1
|
Boto ST, Cristiani L, Rosenbaum MA. Biochemical production with microbial bioelectrochemical systems. Curr Opin Biotechnol 2025; 93:103291. [PMID: 40086015 DOI: 10.1016/j.copbio.2025.103291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Accepted: 02/23/2025] [Indexed: 03/16/2025]
Abstract
Microbial bioelectrochemical systems (BES) represent a promising platform for sustainable biochemical production by leveraging microbial electrocatalysis. These systems utilize electrical energy to drive microbial metabolic processes, enabling the recovery of CO₂ into valuable organic molecules such as methane, acetate, ethanol, and other biochemicals. This approach aligns with global efforts to mitigate greenhouse gas emissions and create circular carbon economies. The advancement of BES technology requires both scale-down and scale-up strategies to ensure feasibility and scalability. Scale-down approaches focus on optimizing operational parameters, enhancing electron transfer efficiencies, and understanding microbial community dynamics under controlled conditions. Scale-up efforts address the challenges of maintaining system stability, energy efficiency, and economic viability in larger, industrial-scale operations. Together, these strategies bridge the gap between fundamental laboratory research and real-world applications, positioning microbial BES as a key technology for sustainable biochemical production and captured carbon utilization.
Collapse
Affiliation(s)
- Santiago T Boto
- Leibniz Institute for Natural Product Research and Infection Biology - Hans-Knöll-Institute (Leibniz-HKI), 07745 Jena, Germany
| | - Lorenzo Cristiani
- Leibniz Institute for Natural Product Research and Infection Biology - Hans-Knöll-Institute (Leibniz-HKI), 07745 Jena, Germany
| | - Miriam A Rosenbaum
- Leibniz Institute for Natural Product Research and Infection Biology - Hans-Knöll-Institute (Leibniz-HKI), 07745 Jena, Germany; Faculty of Biological Sciences, Friedrich-Schiller-University Jena, 07745 Jena, Germany.
| |
Collapse
|
2
|
Salvatori G, Giampaoli O, Marchetti A, Miccheli A, Virdis B, Sciubba F, Villano M. 13C-Labelled Glucose Reveals Shifts in Fermentation Pathway During Cathodic Electro-Fermentation with Mixed Microbial Culture. CHEMSUSCHEM 2025; 18:e202401033. [PMID: 39222403 PMCID: PMC11739826 DOI: 10.1002/cssc.202401033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 08/02/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
Cathodic Electro-Fermentation (CEF) is an innovative approach to manage the spectrum of products deriving from anaerobic fermentation. Herein, mixed microbial culture fermentation using a ternary mixture containing labelled 13C glucose and non-labelled acetate and ethanol was studied to identify the role of polarization on the metabolic pathways of glucose fermentation. CEF at an applied potential of -700 mV (vs. SHE, Standard Hydrogen Electrode) enhanced the production yield of acetate, propionate, and butyrate (0.90±0.10, 0.22±0.03, and 0.34±0.05 mol/mol; respectively) compared to control tests performed at open circuit potential (OCP) (0.54±0.09, 0.15±0.04, and 0.20±0.001 mol/mol, respectively). Results indicate that CEF affected the 13C labelled fermented product levels and their fractional 13C enrichments, allowing to establish metabolic pathway models. This work demonstrates that, under cathodic polarization, the abundance of both fully 13C labelled propionate and butyrate isotopomers increased compared to control tests. The effect of CEF is mainly due to intermediates initially produced from the glucose metabolic transformation in the presence of non-labelled acetate and ethanol as external substrates. These findings represent a significant advancement in current knowledge of CEF, which offers a promising tool to control mixed cultures bioprocesses.
Collapse
Affiliation(s)
- Gaia Salvatori
- Department of ChemistrySapienza University of RomeP.le Aldo Moro 500185RomeItaly
| | - Ottavia Giampaoli
- NMR-Based Metabolomics LaboratorySapienza University of RomeP.le Aldo Moro 500185RomeItaly
- Department of Environmental BiologySapienza University of RomeP.le Aldo Moro 500185RomeItaly
| | - Angela Marchetti
- Department of ChemistrySapienza University of RomeP.le Aldo Moro 500185RomeItaly
| | - Alfredo Miccheli
- NMR-Based Metabolomics LaboratorySapienza University of RomeP.le Aldo Moro 500185RomeItaly
| | - Bernardino Virdis
- Australian Centre for Water and Environmental BiotechnologyThe University of QueenslandBrisbaneQLD 4072Australia
| | - Fabio Sciubba
- NMR-Based Metabolomics LaboratorySapienza University of RomeP.le Aldo Moro 500185RomeItaly
- Department of Environmental BiologySapienza University of RomeP.le Aldo Moro 500185RomeItaly
| | - Marianna Villano
- Department of ChemistrySapienza University of RomeP.le Aldo Moro 500185RomeItaly
| |
Collapse
|
3
|
Rovira-Alsina L, Romans-Casas M, Perona-Vico E, Ceballos-Escalera A, Balaguer MD, Bañeras L, Puig S. Microbial Electrochemical Technologies: Sustainable Solutions for Addressing Environmental Challenges. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2024. [PMID: 39739109 DOI: 10.1007/10_2024_273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
Abstract
Addressing global challenges of waste management demands innovative approaches to turn biowaste into valuable resources. This chapter explores the potential of microbial electrochemical technologies (METs) as an alternative opportunity for biowaste valorisation and resource recovery due to their potential to address limitations associated with traditional methods. METs leverage microbial-driven oxidation and reduction reactions, enabling the conversion of different feedstocks into energy or value-added products. Their versatility spans across gas, food, water and soil streams, offering multiple solutions at different technological readiness levels to advance several sustainable development goals (SDGs) set out in the 2030 Agenda. By critically examining recent studies, this chapter uncovers challenges, optimisation strategies, and future research directions for real-world MET implementations. The integration of economic perspectives with technological developments provides a comprehensive understanding of the opportunities and demands associated with METs in advancing the circular economy agenda, emphasising their pivotal role in waste minimisation, resource efficiency promotion, and closed-loop system renovation.
Collapse
Affiliation(s)
- Laura Rovira-Alsina
- LEQUiA, Institute of the Environment, University of Girona, Girona, Catalonia, Spain
| | | | - Elisabet Perona-Vico
- gEMM, Group of Molecular Microbial Ecology, Institute of Aquatic Ecology, University of Girona, Girona, Catalonia, Spain
| | | | - M Dolors Balaguer
- LEQUiA, Institute of the Environment, University of Girona, Girona, Catalonia, Spain
| | - Lluís Bañeras
- gEMM, Group of Molecular Microbial Ecology, Institute of Aquatic Ecology, University of Girona, Girona, Catalonia, Spain
| | - Sebastià Puig
- LEQUiA, Institute of the Environment, University of Girona, Girona, Catalonia, Spain.
| |
Collapse
|
4
|
Shi K, Xu JM, Cui HL, Cheng HY, Liang B, Wang AJ. Microbiome regulation for sustainable wastewater treatment. Biotechnol Adv 2024; 77:108458. [PMID: 39343082 DOI: 10.1016/j.biotechadv.2024.108458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 08/30/2024] [Accepted: 09/26/2024] [Indexed: 10/01/2024]
Abstract
Sustainable wastewater treatment is essential for attaining clean water and sanitation, aligning with UN Sustainable Development Goals. Wastewater treatment plants (WWTPs) have utilized environmental microbiomes in biological treatment processes in this effort for over a century. However, the inherent complexity and redundancy of microbial communities, and emerging chemical and biological contaminants, challenge the biotechnology applications. Over the past decades, understanding and utilization of microbial energy metabolism and interaction relationships have revolutionized the biological system. In this review, we discuss how microbiome regulation strategies are being used to generate actionable performance for low-carbon pollutant removal and resource recovery in WWTPs. The engineering application cases also highlight the real feasibility and promising prospects of the microbiome regulation approaches. In conclusion, we recommend identifying environmental risks associated with chemical and biological contaminants transformation as a prerequisite. We propose the integration of gene editing and enzyme design to precisely regulate microbiomes for the synergistic control of both chemical and biological risks. Additionally, the development of integrated technologies and engineering equipment is crucial in addressing the ongoing water crisis. This review advocates for the innovation of conventional wastewater treatment biotechnology to ensure sustainable wastewater treatment.
