1
|
Elgarahy AM, Eloffy MG, Alengebawy A, El-Sherif DM, Gaballah MS, Elwakeel KZ, El-Qelish M. Sustainable management of food waste; pre-treatment strategies, techno-economic assessment, bibliometric analysis, and potential utilizations: A systematic review. ENVIRONMENTAL RESEARCH 2023; 225:115558. [PMID: 36842700 DOI: 10.1016/j.envres.2023.115558] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 02/20/2023] [Accepted: 02/21/2023] [Indexed: 06/18/2023]
Abstract
Food waste (FW) contains many nutritional components such as proteins, lipids, fats, polysaccharides, carbohydrates, and metal ions, which can be reused in some processes to produce value-added products. Furthermore, FW can be converted into biogas, biohydrogen, and biodiesel, and this type of green energy can be used as an alternative to nonrenewable fuel and reduce reliance on fossil fuel sources. It has been demonstrated in many reports that at the laboratory scale production of biochemicals using FW is as good as pure carbon sources. The goal of this paper is to review approaches used globally to promote turning FW into useable products and green energy. In this context, the present review article highlights deeply in a transdisciplinary manner the sources, types, impacts, characteristics, pre-treatment strategies, and potential management of FW into value-added products. We find that FW could be upcycled into different valuable products such as eco-friendly green fuels, organic acids, bioplastics, enzymes, fertilizers, char, and single-cell protein, after the suitable pre-treatment method. The results confirmed the technical feasibility of all the reviewed transformation processes of FW. Furthermore, life cycle and techno-economic assessment studies regarding the socio-economic, environmental, and engineering aspects of FW management are discussed. The reviewed articles showed that energy recovery from FW in various forms is economically feasible.
Collapse
Affiliation(s)
- Ahmed M Elgarahy
- Environmental Chemistry Division, Environmental Science Department, Faculty of Science, Port Said University, Port Said, Egypt; Egyptian Propylene and Polypropylene Company (EPPC), Port-Said, Egypt.
| | - M G Eloffy
- National Institute of Oceanography and Fisheries (NIOF), Cairo, Egypt.
| | - Ahmed Alengebawy
- College of Engineering, Huazhong Agricultural University, Wuhan, 430070, PR China.
| | - Dina M El-Sherif
- National Institute of Oceanography and Fisheries (NIOF), Cairo, Egypt.
| | - Mohamed S Gaballah
- National Institute of Oceanography and Fisheries (NIOF), Cairo, Egypt; College of Engineering (Key Laboratory for Clean Renewable Energy Utilization Technology, Ministry of Agriculture), China Agricultural University, Beijing, 100083, PR China.
| | - Khalid Z Elwakeel
- Environmental Chemistry Division, Environmental Science Department, Faculty of Science, Port Said University, Port Said, Egypt.
| | - Mohamed El-Qelish
- Water Pollution Research Department, National Research Centre, El Buhouth St., Dokki, 12622, Cairo, Egypt.
| |
Collapse
|
2
|
Mozhiarasi V, Natarajan TS, Dhamodharan K. A high-value biohythane production: Feedstocks, reactor configurations, pathways, challenges, technoeconomics and applications. ENVIRONMENTAL RESEARCH 2023; 219:115094. [PMID: 36535394 DOI: 10.1016/j.envres.2022.115094] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 12/13/2022] [Accepted: 12/15/2022] [Indexed: 06/17/2023]
Abstract
In recent years, the demand for high-quality biofuels from renewable sources has become an aspirational goal to offer a clean environment by alternating the depleting fossil fuels to meet future energy needs. In this aspect, biohythane production from wastes has received extensive research interest since it contains superior fuel characteristics than the promising conventional biofuel i.e. biogas. The main aim is to promote research and potentials of biohythane production by a systematic review of scientific literature on the biohythane production pathways, substrate/microbial consortium suitability, reactor design, and influential process/operational factors. Reactor configuration also decides the product yield in addition to other key factors like waste composition, temperature, pH, retention time and loading rates. Hence, a detailed emphasis on different reactor configurations with respect to the type of feedstock has also been given. The technical challenges are highlighted towards process optimization and system scale up. Meanwhile, solutions to improve product yield, technoeconomics, applications and key policy and governance factors to build a hydrogen based society have also been discussed.
