1
|
Wei Y, Meng X, Meng W, Leng L, Zeng Z, Wang X, Liu S, Zhan H. Hydrothermal pretreatment for enhanced thermochemical or biochemical conversion of pharmaceutical biowastes into fuels, fertilizers, and carbon materials. WASTE MANAGEMENT (NEW YORK, N.Y.) 2025; 193:207-220. [PMID: 39671747 DOI: 10.1016/j.wasman.2024.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 11/18/2024] [Accepted: 12/06/2024] [Indexed: 12/15/2024]
Abstract
Pharmaceutical biowastes, rich in organic matter and high in moisture, are typical light industry byproducts with waste and renewable attributes. Thermochemical and biochemical conversion technologies transform these residues into value-added bioproducts, including biofuels, biofertilizers, and bio-carbon materials. Hydrothermal pretreatment effectively removes toxic substances and enhances feedstock for these processes. This review comprehensively examines its role in improving the formation of bioproducts from pharmaceutical biowastes, focusing on (i) upgrading and denitrogenating solid biofuels with better combustion performance; (ii) enhancing biodegradability and gaseous biofuel production via organic matter decomposition; (iii) enriching soluble carbon and nitrogen for liquid biofertilizer; (iv) eliminating antibiotic residues and reducing antibiotic resistance in solid biofertilizers; and (v) stabilizing carbon and nitrogen structures and optimizing pore characteristics for functionalized carbon materials. The review recommends a potential staged thermochemical approach to co-produce nitrogen-enriched liquid biofertilizers and porous carbon materials from pharmaceutical biowastes. Hydrothermal pretreatment emerges as a key technique for facilitating the migration and conversion of essential elements like carbon and nitrogen. This study reveals the potential of hydrothermal pretreatment to address the limitations of pharmaceutical biowastes and offers insights into their valorization.
Collapse
Affiliation(s)
- Yilin Wei
- School of Energy Science and Engineering, Central South University, Changsha 410083, China
| | - Xiang Meng
- School of Energy Science and Engineering, Central South University, Changsha 410083, China
| | - Weiyuan Meng
- School of Energy Science and Engineering, Central South University, Changsha 410083, China
| | - Lijian Leng
- School of Energy Science and Engineering, Central South University, Changsha 410083, China
| | - Zhiyong Zeng
- School of Energy Science and Engineering, Central South University, Changsha 410083, China
| | - Xinming Wang
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Shengqiang Liu
- Aerospace Kaitian Environmental Technology Co., Ltd., Changsha 410100, China
| | - Hao Zhan
- School of Energy Science and Engineering, Central South University, Changsha 410083, China.
| |
Collapse
|
2
|
Rathika K, Kumar S, Yadav BR. Enhanced energy and nutrient recovery via hydrothermal carbonisation of sewage sludge: Effect of process parameters. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167828. [PMID: 37839482 DOI: 10.1016/j.scitotenv.2023.167828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 10/07/2023] [Accepted: 10/12/2023] [Indexed: 10/17/2023]
Abstract
Integration of waste management with energy and resource recovery is being widely explored to achieve sustainability. To achieve this, sewage sludge was treated with hydrothermal carbonisation (HTC) at temperatures ranging from 180 °C-260 °C with an increment of 20 °C for three different duration of 1 h, 3 h, and 5 h. The energy and resource recovery potential of the HTC treatment was evaluated through of hydrochar (HC) and process water (PW) properties. Dehydration and decarboxylation reactions resulted in reduced H/C and O/C atomic ratios of 1.35 and 0.45 respectively in HC-260-3, exhibiting peat-like propertied. The calorific value of HC-260-5 was enhanced to 5.9 MJ/kg (increase of 25.8 %) due to the combined effect of H/C and O/C atomic ratios, increased volatile organics and fixed carbon. A maximum energy recovery efficiency of 82.44 % was realised at 240 °C for 3 h rendering it the optimal process condition to ensure energy enrichment. Thermogravimetric analysis (TGA) of HC samples indicated an enhanced combustion behaviour with an increased HTC severity. The elevated levels of volatile fatty acids (VFAs) in PW (maximum 2296 mg/L) made it viable for energy recovery in anaerobic digestion units. Additionally, the PW contains significant concentrations of N and P (2091.68 mg/L and 40.51 mg/L, respectively), indicating enhanced resource/nutrient recovery potential.
Collapse
Affiliation(s)
- K Rathika
- CSIR-National Environmental Engineering Research Institute, Nagpur 440020, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Sunil Kumar
- CSIR-National Environmental Engineering Research Institute, Nagpur 440020, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Bholu Ram Yadav
- CSIR-National Environmental Engineering Research Institute, Nagpur 440020, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
3
|
Wu S, Wang Q, Fang M, Wu D, Cui D, Pan S, Bai J, Xu F, Wang Z. Hydrothermal carbonization of food waste for sustainable biofuel production: Advancements, challenges, and future prospects. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 897:165327. [PMID: 37419347 DOI: 10.1016/j.scitotenv.2023.165327] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/20/2023] [Accepted: 07/03/2023] [Indexed: 07/09/2023]
Abstract
With the improvement of living standards, food waste (FW) has become one of the most important organic solid wastes worldwide. Owing to the high moisture content of FW, hydrothermal carbonization (HTC) technology that can directly utilize the moisture in FW as the reaction medium, is widely used. Under mild reaction conditions and short treatment cycle, this technology can effectively and stably convert high-moisture FW into environmentally friendly hydrochar fuel. In view of the importance of this topic, this study comprehensively reviews the research progress of HTC of FW for biofuel synthesis, and critically summarizes the process parameters, carbonization mechanism, and clean applications. Physicochemical properties and micromorphological evolution of hydrochar, hydrothermal chemical reactions of each model component, and potential risks of hydrochar as a fuel are highlighted. Furthermore, carbonization mechanism of the HTC treatment process of FW and the granulation mechanism of hydrochar are systematically reviewed. Finally, potential risks and knowledge gaps in the synthesis of hydrochar from FW are presented and new coupling technologies are pointed out, highlighting the challenges and prospects of this study.