Collapse
Affiliation(s)
- Ke Shi
- State Key Laboratory of Urban Water Resource and Environment, School of Civil & Environmental Engineering, Harbin Institute of Technology, Shenzhen 518055, China
| | - Jia-Min Xu
- State Key Laboratory of Urban Water Resource and Environment, School of Civil & Environmental Engineering, Harbin Institute of Technology, Shenzhen 518055, China
| | - Han-Lin Cui
- State Key Laboratory of Urban Water Resource and Environment, School of Civil & Environmental Engineering, Harbin Institute of Technology, Shenzhen 518055, China
| | - Hao-Yi Cheng
- State Key Laboratory of Urban Water Resource and Environment, School of Civil & Environmental Engineering, Harbin Institute of Technology, Shenzhen 518055, China
| | - Bin Liang
- State Key Laboratory of Urban Water Resource and Environment, School of Civil & Environmental Engineering, Harbin Institute of Technology, Shenzhen 518055, China.
| | - Ai-Jie Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Civil & Environmental Engineering, Harbin Institute of Technology, Shenzhen 518055, China.
| |
Collapse
|
5
|
Zhang Y, Li J, Lian X, Li L, Yong YC, Meng J. Efficient caproate production from lignocellulose via single-step electro-fermentation platform without organic electron donor. BIORESOURCE TECHNOLOGY 2024; 411:131319. [PMID: 39173961 DOI: 10.1016/j.biortech.2024.131319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 08/06/2024] [Accepted: 08/19/2024] [Indexed: 08/24/2024]
Abstract
Caproate production by microbial fermentation gained the advantages of sustainability and eco-friendliness, but challenged by sterile fermentation environment, necessity of organic electron donors. Here, a single-step electro-fermentation (EF) process of mixed culture was proposed for caprate production from rice straw. At the optimal potential of -0.8 V, caproate concentration, yield and selectivity in the neutral red (NR)-mediated EF system were 2.4 g/L, 0.2 g/g and 26.6%. Long-term operation accumulated 5.3 g/L caproate with the yield and selectivity of 0.2 g/g and 34.2% in the EF+NR system. Bioaugmentation by dosing chain-elongation microbial consortium further improved the caproate production, yield and selectivity to 9.1 g/L, 0.3 g/g and 41.5%, respectively. The improved caproate production in the bioaugmented EF+NR system was likely due to the enhanced interspecies electron transfer, reconstructed microbial community, multiple electron donors and suitable pH environment. Present study offers a feasible strategy for cost-effective caprate production directly from waste biomass.
Collapse
Affiliation(s)
- Yafei Zhang
- Biofuels Institute, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, 73 Huanghe Road, Harbin 150090, China
| | - Jianzheng Li
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, 73 Huanghe Road, Harbin 150090, China
| | - Xu Lian
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, 73 Huanghe Road, Harbin 150090, China
| | - Lin Li
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, 73 Huanghe Road, Harbin 150090, China
| | - Yang-Chun Yong
- Biofuels Institute, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Jia Meng
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, 73 Huanghe Road, Harbin 150090, China.
| |
Collapse
|
6
|
Zhao J, Ma H, Gao M, Qian D, Wang Q, Shiung Lam S. Advancements in medium chain fatty acids production through chain elongation: Key mechanisms and innovative solutions for overcoming rate-limiting steps. BIORESOURCE TECHNOLOGY 2024; 408:131133. [PMID: 39033828 DOI: 10.1016/j.biortech.2024.131133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 07/08/2024] [Accepted: 07/18/2024] [Indexed: 07/23/2024]
Abstract
The depletion of fossil fuels has prompted an urgent search for alternative chemicals from renewable sources. Current technology in medium chain fatty acids (MCFAs) production though chain elongation (CE) is becoming increasingly sustainable, hence the motivation for this review, which provides the detailed description, insights and analysis of the metabolic pathways, substrates type, inoculum and fermentation process. The main rate-limiting steps of microbial MCFAs production were comprehensively revealed and the corresponding innovative solutions were also critically evaluated. Innovative strategies such as substrate pretreatment, electrochemical regulation, product separation, fermentation parameter optimization, and electroactive additives have shown significant advantages in overcoming the rate-limiting steps. Furthermore, novel regulatory strategies such as quorum sensing and electronic bifurcation are expected to further increase the MCFAs yield. Finally, the techno-economic analysis was carried out, and the future research focuses were also put forward.
Collapse
Affiliation(s)
- Jihua Zhao
- Department of Environmental Science and Engineering, University of Science and Technology Beijing, Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, Beijing 100083, China
| | - Hongzhi Ma
- Department of Environmental Science and Engineering, University of Science and Technology Beijing, Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, Beijing 100083, China; Xinjiang Key Laboratory of Clean Conversion and High Value Utilization of Biomass Resources, School of Resource and Environmental Science, Yili Normal University, Yining 835000, China.
| | - Ming Gao
- Department of Environmental Science and Engineering, University of Science and Technology Beijing, Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, Beijing 100083, China
| | - Dayi Qian
- Department of Environmental Science and Engineering, University of Science and Technology Beijing, Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, Beijing 100083, China; Xinjiang Key Laboratory of Clean Conversion and High Value Utilization of Biomass Resources, School of Resource and Environmental Science, Yili Normal University, Yining 835000, China
| | - Qunhui Wang
- Department of Environmental Science and Engineering, University of Science and Technology Beijing, Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, Beijing 100083, China
| | - Su Shiung Lam
- Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries (AKUATROP), Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia; Center for Global Health Research (CGHR), Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, India
| |
Collapse
|
7
|
Harnisch F, Deutzmann JS, Boto ST, Rosenbaum MA. Microbial electrosynthesis: opportunities for microbial pure cultures. Trends Biotechnol 2024; 42:1035-1047. [PMID: 38431514 PMCID: PMC11310912 DOI: 10.1016/j.tibtech.2024.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 02/05/2024] [Accepted: 02/05/2024] [Indexed: 03/05/2024]
Abstract
Microbial electrosynthesis (MES) is an emerging technology that couples renewable electricity to microbial production processes. Although advances in MES performance have been driven largely by microbial mixed cultures, we see a great limitation in the diversity, and hence value, of products that can be achieved in undefined mixed cultures. By contrast, metabolic control of pure cultures and genetic engineering could greatly expand the scope of MES, and even of broader electrobiotechnology, to include targeted high-value products. To leverage this potential, we advocate for more efforts and activities to develop engineered electroactive microbes for synthesis, and we highlight the need for a standardized electrobioreactor infrastructure that allows the establishment and engineering of electrobioprocesses with these novel biocatalysts.