Collapse
Affiliation(s)
- Velusamy Mozhiarasi
- CLRI Regional Centre, CSIR-Central Leather Research Institute (CSIR-CLRI), Jalandhar, 144 021, Punjab, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India.
| | - Thillai Sivakumar Natarajan
- Environmental Science Laboratory, CSIR-Central Leather Research Institute (CSIR-CLRI), Chennai, 600 020, Tamil Nadu, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
| | - Kondusamy Dhamodharan
- School of Energy and Environment, Thapar Institute of Engineering and Technology, Patiala, 147 004, Punjab, India
| |
Collapse
|
3
|
Bandini F, Vaccari F, Soldano M, Piccinini S, Misci C, Bellotti G, Taskin E, Cocconcelli PS, Puglisi E. Rigid bioplastics shape the microbial communities involved in the treatment of the organic fraction of municipal solid waste. Front Microbiol 2022; 13:1035561. [PMID: 36439796 PMCID: PMC9691671 DOI: 10.3389/fmicb.2022.1035561] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 10/17/2022] [Indexed: 11/03/2023] Open
Abstract
While bioplastics are gaining wide interest in replacing conventional plastics, it is necessary to understand whether the treatment of the organic fraction of municipal solid waste (OFMSW) as an end-of-life option is compatible with their biodegradation and their possible role in shaping the microbial communities involved in the processes. In the present work, we assessed the microbiological impact of rigid polylactic acid (PLA) and starch-based bioplastics (SBB) spoons on the thermophilic anaerobic digestion and the aerobic composting of OFMSW under real plant conditions. In order to thoroughly evaluate the effect of PLA and SBB on the bacterial, archaeal, and fungal communities during the process, high-throughput sequencing (HTS) technology was carried out. The results suggest that bioplastics shape the communities' structure, especially in the aerobic phase. Distinctive bacterial and fungal sequences were found for SBB compared to the positive control, which showed a more limited diversity. Mucor racemosus was especially abundant in composts from bioplastics' treatment, whereas Penicillium roqueforti was found only in compost from PLA and Thermomyces lanuginosus in that from SBB. This work shed a light on the microbial communities involved in the OFMSW treatment with and without the presence of bioplastics, using a new approach to evaluate this end-of-life option.
Collapse
Affiliation(s)
- Francesca Bandini
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Piacenza, PC, Italy
| | - Filippo Vaccari
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Piacenza, PC, Italy
| | - Mariangela Soldano
- Centro Ricerche Produzioni Animali S.p.A. (CRPA), Reggio Emilia, RE, Italy
| | - Sergio Piccinini
- Centro Ricerche Produzioni Animali S.p.A. (CRPA), Reggio Emilia, RE, Italy
| | - Chiara Misci
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Piacenza, PC, Italy
| | - Gabriele Bellotti
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Piacenza, PC, Italy
| | - Eren Taskin
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Piacenza, PC, Italy
| | - Pier Sandro Cocconcelli
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Piacenza, PC, Italy
| | - Edoardo Puglisi
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Piacenza, PC, Italy
| |
Collapse
|
4
|
Haber Z, Wilhelmi MDMR, Fernández-Bayo JD, Harrold DR, Stapleton JJ, Toubiana D, VanderGheynst JS, Blumwald E, Simmons CW, Sade N, Achmon Y. The effect of circular soil biosolarization treatment on the physiology, metabolomics, and microbiome of tomato plants under certain abiotic stresses. FRONTIERS IN PLANT SCIENCE 2022; 13:1009956. [PMID: 36426148 PMCID: PMC9679285 DOI: 10.3389/fpls.2022.1009956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 10/14/2022] [Indexed: 06/16/2023]
Abstract
Soil biosolarization (SBS) is an alternative technique for soil pest control to standard techniques such as soil fumigation and soil solarization (SS). By using both solar heating and fermentation of organic amendments, faster and more effective control of soilborne pathogens can be achieved. A circular economy may be created by using the residues of a given crop as organic amendments to biosolarize fields that produce that crop, which is termed circular soil biosolarization (CSBS). In this study, CSBS was employed by biosolarizing soil with amended tomato pomace (TP) residues and examining its impact on tomato cropping under conditions of abiotic stresses, specifically high salinity and nitrogen deficiency. The results showed that in the absence of abiotic stress, CSBS can benefit plant physiological performance, growth and yield relative to SS. Moreover, CSBS significantly mitigated the impacts of abiotic stress conditions. The results also showed that CSBS impacted the soil microbiome and plant metabolome. Mycoplana and Kaistobacter genera were found to be positively correlated with benefits to tomato plants health under abiotic stress conditions. Conversely, the relative abundance of the orders RB41, MND1, and the family Ellin6075 and were negatively correlated with tomato plants health. Moreover, several metabolites were significantly affected in plants grown in SS- and CSBS-treated soils under abiotic stress conditions. The metabolite xylonic acid isomer was found to be significantly negatively correlated with tomato plants health performance across all treatments. These findings improve understanding of the interactions between CSBS, soil ecology, and crop physiology under abiotic stress conditions.