Collapse
Affiliation(s)
- Shuang Wu
- Engineering Research Centre of Oil Shale Comprehensive Utilization, Ministry of Education, Northeast Electric Power University, Jilin 132012, Jilin, PR China; School of Energy and Power Engineering, Northeast Electric Power University, Jilin 132012, Jilin, PR China
| | - Qing Wang
- Engineering Research Centre of Oil Shale Comprehensive Utilization, Ministry of Education, Northeast Electric Power University, Jilin 132012, Jilin, PR China; School of Energy and Power Engineering, Northeast Electric Power University, Jilin 132012, Jilin, PR China.
| | - Minghui Fang
- School of Energy and Power Engineering, Northeast Electric Power University, Jilin 132012, Jilin, PR China
| | - Dongyang Wu
- Engineering Research Centre of Oil Shale Comprehensive Utilization, Ministry of Education, Northeast Electric Power University, Jilin 132012, Jilin, PR China; School of Energy and Power Engineering, Northeast Electric Power University, Jilin 132012, Jilin, PR China
| | - Da Cui
- Engineering Research Centre of Oil Shale Comprehensive Utilization, Ministry of Education, Northeast Electric Power University, Jilin 132012, Jilin, PR China; School of Energy and Power Engineering, Northeast Electric Power University, Jilin 132012, Jilin, PR China
| | - Shuo Pan
- Engineering Research Centre of Oil Shale Comprehensive Utilization, Ministry of Education, Northeast Electric Power University, Jilin 132012, Jilin, PR China; School of Energy and Power Engineering, Northeast Electric Power University, Jilin 132012, Jilin, PR China
| | - Jingru Bai
- Engineering Research Centre of Oil Shale Comprehensive Utilization, Ministry of Education, Northeast Electric Power University, Jilin 132012, Jilin, PR China; School of Energy and Power Engineering, Northeast Electric Power University, Jilin 132012, Jilin, PR China
| | - Faxing Xu
- Jilin Dongfei Solid Waste Research Institute, Jilin 132200, Jilin, PR China; Jilin Feite Environmental Protection Co., Ltd, Jilin 132200, Jilin, PR China
| | - Zhenye Wang
- Jilin Dongfei Solid Waste Research Institute, Jilin 132200, Jilin, PR China; Jilin Feite Environmental Protection Co., Ltd, Jilin 132200, Jilin, PR China
| |
Collapse
|
4
|
Mamun A, Kiari M, Sabantina L. A Recent Review of Electrospun Porous Carbon Nanofiber Mats for Energy Storage and Generation Applications. MEMBRANES 2023; 13:830. [PMID: 37888002 PMCID: PMC10608773 DOI: 10.3390/membranes13100830] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 09/28/2023] [Accepted: 10/12/2023] [Indexed: 10/28/2023]
Abstract
Electrospun porous carbon nanofiber mats have excellent properties, such as a large surface area, tunable porosity, and excellent electrical conductivity, and have attracted great attention in energy storage and power generation applications. Moreover, due to their exceptional properties, they can be used in dye-sensitized solar cells (DSSCs), membrane electrodes for fuel cells, catalytic applications such as oxygen reduction reactions (ORRs), hydrogen evolution reactions (HERs), and oxygen evolution reactions (OERs), and sensing applications such as biosensors, electrochemical sensors, and chemical sensors, providing a comprehensive insight into energy storage development and applications. This study focuses on the role of electrospun porous carbon nanofiber mats in improving energy storage and generation and contributes to a better understanding of the fabrication process of electrospun porous carbon nanofiber mats. In addition, a comprehensive review of various alternative preparation methods covering a wide range from natural polymers to synthetic carbon-rich materials is provided, along with insights into the current literature.