Collapse
Affiliation(s)
- Falk Harnisch
- Department of Microbial Biotechnology, Helmholtz Centre for Environmental Research GmbH, Permoserstrasse 15, 04318 Leipzig, Germany
| | - Jörg S Deutzmann
- Department of Civil and Environmental Engineering, Stanford University, Stanford, CA, USA
| | - Santiago T Boto
- Leibniz Institute for Natural Product Research and Infection Biology, Hans-Knöll-Institute, Adolf Reichwein Strasse 23, 07745 Jena, Germany; Institute of Microbiology, Faculty for Biological Sciences, Friedrich-Schiller-University Jena, Neugasse 23, 07743 Jena, Germany
| | - Miriam A Rosenbaum
- Leibniz Institute for Natural Product Research and Infection Biology, Hans-Knöll-Institute, Adolf Reichwein Strasse 23, 07745 Jena, Germany; Institute of Microbiology, Faculty for Biological Sciences, Friedrich-Schiller-University Jena, Neugasse 23, 07743 Jena, Germany.
| |
Collapse
|
8
|
Li Y, Cao M, Gupta VK, Wang Y. Metabolic engineering strategies to enable microbial electrosynthesis utilization of CO 2: recent progress and challenges. Crit Rev Biotechnol 2024; 44:352-372. [PMID: 36775662 DOI: 10.1080/07388551.2023.2167065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 10/17/2022] [Accepted: 12/08/2022] [Indexed: 02/14/2023]
Abstract
Microbial electrosynthesis (MES) is a promising technology that mainly utilizes microbial cells to convert CO2 into value-added chemicals using electrons provided by the cathode. However, the low electron transfer rate is a solid bottleneck hindering the further application of MES. Thus, as an effective strategy, genetic tools play a key role in MES for enhancing the electron transfer rate and diversity of production. We describe a set of genetic strategies based on fundamental characteristics and current successes and discuss their functional mechanisms in driving microbial electrocatalytic reactions to fully comprehend the roles and uses of genetic tools in MES. This paper also analyzes the process of nanomaterial application in extracellular electron transfer (EET). It provides a technique that combines nanomaterials and genetic tools to increase MES efficiency, because nanoparticles have a role in the production of functional genes in EET although genetic tools can subvert MES, it still has issues with difficult transformation and low expression levels. Genetic tools remain one of the most promising future strategies for advancing the MES process despite these challenges.
Collapse
Affiliation(s)
- Yixin Li
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Key Laboratory for Chemical Biology of Fujian Province, Key Laboratory for Synthetic Biotechnology of Xiamen City, Xiamen University, Xiamen, China
| | - Mingfeng Cao
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Key Laboratory for Chemical Biology of Fujian Province, Key Laboratory for Synthetic Biotechnology of Xiamen City, Xiamen University, Xiamen, China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen, China
| | - Vijai Kumar Gupta
- Biorefining and Advanced Materials Research Center, SRUC, Edinburgh, UK
| | - Yuanpeng Wang
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Key Laboratory for Chemical Biology of Fujian Province, Key Laboratory for Synthetic Biotechnology of Xiamen City, Xiamen University, Xiamen, China
| |
Collapse
|
9
|
Wang N, Gao M, Liu S, Zhu W, Zhang Y, Wang X, Sun H, Guo Y, Wang Q. Electrochemical promotion of organic waste fermentation: Research advances and prospects. ENVIRONMENTAL RESEARCH 2024; 244:117422. [PMID: 37866529 DOI: 10.1016/j.envres.2023.117422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 10/13/2023] [Accepted: 10/15/2023] [Indexed: 10/24/2023]
Abstract
The current methods of treating organic waste suffer from limited resource usage and low product value. Research and development of value-added products emerges as an unavoidable trend for future growth. Electro-fermentation (EF) is a technique employed to stimulate cell proliferation, expedite microbial metabolism, and enhance the production of value-added products by administering minute voltages or currents in the fermentation system. This method represents a novel research direction lying at the crossroads of electrochemistry and biology. This article documents the current progress of EF for a range of value-added products, including gaseous fuels, organic acids, and other organics. It also presents novel value-added products, such as 1,3-propanediol, 3-hydroxypropionic acid, succinic acid, acrylic acid, and lysine. The latest research trends suggest a focus on EF for cogeneration of value-added products, studying microbial community structure and electroactive bacteria, exploring electron transfer mechanisms in EF systems, developing effective methods for nutrient recovery of nitrogen and phosphorus, optimizing EF conditions, and utilizing biosensors and artificial neural networks in this area. In this paper, an analysis is conducted on the challenges that currently exist regarding the selection of conductive materials, optimization of electrode materials, and development of bioelectrochemical system (BES) coupling processes in EF systems. The aim is to provide a reference for the development of more efficient, advanced, and value-added EF technologies. Overall, this paper aims to provide references and ideas for the development of more efficient and advanced EF technology.
Collapse
Affiliation(s)
- Nuohan Wang
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Ming Gao
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Shuo Liu
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Wenbin Zhu
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Yuanchun Zhang
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Xiaona Wang
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Haishu Sun
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Yan Guo
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Qunhui Wang
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China; Tianjin College, University of Science and Technology Beijing, Tianjin, 301811, China.
| |
Collapse
|
10
|
Salar-García MJ, Ortiz-Martínez VM, Sánchez-Segado S, Valero Sánchez R, Sáez López A, Lozano Blanco LJ, Godínez-Seoane C. Sustainable Production of Biofuels and Biochemicals via Electro-Fermentation Technology. Molecules 2024; 29:834. [PMID: 38398584 PMCID: PMC10891623 DOI: 10.3390/molecules29040834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 02/04/2024] [Accepted: 02/09/2024] [Indexed: 02/25/2024] Open
Abstract
The energy crisis and climate change are two of the most concerning issues for human beings nowadays. For that reason, the scientific community is focused on the search for alternative biofuels to conventional fossil fuels as well as the development of sustainable processes to develop a circular economy. Bioelectrochemical processes have been demonstrated to be useful for producing bioenergy and value-added products from several types of waste. Electro-fermentation has gained great attention in the last few years due to its potential contribution to biofuel and biochemical production, e.g., hydrogen, methane, biopolymers, etc. Conventional fermentation processes pose several limitations in terms of their practical and economic feasibility. The introduction of two electrodes in a bioreactor allows the regulation of redox instabilities that occur in conventional fermentation, boosting the overall process towards a high biomass yield and enhanced product formation. In this regard, key parameters such as the type of culture, the nature of the electrodes as well as the operating conditions are crucial in order to maximize the production of biofuels and biochemicals via electro-fermentation technology. This article comprises a critical overview of the benefits and limitations of this emerging bio-electrochemical technology and its contribution to the circular economy.
Collapse
Affiliation(s)
- María José Salar-García
- Department of Chemical and Environmental Engineering, Technical University of Cartagena (UPCT), Campus Alfonso XIII, Aulario C, 30203 Cartagena, Spain;
| | - Víctor Manuel Ortiz-Martínez
- Department of Chemical and Environmental Engineering, Technical University of Cartagena (UPCT), Campus Muralla del Mar, 30202 Cartagena, Spain; (S.S.-S.); (A.S.L.); (L.J.L.B.); (C.G.-S.)
| | - Sergio Sánchez-Segado
- Department of Chemical and Environmental Engineering, Technical University of Cartagena (UPCT), Campus Muralla del Mar, 30202 Cartagena, Spain; (S.S.-S.); (A.S.L.); (L.J.L.B.); (C.G.-S.)
| | - Raúl Valero Sánchez
- Department of Chemical and Environmental Engineering, Technical University of Cartagena (UPCT), Campus Alfonso XIII, Aulario C, 30203 Cartagena, Spain;
| | - Antonia Sáez López
- Department of Chemical and Environmental Engineering, Technical University of Cartagena (UPCT), Campus Muralla del Mar, 30202 Cartagena, Spain; (S.S.-S.); (A.S.L.); (L.J.L.B.); (C.G.-S.)
| | - Luis Javier Lozano Blanco
- Department of Chemical and Environmental Engineering, Technical University of Cartagena (UPCT), Campus Muralla del Mar, 30202 Cartagena, Spain; (S.S.-S.); (A.S.L.); (L.J.L.B.); (C.G.-S.)
| | - Carlos Godínez-Seoane
- Department of Chemical and Environmental Engineering, Technical University of Cartagena (UPCT), Campus Muralla del Mar, 30202 Cartagena, Spain; (S.S.-S.); (A.S.L.); (L.J.L.B.); (C.G.-S.)