Collapse
Affiliation(s)
- Zechariah Haber
- School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv, Israel
| | | | - Jesus D. Fernández-Bayo
- Department of Food Science and Technology, University of California, Davis, CA, United States
| | - Duff R. Harrold
- Department of Food Science and Technology, University of California, Davis, CA, United States
| | - James J. Stapleton
- Statewide Integrated Pest Management Program, University of California Kearney Agricultural Research and Extension Center, Parlier, CA, United States
| | - David Toubiana
- School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv, Israel
| | - Jean S. VanderGheynst
- College of Engineering, University of Massachusetts Dartmouth, Dartmouth, MA, United States
| | - Eduardo Blumwald
- Department of Plant Sciences, University of California, Davis, CA, United States
| | - Christopher W. Simmons
- Department of Food Science and Technology, University of California, Davis, CA, United States
| | - Nir Sade
- School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv, Israel
| | - Yigal Achmon
- Biotechnology and Food Engineering, Guangdong Technion - Israel Institute of Technology, Shantou, Guangdong, China
- Faculty of Biotechnology and Food Engineering, Technion - Israel Institute of Technology, Haifa, Israel
- Guangdong Provincial Key Laboratory of Materials and Technologies for Energy Conversion, Guangdong Technion - Israel Institute of Technology, Shantou, Guangdong, China
| |
Collapse
|
5
|
Sreekala AGV, Ismail MHB, Nathan VK. Biotechnological interventions in food waste treatment for obtaining value-added compounds to combat pollution. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:62755-62784. [PMID: 35802320 DOI: 10.1007/s11356-022-21794-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 06/28/2022] [Indexed: 06/15/2023]
Abstract
Over the last few decades, the globe is facing tremendous effects due to the unnecessary piling of municipal solid waste among which food waste holds a greater portion. This practice not only affects the environment in terms of generating greenhouse gas emissions but when left dumped in landfills will also trigger poverty and malnutrition. This review focuses on the global trend in food waste management strategies involved in the effective utilization of food waste to produce various value-added products in a microbiology aspect, thereby diminishing the negative impacts caused by the unnecessary side effects of non-renewable energy sources. The review also detailed the efficiency of microorganisms in the production of various bio-energies as well. Further, recent attempts to the exploitation of genetically modified microorganisms in producing value-added products were enlisted. This also attempted to address food waste valorization techniques, the combined applications of various processes for an enhanced yield of different compounds, and addressed various challenges. Further, the current challenges involved in various processes and the effective measures to tackle them in the future have been addressed. Thus, the present review has successfully addressed the circular bio-economy in food waste valorization.