Collapse
Affiliation(s)
- Al Mamun
- Junior Research Group “Nanomaterials”, Faculty of Engineering and Mathematics, Bielefeld University of Applied Sciences and Arts, 33619 Bielefeld, Germany
| | - Mohamed Kiari
- Department of Physical Chemistry, Institute of Materials, University of Alicante, 03080 Alicante, Spain
| | - Lilia Sabantina
- Faculty of Apparel Engineering and Textile Processing, Berlin University of Applied Sciences—HTW Berlin, Hochschule für Technik und Wirtschaft Berlin, 12459 Berlin, Germany
| |
Collapse
|
5
|
Son Le H, Chen WH, Forruque Ahmed S, Said Z, Rafa N, Tuan Le A, Ağbulut Ü, Veza I, Phuong Nguyen X, Quang Duong X, Huang Z, Hoang AT. Hydrothermal carbonization of food waste as sustainable energy conversion path. BIORESOURCE TECHNOLOGY 2022; 363:127958. [PMID: 36113822 DOI: 10.1016/j.biortech.2022.127958] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 09/06/2022] [Accepted: 09/08/2022] [Indexed: 06/15/2023]
Abstract
Every day, a large amount of food waste (FW) is released into the environment, causing financial loss and unpredictable consequences in the world, highlighting the urgency of finding a suitable approach to treating FW. As moisture content makes up 75% of the FW, hydrothermal carbonization (HTC) is a beneficial process for the treatment of FW since it does not require extensive drying. Moreover, the process is considered favorable for carbon sequestration to mitigate climate change in comparison with other processes because the majority of the carbon in FW is integrated into hydrochar. In this work, the reaction mechanism and factors affecting the HTC of FW are scrutinized. Moreover, the physicochemical properties of products after the HTC of FW are critically presented. In general, HTC of FW is considered a promising approach aiming to attain simultaneously-two core benefits on economy and energy in the sustainable development strategy.
Collapse
Affiliation(s)
- Huu Son Le
- Faculty of Automotive Engineering, School of Engineering and Technology, Van Lang University, Ho Chi Minh City, Vietnam
| | - Wei-Hsin Chen
- Department of Aeronautics and Astronautics, National Cheng Kung University, Tainan 701, Taiwan; Research Center for Smart Sustainable Circular Economy, Tunghai University, Taichung 407, Taiwan; Department of Mechanical Engineering, National Chin-Yi University of Technology, Taichung 411, Taiwan
| | - Shams Forruque Ahmed
- Science and Math Program, Asian University for Women, Chattogram 4000, Bangladesh
| | - Zafar Said
- Department of Sustainable and Renewable Energy Engineering, University of Sharjah, Sharjah P. O. Box 27272, United Arab Emirates; U.S.-Pakistan Center for Advanced Studies in Energy (USPCAS-E), National University of Sciences and Technology (NUST), Islamabad, Pakistan
| | - Nazifa Rafa
- Department of Land Economy, University of Cambridge, Trinity Ln, Cambridge CB2 1TN, UK
| | - Anh Tuan Le
- School of Mechanical Engineering, Hanoi University of Science and Technology, Hanoi, Vietnam
| | - Ümit Ağbulut
- Department of Mechanical Engineering, Faculty of Engineering, Düzce University, 81620, Düzce, Türkiye
| | - Ibham Veza
- Faculty of Mechanical Engineering, Universiti Teknikal Malaysia Melaka, Hang Tuah Jaya, 76100 Durian Tunggal, Melaka, Malaysia
| | - Xuan Phuong Nguyen
- PATET Research Group, Ho Chi Minh City University of Transport, Ho Chi Minh city, Vietnam
| | - Xuan Quang Duong
- School of Mechanical Engineering, Vietnam Maritime University, Haiphong, Vietnam
| | - Zuohua Huang
- State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Anh Tuan Hoang
- Institute of Engineering, HUTECH University, Ho Chi Minh city, Vietnam.
| |
Collapse
|
6
|
Zhang X, Qin Q, Sun X, Wang W. Hydrothermal treatment: An efficient food waste disposal technology. Front Nutr 2022; 9:986705. [PMID: 36172524 PMCID: PMC9512071 DOI: 10.3389/fnut.2022.986705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 08/17/2022] [Indexed: 11/13/2022] Open
Abstract
The quantities of food waste (FW) are increasing yearly. Proper disposal of FW is essential for reusing value-added products, environmental protection, and human health. Based on the typical characteristics of high moisture content and high organic content of FW, hydrothermal treatment (HTT), as a novel thermochemical treatment technology, plays unique effects in the disposal and utilization of FW. The HTT of FW has attracted more and more attention in recent years, however, there are few conclusive reviews about the progress of the HTT of FW. HTT is an excellent approach to converting energy-rich materials into energy-dense fuels and valuable chemicals. This process can handle biomass with relatively high moisture content and allows efficient heat integration. This mini-review presents the current knowledge of recent advances in HTT of FW. The effects of HTT temperature and duration on organic nutritional compositions (including carbohydrates, starch, lipids, protein, cellulose, hemicellulose, lignin, etc.) and physicochemical properties (including pH, elemental composition, functional groups, fuel properties, etc.) and structural properties of FW are evaluated. The compositions of FW can degrade during HTT so that the physical and chemical properties of FW can be changed. The application and economic analyses of HTT in FW are summarized. Finally, the analyses of challenges and future perspectives on HTT of FW have shown that industrial reactors should be built effectively, and techno-economic analysis, overall energy balance, and life cycle assessment of the HTT process are necessary. The mini-review offers new approaches and perspectives for the efficient reuse of food waste.