| |
Collapse
|
11
|
Zhou L, Sun J, Xu X, Ma M, Li Y, Chen Q, Su H. Full quantitative resource utilization of raw mustard waste through integrating a comprehensive approach for producing hydrogen and soil amendments. Microb Cell Fact 2024; 23:27. [PMID: 38238808 PMCID: PMC10797975 DOI: 10.1186/s12934-023-02293-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 12/30/2023] [Indexed: 01/22/2024] Open
Abstract
BACKGROUND Pickled mustard, the largest cultivated vegetable in China, generates substantial waste annually, leading to significant environmental pollution due to challenges in timely disposal, leading to decomposition and sewage issues. Consequently, the imperative to address this concern centers on the reduction and comprehensive resource utilization of raw mustard waste (RMW). To achieve complete and quantitative resource utilization of RMW, this study employs novel technology integration for optimizing its higher-value applications. RESULTS Initially, subcritical hydrothermal technology was applied for rapid decomposition, with subsequent ammonia nitrogen removal via zeolite. Thereafter, photosynthetic bacteria, Rhodopseudomonas palustris, were employed to maximize hydrogen and methane gas production using various fermentation enhancement agents. Subsequent solid-liquid separation yielded liquid fertilizer from the fermented liquid and soil amendment from solid fermentation remnants. Results indicate that the highest glucose yield (29.6 ± 0.14) was achieved at 165-173℃, with a total sugar content of 50.2 g/L and 64% glucose proportion. Optimal ammonia nitrogen removal occurred with 8 g/L zeolite and strain stable growth at 32℃, with the highest OD600 reaching 2.7. Several fermentation promoters, including FeSO4, Neutral red, Na2S, flavin mononucleotide, Nickel titanate, Nickel oxide, and Mixture C, were evaluated for hydrogen production. Notably, Mixture C resulted in the maximum hydrogen production (756 mL), a production rate of 14 mL/h, and a 5-day stable hydrogen production period. Composting experiments enhanced humic acid content and organic matter (OM) by 17% and 15%, respectively. CONCLUSIONS This innovative technology not only expedites RMW treatment and hydrogen yield but also substantially enriches soil fertility. Consequently, it offers a novel approach for low-carbon, zero-pollution RMW management. The study's double outcomes extend to large-scale RMW treatment based on the aim of full quantitative resource utilization of RMW. Our method provides a valuable reference for waste management in similar perishable vegetable plantations.
Collapse
Affiliation(s)
- Ling Zhou
- Sichuan Communication Surveying and Design Institute Co., LTD, 35 Taisheng North Road, Qingyang District, Chengdu City, Sichuan Province, China
| | - JiaZhen Sun
- China railway academy Co., LTD, No, 118 Xiyuecheng Street, Jinniu District, Chengdu City, Sichuan Province, China
| | - XiaoJun Xu
- Sichuan Communication Surveying and Design Institute Co., LTD, 35 Taisheng North Road, Qingyang District, Chengdu City, Sichuan Province, China
| | - MingXia Ma
- Sichuan Communication Surveying and Design Institute Co., LTD, 35 Taisheng North Road, Qingyang District, Chengdu City, Sichuan Province, China
| | - YongZhi Li
- Chongqing Institute of Green and Interligent Technology, Chinese Academy of Science, 266, Fangzheng Avenue, Shuitu High-tech Park, Beibei, Chongqing, 400714, China
| | - Qiao Chen
- Chongqing Institute of Green and Interligent Technology, Chinese Academy of Science, 266, Fangzheng Avenue, Shuitu High-tech Park, Beibei, Chongqing, 400714, China.
| | - HaiFeng Su
- Chongqing Institute of Green and Interligent Technology, Chinese Academy of Science, 266, Fangzheng Avenue, Shuitu High-tech Park, Beibei, Chongqing, 400714, China.
| |
Collapse
|
12
|
Gu L, Xiao X, Yup Lee S, Lai B, Solem C. Superior anodic electro-fermentation by enhancing capacity for extracellular electron transfer. BIORESOURCE TECHNOLOGY 2023; 389:129813. [PMID: 37776913 DOI: 10.1016/j.biortech.2023.129813] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 09/27/2023] [Accepted: 09/27/2023] [Indexed: 10/02/2023]
Abstract
Anodic electro-fermentation (AEF), where an anode replaces the terminal electron acceptor, shows great promise. Recently a Lactococcus lactis strain blocked in NAD+ regeneration was demonstrated to use ferricyanide as an alternative electron acceptor to support fast growth, but the need for high concentrations of this non-regenerated electron acceptor limits practical applications. To address this, growth of this L. lactis strain, and an adaptively evolved (ALE) mutant with enhanced ferricyanide respiration capacity were investigated using an anode as electron acceptor in a bioelectrochemical system (BES) setup. Both strains grew well, however, the ALE mutant significantly faster. The ALE mutant almost exclusively generated 2,3-butanediol, whereas its parent strain mainly produced acetoin. The ALE mutant interacted efficiently with the anode, achieving a record high current density of 0.81 ± 0.05 mA/cm2. It is surprising that a Lactic Acid Bacterium, with fermentative metabolism, interacts so well with an anode, which demonstrates the potential of AEF.
Collapse
Affiliation(s)
- Liuyan Gu
- National Food Institute, Technical University of Denmark, Kongens Lyngby, 2800, Denmark
| | - Xinxin Xiao
- Department of Chemistry and Bioscience, Aalborg University, 9220 Aalborg, Denmark
| | - Sang Yup Lee
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Bin Lai
- BMBF junior research group Biophotovoltaics, Helmholtz Center for Environmental Research - UFZ, Leipzig 04318, Germany.
| | - Christian Solem
- National Food Institute, Technical University of Denmark, Kongens Lyngby, 2800, Denmark.
| |
Collapse
|
13
|
Dessì P, Buenaño-Vargas C, Martínez-Sosa S, Mills S, Trego A, Ijaz UZ, Pant D, Puig S, O'Flaherty V, Farràs P. Microbial electrosynthesis of acetate from CO 2 in three-chamber cells with gas diffusion biocathode under moderate saline conditions. ENVIRONMENTAL SCIENCE AND ECOTECHNOLOGY 2023; 16:100261. [PMID: 37089695 PMCID: PMC10120373 DOI: 10.1016/j.ese.2023.100261] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 02/23/2023] [Accepted: 03/10/2023] [Indexed: 05/03/2023]
Abstract
The industrial adoption of microbial electrosynthesis (MES) is hindered by high overpotentials deriving from low electrolyte conductivity and inefficient cell designs. In this study, a mixed microbial consortium originating from an anaerobic digester operated under saline conditions (∼13 g L-1 NaCl) was adapted for acetate production from bicarbonate in galvanostatic (0.25 mA cm-2) H-type cells at 5, 10, 15, or 20 g L-1 NaCl concentration. The acetogenic communities were successfully enriched only at 5 and 10 g L-1 NaCl, revealing an inhibitory threshold of about 6 g L-1 Na+. The enriched planktonic communities were then used as inoculum for 3D printed, three-chamber cells equipped with a gas diffusion biocathode. The cells were fed with CO2 gas and operated galvanostatically (0.25 or 1.00 mA cm-2). The highest production rate of 55.4 g m-2 d-1 (0.89 g L-1 d-1), with 82.4% Coulombic efficiency, was obtained at 5 g L-1 NaCl concentration and 1 mA cm-2 applied current, achieving an average acetate production of 44.7 kg MWh-1. Scanning electron microscopy and 16S rRNA sequencing analysis confirmed the formation of a cathodic biofilm dominated by Acetobacterium sp. Finally, three 3D printed cells were hydraulically connected in series to simulate an MES stack, achieving three-fold production rates than with the single cell at 0.25 mA cm-2. This confirms that three-chamber MES cells are an efficient and scalable technology for CO2 bio-electro recycling to acetate and that moderate saline conditions (5 g L-1 NaCl) can help reduce their power demand while preserving the activity of acetogens.
