Jiaotong University, Beijing, China
| | - Wenzong Liu
- State Key Lab of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China
| | - Aijie Wang
- CAS Key Laboratory for Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences (CAS), Beijing 100085, China; State Key Lab of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China
| | - Ye Deng
- CAS Key Laboratory for Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences (CAS), Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100190, China.
| |
Collapse
|
28
|
Zhang H, Li B, Liu X, Qian T, Zhao D, Wang J, Zhang L, Wang T. Pyrite-stimulated bio-reductive immobilization of perrhenate: Insights from integrated biotic and abiotic perspectives. WATER RESEARCH 2024; 262:122089. [PMID: 39018586 DOI: 10.1016/j.watres.2024.122089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 07/07/2024] [Accepted: 07/11/2024] [Indexed: 07/19/2024]
Abstract
Microbes possessing electron transfer capabilities hold great promise for remediating subsurface contaminated by redox-active radionuclides such as technetium-99 (99TcO4-) through bio-transformation of soluble contaminants into their sparingly soluble forms. However, the practical application of this concept has been impeded due to the low electron transfer efficiency and long-term product stability under various biogeochemical conditions. Herein, we proposed and tested a pyrite-stimulated bio-immobilization strategy for immobilizing ReO4- (a nonradioactive analogue of 99TcO4-) using sulfate-reducing bacteria (SRB), with a focus on pure-cultured Desulfovibrio vulgaris. Pyrite acted as an effective stimulant for the bio-transformation of ReO4-, boosting the removal rate of ReO4- (50 mg/L) in a solution from 2.8 % (without pyrite) to 100 %. Moreover, the immobilized products showed almost no signs of remobilization during 168 days of monitoring. Dual lines of evidence were presented to elucidate the underlying mechanisms for the pyrite-enhanced bio-activity. Transcriptomic analysis revealed a global upregulation of genes associated with electron conductive cytochromes c network, extracellular tryptophan, and intracellular electron transfer units, leading to enhanced ReO4- bio-reduction. Spectroscopic analysis confirmed the long-term stability of the bio-immobilized products, wherein ReO4- is reduced to stable Re(IV) oxides and Re(IV) sulfides. This work provides a novel green strategy for remediation of radionuclides- or heavy metals-contaminated sites.
Collapse
Affiliation(s)
- Haoqing Zhang
- College of Environmental Science and Engineering, Taiyuan University of Technology, Shanxi Key Laboratory of Earth Surface Processes and Resource Ecological Security in Fenhe River Basin, Shanxi Engineering Research Center of Low Carbon Remediation for Water and Soil Pollution in Yellow River Basin, Taiyuan 030024, China
| | - Bo Li
- College of Environmental Science and Engineering, Taiyuan University of Technology, Shanxi Key Laboratory of Earth Surface Processes and Resource Ecological Security in Fenhe River Basin, Shanxi Engineering Research Center of Low Carbon Remediation for Water and Soil Pollution in Yellow River Basin, Taiyuan 030024, China
| | - Xiaona Liu
- College of Environmental Science and Engineering, Taiyuan University of Technology, Shanxi Key Laboratory of Earth Surface Processes and Resource Ecological Security in Fenhe River Basin, Shanxi Engineering Research Center of Low Carbon Remediation for Water and Soil Pollution in Yellow River Basin, Taiyuan 030024, China
| | - Tianwei Qian
- College of Environmental Science and Engineering, Taiyuan University of Technology, Shanxi Key Laboratory of Earth Surface Processes and Resource Ecological Security in Fenhe River Basin, Shanxi Engineering Research Center of Low Carbon Remediation for Water and Soil Pollution in Yellow River Basin, Taiyuan 030024, China.
| | - Dongye Zhao
- Department of Civil, Construction and Environmental Engineering, San Diego State University, San Diego, CA 92182, United States.
| | - Jianhui Wang
- College of Environmental Science and Engineering, Taiyuan University of Technology, Shanxi Key Laboratory of Earth Surface Processes and Resource Ecological Security in Fenhe River Basin, Shanxi Engineering Research Center of Low Carbon Remediation for Water and Soil Pollution in Yellow River Basin, Taiyuan 030024, China
| | - Lei Zhang
- College of Environmental Science and Engineering, Taiyuan University of Technology, Shanxi Key Laboratory of Earth Surface Processes and Resource Ecological Security in Fenhe River Basin, Shanxi Engineering Research Center of Low Carbon Remediation for Water and Soil Pollution in Yellow River Basin, Taiyuan 030024, China; Shanxi Low-Carbon Environmental Protection Industry Group Co. Ltd. Taiyuan 030032, China
| | - Ting Wang
- School of Environment and Resources, Taiyuan University of Science and Technology, Taiyuan 030024, China
| |
Collapse
|
29
|
Liang J, Xiao K, Wang X, Hou T, Zeng C, Gao X, Wang B, Zhong C. Revisiting Solar Energy Flow in Nanomaterial-Microorganism Hybrid Systems. Chem Rev 2024; 124:9081-9112. [PMID: 38900019 DOI: 10.1021/acs.chemrev.3c00831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Nanomaterial-microorganism hybrid systems (NMHSs), integrating semiconductor nanomaterials with microorganisms, present a promising platform for broadband solar energy harvesting, high-efficiency carbon reduction, and sustainable chemical production. While studies underscore its potential in diverse solar-to-chemical energy conversions, prevailing NMHSs grapple with suboptimal energy conversion efficiency. Such limitations stem predominantly from an insufficient systematic exploration of the mechanisms dictating solar energy flow. This review provides a systematic overview of the notable advancements in this nascent field, with a particular focus on the discussion of three pivotal steps of energy flow: solar energy capture, cross-membrane energy transport, and energy conversion into chemicals. While key challenges faced in each stage are independently identified and discussed, viable solutions are correspondingly postulated. In view of the interplay of the three steps in affecting the overall efficiency of solar-to-chemical energy conversion, subsequent discussions thus take an integrative and systematic viewpoint to comprehend, analyze and improve the solar energy flow in the current NMHSs of different configurations, and highlighting the contemporary techniques that can be employed to investigate various aspects of energy flow within NMHSs. Finally, a concluding section summarizes opportunities for future research, providing a roadmap for the continued development and optimization of NMHSs.
Collapse
Affiliation(s)
- Jun Liang
- Key Laboratory of Quantitative Synthetic Biology, Center for Materials Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Kemeng Xiao
- Key Laboratory of Quantitative Synthetic Biology, Center for Materials Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Xinyu Wang
- Key Laboratory of Quantitative Synthetic Biology, Center for Materials Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Tianfeng Hou
- Key Laboratory of Quantitative Synthetic Biology, Center for Materials Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Cuiping Zeng
- Key Laboratory of Quantitative Synthetic Biology, Center for Materials Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Xiang Gao
- Key Laboratory of Quantitative Synthetic Biology, Center for Materials Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Bo Wang
- Key Laboratory of Quantitative Synthetic Biology, Center for Materials Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Chao Zhong
- Key Laboratory of Quantitative Synthetic Biology, Center for Materials Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| |
Collapse
|
30
|
Cao T, Liu Y, Gao C, Yuan Y, Chen W, Zhang T. Understanding Nanoscale Interactions between Minerals and Microbes: Opportunities for Green Remediation of Contaminated Sites. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024. [PMID: 39093060 DOI: 10.1021/acs.est.4c05324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
In situ contaminant degradation and detoxification mediated by microbes and minerals is an important element of green remediation. Improved understanding of microbe-mineral interactions on the nanoscale offers promising opportunities to further minimize the environmental and energy footprints of site remediation. In this Perspective, we describe new methodologies that take advantage of an array of multidisciplinary tools─including multiomics-based analysis, bioinformatics, machine learning, gene editing, real-time spectroscopic and microscopic analysis, and computational simulations─to identify the key microbial drivers in the real environments, and to characterize in situ the dynamic interplay between minerals and microbes with high spatiotemporal resolutions. We then reflect on how the knowledge gained can be exploited to modulate the binding, electron transfer, and metabolic activities at the microbe-mineral interfaces, to develop new in situ contaminant degradation and detoxication technologies with combined merits of high efficacy, material longevity, and low environmental impacts. Two main strategies are proposed to maximize the synergy between minerals and microbes, including using mineral nanoparticles to enhance the versatility of microorganisms (e.g., tolerance to environmental stresses, growth and metabolism, directed migration, selectivity, and electron transfer), and using microbes to synthesize and regenerate highly dispersed nanostructures with desired structural/surface properties and reactivity.