Collapse
Affiliation(s)
- Xinyan Zhang
- National Engineering Laboratory for Reducing Emissions from Coal Combustion, Shandong Key Laboratory of Energy Carbon Reduction and Resource Utilization, School of Energy and Power Engineering, Engineering Research Center of Environmental Thermal Technology of Ministry of Education, Shandong University, Jinan, China
- *Correspondence: Xinyan Zhang
| | - Qingyu Qin
- Laboratory of Biomass and Bioprocessing Engineering, College of Engineering, China Agricultural University, Beijing, China
| | - Xun Sun
- Key Laboratory of High Efficiency and Clean Mechanical Manufacture, Ministry of Education, School of Mechanical Engineering, Shandong University, Jinan, China
- Xun Sun
| | - Wenlong Wang
- National Engineering Laboratory for Reducing Emissions from Coal Combustion, Shandong Key Laboratory of Energy Carbon Reduction and Resource Utilization, School of Energy and Power Engineering, Engineering Research Center of Environmental Thermal Technology of Ministry of Education, Shandong University, Jinan, China
| |
Collapse
|
7
|
Motavaf B, Capece SH, Eldor T, Savage PE. Recovery of Energy and Nitrogen via Two-Stage Valorization of Food Waste. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c00200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Bita Motavaf
- Department of Chemical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Sofia H. Capece
- Department of Chemical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Tomer Eldor
- Department of Chemical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Phillip E. Savage
- Department of Chemical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| |
Collapse
|
8
|
Multi-Variate and Multi-Response Analysis of Hydrothermal Carbonization of Food Waste: Hydrochar Composition and Solid Fuel Characteristics. ENERGIES 2022. [DOI: 10.3390/en15155342] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
To maximize food waste utilization, it is necessary to understand the effect of process variables on product distribution. To this day, there is a lack of studies evaluating the effects of the multiple variables of HTC on food waste. A Design of Experiment (DoE) approach has been used to investigate the influence of three process variables on the product distribution and composition of process streams from the HTC of food waste. This work evaluates the effect of hydrothermal carbonization process conditions on the composition and utilization capabilities of hydrochar from food waste. Parametric analysis was carried out with a design of experiments of central composite rotatable design (CCRD) and response surface methodology (RSM). Derringer’s desirability function was employed to perform a multi-response evaluation. The optimized process conditions were 260.4 °C, 29.5 min reaction time, and 19.6% solid load. The predicted optimized responses were EMC = 2.7%, SY = 57.1%, EY = 84.7%, ED = 1.5, and HHV of 31.8 MJ/Kg, with a composite desirability of 0.68. Temperature and solid load had a significant effect on all evaluated responses, while reaction time was non-significant.
Collapse
|
9
|
Espinoza Pérez L, Espinoza Pérez A, Pino-Cortés E, Vallejo F, Díaz-Robles LA. An environmental assessment for municipal organic waste and sludge treated by hydrothermal carbonization. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 828:154474. [PMID: 35276176 DOI: 10.1016/j.scitotenv.2022.154474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Revised: 02/21/2022] [Accepted: 03/07/2022] [Indexed: 06/14/2023]
Abstract
Climate change is the world's greatest challenge today, the reason why it is urgent to optimize industrial processes and find new renewable energy sources. Hydrothermal carbonization (HTC) is one of the Waste-to-Energy technologies with greater projections due to its operative advantages. However, for its large-scale implementation, there are challenges related to the variability of the composition of the waste biomass and the seasonal and geographical availability. This research applied the Life Cycle Analysis methodology to evaluate the environmental impacts caused by three biomasses blends as raw material in the HTC process at laboratory scale. The blends analyzed considered different organic fractions of municipal solid waste (food and pruning) and sewage sludge. The results showed that blend 1 had a lower environmental impact for the case of production in the experimental laboratory level, compared with blends 2 and 3. This is mainly due to its greater calorific value and mass yield, which allows obtaining more hydrochar compared with the other blends, increasing the energy efficiency of the process. Also, between 87.94% and 98.00% of the energy reduction is required to obtain neutral impacts regarding the energy requirements in the experimental laboratory level scenario and the Chilean energy matrix. The processing of blends in HTC has excellent potential in a context where municipal solid wastes have been disposed in sanitary landfills or dumps, as in most emerging countries. Since this study incorporated data from the literature, future studies should perform an elemental analysis to provide experimental and differentiated data.
Collapse
Affiliation(s)
- Lorena Espinoza Pérez
- University of Santiago of Chile (USACH), Faculty of Engineering, Program for the Development of Sustainable Production Systems (PDSPS), Chile; University of Santiago of Chile (USACH), Faculty of Engineering, Industrial Engineering Department, Chile
| | - Andrea Espinoza Pérez
- University of Santiago of Chile (USACH), Faculty of Engineering, Program for the Development of Sustainable Production Systems (PDSPS), Chile; University of Santiago of Chile (USACH), Faculty of Engineering, Industrial Engineering Department, Chile.