Collapse
Affiliation(s)
- Paolo Dessì
- School of Biological and Chemical Sciences and Energy Research Centre, Ryan Institute, University of Galway, University Road, H91 CF50, Galway, Ireland
- LEQUiA, Institute of the Environment, University of Girona, Carrer Maria Aurèlia Capmany 69, E-17003, Girona, Spain
- Corresponding author. LEQUiA, Institute of the Environment, University of Girona, Carrer Maria Aurèlia Capmany 69, E-17003, Girona, Spain.
| | - Claribel Buenaño-Vargas
- Microbiology Department, School of Natural Sciences, University of Galway, University Road, H91 TK33, Galway, Ireland
| | - Santiago Martínez-Sosa
- School of Biological and Chemical Sciences and Energy Research Centre, Ryan Institute, University of Galway, University Road, H91 CF50, Galway, Ireland
| | - Simon Mills
- Microbiology Department, School of Natural Sciences, University of Galway, University Road, H91 TK33, Galway, Ireland
| | - Anna Trego
- Microbiology Department, School of Natural Sciences, University of Galway, University Road, H91 TK33, Galway, Ireland
| | - Umer Z. Ijaz
- Infrastructure and Environment Research Division, School of Engineering, University of Glasgow, Glasgow, United Kingdom
| | - Deepak Pant
- Separation and Conversion Technology, Flemish Institute for Technological Research (VITO), Boeretang 200, 2400, Mol, Belgium
| | - Sebastià Puig
- LEQUiA, Institute of the Environment, University of Girona, Carrer Maria Aurèlia Capmany 69, E-17003, Girona, Spain
| | - Vincent O'Flaherty
- Microbiology Department, School of Natural Sciences, University of Galway, University Road, H91 TK33, Galway, Ireland
| | - Pau Farràs
- School of Biological and Chemical Sciences and Energy Research Centre, Ryan Institute, University of Galway, University Road, H91 CF50, Galway, Ireland
| |
Collapse
|
14
|
Zani ACB, Almeida ÉJRD, Furlan JPR, Pedrino M, Guazzaroni ME, Stehling EG, Andrade ARD, Reginatto V. Electrobiochemical skills of Pseudomonas aeruginosa species that produce pyocyanin or pyoverdine for glycerol oxidation in a microbial fuel cell. CHEMOSPHERE 2023:139073. [PMID: 37263512 DOI: 10.1016/j.chemosphere.2023.139073] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 05/05/2023] [Accepted: 05/28/2023] [Indexed: 06/03/2023]
Abstract
Pseudomonas aeruginosa can produce pigments, which mediate external electron transfer (EET). Depending on the mediator, this species can be explored in bioelectrosystems to harvest energy or to obtain chemicals from residual organic compounds. This study has compared the performance of microbial fuel cells (MFCs) inoculated with a Pseudomonas aeruginosa isolate, namely EW603 or EW819, which produce pyocyanin and pyoverdine, respectively. The efficiency of these MFCs in glycerol, a typical residue of biodiesel production, were also compared. The MFCs exhibited different performances. The maximum voltage was 411 and 281 mV m2, the power density was 40.1 and 21.3 mW m-2, and the coulombic efficiency was 5.16 and 1.49% for MFC-EW603 and MFC-EW819, respectively. MFC-EW603 and MFC-EW819 achieved maximum current at 560 and 2200 Ω, at 141.2 and 91.3 mA m-2, respectively. When the system was operated at the respective maximum current output, MFC-EW603 consumed the total glycerol content (11 mmol L-1), and no products could be detected after 50 h. In turn, acetic and butyric acids were detected at the end of MFC-EW819 operation (75 h). The results suggested that P. aeruginosa metabolism can be steered in the MFC to generate current or microbial products depending on the pigment-producing strain and the conditions applied to the system, such as the external resistance. In addition, gene cluster pathways related to phenazine production (phzA and phzB) and other electrogenic-related genes (mexGHI-opmB) were identified in the strain genomes, supporting the findings. These results open new possibilities for using glycerol in bioelectrochemical systems.
Collapse
Affiliation(s)
- Ana Clara Bonizol Zani
- Universidade de São Paulo- Faculdade de Filosofia Ciências e Letras de Ribeirão Preto - FFCLRP - SP. Departamento de Química, Av. Bandeirantes, 3900, CEP 14040-030, Ribeirão Preto, SP, Brazil
| | - Érica Janaina Rodrigues de Almeida
- Universidade de São Paulo- Faculdade de Filosofia Ciências e Letras de Ribeirão Preto - FFCLRP - SP. Departamento de Química, Av. Bandeirantes, 3900, CEP 14040-030, Ribeirão Preto, SP, Brazil
| | - João Pedro Rueda Furlan
- Universidade de São Paulo - Faculdade de Ciências Farmacêuticas de Ribeirão Preto - FCFRP - SP. Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Av. Bandeirantes, 3900, CEP 14040-030, Ribeirão Preto, SP, Brazil
| | - Matheus Pedrino
- Universidade de São Paulo - Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Departamento de Biologia, Av. Bandeirantes 3900, Ribeirão Preto, SP, 14049-901, Brazil
| | - María-Eugenia Guazzaroni
- Universidade de São Paulo - Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Departamento de Biologia, Av. Bandeirantes 3900, Ribeirão Preto, SP, 14049-901, Brazil
| | - Eliana Guedes Stehling
- Universidade de São Paulo - Faculdade de Ciências Farmacêuticas de Ribeirão Preto - FCFRP - SP. Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Av. Bandeirantes, 3900, CEP 14040-030, Ribeirão Preto, SP, Brazil
| | - Adalgisa Rodrigues de Andrade
- Universidade de São Paulo- Faculdade de Filosofia Ciências e Letras de Ribeirão Preto - FFCLRP - SP. Departamento de Química, Av. Bandeirantes, 3900, CEP 14040-030, Ribeirão Preto, SP, Brazil; Unesp, National Institute for Alternative Technologies of Detection, Toxicological Evaluation and Removal of Micropollutants and Radioactives (INCT-DATREM), Institute of Chemistry, P.O. Box 355, 14800-900, Araraquara, SP, Brazil
| | - Valeria Reginatto
- Universidade de São Paulo- Faculdade de Filosofia Ciências e Letras de Ribeirão Preto - FFCLRP - SP. Departamento de Química, Av. Bandeirantes, 3900, CEP 14040-030, Ribeirão Preto, SP, Brazil.
| |
Collapse
|
15
|
Ye X, Zheng T, Zhang W, Dong W, Wu H, Ma J, Jiang M. Membrane engineering of Escherichia coli based on "Building bridges" and "Digging tunnels" to improve electro-fermentation of succinate. Bioelectrochemistry 2023; 152:108455. [PMID: 37163911 DOI: 10.1016/j.bioelechem.2023.108455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 04/26/2023] [Accepted: 04/28/2023] [Indexed: 05/12/2023]
Abstract
Succinate is the end product of anaerobic metabolism of Escherichia coli, and its over-production needs abundant reducing force. Electro-fermentation (EF) is a novel biotechnology to steer and control fermentative processes by supplying extra electrons. However, E.coli is a non-electroactive strain which needs the support of electron shuttle in EF. Here, membrane engineering strategies of "Building bridges" via screening direct electron transport pathway and "Digging tunnels" via screening membrane porins were developed to improve the transmembrane transport of electron during the cathodic electro-fermentation (CEF). As a result, the total electron quantity during electro-fermentation was increased from 1.21 mmol to 7.90 mmol, and succinate yield was increased by 23.3% when these strategies simultaneously were applied to the succinate candidate E. coli Suc260. Hence, this study provides a reference mode for designing and constructing non-electroactive bacteria for electro-fermentation of reductive metabolites.
Collapse
Affiliation(s)
- Xiaohan Ye
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, PR China
| | - Tianwen Zheng
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, PR China
| | - Wenming Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, PR China; Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing 211800, PR China
| | - Weiliang Dong
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, PR China; Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing 211800, PR China
| | - Hao Wu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, PR China.
| | - Jiangfeng Ma
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, PR China; Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing 211800, PR China.
| | - Min Jiang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, PR China; Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing 211800, PR China
| |
Collapse
|
16
|
Zhang Y, Li J, Yong YC, Fang Z, Yan H, Li J, Meng J. Highly selective butanol production by manipulating electron flow via cathodic electro-fermentation. BIORESOURCE TECHNOLOGY 2023; 374:128770. [PMID: 36822560 DOI: 10.1016/j.biortech.2023.128770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 02/13/2023] [Accepted: 02/18/2023] [Indexed: 06/18/2023]
Abstract
Butanol production by solventogenic Clostridia shows great potential to combat the energy crisis, but is still challenged by low butanol selectivity and high downstream cost. In this study, a novel cathodic electro-fermentation (CEF) system mediated by methyl viologen (MV) was proposed and sequentially optimized to obtain highly selective butanol production. Under the optimal conditions (-0.60 V cathode potential, 0.50 mM MV, 30 g/L glucose), 7.17 ± 0.55 g/L butanol production were achieved with the yield of 0.32 ± 0.02 g/g. With the supplement of 4 g/L butyric acid as co-substrate, butanol production further improved to 13.14 ± 1.14 g/L with butanol yield and selectivity as high as 0.43 ± 0.01 g/g and 90.44 ± 1.66%, respectively. The polarized electrode enabled the unbalanced fermentation towards butanol formation and MV further inhibited hydrogen production, both of which contributed to the high-level butanol production and selectivity. The MV-mediated CEF system is a promising approach for cost-effective bio-butanol production.