Collapse
Affiliation(s)
- Tianchi Cao
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, Tianjin 300350, P. R. China
| | - Yaqi Liu
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, Tianjin 300350, P. R. China
| | - Cheng Gao
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, Tianjin 300350, P. R. China
| | - Yuxin Yuan
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, Tianjin 300350, P. R. China
| | - Wei Chen
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, Tianjin 300350, P. R. China
| | - Tong Zhang
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, Tianjin 300350, P. R. China
| |
Collapse
|
31
|
Mazzoli R, Pescarolo S, Gilli G, Gilardi G, Valetti F. Hydrogen production pathways in Clostridia and their improvement by metabolic engineering. Biotechnol Adv 2024; 73:108379. [PMID: 38754796 DOI: 10.1016/j.biotechadv.2024.108379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 05/13/2024] [Accepted: 05/13/2024] [Indexed: 05/18/2024]
Abstract
Biological production of hydrogen has a tremendous potential as an environmentally sustainable technology to generate a clean fuel. Among the different available methods to produce biohydrogen, dark fermentation features the highest productivity and can be used as a means to dispose of organic waste biomass. Within this approach, Clostridia have the highest theoretical H2 production yield. Nonetheless, most strains show actual yields far lower than the theoretical maximum: improving their efficiency becomes necessary for achieving cost-effective fermentation processes. This review aims at providing a survey of the metabolic network involved in H2 generation in Clostridia and strategies used to improve it through metabolic engineering. Together with current achievements, a number of future perspectives to implement these results will be illustrated.
Collapse
Affiliation(s)
- Roberto Mazzoli
- Structural and Functional Biochemistry, Laboratory of Proteomics and Metabolic Engineering of Prokaryotes, Department of Life Sciences and Systems Biology, University of Torino, Via Accademia Albertina 13, 10123 Torino, Italy.
| | - Simone Pescarolo
- Biology applied to the environment, Laboratories of microbiology and ecotoxicology, Ecobioqual, Environment Park. Via Livorno 60, 10144 Torino, Italy
| | - Giorgio Gilli
- Department of Sciences of Public Health and Pediatrics, School of Medicine, University of Torino, Via Santena 5 bis, 10126 Torino, Italy
| | - Gianfranco Gilardi
- Structural and Functional Biochemistry, Laboratory of Proteomics and Metabolic Engineering of Prokaryotes, Department of Life Sciences and Systems Biology, University of Torino, Via Accademia Albertina 13, 10123 Torino, Italy
| | - Francesca Valetti
- Structural and Functional Biochemistry, Laboratory of Proteomics and Metabolic Engineering of Prokaryotes, Department of Life Sciences and Systems Biology, University of Torino, Via Accademia Albertina 13, 10123 Torino, Italy.
| |
Collapse
|
32
|
Dong M, Nielsen LP, Yang S, Klausen LH, Xu M. Cable bacteria: widespread filamentous electroactive microorganisms protecting environments. Trends Microbiol 2024; 32:697-706. [PMID: 38151387 DOI: 10.1016/j.tim.2023.12.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 12/04/2023] [Accepted: 12/04/2023] [Indexed: 12/29/2023]
Abstract
Cable bacteria have been identified and detected worldwide since their discovery in marine sediments in Aarhus Bay, Denmark. Their activity can account for the majority of oxygen consumption and sulfide depletion in sediments, and they induce sulfate accumulation, pH excursions, and the generation of electric fields. In addition, they can affect the fluxes of other elements such as calcium, iron, manganese, nitrogen, and phosphorous. Recent developments in our understanding of the impact of cable bacteria on element cycling have revealed their positive contributions to mitigating environmental problems, such as recovering self-purification capacity, enhancing petroleum hydrocarbon degradation, alleviating phosphorus eutrophication, delaying euxinia, and reducing methane emission. We highlight recent research outcomes on their distribution, state-of-the-art findings on their physiological characteristics, and ecological contributions.
Collapse
Affiliation(s)
- Meijun Dong
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China; Guangdong Provincial Key Laboratory of Environmental Protection Microbiology and Regional Ecological Security, Guangzhou 510070, Guangdong, China
| | - Lars Peter Nielsen
- Center for Electromicrobiology, Department of Biology, Aarhus University, 8000 Aarhus C, Denmark
| | - Shan Yang
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China; Guangdong Provincial Key Laboratory of Environmental Protection Microbiology and Regional Ecological Security, Guangzhou 510070, Guangdong, China
| | - Lasse Hyldgaard Klausen
- Center for Electromicrobiology, Department of Biology, Aarhus University, 8000 Aarhus C, Denmark; Interdisciplinary Nanoscience Center (iNANO), Aarhus University, 8000 Aarhus C, Denmark
| | - Meiying Xu
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China; Guangdong Provincial Key Laboratory of Environmental Protection Microbiology and Regional Ecological Security, Guangzhou 510070, Guangdong, China.
| |
Collapse
|
33
|
Ao TJ, Liu CG, Sun ZY, Zhao XQ, Tang YQ, Bai FW. Anaerobic digestion integrated with microbial electrolysis cell to enhance biogas production and upgrading in situ. Biotechnol Adv 2024; 73:108372. [PMID: 38714276 DOI: 10.1016/j.biotechadv.2024.108372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 04/22/2024] [Accepted: 05/01/2024] [Indexed: 05/09/2024]
Abstract
Anaerobic digestion (AD) is an effective and applicable technology for treating organic wastes to recover bioenergy, but it is limited by various drawbacks, such as long start-up time for establishing a stable process, the toxicity of accumulated volatile fatty acids and ammonia nitrogen to methanogens resulting in extremely low biogas productivities, and a large amount of impurities in biogas for upgrading thereafter with high cost. Microbial electrolysis cell (MEC) is a device developed for electrosynthesis from organic wastes by electroactive microorganisms, but MEC alone is not practical for production at large scales. When AD is integrated with MEC, not only can biogas production be enhanced substantially, but also upgrading of the biogas product performed in situ. In this critical review, the state-of-the-art progress in developing AD-MEC systems is commented, and fundamentals underlying methanogenesis and bioelectrochemical reactions, technological innovations with electrode materials and configurations, designs and applications of AD-MEC systems, and strategies for their enhancement, such as driving the MEC device by electricity that is generated by burning the biogas to improve their energy efficiencies, are specifically addressed. Moreover, perspectives and challenges for the scale up of AD-MEC systems are highlighted for in-depth studies in the future to further improve their performance.
