1
|
Zhu F, Hu X, Wu X, Xu D, Li Q, Chen X, Pang W, Duan X, Wang Y, He M. Synergistic effect of acoustic streaming and nanozymes on enhanced intracellular dopamine detection. Biosens Bioelectron 2025; 280:117431. [PMID: 40209649 DOI: 10.1016/j.bios.2025.117431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2025] [Revised: 03/27/2025] [Accepted: 03/30/2025] [Indexed: 04/12/2025]
Abstract
Microfluidic electrochemical biosensing has been widely recognized, but it suffers the slow mass transfer caused by low Reynolds number in the microenvironment. This work proposes a multifunctional portable microfluidic electrochemical platform integrated with a gigahertz acoustic resonator, achieving improved electrochemical response, in situ nanozymes modification, cellular pre-treatment and portable detection on one chip. It was observed that the acoustic streaming (AS) generated by the resonator could reduce the thickness of the double electric diffusion layer and improve the mass transfer in bulk solution, leading to an enhancement in microfluidic electrochemical current response. In addition, in situ electrodeposition of polypyrrole (Ppy) and Ni3(HHTP)2 nano-composite nanozymes (Ppy-Ni3(HHTP)2) was achieved to increase the electrocatalytic activity of dopamine (DA). The results further revealed that AS and Ppy-Ni3(HHTP)2 collectively enhance the electrochemical detection of DA. Moreover, cell pre-treatment and intracellular DA detection was achieved to distinguish the passage of dopaminergic cells by the microfluidic electrochemical platform. Finally, portable detection of intracellular dopamine was realized by integrating the platform with the portable electrochemical sensing system. This study presented a novel approach to collectively enhance electrochemical biosensing using AS and nanozymes.
Collapse
Affiliation(s)
- Feng Zhu
- State Key Laboratory of Precision Measuring Technology and Instruments, College of Precision Instruments and Opto-electronics Engineering, Tianjin University, Tianjin, 300072, China
| | - Xinyang Hu
- State Key Laboratory of Precision Measuring Technology and Instruments, College of Precision Instruments and Opto-electronics Engineering, Tianjin University, Tianjin, 300072, China
| | - Xiaoyu Wu
- State Key Laboratory of Precision Measuring Technology and Instruments, College of Precision Instruments and Opto-electronics Engineering, Tianjin University, Tianjin, 300072, China
| | - Die Xu
- State Key Laboratory of Precision Measuring Technology and Instruments, College of Precision Instruments and Opto-electronics Engineering, Tianjin University, Tianjin, 300072, China
| | - Quanning Li
- State Key Laboratory of Precision Measuring Technology and Instruments, College of Precision Instruments and Opto-electronics Engineering, Tianjin University, Tianjin, 300072, China
| | - Xuejiao Chen
- State Key Laboratory of Precision Measuring Technology and Instruments, College of Precision Instruments and Opto-electronics Engineering, Tianjin University, Tianjin, 300072, China
| | - Wei Pang
- State Key Laboratory of Precision Measuring Technology and Instruments, College of Precision Instruments and Opto-electronics Engineering, Tianjin University, Tianjin, 300072, China
| | - Xuexin Duan
- State Key Laboratory of Precision Measuring Technology and Instruments, College of Precision Instruments and Opto-electronics Engineering, Tianjin University, Tianjin, 300072, China
| | - Yanyan Wang
- State Key Laboratory of Precision Measuring Technology and Instruments, College of Precision Instruments and Opto-electronics Engineering, Tianjin University, Tianjin, 300072, China.
| | - Mingxia He
- State Key Laboratory of Precision Measuring Technology and Instruments, College of Precision Instruments and Opto-electronics Engineering, Tianjin University, Tianjin, 300072, China
| |
Collapse
|
2
|
Wang H, Dong L, Zhao L, Sun Y, Zhang R, Shan G. Portable paper-based microfluidic devices based on CuS@Ag 2S nanocomposites for colorimetric/electrochemical dual-mode detection of dopamine. Biosens Bioelectron 2025; 273:117162. [PMID: 39842057 DOI: 10.1016/j.bios.2025.117162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 01/09/2025] [Accepted: 01/13/2025] [Indexed: 01/24/2025]
Abstract
The development of integrated multiple signal outputs within a single platform is highly significant for efficient and accurate on-site biomarker detection. Herein, colorimetric/electrochemical dual-mode microfluidic paper-based analytical devices (μPADs) were designed for portable, visual and accurate dopamine (DA) detection. The dual-mode μPADs, featuring folded structure, integrate a colorimetric layer and an electrochemical layer using wax printing and laser-induced graphene (LIG) pyrolysis techniques, allowing the vertical flow of analyte solution. Copper sulfide @ silver sulfide (CuS@Ag2S) nanocomposites, with excellent laccase-like and electrocatalytic performance, were modified onto the detection zones as colorimetric/electrochemical sensing substrates for dual-mode DA recognition. In the colorimetric detection zones, the obvious violet-colored signals were generated based on the enhanced laccase-like oxidation reaction induced. Further, amplified electrical response signals toward DA were collected in electrochemical detection zone due to the epitaxial heterostructure of silver sulfide (Ag2S). Consequently, the developed CuS@Ag2S-incorporated μPADs exhibit linear responses for colorimetric and electrochemical DA detection in ranges of 2-50 μM and 0.5-70 μM, respectively, with the limit of detection (LOD) of 0.675 μM and 0.086 μM. This work integrates multiple detection modes into μPADs, providing the portable, reliable and visual alternative to traditional detection methods of DA for POCT.