Collapse
Affiliation(s)
- Yafei Zhang
- National Engineering Research Center for Safe Sludge Disposal and Resource Recovery, School of Environment, Harbin Institute of Technology, Harbin 150090, China; Biofuels Institute, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Jianzheng Li
- National Engineering Research Center for Safe Sludge Disposal and Resource Recovery, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Yang-Chun Yong
- Biofuels Institute, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Zhen Fang
- Biofuels Institute, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Han Yan
- National Engineering Research Center for Safe Sludge Disposal and Resource Recovery, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Jiuling Li
- Australian Centre for Water and Environmental Biotechnology, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Jia Meng
- National Engineering Research Center for Safe Sludge Disposal and Resource Recovery, School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| |
Collapse
|
17
|
Chu N, Jiang Y, Liang Q, Liu P, Wang D, Chen X, Li D, Liang P, Zeng RJ, Zhang Y. Electricity-Driven Microbial Metabolism of Carbon and Nitrogen: A Waste-to-Resource Solution. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:4379-4395. [PMID: 36877891 DOI: 10.1021/acs.est.2c07588] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Electricity-driven microbial metabolism relies on the extracellular electron transfer (EET) process between microbes and electrodes and provides promise for resource recovery from wastewater and industrial discharges. Over the past decades, tremendous efforts have been dedicated to designing electrocatalysts and microbes, as well as hybrid systems to push this approach toward industrial adoption. This paper summarizes these advances in order to facilitate a better understanding of electricity-driven microbial metabolism as a sustainable waste-to-resource solution. Quantitative comparisons of microbial electrosynthesis and abiotic electrosynthesis are made, and the strategy of electrocatalyst-assisted microbial electrosynthesis is critically discussed. Nitrogen recovery processes including microbial electrochemical N2 fixation, electrocatalytic N2 reduction, dissimilatory nitrate reduction to ammonium (DNRA), and abiotic electrochemical nitrate reduction to ammonia (Abio-NRA) are systematically reviewed. Furthermore, the synchronous metabolism of carbon and nitrogen using hybrid inorganic-biological systems is discussed, including advanced physicochemical, microbial, and electrochemical characterizations involved in this field. Finally, perspectives for future trends are presented. The paper provides valuable insights on the potential contribution of electricity-driven microbial valorization of waste carbon and nitrogen toward a green and sustainable society.
Collapse
Affiliation(s)
- Na Chu
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yong Jiang
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Qinjun Liang
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Panpan Liu
- School of Ecology and Environment, Zhengzhou University, Zhengzhou 450001, China
| | - Donglin Wang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Xueming Chen
- Fujian Provincial Engineering Research Center of Rural Waste Recycling Technology, College of Environment and Safety Engineering, Fuzhou University, Fuzhou 350116, China
| | - Daping Li
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Peng Liang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Raymond Jianxiong Zeng
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yifeng Zhang
- Department of Environmental Engineering, Technical University of Denmark, DK-2800 Lyngby, Denmark
| |
Collapse
|
18
|
Bird LJ, Leary DH, Hervey J, Compton J, Phillips D, Tender LM, Voigt CA, Glaven SM. Marine Biofilm Engineered to Produce Current in Response to Small Molecules. ACS Synth Biol 2023; 12:1007-1020. [PMID: 36926839 DOI: 10.1021/acssynbio.2c00417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
Engineered electroactive bacteria have potential applications ranging from sensing to biosynthesis. In order to advance the use of engineered electroactive bacteria, it is important to demonstrate functional expression of electron transfer modules in chassis adapted to operationally relevant conditions, such as non-freshwater environments. Here, we use the Shewanella oneidensis electron transfer pathway to induce current production in a marine bacterium, Marinobacter atlanticus, during biofilm growth in artificial seawater. Genetically encoded sensors optimized for use in Escherichia coli were used to control protein expression in planktonic and biofilm attached cells. Significant current production required the addition of menaquinone, which M. atlanticus does not produce, for electron transfer from the inner membrane to the expressed electron transfer pathway. Current through the S. oneidensis pathway in M. atlanticus was observed when inducing molecules were present during biofilm formation. Electron transfer was also reversible, indicating that electron transfer into M. atlanticus could be controlled. These results show that an operationally relevant marine bacterium can be genetically engineered for environmental sensing and response using an electrical signal.
Collapse
Affiliation(s)
- Lina J Bird
- Center for Bio/Molecular Science and Engineering, Naval Research Laboratory, 4555 Overlook Avenue SW, Washington, DC 20375, United States
| | - Dagmar H Leary
- Center for Bio/Molecular Science and Engineering, Naval Research Laboratory, 4555 Overlook Avenue SW, Washington, DC 20375, United States
| | - Judson Hervey
- Center for Bio/Molecular Science and Engineering, Naval Research Laboratory, 4555 Overlook Avenue SW, Washington, DC 20375, United States
| | - Jaimee Compton
- Center for Bio/Molecular Science and Engineering, Naval Research Laboratory, 4555 Overlook Avenue SW, Washington, DC 20375, United States
| | - Daniel Phillips
- Biochemistry Branch, Oak Ridge Institute for Science and Education/US Army DEVCOM Chemical Biological Center, Aberdeen Proving Grounds, Maryland 21005, United States
| | - Leonard M Tender
- Center for Bio/Molecular Science and Engineering, Naval Research Laboratory, 4555 Overlook Avenue SW, Washington, DC 20375, United States
| | - Christopher A Voigt
- Department of Biological Engineering and the Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Sarah M Glaven
- Center for Bio/Molecular Science and Engineering, Naval Research Laboratory, 4555 Overlook Avenue SW, Washington, DC 20375, United States
| |
Collapse
|
19
|
Alberto García Mogollón C, Carlos Quintero Díaz J, Omar Gil Posada J. Production of acetone, butanol, and ethanol by electro-fermentation with Clostridium saccharoperbutylacetonicum N1-4. Bioelectrochemistry 2023; 152:108414. [PMID: 36940584 DOI: 10.1016/j.bioelechem.2023.108414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 03/09/2023] [Accepted: 03/10/2023] [Indexed: 03/17/2023]
Abstract
This manuscript describes the effect of altering the extracellular redox potential during the production of acetone, butanol, and ethanol on a dual chamber H-type microbial fuel cell by fermenting glucose with Clostridium saccharoperbutylacetonicum N1-4. Extracellular redox potential modification was achieved by either supplementing the microbial broth with the redox agent NADH or by poising the cathode potential at -600 mV vs. Ag/AgCl. The addition of NADH was found to foment the production of acetone via fermentation of glucose. The addition of 200 mM of NADH to the catholyte rendered the highest production of acetone (2.4 g L-1), thus outperforming the production of acetone by conventional fermentation means (control treatment) by a factor of 2.2. The experimental evidence gathered here, indicates that cathodic electro-fermentation of glucose favors the production of butanol. When poising the cathode potential at -600 mV vs Ag/AgCl (electro-fermentation), the largest production of butanol was achieved (5.8 g L-1), outperforming the control treatment by a factor of 1.5. The production of ABE solvents and the electrochemical measurements demonstrate the electroactive properties of C. saccharoperbutylacetonicum N1-4 and illustrates the usefulness of bio-electrochemical systems to improve conventional fermentative processes.