Collapse
Affiliation(s)
- Tian-Jie Ao
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Science and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Chen-Guang Liu
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Science and Biotechnology, Shanghai Jiao Tong University, Shanghai, China.
| | - Zhao-Yong Sun
- College of Architecture & Environment, Sichuan University, Chengdu 610000, China
| | - Xin-Qing Zhao
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Science and Biotechnology, Shanghai Jiao Tong University, Shanghai, China.
| | - Yue-Qin Tang
- College of Architecture & Environment, Sichuan University, Chengdu 610000, China
| | - Feng-Wu Bai
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Science and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
34
|
Li J, Shen J, Hou T, Tang H, Zeng C, Xiao K, Hou Y, Wang B. A Self-Assembled MOF-Escherichia Coli Hybrid System for Light-Driven Fuels and Valuable Chemicals Synthesis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308597. [PMID: 38664984 PMCID: PMC11220693 DOI: 10.1002/advs.202308597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 02/25/2024] [Indexed: 07/04/2024]
Abstract
The development of semi-artificial photosynthetic systems, which integrate metal-organic frameworks (MOFs) with industrial microbial cell factories for light-driven synthesis of fuels and valuable chemicals, represents a highly promising avenue for both research advancements and practical applications. In this study, an MOF (PCN-222) utilizing racemic-(4-carboxyphenyl) porphyrin and zirconium chloride (ZrCl4) as primary constituents is synthesized. Employing a self-assembly process, a hybrid system is constructed, integrating engineered Escherichia coli (E. coli) to investigate light-driven hydrogen and lysine production. These results demonstrate that the light-irradiated biohybrid system efficiently produce H2 with a quantum efficiency of 0.75% under full spectrum illumination, the elevated intracellular reducing power NADPH is also observed. By optimizing the conditions, the biohybrid system achieves a maximum lysine production of 18.25 mg L-1, surpassing that of pure bacteria by 332%. Further investigations into interfacial electron transfer mechanisms reveals that PCN-222 efficiently captures light and facilitates the transfer of photo-generated electrons into E. coli cells. It is proposed that the interfacial energy transfer process is mediated by riboflavin, with facilitation by secreted small organic acids acting as hole scavengers for PCN-222. This study establishes a crucial foundation for future research into the light-driven biomanufacturing using E. coli-based hybrid systems.
Collapse
Affiliation(s)
- Jialu Li
- CAS Key Laboratory of Quantitative Engineering BiologyShenzhen Institute of Synthetic BiologyShenzhen Institute of Advanced TechnologyChinese Academy of SciencesShenzhen518055China
- School of ResourcesEnvironment and MaterialsGuangxi UniversityNanning530004China
| | - Junfeng Shen
- CAS Key Laboratory of Quantitative Engineering BiologyShenzhen Institute of Synthetic BiologyShenzhen Institute of Advanced TechnologyChinese Academy of SciencesShenzhen518055China
| | - Tianfeng Hou
- CAS Key Laboratory of Quantitative Engineering BiologyShenzhen Institute of Synthetic BiologyShenzhen Institute of Advanced TechnologyChinese Academy of SciencesShenzhen518055China
| | - Hongting Tang
- CAS Key Laboratory of Quantitative Engineering BiologyShenzhen Institute of Synthetic BiologyShenzhen Institute of Advanced TechnologyChinese Academy of SciencesShenzhen518055China
| | - Cuiping Zeng
- CAS Key Laboratory of Quantitative Engineering BiologyShenzhen Institute of Synthetic BiologyShenzhen Institute of Advanced TechnologyChinese Academy of SciencesShenzhen518055China
| | - Kemeng Xiao
- CAS Key Laboratory of Quantitative Engineering BiologyShenzhen Institute of Synthetic BiologyShenzhen Institute of Advanced TechnologyChinese Academy of SciencesShenzhen518055China
- Department of Chemistry and Center for Cell and Developmental BiologyThe Chinese University of Hong KongShatinHong Kong999077China
| | - Yanping Hou
- School of ResourcesEnvironment and MaterialsGuangxi UniversityNanning530004China
| | - Bo Wang
- CAS Key Laboratory of Quantitative Engineering BiologyShenzhen Institute of Synthetic BiologyShenzhen Institute of Advanced TechnologyChinese Academy of SciencesShenzhen518055China
| |
Collapse
|
35
|
Li C, Liang D, Tian Y, Liu S, He W, Li Z, Yadav RS, Ma Y, Ji C, Yi K, Yang W, Feng Y. Sorting Out the Latest Advances in Separators and Pilot-Scale Microbial Electrochemical Systems for Wastewater Treatment: Concomitant Development, Practical Application, and Future Perspective. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:9471-9486. [PMID: 38776077 DOI: 10.1021/acs.est.4c03169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
To date, dozens of pilot-scale microbial fuel cell (MFC) devices have been successfully developed worldwide for treating various types of wastewater. The availability and configurations of separators are determining factors for the economic feasibility, efficiency, sustainability, and operability of these devices. Thus, the concomitant advances between the separators and pilot-scale MFC configurations deserve further clarification. The analysis of separator configurations has shown that their evolution proceeds as follows: from ion-selective to ion-non-selective, from nonpermeable to permeable, and from abiotic to biotic. Meanwhile, their cost is decreasing and their availability is increasing. Notably, the novel MFCs configured with biotic separators are superior to those configured with abiotic separators in terms of wastewater treatment efficiency and capital cost. Herein, a highly comprehensive review of pilot-scale MFCs (>100 L) has been conducted, and we conclude that the intensive stack of the liquid cathode configuration is more advantageous when wastewater treatment is the highest priority. The use of permeable biotic separators ensures hydrodynamic continuity within the MFCs and simplifies reactor configuration and operation. In addition, a systemic comparison is conducted between pilot-scale MFC devices and conventional decentralized wastewater treatment processes. MFCs showed comparable cost, higher efficiency, long-term stability, and significant superiority in carbon emission reduction. The development of separators has greatly contributed to the availability and usability of MFCs, which will play an important role in various wastewater treatment scenarios in the future.