Collapse
Affiliation(s)
- Huan Wang
- Centre for Advanced Optoelectronic Functional Materials Research and Key Laboratory of UV Light-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, 130024, Changchun, China
| | - Lihua Dong
- The Affiliated Hospital of Changchun University of Chinese Medicine, 130021, Changchun, China
| | - Lijia Zhao
- Centre for Advanced Optoelectronic Functional Materials Research and Key Laboratory of UV Light-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, 130024, Changchun, China
| | - Yu Sun
- Centre for Advanced Optoelectronic Functional Materials Research and Key Laboratory of UV Light-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, 130024, Changchun, China
| | - Rui Zhang
- Centre for Advanced Optoelectronic Functional Materials Research and Key Laboratory of UV Light-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, 130024, Changchun, China
| | - Guiye Shan
- Centre for Advanced Optoelectronic Functional Materials Research and Key Laboratory of UV Light-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, 130024, Changchun, China.
| |
Collapse
|
3
|
Hanze M, Piper A, Hamedi MM. Stitched textile-based microfluidics for wearable devices. LAB ON A CHIP 2024; 25:28-40. [PMID: 39600207 PMCID: PMC11599943 DOI: 10.1039/d4lc00697f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 11/15/2024] [Indexed: 11/29/2024]
Abstract
Thread-based microfluidics, which rely on capillary forces in threads for liquid flow, are a promising alternative to conventional microfluidics, as they can be easily integrated into wearable textile-based biosensors. We present here advanced textile-based microfluidic devices fabricated by machine stitching, using only commercially available textiles. We stitch a polyester "Coolmax®" yarn with enhanced wicking abilities into both hydrophobic fabric and hydrophobically treated stretchable fabric, that serve as non-wicking substrates. In doing so we construct textile microfluidics capable of performing a wide variety of functions, including mixing and separation in 2D and 3D configurations. Furthermore, we integrate a stitched microfluidic device into a wearable T-shirt and show that this device can collect, transport, and detect sweat from the wearer's skin. These can also be machine-washed, making them inherently reusable. Finally, we integrate electrochemical sensors into the textile-based microfluidic devices using stitched gold-coated yarns to detect analytes in the microfluidic yarns. Our stitched textile-based microfluidic devices hold promise for wearable diagnostic applications. This novel, bottom-up fabrication using machine stitching is scalable, reproducible, low-cost, and compatible with the existing textile manufacturing industry.
Collapse
Affiliation(s)
- Martin Hanze
- Department of Fibre and Polymer Technology, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Teknikringen 56-58, SE-100 44, Stockholm, Sweden.
| | - Andrew Piper
- Department of Fibre and Polymer Technology, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Teknikringen 56-58, SE-100 44, Stockholm, Sweden.
- Institut Català de Nanociència i Nanotecnologia (ICN2), CSIC and The Barcelona Institute of Science and Technology (BIST), Campus UAB, Bellaterra, 08193 Barcelona, Spain.
| | - Mahiar Max Hamedi
- Department of Fibre and Polymer Technology, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Teknikringen 56-58, SE-100 44, Stockholm, Sweden.
| |
Collapse
|
4
|
Tomac I, Adam V, Labuda J. Advanced chemically modified electrodes and platforms in food analysis and monitoring. Food Chem 2024; 460:140548. [PMID: 39096799 DOI: 10.1016/j.foodchem.2024.140548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 06/22/2024] [Accepted: 07/18/2024] [Indexed: 08/05/2024]
Abstract
Electrochemical sensors and electroanalytical techniques become emerging as effective and low-cost tools for rapid assessment of special parameters of the food quality. Chemically modified electrodes are developed to change properties and behaviour, particularly sensitivity and selectivity, of conventional electroanalytical sensors. Within this comprehensive review, novel trends in chemical modifiers material structure, electrodes construction and flow analysis platforms are described and evaluated. Numerous recent application examples for the detection of food specific analytes are presented in a form of table to stimulate further development in both, the basic research and commercial field.