Collapse
Affiliation(s)
| | - Juan Carlos Quintero Díaz
- Grupo de Bioprocesos, Departamento de Ingeniería Química, Universidad de Antioquia, Medellín, Colombia
| | - Jorge Omar Gil Posada
- Grupo de Bioprocesos, Departamento de Ingeniería Química, Universidad de Antioquia, Medellín, Colombia.
| |
Collapse
|
20
|
Bird LJ, Mickol RL, Eddie BJ, Thakur M, Yates MD, Glaven SM. Marinobacter: A case study in bioelectrochemical chassis evaluation. Microb Biotechnol 2023; 16:494-506. [PMID: 36464922 PMCID: PMC9948230 DOI: 10.1111/1751-7915.14170] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 10/28/2022] [Accepted: 11/03/2022] [Indexed: 12/08/2022] Open
Abstract
The junction of bioelectrochemical systems and synthetic biology opens the door to many potentially groundbreaking technologies. When developing these possibilities, choosing the correct chassis organism can save a great deal of engineering effort and, indeed, can mean the difference between success and failure. Choosing the correct chassis for a specific application requires a knowledge of the metabolic potential of the candidate organisms, as well as a clear delineation of the traits, required in the application. In this review, we will explore the metabolic and electrochemical potential of a single genus, Marinobacter. We will cover its strengths, (salt tolerance, biofilm formation and electrochemical potential) and weaknesses (insufficient characterization of many strains and a less developed toolbox for genetic manipulation) in potential synthetic electromicrobiology applications. In doing so, we will provide a roadmap for choosing a chassis organism for bioelectrochemical systems.
Collapse
Affiliation(s)
- Lina J. Bird
- Center for Bio/Molecular Science and Engineering, Naval Research LaboratoryWashingtonDistrict of ColumbiaUSA
| | - Rebecca L. Mickol
- Center for Bio/Molecular Science and Engineering, Naval Research LaboratoryWashingtonDistrict of ColumbiaUSA
| | - Brian J. Eddie
- Center for Bio/Molecular Science and Engineering, Naval Research LaboratoryWashingtonDistrict of ColumbiaUSA
| | - Meghna Thakur
- Center for Bio/Molecular Science and Engineering, Naval Research LaboratoryWashingtonDistrict of ColumbiaUSA
- College of Science, George Mason UniversityFairfaxVirginiaUSA
| | - Matthew D. Yates
- Center for Bio/Molecular Science and Engineering, Naval Research LaboratoryWashingtonDistrict of ColumbiaUSA
| | - Sarah M. Glaven
- Center for Bio/Molecular Science and Engineering, Naval Research LaboratoryWashingtonDistrict of ColumbiaUSA
| |
Collapse
|
21
|
Pérez-García JA, Bacame-Valenzuela FJ, Espejel-Ayala F, Ortiz-Frade L, Reyes-Vidal Y. Effect of adsorption of pyocyanin on the electron transfer rate at the interface of a glassy carbon electrode. Electrochim Acta 2023. [DOI: 10.1016/j.electacta.2023.142014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
22
|
Romans-Casas M, Perona-Vico E, Dessì P, Bañeras L, Balaguer MD, Puig S. Boosting ethanol production rates from carbon dioxide in MES cells under optimal solventogenic conditions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 856:159124. [PMID: 36179842 DOI: 10.1016/j.scitotenv.2022.159124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 09/01/2022] [Accepted: 09/25/2022] [Indexed: 06/16/2023]
Abstract
Microbial Electrosynthesis (MES) has been widely applied for acetic acid (HA) production from CO2 and electricity. Ethanol (EtOH) has a higher market value than HA, and wide application in industry and as a biofuel. However, it has only been obtained sporadically and at low concentrations, probably due to sub-optimal operating conditions. This study aimed at enhancing EtOH productivity in MES cells by jointly optimising key operation parameters, including pH, H2 and CO2 partial pressure (pH2 and pCO2), and HA concentration, to promote solventogenesis. Two H-type cells were operated in fed-batch mode at -0.8 V vs. SHE with CO2 as the sole carbon source. A mixed culture, enriched with Clostridium ljungdahlii was used as the biocatalyst. The combination of low pH (<4.5) and pCO2 (<0.3 atm), along with high HA concentration (about 6 g L-1) and pH2 (>3 atm), were mandatory conditions for maintaining an efficient solventogenic culture, dominated by Clostridium sp., capable of high-rate EtOH production. The maximum EtOH production rate was 10.95 g m-2 d-1, and a concentration of 5.28 g L-1 was achieved. Up to 30 % of the electrons and 15.2 % of the carbon provided were directed towards EtOH production, and 28.1 kWh were required for the synthesis of 1 kg of EtOH from CO2. These results highlight that strict conditions are required for a continuous, reliable, EtOH production in MES cells. Future investigation should focus on improving cell configuration to achieve EtOH production at higher current densities while minimizing the electric energy input.
Collapse
Affiliation(s)
- M Romans-Casas
- LEQUiA, Institute of the Environment, University of Girona, Campus Montilivi, C/Maria Aurèlia Capmany, 69, E-17003 Girona, Spain
| | - E Perona-Vico
- gEMM. Group of Molecular Microbial Ecology, Institute of Aquatic Ecology, University of Girona, Campus Montilivi, C/Maria Aurèlia Capmany, 40, E-17003 Girona, Spain
| | - P Dessì
- LEQUiA, Institute of the Environment, University of Girona, Campus Montilivi, C/Maria Aurèlia Capmany, 69, E-17003 Girona, Spain
| | - L Bañeras
- gEMM. Group of Molecular Microbial Ecology, Institute of Aquatic Ecology, University of Girona, Campus Montilivi, C/Maria Aurèlia Capmany, 40, E-17003 Girona, Spain
| | - M D Balaguer
- LEQUiA, Institute of the Environment, University of Girona, Campus Montilivi, C/Maria Aurèlia Capmany, 69, E-17003 Girona, Spain
| | - S Puig
- LEQUiA, Institute of the Environment, University of Girona, Campus Montilivi, C/Maria Aurèlia Capmany, 69, E-17003 Girona, Spain.
| |
Collapse
|
23
|
Sun Y, Kokko M, Vassilev I. Anode-assisted electro-fermentation with Bacillus subtilis under oxygen-limited conditions. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2023; 16:6. [PMID: 36627716 PMCID: PMC9832610 DOI: 10.1186/s13068-022-02253-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 12/20/2022] [Indexed: 01/12/2023]
Abstract
BACKGROUND Bacillus subtilis is generally regarded as a ubiquitous facultative anaerobe. Oxygen is the major electron acceptor of B. subtilis, and when oxygen is absent, B. subtilis can donate electrons to nitrate or perform fermentation. An anode electrode can also be used by microorganisms as the electron sink in systems called anodic electro-fermentation. The facultative anaerobic character of B. subtilis makes it an excellent candidate to explore with different electron acceptors, such as an anode. This study aimed to optimise industrial aerobic bioprocesses using alternative electron acceptors. In particular, different end product spectrum of B. subtilis with various electron acceptors, including anode from the electro-fermentation system, was investigated. RESULTS B. subtilis was grown using three electron acceptors, i.e. oxygen, nitrate and anode (poised at a potential of 0.7 V vs. standard hydrogen electrode). The results showed oxygen had a crucial role for cells to remain metabolically active. When nitrate or anode was applied as the sole electron acceptor anaerobically, immediate cell lysis and limited glucose consumption were observed. In anode-assisted electro-fermentation with a limited aeration rate, acetoin, as the main end product showed the highest yield of 0.78 ± 0.04 molproduct/molglucose, two-fold higher than without poised potential (0.39 ± 0.08 molproduct/molglucose). CONCLUSIONS Oxygen controls B. subtilis biomass growth, alternative electron acceptors utilisation and metabolites formation. Limited oxygen/air supply enabled the bacteria to donate excess electrons to nitrate or anode, leading to steered product spectrum. The anode-assisted electro-fermentation showed its potential to boost acetoin production for future industrial biotechnology applications.