Collapse
Affiliation(s)
- Chao Li
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environmental Sciences and Engineering, Peking University, No. 5 Yiheyuan Road, Haidian District, Beijing 100871, P. R. China
| | - Dandan Liang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, No. 73 Huanghe Road, Nangang District, Harbin 150090, P. R. China
| | - Yan Tian
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, No. 73 Huanghe Road, Nangang District, Harbin 150090, P. R. China
| | - Shujuan Liu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, No. 73 Huanghe Road, Nangang District, Harbin 150090, P. R. China
| | - Weihua He
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, No. 73 Huanghe Road, Nangang District, Harbin 150090, P. R. China
| | - Zeng Li
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, No. 73 Huanghe Road, Nangang District, Harbin 150090, P. R. China
| | - Ravi Shankar Yadav
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, No. 73 Huanghe Road, Nangang District, Harbin 150090, P. R. China
| | - Yamei Ma
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environmental Sciences and Engineering, Peking University, No. 5 Yiheyuan Road, Haidian District, Beijing 100871, P. R. China
| | - Chengcheng Ji
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environmental Sciences and Engineering, Peking University, No. 5 Yiheyuan Road, Haidian District, Beijing 100871, P. R. China
| | - Kexin Yi
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environmental Sciences and Engineering, Peking University, No. 5 Yiheyuan Road, Haidian District, Beijing 100871, P. R. China
| | - Wulin Yang
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environmental Sciences and Engineering, Peking University, No. 5 Yiheyuan Road, Haidian District, Beijing 100871, P. R. China
| | - Yujie Feng
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, No. 73 Huanghe Road, Nangang District, Harbin 150090, P. R. China
| |
Collapse
|
36
|
Chen X, Yang G, Quan X, Zhu S, Qin B, Shou D, Zhuang L. Significance of a minor pilin PilV in biofilm cohesion of Geobacter sulfurreducens. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 927:172242. [PMID: 38582122 DOI: 10.1016/j.scitotenv.2024.172242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 04/03/2024] [Accepted: 04/03/2024] [Indexed: 04/08/2024]
Abstract
Bacterial adhesion plays a vital role in forming and shaping the structure of electroactive biofilms that are essential for the performance of bioelectrochemical systems (BESs). Type IV pili are known to mediate cell adhesion in many Gram-negative bacteria, but the mechanism of pili-mediated cell adhesion of Geobacter species on anode surface remains unclear. Herein, a minor pilin PilV2 was found to be essential for cell adhesion ability of Geobacter sulfurreducens since the lack of pilV2 gene depressed the cell adhesion capability by 81.2% in microplate and the anodic biofilm density by 23.1 % at -0.1 V and 37.7 % at -0.3 V in BESs. The less cohesiveness of mutant biofilms increased the charge transfer resistance and biofilm resistance, which correspondingly lowered current generation of the pilV2-deficient strain by up to 63.2 % compared with that of the wild-type strain in BESs. The deletion of pilV2 posed an insignificant effect on the production of extracellular polysaccharides, pili, extracellular cytochromes and electron shuttles that are involved in biofilm formation or extracellular electron transfer (EET) process. This study demonstrated the significance of pilV2 gene in cell adhesion and biofilm formation of G. sulfurreducens, as well as the importance of pili-mediated adhesion for EET of electroactive biofilm.
Collapse
Affiliation(s)
- Xiaochun Chen
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 510632, China
| | - Guiqin Yang
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 510632, China
| | - Xiaoyun Quan
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 510632, China
| | - Siyue Zhu
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 510632, China
| | - Baoli Qin
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 510632, China
| | - Danyang Shou
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 510632, China
| | - Li Zhuang
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
37
|
Zhuang X, Wang S, Wu S. Electron Transfer in the Biogeochemical Sulfur Cycle. Life (Basel) 2024; 14:591. [PMID: 38792612 PMCID: PMC11123123 DOI: 10.3390/life14050591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 04/30/2024] [Accepted: 05/02/2024] [Indexed: 05/26/2024] Open
Abstract
Microorganisms are key players in the global biogeochemical sulfur cycle. Among them, some have garnered particular attention due to their electrical activity and ability to perform extracellular electron transfer. A growing body of research has highlighted their extensive phylogenetic and metabolic diversity, revealing their crucial roles in ecological processes. In this review, we delve into the electron transfer process between sulfate-reducing bacteria and anaerobic alkane-oxidizing archaea, which facilitates growth within syntrophic communities. Furthermore, we review the phenomenon of long-distance electron transfer and potential extracellular electron transfer in multicellular filamentous sulfur-oxidizing bacteria. These bacteria, with their vast application prospects and ecological significance, play a pivotal role in various ecological processes. Subsequently, we discuss the important role of the pili/cytochrome for electron transfer and presented cutting-edge approaches for exploring and studying electroactive microorganisms. This review provides a comprehensive overview of electroactive microorganisms participating in the biogeochemical sulfur cycle. By examining their electron transfer mechanisms, and the potential ecological and applied implications, we offer novel insights into microbial sulfur metabolism, thereby advancing applications in the development of sustainable bioelectronics materials and bioremediation technologies.
Collapse
Affiliation(s)
- Xuliang Zhuang
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; (X.Z.); (S.W.)
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
- State Key Laboratory of Tibetan Plateau Earth System, Environment and Resources (TPESER), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Shijie Wang
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; (X.Z.); (S.W.)
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shanghua Wu
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; (X.Z.); (S.W.)
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
38
|
Jia B, Wan J, Liu H, Yan B, Zhang L, Su X. DIET-like and MIET-like mutualism of S. oneidensis MR-1 and metal-reducing function microflora boosts Cr(VI) reduction. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133401. [PMID: 38171202 DOI: 10.1016/j.jhazmat.2023.133401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/18/2023] [Accepted: 12/27/2023] [Indexed: 01/05/2024]
Abstract
Microbial treatment of Cr(VI) is an environmentally friendly and low-cost approach. However, the mechanism of mutualism and the role of interspecies electron transfer in Cr(VI) reducing microflora are unclear. Herein, we constructed an intersymbiotic microbial association flora to augment interspecies electron transfer via functionalizing electroactive Shewanella oneidensis MR-1 with metal-reducing microflora, and thus the efficiency of Cr(VI) reduction. The findings suggest that the metal-reducing active microflora could converts glucose into lactic acid and riboflavin for S. oneidensis MR-1 to act as a carbon source and electron mediator. Thus, when adding initial 25 mg/L Cr (VI), this microflora exhibited an outstanding Cr (VI) removal efficiency (100%) at 12 h and elevated Cr (III) immobilization efficiency (80%) at 60 h with the assistance of 25 mg/L Cu(II). A series of electrochemical experiments proved this remarkable removal efficiency were ascribed to the improved interspecies electron transfer efficiency through direct interspecies electron transfer and riboflavin through mediated interspecies electron transfer. Furthermore, the metagenomic analysis revealed the expression level of the electron transport pathway was promoted. Intriguing high abundance of genes participating in the bio-reduction and biotransformation of Cr(VI) was also observed in functional microflora. These outcomes give a novel strategy for enhancing the reduction and fixation of harmful heavy metals by coculturing function microflora with electrogenic microorganisms.
Collapse
Affiliation(s)
- Boyu Jia
- School of Environment and Energy, Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, South China University of Technology, Guangzhou, Guangdong 510006, China
| | - Juanjuan Wan
- School of Environment and Energy, Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, South China University of Technology, Guangzhou, Guangdong 510006, China
| | - Hui Liu
- Huadian Coal Industry Group Co., Ltd, Beijing 100035, China
| | - Bo Yan
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Lijuan Zhang
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China.
| | - Xintai Su
- School of Environment and Energy, Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, South China University of Technology, Guangzhou, Guangdong 510006, China.
| |
Collapse
|
39
|
Wu D, Zhang B, Shi S, Tang R, Qiao C, Li T, Jia J, Yang M, Si X, Wang Y, Sun X, Xiao D, Li F, Song H. Engineering extracellular electron transfer to promote simultaneous brewing wastewater treatment and chromium reduction. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133171. [PMID: 38147750 DOI: 10.1016/j.jhazmat.2023.133171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 11/06/2023] [Accepted: 12/01/2023] [Indexed: 12/28/2023]
Abstract
Microbial fuel cell (MFC) technology has been developed for wastewater treatment in the anodic chamber, and heavy metal reduction in the cathodic chamber. However, the limited extracellular electron transfer (EET) rate of exoelectrogens remained a constraint for practical applications of MFCs. Here, a MFC system that used the electricity derived from anodic wastewater treatment to drive cathodic Cr6+ reduction was developed, which enabled an energy self-sustained approach to efficiently address Cr6+ contamination. This MFC system was achieved by screening exoelectrogens with a superior EET rate, promoting the exoelectrogenic EET rate, and constructing a conductive bio-anode. Firstly, Shewanella algae-L3 was screened from brewing wastewater acclimatized sludge, which generated power density of 566.83 mW m-2. Secondly, to facilitate EET rate, flavin synthesis gene operon ribADEHC was overexpressed in engineered S. algae-L3F to increase flavins biosynthesis, which promoted the power density to 1233.21 mW m-2. Thirdly, to facilitate interface electron transfer, carbon nanotube (CNT) was employed to construct a S. algae-L3F-CNT bio-anode, which further enhanced power density to 3112.98 mW m-2. Lastly, S. algae-L3F-CNT bio-anode was used to harvest electrical energy from brewing wastewater to drive cathodic Cr6+ reduction in MFC, realizing 71.43% anodic COD removal and 98.14% cathodic Cr6+ reduction. This study demonstrated that enhanced exoelectrogenic EET could facilitate cathodic Cr6+ reduction in MFC.