Collapse
Affiliation(s)
- Ivana Tomac
- Department of Applied Chemistry and Ecology, Faculty of Food Technology Osijek, J. J. Strossmayer University of Osijek, Franje Kuhača 18, 31000 Osijek, Croatia.
| | - Vojtech Adam
- Department of Chemistry and Biochemistry, Faculty of AgriSciences, Mendel University in Brno, Generála Píky 1999/5, 613 00 Brno, Czech Republic.
| | - Jan Labuda
- Institute of Analytical Chemistry, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Radlinskeho 9, 812 37 Bratislava, Slovakia.
| |
Collapse
|
5
|
Chen T, Sun C, Abbas SC, Alam N, Qiang S, Tian X, Fu C, Zhang H, Xia Y, Liu L, Ni Y, Jiang X. Multi-dimensional microfluidic paper-based analytical devices (μPADs) for noninvasive testing: A review of structural design and applications. Anal Chim Acta 2024; 1321:342877. [PMID: 39155092 DOI: 10.1016/j.aca.2024.342877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 06/13/2024] [Accepted: 06/14/2024] [Indexed: 08/20/2024]
Abstract
The rapid emergence of microfluidic paper-based devices as point-of-care testing (POCT) tools for early disease diagnosis and health monitoring, particularly in resource-limited areas, holds immense potential for enhancing healthcare accessibility. Leveraging the numerous advantages of paper, such as capillary-driven flow, porous structure, hydrophilic functional groups, biodegradability, cost-effectiveness, and flexibility, it has become a pivotal choice for microfluidic substrates. The repertoire of microfluidic paper-based devices includes one-dimensional lateral flow assays (1D LFAs), two-dimensional microfluidic paper-based analytical devices (2D μPADs), and three-dimensional (3D) μPADs. In this comprehensive review, we provide and examine crucial information related to paper substrates, design strategies, and detection methods in multi-dimensional microfluidic paper-based devices. We also investigate potential applications of microfluidic paper-based devices for detecting viruses, metabolites and hormones in non-invasive samples such as human saliva, sweat and urine. Additionally, we delve into capillary-driven flow alternative theoretical models of fluids within the paper to provide guidance. Finally, we critically examine the potential for future developments and address challenges for multi-dimensional microfluidic paper-based devices in advancing noninvasive early diagnosis and health monitoring. This article showcases their transformative impact on healthcare, paving the way for enhanced medical services worldwide.
Collapse
Affiliation(s)
- Ting Chen
- College of Bioresources Chemical and Materials Engineering, Shaanxi Province Key Laboratory of Papermaking Technology and Specialty Paper Development, Shaanxi University of Science & Technology, Xi'an, Shaanxi, 710021, China; Limerick Pulp & Paper Centre & Department of Chemical Engineering, University of New Brunswick, Fredericton, NB, E3B 5A3, Canada
| | - Ce Sun
- College of Bioresources Chemical and Materials Engineering, Shaanxi Province Key Laboratory of Papermaking Technology and Specialty Paper Development, Shaanxi University of Science & Technology, Xi'an, Shaanxi, 710021, China
| | - Syed Comail Abbas
- Limerick Pulp & Paper Centre & Department of Chemical Engineering, University of New Brunswick, Fredericton, NB, E3B 5A3, Canada; Department of Chemical and Biomedical Engineering, University of Maine, Orono, ME, USA
| | - Nur Alam
- Limerick Pulp & Paper Centre & Department of Chemical Engineering, University of New Brunswick, Fredericton, NB, E3B 5A3, Canada
| | - Sheng Qiang
- College of Bioresources Chemical and Materials Engineering, Shaanxi Province Key Laboratory of Papermaking Technology and Specialty Paper Development, Shaanxi University of Science & Technology, Xi'an, Shaanxi, 710021, China
| | - Xiuzhi Tian
- College of Bioresources Chemical and Materials Engineering, Shaanxi Province Key Laboratory of Papermaking Technology and Specialty Paper Development, Shaanxi University of Science & Technology, Xi'an, Shaanxi, 710021, China
| | - Chenglong Fu
- Limerick Pulp & Paper Centre & Department of Chemical Engineering, University of New Brunswick, Fredericton, NB, E3B 5A3, Canada
| | - Hui Zhang
- College of Bioresources Chemical and Materials Engineering, Shaanxi Province Key Laboratory of Papermaking Technology and Specialty Paper Development, Shaanxi University of Science & Technology, Xi'an, Shaanxi, 710021, China; Limerick Pulp & Paper Centre & Department of Chemical Engineering, University of New Brunswick, Fredericton, NB, E3B 5A3, Canada
| | - Yuanyuan Xia
- College of Bioresources Chemical and Materials Engineering, Shaanxi Province Key Laboratory of Papermaking Technology and Specialty Paper Development, Shaanxi University of Science & Technology, Xi'an, Shaanxi, 710021, China; Limerick Pulp & Paper Centre & Department of Chemical Engineering, University of New Brunswick, Fredericton, NB, E3B 5A3, Canada
| | - Liu Liu
- College of Bioresources Chemical and Materials Engineering, Shaanxi Province Key Laboratory of Papermaking Technology and Specialty Paper Development, Shaanxi University of Science & Technology, Xi'an, Shaanxi, 710021, China
| | - Yonghao Ni
- Limerick Pulp & Paper Centre & Department of Chemical Engineering, University of New Brunswick, Fredericton, NB, E3B 5A3, Canada; Department of Chemical and Biomedical Engineering, University of Maine, Orono, ME, USA.