| | - Ernesto Pino-Cortés
- Escuela de Ingeniería Química, Pontificia Universidad Católica de Valparaíso, Ave Brasil 2162, Valparaíso, Chile
| | - Fidel Vallejo
- Departamento de Ingeniería Química, Universidad de Santiago de Chile, Chile; Programa Centro de Valorización de Residuos y Economía Circular, Chile
| | - Luis A Díaz-Robles
- Departamento de Ingeniería Química, Universidad de Santiago de Chile, Chile; Programa Centro de Valorización de Residuos y Economía Circular, Chile
| |
Collapse
|
10
|
Wang X, Li C, Lam CH, Subramanian K, Qin ZH, Mou JH, Jin M, Chopra SS, Singh V, Ok YS, Yan J, Li HY, Lin CSK. Emerging waste valorisation techniques to moderate the hazardous impacts, and their path towards sustainability. JOURNAL OF HAZARDOUS MATERIALS 2022; 423:127023. [PMID: 34482075 DOI: 10.1016/j.jhazmat.2021.127023] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 08/12/2021] [Accepted: 08/22/2021] [Indexed: 06/13/2023]
Abstract
Due to the recent boom in urbanisation, economy, and global population, the amount of waste generated worldwide has increased tremendously. The World Bank estimates that global waste generation is expected to increase 70% by 2050. Disposal of waste is already a major concern as it poses risks to the environment, human health, and economy. To tackle this issue and maximise potential environmental, economic, and social benefits, waste valorisation - a value-adding process for waste materials - has emerged as a sustainable and efficient strategy. The major objective of waste valorisation is to transit to a circular economy and maximally alleviate hazardous impacts of waste. This review conducts bibliometric analysis to construct a co-occurrence network of research themes related to management of five major waste streams (i.e., food, agricultural, textile, plastics, and electronics). Modern valorisation technologies and their efficiencies are highlighted. Moreover, insights into improvement of waste valorisation technologies are presented in terms of sustainable environmental, social, and economic performances. This review summarises highlighting factors that impede widespread adoption of waste valorisation, such as technology lock-in, optimisation for local conditions, unfavourable regulations, and low investments, with the aim of devising solutions that explore practical, feasible, and sustainable means of waste valorisation.
Collapse
Affiliation(s)
- Xiang Wang
- Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, College of Life Science and Technology, Jinan University, Guangzhou 510632, China; School of Energy and Environment, City University of Hong Kong, China
| | - Chong Li
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Chun Ho Lam
- School of Energy and Environment, City University of Hong Kong, China
| | | | - Zi-Hao Qin
- School of Energy and Environment, City University of Hong Kong, China
| | - Jin-Hua Mou
- School of Energy and Environment, City University of Hong Kong, China
| | - Mushan Jin
- School of Energy and Environment, City University of Hong Kong, China
| | | | - Vijay Singh
- Integrated Bioprocessing Research Laboratory, University of Illinois at Urbana, Champaign, 338, AESB, 1304 West Pennsylvania Avenue, Urbana, IL 61801, USA
| | - Yong Sik Ok
- Korea Biochar Research Center, Division of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, South Korea
| | - Jianbin Yan
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Hong-Ye Li
- Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Carol Sze Ki Lin
- School of Energy and Environment, City University of Hong Kong, China.
| |
Collapse
|
11
|
Motavaf B, Dean RA, Nicolas J, Savage PE. Hydrothermal carbonization of simulated food waste for recovery of fatty acids and nutrients. BIORESOURCE TECHNOLOGY 2021; 341:125872. [PMID: 34523573 DOI: 10.1016/j.biortech.2021.125872] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 08/29/2021] [Accepted: 08/30/2021] [Indexed: 06/13/2023]
Abstract
We conducted Hydrothermal carbonization (HTC) of simulated food waste under different reaction conditions (180 to 220 °C, 15 and 30 min), with the aim of recovering both fatty acids from the hydrochar and nutrients from the aqueous-phase products. HTC of the simulated food waste produced hydrochar that retained up to 78% of the original fatty acids. These retained fatty acids were extracted from the hydrochar using ethanol, a food-grade solvent, and gave a net recovery of fatty acid of ∼ 50%. The HTC process partitioned more than 50 wt% of the phosphorus and around 38 wt% of the nitrogen into the aqueous-phase products. A reaction path consistent with decarboxylation predominated during HTC under all of the reaction conditions investigated. A path consistent with dehydration was also observed, but only for the more severe reaction conditions. This work illustrates the potential that HTC has for valorization of food waste.
Collapse
Affiliation(s)
- Bita Motavaf
- Department of Chemical Engineering, 121D Chemical and Biomedical Engineering Building, The Pennsylvania State University, University Park, PA 16802, United States
| | - Robert A Dean
- Department of Chemical Engineering, 121D Chemical and Biomedical Engineering Building, The Pennsylvania State University, University Park, PA 16802, United States
| | - Joseph Nicolas
- Department of Chemical Engineering, 121D Chemical and Biomedical Engineering Building, The Pennsylvania State University, University Park, PA 16802, United States
| | - Phillip E Savage
- Department of Chemical Engineering, 121D Chemical and Biomedical Engineering Building, The Pennsylvania State University, University Park, PA 16802, United States.