Collapse
Affiliation(s)
- Deguang Wu
- Key Laboratory of Industrial Fermentation Microbiology (Ministry of Education), Tianjin Industrial Microbiology Key Lab, College of Biotechnology, Tianjin University of Science and Technology, Box 08, No. 29, 13ST. TEDA, Tianjin 300457, PR China
| | - Baocai Zhang
- Frontiers Science Center for Synthetic Biology (Ministry of Education), Key Laboratory of Systems Bioengineering, and School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, PR China
| | - Sicheng Shi
- Frontiers Science Center for Synthetic Biology (Ministry of Education), Key Laboratory of Systems Bioengineering, and School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, PR China
| | - Rui Tang
- Frontiers Science Center for Synthetic Biology (Ministry of Education), Key Laboratory of Systems Bioengineering, and School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, PR China
| | - Chunxiao Qiao
- Frontiers Science Center for Synthetic Biology (Ministry of Education), Key Laboratory of Systems Bioengineering, and School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, PR China
| | - Teng Li
- Frontiers Science Center for Synthetic Biology (Ministry of Education), Key Laboratory of Systems Bioengineering, and School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, PR China
| | - Jichao Jia
- Frontiers Science Center for Synthetic Biology (Ministry of Education), Key Laboratory of Systems Bioengineering, and School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, PR China
| | - Meiyi Yang
- Frontiers Science Center for Synthetic Biology (Ministry of Education), Key Laboratory of Systems Bioengineering, and School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, PR China
| | - Xiaoguang Si
- The Institute of Seawater Desalination and Multipurpose Utilization, Ministry of Natural Resources, Tianjin, PR China
| | - Yifei Wang
- College of Biological Engineering, Tianjin Agricultural University, Tianjin, PR China
| | - Xi Sun
- College of Biological Engineering, Tianjin Agricultural University, Tianjin, PR China
| | - Dongguang Xiao
- Key Laboratory of Industrial Fermentation Microbiology (Ministry of Education), Tianjin Industrial Microbiology Key Lab, College of Biotechnology, Tianjin University of Science and Technology, Box 08, No. 29, 13ST. TEDA, Tianjin 300457, PR China.
| | - Feng Li
- Frontiers Science Center for Synthetic Biology (Ministry of Education), Key Laboratory of Systems Bioengineering, and School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, PR China.
| | - Hao Song
- Frontiers Science Center for Synthetic Biology (Ministry of Education), Key Laboratory of Systems Bioengineering, and School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, PR China.
| |
Collapse
|
40
|
Li H, Cheng J, Xia R, Dong H, Zhou J. Electron syntrophy between mixed hydrogenogens and Geobacter metallireducens boosted dark hydrogen fermentation: Clarifying roles of electroactive extracellular polymeric substances. BIORESOURCE TECHNOLOGY 2024; 395:130350. [PMID: 38253242 DOI: 10.1016/j.biortech.2024.130350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 12/30/2023] [Accepted: 01/17/2024] [Indexed: 01/24/2024]
Abstract
To modulate the electron transfer behavior of hydrogen-producing bacteria (HPB) for enhanced hydrogen production, Geobacter metallireducens culture (GM) was introduced as an electron syntrophy partner and redox balance regulator in dark fermentation systems with hydrogen-producing sludge (HPS) as inoculum. The highest hydrogen yield was 306.5 mL/g-COD at the GM/HPS volatile solids ratio of 0.08, which was 65.2 % higher than the HPS group. The multi-layered extracellular polymeric substances (EPS) of GM played a significant role in promoting hydrogen production, with c-type cytochromes probably serving as electroactive functional components. The addition of GM significantly improved the NADH/NAD+ ratio, electron transport system activity, hydrogenase activity, and electrochemical properties of HPS. Furthermore, the microbial community structure and metabolic functions were optimized due to the potential syntrophic interaction between Clostridium sensu stricto (dominant HPB) and Geobacter, thus promoting hydrogen production. This study provided novel insights into the interactions among exoelectrogens, electroactive EPS, and mixed HPB.
Collapse
Affiliation(s)
- Hui Li
- College of Pipeline and Civil Engineering, China University of Petroleum (East China), Qingdao 266580, China; State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China
| | - Jun Cheng
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems of Ministry of Education, Chongqing University, Chongqing 400044, China; State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China.
| | - Rongxin Xia
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China
| | - Haiquan Dong
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China
| | - Junhu Zhou
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
41
|
Guo M, Lu X, Qiao S. Nitrate removal by anammox bacteria utilizing photoexcited electrons via inward extracellular electron transfer channel. WATER RESEARCH 2024; 250:121059. [PMID: 38176322 DOI: 10.1016/j.watres.2023.121059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 12/21/2023] [Accepted: 12/22/2023] [Indexed: 01/06/2024]
Abstract
Dissimilatory nitrate reduction to ammonium (DNRA) has been found to occur in some anammox bacteria species, and the DNRA metabolites (nitrite and ammonium) can further be removed to nitrogen from water. However, the activation of DNRA pathway of anammox bacteria is usually limited by the access to electron donors. Herein, we constructed a photosensitized hybrid system combining anammox bacteria (Candidatus Kuenenia stuttgartiensis and Candidatus Brocadia anammoxidans) with CdS nanoparticles semiconductor for energy-efficient NO3- removal. Such photosensitized anammox-CdS hybrid systems achieved NO3- removal with an average efficiency of 88% (the maximum of 91%) and a N2 selectivity of 72%, only with photoexcited electrons as donors. The DNRA-anammox metabolism of anammox bacteria was proved to responsible for NO3- removal via inward extracellular electron transfer channel. The greatly up-regulated genes encoding c-type cytochrome proteins (5 or 11 hemes) in the outer membrane, c-type cytochrome protein (4 hemes) and electron transport protein RnfA-E in the inner membrane, ferredoxin (2Fe-2S) in the cytoplasm and c-type cytochrome bc1 in anammoxosome membrane were supposed to play key roles in the inward extracellular electron transfer pathway. This work provides a novel insight into the design of the biotic-abiotic hybrid photosynthetic systems, and opens a new strategy for light-driven NO3- removal from the perspective of light energy input.