| | - Xue Jiang
- College of Bioresources Chemical and Materials Engineering, Shaanxi Province Key Laboratory of Papermaking Technology and Specialty Paper Development, Shaanxi University of Science & Technology, Xi'an, Shaanxi, 710021, China.
| |
Collapse
|
6
|
Sousa LR, Moreira NS, Guinati BGS, Coltro WKT, Cortón E, Figueredo F. Improved sensitivity in paper-based microfluidic analytical devices using a pH-responsive valve for nitrate analysis. Talanta 2024; 277:126361. [PMID: 38878509 DOI: 10.1016/j.talanta.2024.126361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/31/2024] [Accepted: 06/03/2024] [Indexed: 07/19/2024]
Abstract
This paper presents an innovative application of chitosan material to be used as pH-responsive valves for the precise control of lateral flow in microfluidic paper-based analytical devices (μPADs). The fabrication of μPADs involved wax printing, while pH-responsive valves were created using a solution of chitosan in acetic acid. The valve-forming solution was applied, and ready when dry; by exposure to acidic solutions, the valve opens. Remarkably, the valves exhibited excellent compatibility with alkaline, neutral, and acidic solutions with a pH higher than 4. The valve opening process had no impact on the flow rate and colorimetric analysis. The potential of chitosan valves used for flow control was demonstrated for μPADs employed for nitrate determination. Valves were used to increase the conversion time of nitrate to nitrite, which was further analyzed using the Griess reaction. The μPAD showed a linear response in the concentration range of 10-100 μmol L-1, with a detection limit of 5.4 μmol L-1. As a proof of concept, the assay was successfully applied to detect nitrate levels in water samples from artificial lakes of recreational parks. For analyses that require controlled kinetics and involve multiple sequential steps, the use of chitosan pH-responsive valves in μPADs is extremely valuable. This breakthrough holds great potential for the development of simple and high-impact microfluidic platforms that can cater to a wide range of analytical chemistry applications.
Collapse
Affiliation(s)
- Lucas R Sousa
- Departamento de Química Biológica e IQUIBICEN -CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires (UBA), CABA, Argentina; Instituto de Química, Universidade Federal de Goiás, 74690-900, Goiânia, GO, Brazil
| | - Nikaele S Moreira
- Instituto de Química, Universidade Federal de Goiás, 74690-900, Goiânia, GO, Brazil
| | - Bárbara G S Guinati
- Instituto de Química, Universidade Federal de Goiás, 74690-900, Goiânia, GO, Brazil
| | - Wendell K T Coltro
- Instituto de Química, Universidade Federal de Goiás, 74690-900, Goiânia, GO, Brazil; Instituto Nacional de Ciência e Tecnologia de Bioanalítica, 13084-971, Campinas, SP, Brazil
| | - Eduardo Cortón
- Departamento de Química Biológica e IQUIBICEN -CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires (UBA), CABA, Argentina
| | - Federico Figueredo
- Departamento de Química Biológica e IQUIBICEN -CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires (UBA), CABA, Argentina.
| |
Collapse
|
7
|
Bezinge L, Shih CJ, Richards DA, deMello AJ. Electrochemical Paper-Based Microfluidics: Harnessing Capillary Flow for Advanced Diagnostics. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2401148. [PMID: 38801400 DOI: 10.1002/smll.202401148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 04/29/2024] [Indexed: 05/29/2024]
Abstract
Electrochemical paper-based microfluidics has attracted much attention due to the promise of transforming point-of-care diagnostics by facilitating quantitative analysis with low-cost and portable analyzers. Such devices harness capillary flow to transport samples and reagents, enabling bioassays to be executed passively. Despite exciting demonstrations of capillary-driven electrochemical tests, conventional methods for fabricating electrodes on paper impede capillary flow, limit fluidic pathways, and constrain accessible device architectures. This account reviews recent developments in paper-based electroanalytical devices and offers perspective by revisiting key milestones in lateral flow tests and paper-based microfluidics engineering. The study highlights the benefits associated with electrochemical sensing and discusses how the detection modality can be leveraged to unlock novel functionalities. Particular focus is given to electrofluidic platforms that embed electrodes into paper for enhanced biosensing applications. Together, these innovations pave the way for diagnostic technologies that offer portability, quantitative analysis, and seamless integration with digital healthcare, all without compromising the simplicity of commercially available rapid diagnostic tests.