| |
Collapse
|
12
|
Upgrading the Organic Fraction of Municipal Solid Waste by Low Temperature Hydrothermal Processes. ENERGIES 2021. [DOI: 10.3390/en14113041] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In comparison to lignocellulosic biomass, which is suitable for thermo-chemical valorization, the organic fraction of municipal solid waste (OFMSW) is mainly treated via composting or anaerobic digestion (AD). An efficient utilization of OFMSW is difficult due to variations in its composition. Based on the characteristics of OFMSW, hydrothermal treatment (HTT) experiments at temperatures < 200 °C as an alternative OFMSW-processing were evaluated in this study. The raw OFMSW was characterized with a dry matter (DM)-based organic dry matter (oDM) content of 77.88 ± 1.37 %DM and a higher heating value (HHV) of 15,417 ± 1258 J/gDM. Through HTT at 150, 170 and 185 °C, the oDM contents as well as H/C and O/C ratios were lowered while the HHV increased up to 16,716 ± 257 J/gDM. HTT led to improved fuel properties concerning ash melting, corrosion stress and emission behavior. Negative consequences of the HTT process were higher contents of ash in the biochar as well as accumulated heavy metals. In the sense of a bioeconomy, it could be beneficial to first convert raw OFMSW into CH4 through AD followed by HTT of the AD-digestate for the generation of solid fuels and liquid products. This could increase the overall utilization efficiency of OFMSW.
Collapse
|
13
|
Sharma HB, Dubey BK. Co-hydrothermal carbonization of food waste with yard waste for solid biofuel production: Hydrochar characterization and its pelletization. WASTE MANAGEMENT (NEW YORK, N.Y.) 2020; 118:521-533. [PMID: 32980731 DOI: 10.1016/j.wasman.2020.09.009] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 08/06/2020] [Accepted: 09/03/2020] [Indexed: 06/11/2023]
Abstract
In this study, Co-HTC of food waste with yard waste was conducted for biofuel pellets production, and also to understand any possible synergy between two feedstock types. The calorific value of blended raw feedstock was 13.5 MJ/kg which increased to 27.6 MJ/kg after Co-HTC at 220 °C for 1 h. Energy yield and fuel ratio calculated was 45% and 0.65 respectively. Hydrochar produced demonstrated a stable combustion profile as compared to reactive combustion profile for raw samples. The blend of food and yard waste hydrochar was easily pelletized, and its pellets showed improvement in mechanical properties as compared to pellets made from mono-substrate((food waste) hydrochar. Pellets produced from the blend of food and yard waste hydrochar showed higher energy (46.4 MJ/m3) and mass density (1679 kg/m3) as compare to the pellet produced from food waste hydrochar alone. Tensile strength obtained for the blended hydrochar pellet was 2.64 MPa while same for the pellets produced from food waste hydrochar alone was 1.30 MPa. In addition to improving hydrophobicity, soften lignin from yard waste also helped in binding the food waste hydrochar particles together within the pellets matrix during heated pelletization. The results presented in the study indicated that in the presence of all favorable conditions, there is a potential that approximately 11% of the global coal consumption could be replaced by the combustion of hydrochar produced from food and yard waste globally.
Collapse
Affiliation(s)
- Hari Bhakta Sharma
- Environmental Engineering and Management, Department of Civil Engineering, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India
| | - Brajesh K Dubey
- Environmental Engineering and Management, Department of Civil Engineering, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India.
| |
Collapse
|
14
|
Hydrochars as Emerging Biofuels: Recent Advances and Application of Artificial Neural Networks for the Prediction of Heating Values. ENERGIES 2020. [DOI: 10.3390/en13174572] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
In this study, the growing scientific field of alternative biofuels was examined, with respect to hydrochars produced from renewable biomasses. Hydrochars are the solid products of hydrothermal carbonization (HTC) and their properties depend on the initial biomass and the temperature and duration of treatment. The basic (Scopus) and advanced (Citespace) analysis of literature showed that this is a dynamic research area, with several sub-fields of intense activity. The focus of researchers on sewage sludge and food waste as hydrochar precursors was highlighted and reviewed. It was established that hydrochars have improved behavior as fuels compared to these feedstocks. Food waste can be particularly useful in co-hydrothermal carbonization with ash-rich materials. In the case of sewage sludge, simultaneous P recovery from the HTC wastewater may add more value to the process. For both feedstocks, results from large-scale HTC are practically non-existent. Following the review, related data from the years 2014–2020 were retrieved and fitted into four different artificial neural networks (ANNs). Based on the elemental content, HTC temperature and time (as inputs), the higher heating values (HHVs) and yields (as outputs) could be successfully predicted, regardless of original biomass used for hydrochar production. ANN3 (based on C, O, H content, and HTC temperature) showed the optimum HHV predicting performance (R2 0.917, root mean square error 1.124), however, hydrochars’ HHVs could also be satisfactorily predicted by the C content alone (ANN1, R2 0.897, root mean square error 1.289).