Collapse
Affiliation(s)
- Yu Sun
- grid.502801.e0000 0001 2314 6254Faculty of Engineering and Natural Sciences, Tampere University, Korkeakoulunkatu 8, 33720 Tampere, Finland
| | - Marika Kokko
- grid.502801.e0000 0001 2314 6254Faculty of Engineering and Natural Sciences, Tampere University, Korkeakoulunkatu 8, 33720 Tampere, Finland
| | - Igor Vassilev
- grid.502801.e0000 0001 2314 6254Faculty of Engineering and Natural Sciences, Tampere University, Korkeakoulunkatu 8, 33720 Tampere, Finland
| |
Collapse
|
24
|
Zhao J, Ma H, Wu W, Ali Bacar M, Wang Q, Gao M, Wu C, Xia C, Qian D, Chong WWF, Lam SS. Product spectrum analysis and microbial insights of medium-chain fatty acids production from waste biomass during liquor fermentation process: Effects of substrate concentrations and fermentation modes. BIORESOURCE TECHNOLOGY 2023; 368:128375. [PMID: 36414142 DOI: 10.1016/j.biortech.2022.128375] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/17/2022] [Accepted: 11/18/2022] [Indexed: 06/16/2023]
Abstract
Substrate toxicity would limit the upgrading of waste biomass to medium-chain fatty acids (MCFAs). In this work, two fermentation modes of electro-fermentation (EF) and traditional fermentation (TF) with different concentration of liquor fermentation waste (20%, 40%, 60%) were used for MCFAs production as well as mechanism investigation. The highest caproate (4.04 g/L) and butyrate (13.96 g/L) concentrations were obtained by EF at 40% substrate concentration. TF experiments showed that the substrate concentration above 40% severely inhibited ethanol oxidation and products formation. Compared with TF mode, the total substrates consumption and product yields under EF mode were significantly increased by 2.6%-43.5% and 54.0%-83.0%, respectively. Microbial analysis indicated that EF effectively alleviated substrate toxicity and enriched chain elongation bacteria, particularly Clostridium_sensu_stricto 12, thereby promoting ethanol oxidation and products formation. Caproiciproducens tolerated high-concentration substrates to ensure normal lactate metabolism. This study provides a new way to produce MCFAs from high concentration wastewater.
Collapse
Affiliation(s)
- Jihua Zhao
- Department of Environmental Science and Engineering, University of Science and Technology, Beijing, Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, Beijing 100083, China
| | - Hongzhi Ma
- Department of Environmental Science and Engineering, University of Science and Technology, Beijing, Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, Beijing 100083, China; Key Laboratory of Pollutant Chemistry and Environmental Treatment, School of Chemistry and Environmental Science, Yili Normal University, Yining 835000, China.
| | - Wenyu Wu
- Department of Environmental Science and Engineering, University of Science and Technology, Beijing, Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, Beijing 100083, China
| | - Mohammed Ali Bacar
- Department of Environmental Science and Engineering, University of Science and Technology, Beijing, Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, Beijing 100083, China
| | - Qunhui Wang
- Department of Environmental Science and Engineering, University of Science and Technology, Beijing, Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, Beijing 100083, China
| | - Ming Gao
- Department of Environmental Science and Engineering, University of Science and Technology, Beijing, Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, Beijing 100083, China
| | - Chuanfu Wu
- Department of Environmental Science and Engineering, University of Science and Technology, Beijing, Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, Beijing 100083, China
| | - Changlei Xia
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Dayi Qian
- Department of Environmental Science and Engineering, University of Science and Technology, Beijing, Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, Beijing 100083, China; Key Laboratory of Pollutant Chemistry and Environmental Treatment, School of Chemistry and Environmental Science, Yili Normal University, Yining 835000, China
| | - William Woei Fong Chong
- Automotive Development Centre (ADC), Institute for Vehicle Systems and Engineering (IVeSE), Universiti Teknologi Malaysia (UTM), Johor Bahru 81310, Johor, Malaysia
| | - Su Shiung Lam
- Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries (AKUATROP), Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia; Automotive Development Centre (ADC), Institute for Vehicle Systems and Engineering (IVeSE), Universiti Teknologi Malaysia (UTM), Johor Bahru 81310, Johor, Malaysia
| |
Collapse
|
25
|
Mengers HG, Guntermann N, Graf von Westarp W, Jupke A, Klankermayer J, Blank LM, Leitner W, Rother D. Three Sides of the Same Coin: Combining Microbial, Enzymatic, and Organometallic Catalysis for Integrated Conversion of Renewable Carbon Sources. CHEM-ING-TECH 2022. [DOI: 10.1002/cite.202200169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Hendrik G. Mengers
- RWTH Aachen University Institute of Applied Microbiology – iAMB, Aachen Biology and Biotechnology – ABBt Worringerweg 1 52074 Aachen Germany
| | - Nils Guntermann
- RWTH Aachen University Institute of Macromolecular Chemistry – ITMC Worringerweg 2 52074 Aachen Germany
| | - William Graf von Westarp
- RWTH Aachen University Fluid Process Engineering – AVT.FVT Forckenbeckstraße 51 52074 Aachen Germany
| | - Andreas Jupke
- RWTH Aachen University Fluid Process Engineering – AVT.FVT Forckenbeckstraße 51 52074 Aachen Germany
| | - Jürgen Klankermayer
- RWTH Aachen University Institute of Macromolecular Chemistry – ITMC Worringerweg 2 52074 Aachen Germany
| | - Lars M. Blank
- RWTH Aachen University Institute of Applied Microbiology – iAMB, Aachen Biology and Biotechnology – ABBt Worringerweg 1 52074 Aachen Germany
| | - Walter Leitner
- RWTH Aachen University Institute of Macromolecular Chemistry – ITMC Worringerweg 2 52074 Aachen Germany
- Max Planck Institute for Chemical Energy Conversion Stiftstraße 34–36 45470 Mülheim a. d. Ruhr Germany
| | - Dörte Rother
- Forschungzentrum Jülich GmbH Institute of Bio- and Geosciences: Biotechnology Wilhelm-Johnen-Straße 52425 Jülich Germany
| |
Collapse
|
26
|
Rovira-Alsina L, Dolors Balaguer M, Puig S. Transition roadmap for thermophilic carbon dioxide microbial electrosynthesis: Testing with real exhaust gases and operational control for a scalable design. BIORESOURCE TECHNOLOGY 2022; 365:128161. [PMID: 36272679 DOI: 10.1016/j.biortech.2022.128161] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 10/13/2022] [Accepted: 10/14/2022] [Indexed: 06/16/2023]
Abstract
Human activities release more carbon dioxide (CO2) into the atmosphere than the natural process can remove. This study attempts to address the main challenges for the thermophilic (50 °C) bioelectrochemical conversion of CO2 into acetate. First, real gaseous emissions were tested with mixed microbial consortia, which had no substantial influence on production rates (difference of 2.5%). Subsequently, a bench-scale system (TRL 4-5) was designed and launched to control key operational variables. Fixing the current at 1.3 A m-2, CO2 was reduced at a rate of 2.21 kg CO2 kg-1 acetate, while the electricity consumption was 2.07 kWh kg-1, the most efficient value so far. The results suggest that the operation with real effluents is feasible and the proposed design is energy efficient, but the right balance between maximising current densities without compromising the biocompatibility with catalysts will determine the transition from laboratory scale towards its implementation in the market.
Collapse
Affiliation(s)
- Laura Rovira-Alsina
- LEQUiA. Institute of the Environment, University of Girona, Campus Montilivi. C/Maria Aurèlia Capmany, 69, E-17003 Girona, Catalonia, Spain
| | - M Dolors Balaguer
- LEQUiA. Institute of the Environment, University of Girona, Campus Montilivi. C/Maria Aurèlia Capmany, 69, E-17003 Girona, Catalonia, Spain
| | - Sebastià Puig
- LEQUiA. Institute of the Environment, University of Girona, Campus Montilivi. C/Maria Aurèlia Capmany, 69, E-17003 Girona, Catalonia, Spain.
| |
Collapse
|