Collapse
Affiliation(s)
- Léonard Bezinge
- Department of Chemistry and Applied Biosciences, Institute for Chemical and Bioengineering, ETH Zürich, Vladimir-Prelog-Weg 1, Zürich, 8093, Switzerland
| | - Chih-Jen Shih
- Department of Chemistry and Applied Biosciences, Institute for Chemical and Bioengineering, ETH Zürich, Vladimir-Prelog-Weg 1, Zürich, 8093, Switzerland
| | - Daniel A Richards
- Department of Chemistry and Applied Biosciences, Institute for Chemical and Bioengineering, ETH Zürich, Vladimir-Prelog-Weg 1, Zürich, 8093, Switzerland
| | - Andrew J deMello
- Department of Chemistry and Applied Biosciences, Institute for Chemical and Bioengineering, ETH Zürich, Vladimir-Prelog-Weg 1, Zürich, 8093, Switzerland
| |
Collapse
|
8
|
García-Azuma R, Werner K, Revilla-Monsalve C, Trinidad O, Altamirano-Bustamante NF, Altamirano-Bustamante MM. Unveiling the state of the art: a systematic review and meta-analysis of paper-based microfluidic devices. Front Bioeng Biotechnol 2024; 12:1421831. [PMID: 39234268 PMCID: PMC11372461 DOI: 10.3389/fbioe.2024.1421831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 07/29/2024] [Indexed: 09/06/2024] Open
Abstract
Introduction This systematic review and meta-analysis present a comprehensive evaluation of paper-based microfluidic devices, focusing on their applications in immunoassays. These devices are emerging as innovative solutions to democratize access to diagnostic technologies, especially in resource-limited settings. Our review consolidates findings from diverse studies to outline advancements in paper-based microfluidic technology, including design intricacies and operational efficacy. Key advantages such as low cost, portability, and ease of use are highlighted. Materials and Methods The review categorizes literature based on the design and operational nuances of these diagnostic tools, exploring various methodologies, fabrication techniques, detection methods, and applications, particularly in protein science. The meta-analysis extends to the diverse applications of these technologies, providing a framework for classifying and stratifying their uses in diagnostics. Results and discussion Notable findings include a critical analysis of performance metrics, such as sensitivity and specificity. The review addresses challenges, including the need for further validation and optimization for broader clinical applications. A critical discussion on the validation processes, including cross-validation and rigorous control testing, is provided to ensure the robustness of microfluidic devices. This study offers novel insights into the computational strategies underpinning these technologies and serves as a comprehensive roadmap for future research, potentially broadening the impact across the protein science universe.
Collapse
Affiliation(s)
- Rodrigo García-Azuma
- Unidad de Investigación en Enfermedades Metabólicas, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Ciudad de México, Mexico
| | - Karen Werner
- Unidad de Investigación en Enfermedades Metabólicas, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Ciudad de México, Mexico
| | - Cristina Revilla-Monsalve
- Unidad de Investigación en Enfermedades Metabólicas, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Ciudad de México, Mexico
| | - Oscar Trinidad
- Unidad de Investigación en Enfermedades Metabólicas, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Ciudad de México, Mexico
| | | | - Myriam M Altamirano-Bustamante
- Unidad de Investigación en Enfermedades Metabólicas, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Ciudad de México, Mexico
| |
Collapse
|
9
|
Xiang J, Qi J, Hu D, Wang C, Wang L, Wu Y, Chen J, Zhang Z, Wang X, Li B, Chen L. Molecularly imprinted metal-organic frameworks assisted cloth and paper hybrid microfluidic devices for visual detection of gonyautoxin. JOURNAL OF HAZARDOUS MATERIALS 2024; 469:133969. [PMID: 38460257 DOI: 10.1016/j.jhazmat.2024.133969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/27/2024] [Accepted: 03/04/2024] [Indexed: 03/11/2024]
Abstract
Marine algal toxin contamination is a major threat to human health. Thus, it is crucial to develop rapid and on-site techniques for detecting algal toxins. In this work, we developed colorimetric cloth and paper hybrid microfluidic devices (μCPADs) for rapid detection of gonyautoxin (GTX1/4) combined with molecularly imprinted polymers. In addition, the metal-organic frameworks (MOFs) composites were applied for this approach by their unique features. Guanosine serves as a dummy template for surface imprinting and has certain structural advantages in recognizing gonyautoxin. MOF@MIPs composites were able to perform a catalytic color reaction using hydrogen peroxide-tetramethylbenzidine for the detection of GTX1/4. The cloth-based sensing substrates were assembled on origami μPADs to form user-friendly, miniaturized colorimetric μCPADs. Combined with a smartphone, the proposed colorimetric μCPADs successfully achieved a low limit of detection of 0.65 μg/L within the range of 1-200 μg/L for rapid visual detection of GTX1/4. Moreover, the GTX1/4 of real shellfish and seawater samples were satisfactorily detected to indicate the application prospect of the μCPADs. The proposed method shows good potential in the low-cost, stable establishment of assays for the rapid detection of environmental biotoxins.