Collapse
|
15
|
Veltri F, Alessandro F, Scarcello A, Beneduci A, Arias Polanco M, Cid Perez D, Vacacela Gomez C, Tavolaro A, Giordano G, Caputi LS. Porous Carbon Materials Obtained by the Hydrothermal Carbonization of Orange Juice. NANOMATERIALS 2020; 10:nano10040655. [PMID: 32244676 PMCID: PMC7222017 DOI: 10.3390/nano10040655] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 03/23/2020] [Accepted: 03/26/2020] [Indexed: 01/13/2023]
Abstract
Porous carbon materials are currently subjected to strong research efforts mainly due to their excellent performances in energy storage devices. A sustainable process to obtain them is hydrothermal carbonization (HTC), in which the decomposition of biomass precursors generates solid products called hydrochars, together with liquid and gaseous products. Hydrochars have a high C content and are rich with oxygen-containing functional groups, which is important for subsequent activation. Orange pomace and orange peels are considered wastes and then have been investigated as possible feedstocks for hydrochars production. On the contrary, orange juice was treated by HTC only to obtain carbon quantum dots. In the present study, pure orange juice was hydrothermally carbonized and the resulting hydrochar was filtered and washed, and graphitized/activated by KOH in nitrogen atmosphere at 800 °C. The resulting material was studied by transmission and scanning electron microscopy, Raman spectroscopy, X-ray photoelectron spectroscopy, X-ray diffraction, and nitrogen sorption isotherms. We found porous microspheres with some degree of graphitization and high nitrogen content, a specific surface of 1725 m2/g, and a pore size distribution that make them good candidates for supercapacitor electrodes.
Collapse
Affiliation(s)
- Francesco Veltri
- Surface Nanoscience Group, Department of Physics, University of Calabria, I-87036 Rende, Cosenza, Italy; (F.V.); (F.A.); (A.S.)
- UNICARIBE Research Center, University of Calabria, I-87036 Rende, Cosenza, Italy; (M.A.P.); (D.C.P.); (C.V.G.)
| | - Francesca Alessandro
- Surface Nanoscience Group, Department of Physics, University of Calabria, I-87036 Rende, Cosenza, Italy; (F.V.); (F.A.); (A.S.)
- UNICARIBE Research Center, University of Calabria, I-87036 Rende, Cosenza, Italy; (M.A.P.); (D.C.P.); (C.V.G.)
- INFN, Sezione LNF, Gruppo Collegato di Cosenza, Via P. Bucci, I-87036 Rende, Cosenza, Italy
| | - Andrea Scarcello
- Surface Nanoscience Group, Department of Physics, University of Calabria, I-87036 Rende, Cosenza, Italy; (F.V.); (F.A.); (A.S.)
- UNICARIBE Research Center, University of Calabria, I-87036 Rende, Cosenza, Italy; (M.A.P.); (D.C.P.); (C.V.G.)
- INFN, Sezione LNF, Gruppo Collegato di Cosenza, Via P. Bucci, I-87036 Rende, Cosenza, Italy
| | - Amerigo Beneduci
- Department of Chemistry and Chemical Technologies, University of Calabria, I-87036 Rende, Cosenza, Italy;
| | - Melvin Arias Polanco
- UNICARIBE Research Center, University of Calabria, I-87036 Rende, Cosenza, Italy; (M.A.P.); (D.C.P.); (C.V.G.)
- Laboratorio de Nanotecnología, Área de Ciencias Básicas y Ambientales, Instituto Tecnológico de Santo Domingo, Av. Los Próceres, Santo Domingo 10602, República Dominicana
| | - Denia Cid Perez
- UNICARIBE Research Center, University of Calabria, I-87036 Rende, Cosenza, Italy; (M.A.P.); (D.C.P.); (C.V.G.)
- Escuela de Ciencias Naturales y Exactas, Pontificia Universidad Católica Madre y Maestra, Autopista Duarte Km 1 1/2, Santiago de los Caballeros 51000, República Dominicana
| | - Cristian Vacacela Gomez
- UNICARIBE Research Center, University of Calabria, I-87036 Rende, Cosenza, Italy; (M.A.P.); (D.C.P.); (C.V.G.)
- CompNano, School of Physical Sciences and Nanotechnology, Yachay Tech University, Urcuquí EC-100119, Ecuador
| | - Adalgisa Tavolaro
- Research Institute on Membrane Technology (ITM-CNR), University of Calabria, I-87036 Rende, Cosenza, Italy;
| | - Girolamo Giordano
- Department of Environmental and Chemical Engineering, University of Calabria, I-87036 Rende, Cosenza, Italy;
| | - Lorenzo S. Caputi
- Surface Nanoscience Group, Department of Physics, University of Calabria, I-87036 Rende, Cosenza, Italy; (F.V.); (F.A.); (A.S.)
- UNICARIBE Research Center, University of Calabria, I-87036 Rende, Cosenza, Italy; (M.A.P.); (D.C.P.); (C.V.G.)