Collapse
Affiliation(s)
- Meiwei Guo
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, PR China
| | - Xin Lu
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, PR China
| | - Sen Qiao
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, PR China.
| |
Collapse
|
42
|
Wang G, Fu P, Su Y, Zhang B, Zhang M, Li Q, Zhang J, Li YY, Chen R. Comparing the mechanisms of syntrophic volatile fatty acids oxidation and methanogenesis recovery from ammonia stress in regular and biochar-assisted anaerobic digestion: Different roads lead to the same goal. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 352:120041. [PMID: 38219669 DOI: 10.1016/j.jenvman.2024.120041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 12/19/2023] [Accepted: 12/25/2023] [Indexed: 01/16/2024]
Abstract
Biochar has been recognized as a promising additive to mitigate ammonia inhibition during syntrophic methanogenesis, while the key function of biochar in this process is still in debates. This study clarified the distinct mechanisms of syntrophic volatile fatty acids -oxidizing and methanogenesis recovery from ammonia inhibition in regular and biochar-assisted anaerobic digestion. Under 5 g/L ammonia stress, adding biochar shortened the methanogenic lag time by 10.9% and dramatically accelerated the maximum methane production rate from 60.3 to 94.7 mLCH4/gVSsludge/d. A photometric analysis with a nano-WO3 probe revealed that biochar enhanced the extracellular electron transfer (EET) capacity of suspended microbes (Pearson's r = -0.98), confirming that biochar facilitated methanogenesis by boosting EET between syntrophic butyrate oxidizer and methanogens. Same linear relationship between EET capacity and methanogenic rate was not observed in the control group. Microbial community integrating functional genes prediction analysis uncovered that biochar re-shaped syntrophic partners by enriching Constridium_sensu_stricto/Syntrophomonas and Methanosarcina. The functional genes encoding Co-enzyme F420 hydrogenase and formylmethanofuran dehydrogenase were upregulated by 1.4-2.3 times, consequently enhanced the CO2-reduction methanogenesis pathway. Meanwhile, the abundances of gene encoding methylene-tetrahydrofolate transformation, a series of intermediate processes involved in acetate oxidation, in the biochar-assisted group were 28.2-63.7% higher than these in control group. Comparatively, Methanosaeta played a pivotal role driving aceticlastic methanogenesis in the control group because the abundance of gene encoding acetyl-CoA decarbonylase/synthase complex increased by 1.9 times, suggesting an aceticlastic combining H2-based syntrophic methanogenesis pathway was established in control group to resist ammonia stress. A 2nd period experiment elucidated that although depending on distinct mechanisms, the volatile fatty acid oxidizers and methanogens in both groups developed sustained and stable strategies to resist ammonia stress. These findings provided new insights to understand the distinct methanogenic recovery strategy to resist toxic stress under varied environmental conditions.
Collapse
Affiliation(s)
- Gaojun Wang
- Key Lab of Environmental Engineering (Shaanxi Province), School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an 710055, China; International S&T Cooperation Center for Urban Alternative Water Resources Development, Key Laboratory of Northwest Water Resource, Environment and Ecology (Ministry of Education), Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an 710055, China
| | - Peng Fu
- Key Lab of Environmental Engineering (Shaanxi Province), School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an 710055, China
| | - Yan Su
- Xi'an TPRI Water-Management & Environmental Protection Co. Ltd., State Key Laboratory of High-Efficiency Flexible Coal Power Generation and Carbon Capture Utilization and Storage, Xi'an 710054, China
| | - Bo Zhang
- Key Lab of Environmental Engineering (Shaanxi Province), School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an 710055, China
| | - Mengyuan Zhang
- Key Lab of Environmental Engineering (Shaanxi Province), School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an 710055, China
| | - Qian Li
- Key Lab of Environmental Engineering (Shaanxi Province), School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an 710055, China; International S&T Cooperation Center for Urban Alternative Water Resources Development, Key Laboratory of Northwest Water Resource, Environment and Ecology (Ministry of Education), Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an 710055, China; Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aza-Aoba, Aramaki, Aoba-ku, Sendai, Miyagi, 980-8579, Japan
| | - Jianfeng Zhang
- Key Lab of Environmental Engineering (Shaanxi Province), School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an 710055, China
| | - Yu-You Li
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aza-Aoba, Aramaki, Aoba-ku, Sendai, Miyagi, 980-8579, Japan
| | - Rong Chen
- Key Lab of Environmental Engineering (Shaanxi Province), School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an 710055, China; International S&T Cooperation Center for Urban Alternative Water Resources Development, Key Laboratory of Northwest Water Resource, Environment and Ecology (Ministry of Education), Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an 710055, China.
| |
Collapse
|
43
|
Zhang J, Li F, Liu D, Liu Q, Song H. Engineering extracellular electron transfer pathways of electroactive microorganisms by synthetic biology for energy and chemicals production. Chem Soc Rev 2024; 53:1375-1446. [PMID: 38117181 DOI: 10.1039/d3cs00537b] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
The excessive consumption of fossil fuels causes massive emission of CO2, leading to climate deterioration and environmental pollution. The development of substitutes and sustainable energy sources to replace fossil fuels has become a worldwide priority. Bio-electrochemical systems (BESs), employing redox reactions of electroactive microorganisms (EAMs) on electrodes to achieve a meritorious combination of biocatalysis and electrocatalysis, provide a green and sustainable alternative approach for bioremediation, CO2 fixation, and energy and chemicals production. EAMs, including exoelectrogens and electrotrophs, perform extracellular electron transfer (EET) (i.e., outward and inward EET), respectively, to exchange energy with the environment, whose rate determines the efficiency and performance of BESs. Therefore, we review the synthetic biology strategies developed in the last decade for engineering EAMs to enhance the EET rate in cell-electrode interfaces for facilitating the production of electricity energy and value-added chemicals, which include (1) progress in genetic manipulation and editing tools to achieve the efficient regulation of gene expression, knockout, and knockdown of EAMs; (2) synthetic biological engineering strategies to enhance the outward EET of exoelectrogens to anodes for electricity power production and anodic electro-fermentation (AEF) for chemicals production, including (i) broadening and strengthening substrate utilization, (ii) increasing the intracellular releasable reducing equivalents, (iii) optimizing c-type cytochrome (c-Cyts) expression and maturation, (iv) enhancing conductive nanowire biosynthesis and modification, (v) promoting electron shuttle biosynthesis, secretion, and immobilization, (vi) engineering global regulators to promote EET rate, (vii) facilitating biofilm formation, and (viii) constructing cell-material hybrids; (3) the mechanisms of inward EET, CO2 fixation pathway, and engineering strategies for improving the inward EET of electrotrophic cells for CO2 reduction and chemical production, including (i) programming metabolic pathways of electrotrophs, (ii) rewiring bioelectrical circuits for enhancing inward EET, and (iii) constructing microbial (photo)electrosynthesis by cell-material hybridization; (4) perspectives on future challenges and opportunities for engineering EET to develop highly efficient BESs for sustainable energy and chemical production. We expect that this review will provide a theoretical basis for the future development of BESs in energy harvesting, CO2 fixation, and chemical synthesis.