Collapse
Affiliation(s)
- Jiawen Xiang
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Research Centre for Coastal Environmental Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ji Qi
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Research Centre for Coastal Environmental Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; Department of Chemistry, Chung-Ang University, Seoul 06974, South Korea
| | - Die Hu
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Research Centre for Coastal Environmental Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; School of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, China
| | - Chao Wang
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Research Centre for Coastal Environmental Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; Department of Applied Chemistry, Harbin Institute of Technology at Weihai, Weihai 264209, China
| | - Liyan Wang
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Research Centre for Coastal Environmental Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Yixuan Wu
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Research Centre for Coastal Environmental Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Jiadong Chen
- Department of Chemistry, Chung-Ang University, Seoul 06974, South Korea
| | - Zhiyang Zhang
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Research Centre for Coastal Environmental Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoyan Wang
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China
| | - Bowei Li
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Research Centre for Coastal Environmental Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Lingxin Chen
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Research Centre for Coastal Environmental Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
10
|
Hu J, Wang L, Song Y, Li Y, Shen Y, Gao G, Qin L, Wu J, Mulchandani A. Ion imprinted polymers integrated into a multi-functional microfluidic paper-based analytical device for trace cadmium detection in water. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:179-188. [PMID: 38047435 DOI: 10.1039/d3ay01787g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
A novel multi-functional microfluidic paper-based analytical device (μPAD) integrated with ion imprinted polymers (IIPs) was proposed for specific, portable and low-cost detection of cadmium (Cd(II)) in water. The IIP was grafted on paper and integrated into the μPAD for separation of Cd(II) through multi-layer design. The paper-based screen printed carbon electrode (pSPCE) modified with reduced graphene oxide was fabricated and combined with the μPAD for electrochemical sensing of the separated Cd(II). Reduced graphene oxide (rGO) was prepared via electroreduction on the working electrode surface of the pSPCE (rGO/pSPCE), which provided a sensitization effect with an improved signal for Cd(II) detection. The μPAD developed with the integrated IIP and combined with rGO/pSPCE is able to detect Cd(II) with a linear range from 1 ng ml-1 to 100 ng ml-1 and a detection limit of 0.05 ng ml-1. The accuracy of this μPAD was evaluated with spiked real water samples and compared with that of the inductively coupled plasma mass spectrometry (ICP-MS) method, from which the recovery values ranged from 96.5% to 114.2% with RSDs <10% between the two methods. This μPAD demonstrated its advantages of low-cost, portability, and suitability for highly sensitive detection of Cd(II), making it a valuable tool for on-site analysis.
Collapse
Affiliation(s)
- Jingfang Hu
- Beijing Key Laboratory of Sensor, Beijing Information Science & Technology University, Beijing 100101, China.
- Key Laboratory of Modern Measurement and Control Technology, Ministry of Education, Beijing Information Science and Technology University, Beijing 100192, China
- State Key Laboratories of Toxicant Analysis, Academy of Military Medical Sciences, Beijing 110000, China
| | - Linzhe Wang
- Beijing Key Laboratory of Sensor, Beijing Information Science & Technology University, Beijing 100101, China.
- Key Laboratory of Modern Measurement and Control Technology, Ministry of Education, Beijing Information Science and Technology University, Beijing 100192, China
| | - Yu Song
- Beijing Key Laboratory of Sensor, Beijing Information Science & Technology University, Beijing 100101, China.
- Key Laboratory of Modern Measurement and Control Technology, Ministry of Education, Beijing Information Science and Technology University, Beijing 100192, China
| | - Yansheng Li
- Beijing Key Laboratory of Sensor, Beijing Information Science & Technology University, Beijing 100101, China.
- Key Laboratory of Modern Measurement and Control Technology, Ministry of Education, Beijing Information Science and Technology University, Beijing 100192, China
| | - Yu Shen
- Department of Chemical and Environmental Engineering, University of California, Riverside, CA 92521, USA.
| | - Guowei Gao
- Beijing Key Laboratory of Sensor, Beijing Information Science & Technology University, Beijing 100101, China.
- Key Laboratory of Modern Measurement and Control Technology, Ministry of Education, Beijing Information Science and Technology University, Beijing 100192, China
| | - Lei Qin
- Beijing Key Laboratory of Sensor, Beijing Information Science & Technology University, Beijing 100101, China.
| | - Jianfeng Wu
- State Key Laboratories of Toxicant Analysis, Academy of Military Medical Sciences, Beijing 110000, China
| | - Ashok Mulchandani
- Department of Chemical and Environmental Engineering, University of California, Riverside, CA 92521, USA.