- Correspondence: ; Tel.: +39-0984-496154
| |
Collapse
|
16
|
Dye Adsorption and Electrical Property of Oxide-Loaded Carbon Fiber Made by Electrospinning and Hydrothermal Treatment. FIBERS 2019. [DOI: 10.3390/fib7080074] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Our current study deals with the dye adsorption and electrical property of a partially carbonized composite fiber containing transition metal oxides including, iron oxide, nickel oxide, and titanium oxide. The fiber was made by electrospinning, carbonization, and hydrothermal treatment. During the electrospinning, titanium oxide particles were dispersed in polyacrylonitrile (PAN) polymer-dimethylformamide (DMF) solution. Nickel chloride and iron nitrate were added into the solution to generate nickel oxide and iron oxide in the subsequent heat treatment processes. The polymer fiber was oxidized first at an elevated temperature of 250 °C to stabilize the structure of PAN. Then, we performed higher temperature heat treatment at 500 °C in a furnace with hydrogen gas protection to partially carbonize the polymer fiber. After that, the oxide-containing fiber was coated with activated carbon in a diluted sugar solution via hydrothermal carbonization at 200 °C for 8 h. The pressure reached 1.45 MPa in the reaction chamber. The obtained product was tested in view of the dye, Rhodamine B, adsorption using a Vis-UV spectrometer. Electrical property characterization was performed using an electrochemical work station. It was found that the hydrothermally treated oxide-containing fiber demonstrated obvious dye adsorption behavior. The visible light absorption intensity of the Rhodamine B dye decreased with the increase in the soaking time of the fiber in the dye solution. The impedance of the fiber was increased due to the hydrothermal carbonization treatment. We also found that charge build-up was faster at the surface of the specimen without the hydrothermally treated carbon layer. Electricity generation under visible light excitation is more intensive at the hydrothermally treated fiber than at the one without the hydrothermal treatment. This result is consistent with that obtained from the dye adsorption/decomposition test because the charge generation is more efficient at the surface of the hydrothermally treated fiber, which allows the dye to be decomposed faster by the treated fibers with activated carbon.
Collapse
|
17
|
Cantero D, Jara R, Navarrete A, Pelaz L, Queiroz J, Rodríguez-Rojo S, Cocero MJ. Pretreatment Processes of Biomass for Biorefineries: Current Status and Prospects. Annu Rev Chem Biomol Eng 2019; 10:289-310. [PMID: 30892926 DOI: 10.1146/annurev-chembioeng-060718-030354] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2023]
Abstract
This article seeks to be a handy document for the academy and the industry to get quickly up to speed on the current status and prospects of biomass pretreatment for biorefineries. It is divided into two biomass sources: vegetal and animal. Vegetal biomass is the material produced by plants on land or in water (algae), consuming sunlight, CO2, water, and soil nutrients. This includes residues or main products from, for example, intensive grass crops, forestry, and industrial and agricultural activities. Animal biomass is the residual biomass generated from the production of food from animals (e.g., manure and whey). This review does not mean to include every technology in the area, but it does evaluate physical pretreatments, microwave-assisted extraction, and water treatments for vegetal biomass. A general review is given for animal biomass based in physical, chemical, and biological pretreatments.
Collapse
Affiliation(s)
- D Cantero
- BioEcoUVa, Research Institute on Bioeconomy, Group of High-Pressure Technology, Department of Chemical Engineering and Environmental Technology, University of Valladolid, Vallodolid 47011, Spain;
| | - R Jara
- Department of Forestry, University of West Virginia, Morgantown, West Virginia 26506, USA
| | - A Navarrete
- Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany
| | - L Pelaz
- BETA Technological Center, University of Vic-Central University of Catalonia, Vic, Barcelona 08500, Spain
| | - J Queiroz
- Federal University of São Carlos, São Carlos 13565-905, Brazil
| | - S Rodríguez-Rojo
- BioEcoUVa, Research Institute on Bioeconomy, Group of High-Pressure Technology, Department of Chemical Engineering and Environmental Technology, University of Valladolid, Vallodolid 47011, Spain;
| | - M J Cocero
- BioEcoUVa, Research Institute on Bioeconomy, Group of High-Pressure Technology, Department of Chemical Engineering and Environmental Technology, University of Valladolid, Vallodolid 47011, Spain;
| |
Collapse
|
18
|
Nayak A, Bhushan B. An overview of the recent trends on the waste valorization techniques for food wastes. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2019; 233:352-370. [PMID: 30590265 DOI: 10.1016/j.jenvman.2018.12.041] [Citation(s) in RCA: 154] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 12/09/2018] [Accepted: 12/14/2018] [Indexed: 05/05/2023]
Abstract
A critical and up-to-date review has been conducted on the latest individual valorization technologies aimed at the generation of value-added by-products from food wastes in the form of bio-fuels, bio-materials, value added components and bio-based adsorbents. The aim is to examine the associated advantages and drawbacks of each technique separately along with the assessment of process parameters affecting the efficiency of the generation of the bio-based products. Challenges faced during the processing of the wastes to each of the bio-products have been explained and future scopes stated. Among the many hurdles encountered in the successful and high yield generation of the bio-products is the complexity and variability in the composition of the food wastes along with the high inherent moisture content. Also, individual technologies have their own process configurations and operating parameters which may affect the yield and composition of the desired end product. All these require extensive study of the composition of the food wastes followed by their effective pre-treatments, judicial selection of the technological parameters and finally optimization of not only the process configurations but also in relation to the input food waste material. Attempt has also been made to address the hurdles faced during the implementation of such technologies on an industrial scale.
Collapse
Affiliation(s)
- A Nayak
- Innovació i Recerca Industrial I Sostenible, S.L., 08860, Spain; Graphic Era University, Dehradun, 248002, India.
| | - Brij Bhushan
- Graphic Era University, Dehradun, 248002, India; Chemical Engineering Department, Universitat Politechnica Catalunya, UPC-BarcelonaTECH, Barcelona, 08860, Spain
| |
Collapse
|
19
|
Remediation of highly fuel oil-contaminated soil by food waste composting and its volatile organic compound (VOC) emission. ACTA ACUST UNITED AC 2018. [DOI: 10.1016/j.biteb.2018.10.010] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|