Collapse
Affiliation(s)
- Junqi Zhang
- Frontier Science Center for Synthetic Biology (Ministry of Education), Key Laboratory of Systems Bioengineering, and School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China.
| | - Feng Li
- Frontier Science Center for Synthetic Biology (Ministry of Education), Key Laboratory of Systems Bioengineering, and School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China.
| | - Dingyuan Liu
- Frontier Science Center for Synthetic Biology (Ministry of Education), Key Laboratory of Systems Bioengineering, and School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China.
| | - Qijing Liu
- Frontier Science Center for Synthetic Biology (Ministry of Education), Key Laboratory of Systems Bioengineering, and School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China.
| | - Hao Song
- Frontier Science Center for Synthetic Biology (Ministry of Education), Key Laboratory of Systems Bioengineering, and School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China.
| |
Collapse
|
44
|
Liu Y, Xu L, Su J, Ali A, Huang T, Wang Y, Zhang P. Microbially driven Fe-N cycle: Intrinsic mechanisms, enhancement, and perspectives. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:168084. [PMID: 37924885 DOI: 10.1016/j.scitotenv.2023.168084] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/21/2023] [Accepted: 10/21/2023] [Indexed: 11/06/2023]
Abstract
The iron‑nitrogen (FeN) cycle driven by microbes has great potential for treating wastewater. Fe is a metal that is frequently present in the environment and one of the crucial trace elements needed by microbes. Due to its synergistic role in the microbial N removal process, Fe goes much beyond the essential nutritional needs of microorganisms. Investigating the mechanisms behind the linked Fe-N cycle driven by microbes is crucial. The Fe-N cycle is frequently connected with anaerobic ammonia oxidation (anammox), nitrification, denitrification, dissimilatory nitrate reduction to ammonium (DNRA), Feammox, and simultaneous nitrification denitrification (SND), etc. Although the main mechanisms of Fe-mediated biological N removal may vary depending on the valence state of the Fe, their similar transformation pathways may provide information on the study of certain element-microbial interactions. This review offers a thorough analysis of the facilitation effect and influence of Fe on the removal of nitrogenous pollutants in various biological N removal processes and summarizes the ideal Fe dosing. Additionally, the synergistic mechanisms of Fe and microbial synergistic N removal process are elaborated, covering four aspects: enzyme activity, electron transfer, microbial extracellular polymeric substances (EPS) secretion, and microbial community interactions. The methods to improve biological N removal based on the intrinsic mechanism were also discussed, with the aim of thoroughly understanding the biological mechanisms of Fe in the microbial N removal process and providing a reference and thinking for employing Fe to promote microbial N removal in practical applications.
Collapse
Affiliation(s)
- Yan Liu
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Liang Xu
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Junfeng Su
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| | - Amjad Ali
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Tinglin Huang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Yue Wang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Peng Zhang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| |
Collapse
|
45
|
Zhao J, Gao T. Genetic Engineering of Microorganisms with Electroactive Genes for the Fabrication of Electrochemical Microbial Biosensors. Methods Mol Biol 2024; 2844:247-260. [PMID: 39068345 DOI: 10.1007/978-1-0716-4063-0_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
By integrating electroactive genes into engineered sensing microorganisms, information about the object to be measured can be converted into the output of an electrical signal, omitting the process of converting the output of an electrical signal in conventional sensing strategies and simplifying the steps of biosensor development. By utilizing synthetic biology methods, we can not only create novel genetic circuits by using logic gate operations and integrating genes from other biological components, solving biosensing issues in living systems and enhancing sensor performance, but also convert various types of genetic circuits into electrical signals, broadening the application range of biosensors. Here, we describe an example of how to genetically engineer microorganisms with electroactive genes and the fabrication of an electrochemical microbial biosensor.
Collapse
Affiliation(s)
- Jinming Zhao
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, P. R. China
| | - Tao Gao
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, P. R. China.
| |
Collapse
|
46
|
Ji B, Zhao Y. Interactions between biofilms and PFASs in aquatic ecosystems: Literature exploration. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167469. [PMID: 37778566 DOI: 10.1016/j.scitotenv.2023.167469] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 09/26/2023] [Accepted: 09/28/2023] [Indexed: 10/03/2023]
Abstract
Perfluoroalkyl and polyfluoroalkyl substances (PFASs) have been detected in most aquatic environments worldwide and are referred to as "forever chemicals" because of their extreme chemical and thermal stability. Biofilms, as basic aquatic bioresources, can colonize various substratum surfaces. Biofilms in the aquatic environment have to interact with the ubiquitous PFASs and have significant implications for both their behavior and destiny, which are still poorly understood. Here, we have a preliminary literature exploration of the interaction between PFASs and biofilms in the various aquatic environments and expect to provide some thoughts on further study. In this review, the biosorption properties of biofilms on PFASs and possible mechanisms are presented. The complex impact of PFASs on biofilm systems was further discussed in terms of the composition and electrical charges of extracellular polymeric substances, intracellular microbial communities, and overall contaminant purification functions. Correspondingly, the effects of biofilms on the redistribution of PFASs in the aqueous environment were analyzed. Finally, we propose that biofilm after adsorption of PFASs is a unique ecological niche that not only reflects the contamination level of PFASs in the aquatic environment but also offers a possible "microbial pool" for PFASs biodegradation. We outline existing knowledge gaps and potential future efforts for investigating how PFASs interact with biofilms in aquatic ecosystems.
Collapse
Affiliation(s)
- Bin Ji
- School of Civil Engineering, Yantai University, Yantai 264005, PR China.
| | - Yaqian Zhao
- State Key Laboratory of Eco-Hydraulics in Northwest Arid Region, Xi'an University of Technology, Xi'an 710048, PR China; Department of Municipal and Environmental Engineering, School of Water Resources and Hydroelectric Engineering, Xi'an University of Technology, Xi'an 710048, PR China.
| |
Collapse
|
47
|
Shi H, Jiang X, Wen X, Hou C, Chen D, Mu Y, Shen J. Enhanced azo dye reduction at semiconductor-microbe interface: The key role of semiconductor band structure. WATER RESEARCH 2024; 248:120846. [PMID: 37952328 DOI: 10.1016/j.watres.2023.120846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 11/02/2023] [Accepted: 11/07/2023] [Indexed: 11/14/2023]
Abstract
Low-energy environmental remediation could be achieved by biocatalysis with assistance of light-excited semiconductor, in which the energy band structure of semiconductor has a significant influence on the metabolic process and electron transfer of microbes. In this study, direct Z-scheme and type II heterojunction semiconductor with different energy band structure were successfully synthesized for constructing semiconductor-microbe interface with Shewanella oneidensis MR-1 to achieve acid orange7 (AO7) biodegradation. UV-vis diffuse reflection spectroscopy, photoluminescence spectra and photoelectrochemical analysis revealed that the direct Z-scheme heterojunction semiconductor had stronger reduction power and faster separation of photoelectron-hole, which was beneficial for the AO7 biodegradation at semiconductor-microbe interface. Riboflavin was also involved in electron transfer between the semiconductor and microbes during AO7 reduction. Transcriptome results illustrated that functional gene expression of Shewanella oneidensis MR-1 was upregulated significantly with photo-stimulation of direct Z-scheme semiconductor, and Mtr pathway and conductive pili played the important roles in the photoelectron utilization by Shewanella oneidensis MR-1. This work is expected to provide alternative ideas for designing semiconductor-microbial interface with efficient electron transfer and broadening their applications in bioremediation.