- Center for Environmental Research and Technology (CE-CERT), University of California, Riverside, CA 92507, USA
| |
Collapse
|
11
|
Durojaye OA, Ejaz U, Uzoeto HO, Fadahunsi AA, Opabunmi AO, Ekpo DE, Sedzro DM, Idris MO. CSC01 shows promise as a potential inhibitor of the oncogenic G13D mutant of KRAS: an in silico approach. Amino Acids 2023; 55:1745-1764. [PMID: 37500789 DOI: 10.1007/s00726-023-03304-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 07/11/2023] [Indexed: 07/29/2023]
Abstract
About 30% of malignant tumors include KRAS mutations, which are frequently required for the development and maintenance of malignancies. KRAS is now a top-priority cancer target as a result. After years of research, it is now understood that the oncogenic KRAS-G12C can be targeted. However, many other forms, such as the G13D mutant, are yet to be addressed. Here, we used a receptor-based pharmacophore modeling technique to generate potential inhibitors of the KRAS-G13D oncogenic mutant. Using a comprehensive virtual screening workflow model, top hits were selected, out of which CSC01 was identified as a promising inhibitor of the oncogenic KRAS mutant (G13D). The stability of CSC01 upon binding the switch II pocket was evaluated through an exhaustive molecular dynamics simulation study. The several post-simulation analyses conducted suggest that CSC01 formed a stable complex with KRAS-G13D. CSC01, through a dynamic protein-ligand interaction profiling analysis, was also shown to maintain strong interactions with the mutated aspartic acid residue throughout the simulation. Although binding free energy analysis through the umbrella sampling approach suggested that the affinity of CSC01 with the switch II pocket of KRAS-G13D is moderate, our DFT analysis showed that the stable interaction of the compound might be facilitated by the existence of favorable molecular electrostatic potentials. Furthermore, based on ADMET predictions, CSC01 demonstrated a satisfactory drug likeness and toxicity profile, making it an exemplary candidate for consideration as a potential KRAS-G13D inhibitor.
Collapse
Affiliation(s)
- Olanrewaju Ayodeji Durojaye
- MOE Key Laboratory of Membraneless Organelle and Cellular Dynamics, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230027, Anhui, China.
- School of Life Sciences, University of Science and Technology of China, Hefei, 230027, Anhui, China.
- Department of Chemical Sciences, Coal City University, Emene, EnuguState, Nigeria.
| | - Umer Ejaz
- MOE Key Laboratory of Membraneless Organelle and Cellular Dynamics, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230027, Anhui, China
- School of Life Sciences, University of Science and Technology of China, Hefei, 230027, Anhui, China
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, 210009, China
| | - Henrietta Onyinye Uzoeto
- Federal College of Dental Technology, Trans-Ekulu, Enugu State, Nigeria
- Department of Biological Sciences, Coal City University, Emene, Enugu State, Nigeria
| | - Adeola Abraham Fadahunsi
- Graduate School of Biomedical Science and Engineering, University of Maine, Orono, ME, 04469, USA
| | - Adebayo Oluwole Opabunmi
- RNA Medical Center, International Institutes of Medicine, Zhejiang University, Hangzhou, China
- Zhejiang University-University of Edinburgh Institute, Zhejiang University, Hangzhou, China
- The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Daniel Emmanuel Ekpo
- Institute of Biological Science and Technology, National Engineering Research Center for Non-Food Biorefinery, Guangxi Academy of Sciences, Nanning, 530007, China
- Department of Biochemistry, Faculty of Biological Sciences, University of Nigeria, 410001, Nsukka, Enugu State, Nigeria
| | - Divine Mensah Sedzro
- Wisconsin National Primate Research Center, University of Wisconsin Graduate School, 1220 Capitol Court, Madison, 53715, WI, USA.
| | - Mukhtar Oluwaseun Idris
- School of Life Sciences, University of Science and Technology of China, Hefei, 230027, Anhui, China.
| |
Collapse
|
12
|
Musile G, Grazioli C, Fornasaro S, Dossi N, De Palo EF, Tagliaro F, Bortolotti F. Application of Paper-Based Microfluidic Analytical Devices (µPAD) in Forensic and Clinical Toxicology: A Review. BIOSENSORS 2023; 13:743. [PMID: 37504142 PMCID: PMC10377625 DOI: 10.3390/bios13070743] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/14/2023] [Accepted: 06/23/2023] [Indexed: 07/29/2023]
Abstract
The need for providing rapid and, possibly, on-the-spot analytical results in the case of intoxication has prompted researchers to develop rapid, sensitive, and cost-effective methods and analytical devices suitable for use in nonspecialized laboratories and at the point of need (PON). In recent years, the technology of paper-based microfluidic analytical devices (μPADs) has undergone rapid development and now provides a feasible, low-cost alternative to traditional rapid tests for detecting harmful compounds. In fact, µPADs have been developed to detect toxic molecules (arsenic, cyanide, ethanol, and nitrite), drugs, and drugs of abuse (benzodiazepines, cathinones, cocaine, fentanyl, ketamine, MDMA, morphine, synthetic cannabinoids, tetrahydrocannabinol, and xylazine), and also psychoactive substances used for drug-facilitated crimes (flunitrazepam, gamma-hydroxybutyric acid (GHB), ketamine, metamizole, midazolam, and scopolamine). The present report critically evaluates the recent developments in paper-based devices, particularly in detection methods, and how these new analytical tools have been tested in forensic and clinical toxicology, also including future perspectives on their application, such as multisensing paper-based devices, microfluidic paper-based separation, and wearable paper-based sensors.
Collapse
Affiliation(s)
- Giacomo Musile
- Unit of Forensic Medicine, Department of Diagnostics and Public Health, University of Verona, P.le Scuro 10, 37134 Verona, Italy
| | - Cristian Grazioli
- Department of Agrifood, Environmental and Animal Science, University of Udine, Via Cotonificio 108, 33100 Udine, Italy
| | - Stefano Fornasaro
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Via L. Giorgeri 1, 34127 Trieste, Italy
| | - Nicolò Dossi
- Department of Agrifood, Environmental and Animal Science, University of Udine, Via Cotonificio 108, 33100 Udine, Italy
| | - Elio Franco De Palo
- Unit of Forensic Medicine, Department of Diagnostics and Public Health, University of Verona, P.le Scuro 10, 37134 Verona, Italy
| | - Franco Tagliaro
- Unit of Forensic Medicine, Department of Diagnostics and Public Health, University of Verona, P.le Scuro 10, 37134 Verona, Italy
- Laboratory of Pharmacokinetics and Metabolomics Analysis, Institute of Translational Medicine and Biotechnology, I.M. Sechenov First Moscow State Medical University, Bolshaya Pirogovskaya Street, 119991 Moscow, Russia
| | - Federica Bortolotti
- Unit of Forensic Medicine, Department of Diagnostics and Public Health, University of Verona, P.le Scuro 10, 37134 Verona, Italy
| |
Collapse
|
13
|
Sannok T, Wechakorn K, Jantra J, Kaewchoay N, Teepoo S. Silica nanoparticle-modified paper strip-based new rhodamine B chemosensor for highly selective detection of copper ions in drinking water. Anal Bioanal Chem 2023:10.1007/s00216-023-04754-z. [PMID: 37222793 DOI: 10.1007/s00216-023-04754-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/27/2023] [Accepted: 05/12/2023] [Indexed: 05/25/2023]
Abstract
A new rhodamine B derivative (RDB) was synthesized and utilized for the colorimetric detection of copper ions (Cu2+). This chemosensor utilized a paper strip as a support and a smartphone as a detector for on-site quantitative detection of Cu2+ in water samples. Silica nanoparticles (SiNPs) were investigated as the modifier nanoparticles to achieve uniform color on the paper strip and showed a color response 1.9-fold higher than the one without SiNPs. The RDB chemosensor-based paper strip provided high selectivity toward Cu2+ with a detection limit of 0.7 mg/L, and the working concentrations for Cu2+ ranged from 1 to 17 mg/L. Parallel analyses of eight drinking water samples were conducted by inductively coupled plasma optical emission spectroscopy. The results were in good agreement, indicating the practical reliability of the established method with a short assay time and high selectivity. These indicate its great potential for on-site detection of Cu2+.
Collapse
Affiliation(s)
- Tadcha Sannok
- Department of Chemistry, Faculty of Science and Technology, Rajamangala University of Technology Thanyaburi, Thanyaburi, 12110, Pathum Thani, Thailand
| | - Kanokorn Wechakorn
- Department of Chemistry, Faculty of Science and Technology, Rajamangala University of Technology Thanyaburi, Thanyaburi, 12110, Pathum Thani, Thailand
| | - Jongjit Jantra
- King Mongkut's Institute of Technology Ladkrabang, Prince of Chumphon, Chumphon, 86160, Pathiu, Thailand
| | - Netnapit Kaewchoay
- Department of Chemistry, Faculty of Science and Technology, Rajamangala University of Technology Thanyaburi, Thanyaburi, 12110, Pathum Thani, Thailand
| | - Siriwan Teepoo
- Department of Chemistry, Faculty of Science and Technology, Rajamangala University of Technology Thanyaburi, Thanyaburi, 12110, Pathum Thani, Thailand.
| |
Collapse
|
14
|
Chen L, Guo X, Sun X, Zhang S, Wu J, Yu H, Zhang T, Cheng W, Shi Y, Pan L. Porous Structural Microfluidic Device for Biomedical Diagnosis: A Review. MICROMACHINES 2023; 14:547. [PMID: 36984956 PMCID: PMC10051279 DOI: 10.3390/mi14030547] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 02/21/2023] [Accepted: 02/22/2023] [Indexed: 06/18/2023]
Abstract
Microfluidics has recently received more and more attention in applications such as biomedical, chemical and medicine. With the development of microelectronics technology as well as material science in recent years, microfluidic devices have made great progress. Porous structures as a discontinuous medium in which the special flow phenomena of fluids lead to their potential and special applications in microfluidics offer a unique way to develop completely new microfluidic chips. In this article, we firstly introduce the fabrication methods for porous structures of different materials. Then, the physical effects of microfluid flow in porous media and their related physical models are discussed. Finally, the state-of-the-art porous microfluidic chips and their applications in biomedicine are summarized, and we present the current problems and future directions in this field.
Collapse
Affiliation(s)
| | | | - Xidi Sun
- Correspondence: (X.S.); (Y.S.); (L.P.)
| | | | | | | | | | | | - Yi Shi
- Correspondence: (X.S.); (Y.S.); (L.P.)
| | - Lijia Pan
- Correspondence: (X.S.); (Y.S.); (L.P.)
| |
Collapse
|