Collapse
Affiliation(s)
- Hefei Shi
- Key Laboratory of Environmental Remediation and Ecological Health, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China; School of Resources and Environmental Engineering, Jiangsu University of Technology, Changzhou 213001, China
| | - Xinbai Jiang
- Key Laboratory of Environmental Remediation and Ecological Health, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
| | - Xiaojiao Wen
- Key Laboratory of Environmental Remediation and Ecological Health, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Cheng Hou
- Key Laboratory of Environmental Remediation and Ecological Health, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Dan Chen
- Key Laboratory of Environmental Remediation and Ecological Health, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Yang Mu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science & Technology of China, Hefei 230026, China
| | - Jinyou Shen
- Key Laboratory of Environmental Remediation and Ecological Health, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
| |
Collapse
|
48
|
Ceballos-Escalera A, Pous N, Korth B, Harnisch F, Balaguer MD, Puig S. Ex-situ electrochemical characterisation of fixed-bed denitrification biocathodes: A promising strategy to improve bioelectrochemical denitrification. CHEMOSPHERE 2024; 347:140699. [PMID: 37977534 DOI: 10.1016/j.chemosphere.2023.140699] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 10/27/2023] [Accepted: 11/10/2023] [Indexed: 11/19/2023]
Abstract
The worldwide issue of nitrate-contaminated groundwater requires practical solutions, and electro-bioremediation offers a promising and sustainable treatment. While it has shown potential benefits, there is room for improvement in treatment rates, which is crucial for its further and effective implementation. In this field, electrochemical characterisation is a valuable tool for providing the foundation for optimising bioelectrochemical reactors, but applying it in fixed-bed reactors is challenging due to its high intrinsic electrical resistance. To overcome these challenges, this study employed the easy and swift eClamp methodology to screen different process parameters and their influence on the performance of fixed-bed denitrifying biocathodes composed of granular graphite. Granules were extracted and studied ex-situ under controlled conditions while varying key operational parameters (such as pH, temperature, and nitrate concentration). In the studied biocathode, the extracellular electron transfer associated with denitrification was identified as the primary limiting step with a formal potential of -0.225 ± 0.007 V vs. Ag/AgCl sat. KCl at pH 7 and 25 °C. By varying the nitrate concentration, it was revealed that the biocathode exhibits a strong affinity for nitrate (KMapp of 0.7 ± 0.2 mg N-NO3- L-1). The maximum denitrification rate was observed at a pH of 6 and a temperature of 35 °C. Furthermore, the findings highlight a 2e-/1H+ transfer, which holds considerable implications for the energy metabolism of bioelectrochemical denitrifiers. These compiled results provide valuable insights into the understanding of denitrifying biocathodes and enable the improvement and prediction of their performance.
Collapse
Affiliation(s)
- Alba Ceballos-Escalera
- LEQUiA, Institute of the Environment, University of Girona, C/ Maria Aurèlia Capmany, 69, E-17003, Girona, Spain
| | - Narcís Pous
- LEQUiA, Institute of the Environment, University of Girona, C/ Maria Aurèlia Capmany, 69, E-17003, Girona, Spain
| | - Benjamin Korth
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research GmbH - UFZ, Permoserstraße 15, 04318, Leipzig, Germany
| | - Falk Harnisch
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research GmbH - UFZ, Permoserstraße 15, 04318, Leipzig, Germany
| | - M Dolors Balaguer
- LEQUiA, Institute of the Environment, University of Girona, C/ Maria Aurèlia Capmany, 69, E-17003, Girona, Spain
| | - Sebastià Puig
- LEQUiA, Institute of the Environment, University of Girona, C/ Maria Aurèlia Capmany, 69, E-17003, Girona, Spain.
| |
Collapse
|
49
|
van Wonderen JH, Crack JC, Edwards MJ, Clarke TA, Saalbach G, Martins C, Butt JN. Liquid-chromatography mass spectrometry describes post-translational modification of Shewanella outer membrane proteins. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2024; 1866:184221. [PMID: 37673350 DOI: 10.1016/j.bbamem.2023.184221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 08/09/2023] [Accepted: 08/30/2023] [Indexed: 09/08/2023]
Abstract
Electrogenic bacteria deliver excess respiratory electrons to externally located metal oxide particles and electrodes. The biochemical basis for this process is arguably best understood for species of Shewanella where the integral membrane complex termed MtrCAB is key to electron transfer across the bacterial outer membranes. A crystal structure was recently resolved for MtrCAB from S. baltica OS185. However, X-ray diffraction did not resolve the N-terminal residues so that the lipidation status of proteins in the mature complex was poorly described. Here we report liquid chromatography mass spectrometry revealing the intact mass values for all three proteins in the MtrCAB complexes purified from Shewanella oneidensis MR-1 and S. baltica OS185. The masses of MtrA and MtrB are consistent with both proteins being processed by Signal Peptidase I and covalent attachment of ten c-type hemes to MtrA. The mass of MtrC is most reasonably interpreted as arising from protein processed by Signal Peptidase II to produce a diacylated lipoprotein containing ten c-type hemes. Our two-step protocol for liquid-chromatography mass spectrometry used a reverse phase column to achieve on-column detergent removal prior to gradient protein resolution and elution. We envisage the method will be capable of simultaneously resolving the intact mass values for multiple proteins in other membrane protein complexes.
Collapse
Affiliation(s)
- Jessica H van Wonderen
- School of Chemistry, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK.
| | - Jason C Crack
- School of Chemistry, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| | - Marcus J Edwards
- School of Biological Sciences, University of East Anglia, , Norwich Research Park, Norwich NR4 7TJ, UK; School of Life Sciences, University of Essex, Colchester CO4 3SQ, UK
| | - Thomas A Clarke
- School of Biological Sciences, University of East Anglia, , Norwich Research Park, Norwich NR4 7TJ, UK
| | - Gerhard Saalbach
- Proteomics Facility, The John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Carlo Martins
- Proteomics Facility, The John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Julea N Butt
- School of Chemistry, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK; School of Biological Sciences, University of East Anglia, , Norwich Research Park, Norwich NR4 7TJ, UK.
| |
Collapse
|
50
|
Liu X, Ye Y, Yang N, Cheng C, Rensing C, Jin C, Nealson KH, Zhou S. Nonelectroactive clostridium obtains extracellular electron transfer-capability after forming chimera with Geobacter. ISME COMMUNICATIONS 2024; 4:ycae058. [PMID: 38770058 PMCID: PMC11104457 DOI: 10.1093/ismeco/ycae058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 03/25/2024] [Accepted: 04/15/2024] [Indexed: 05/22/2024]
Abstract
Extracellular electron transfer (EET) of microorganisms is a major driver of the microbial growth and metabolism, including reactions involved in the cycling of C, N, and Fe in anaerobic environments such as soils and sediments. Understanding the mechanisms of EET, as well as knowing which organisms are EET-capable (or can become so) is fundamental to electromicrobiology and geomicrobiology. In general, Gram-positive bacteria very seldomly perform EET due to their thick non-conductive cell wall. Here, we report that a Gram-positive Clostridium intestinale (C.i) attained EET-capability for ethanol metabolism only after forming chimera with electroactive Geobacter sulfurreducens (G.s). Mechanism analyses demonstrated that the EET was possible after the cell fusion of the two species was achieved. Under these conditions, the ethanol metabolism pathway of C.i was integrated by the EET pathway of G.s, by which achieved the oxidation of ethanol for the subsequent reduction of extracellular electron acceptors in the coculture. Our study displays a new approach to perform EET for Gram-positive bacteria via recruiting the EET pathway of an electroactive bacterium, which suggests a previously unanticipated prevalence of EET in the microbial world. These findings also provide new perspectives to understand the energetic coupling between bacterial species and the ecology of interspecies mutualisms.
Collapse
Affiliation(s)
- Xing Liu
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Yin Ye
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Naiming Yang
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Chen Cheng
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Christopher Rensing
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Chao Jin
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou, Guangdong 510006, China
| | - Kenneth H Nealson
- Department of Earth Science & Biological Sciences, University of Southern California, Los Angeles, CA 91030, United States
| | - Shungui Zhou
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| |
Collapse
|