Collapse
Affiliation(s)
| | - Muhammad Heikal Bin Ismail
- Department of Chemical and Environmental Engineering, Faculty of Engineering, Universiti Putra, Putrajaya, Malaysia
| | - Vinod Kumar Nathan
- School of Chemical and Biotechnology, SASTRA Deemed to Be University, Thanjavur, 613 401, Tamil Nadu, India.
| |
Collapse
|
6
|
Kalaiselvan N, Glivin G, Bakthavatsalam AK, Mariappan V, Premalatha M, Raveendran PS, Jayaraj S, Sekhar SJ. A waste to energy technology for Enrichment of biomethane generation: A review on operating parameters, types of biodigesters, solar assisted heating systems, socio economic benefits and challenges. CHEMOSPHERE 2022; 293:133486. [PMID: 35016951 DOI: 10.1016/j.chemosphere.2021.133486] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 12/22/2021] [Accepted: 12/29/2021] [Indexed: 06/14/2023]
Abstract
Anaerobic Digestion (AD) is one of the promising wastestoenergy (WtE) technologies that convert organic wastes to useful gaseous fuel (biogas). In this process methane is produced in the presence of methanogens (bacteria). The survival and activities of methanogens are based on several parameters such as pH, temperature, organic loading rate, types of biodigester. Moreover, these parameters influence the production of biogas in terms of yield and composition. Maintaining an appropriate temperaturefor AD is highly critical and energy intensive. This study reviews the various hybrid technologies assistedbio gas production schemes particularly from renewable energy sources. Also discuss the direct and indirect solar assisted bio-digester impacts and recommendation to improve its performance. In addition, the performance analysis Solar Photovoltaic (PV) and thermal collector assisted bio gas plants; besides their impact on the performance of anaerobic digesters. Since opportunities of solar energy are attractive, the effective utilization of the same is selected for the discussion. Besides, the various constraints that affect the yield and composition of biogas are also evaluated along with the current biogas technologies and the biodigesters. The environmental benefits, challenges and socio-economic factors are also discussed for the successful implementation of various technologies.
Collapse
Affiliation(s)
- N Kalaiselvan
- Department of Energy and Environment, National Institute of Technology Tiruchirappalli, Tamilnadu, India
| | - Godwin Glivin
- Department of Energy and Environment, National Institute of Technology Tiruchirappalli, Tamilnadu, India.
| | - A K Bakthavatsalam
- Department of Energy and Environment, National Institute of Technology Tiruchirappalli, Tamilnadu, India
| | - V Mariappan
- Department of Mechanical Engineering, National Institute of Technology Tiruchirappalli, Tamil Nadu, India
| | - M Premalatha
- Department of Energy and Environment, National Institute of Technology Tiruchirappalli, Tamilnadu, India
| | - P Saji Raveendran
- Department of Mechanical Engineering, Kongu Engineering College, Erode, Tamil Nadu, India
| | - S Jayaraj
- Department of Mechanical Engineering, National Institute of Technology Calicut, Kerala, India
| | - S Joseph Sekhar
- Department of Engineering, University of Technology and Applied Sciences, Shinas, PC 324, Oman
| |
Collapse
|
7
|
Cellulose Isolation from Tomato Pomace Pretreated by High-Pressure Homogenization. Foods 2022; 11:foods11030266. [PMID: 35159418 PMCID: PMC8833915 DOI: 10.3390/foods11030266] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/13/2022] [Accepted: 01/15/2022] [Indexed: 02/04/2023] Open
Abstract
This work proposes a biorefinery approach for the utilization of agri-food residues, such as tomato pomace (TP), through combining chemical hydrolysis with high-pressure homogenization (HPH), aiming to achieve the isolation of cellulose with tailored morphological properties from underused lignocellulose feedstocks, along with the valorization of the value-added compounds contained in the biomass. Cellulose was isolated from TP using sequential chemical hydrolysis in combination with mechanical pretreatment through HPH. The chemical and structural features of cellulose isolated from TP pretreated by HPH were compared with cellulose isolated from untreated TP through light scattering for particle size distribution, optical and scanning electron microscopy, and Fourier-transform infrared spectroscopy (FT-IR) analysis. HPH pretreatment (80 MPa, 10 passes) not only promoted a slight increase in the yield of cellulose extraction (+9%) but contributed to directly obtaining defibrillated cellulose particles, characterized by smaller irregular domains containing elongated needle-like fibers. Moreover, the selected mild chemical process produced side streams rich in bioactive molecules, evaluated in terms of total phenols and reducing activity. The liquors recovered from acid hydrolysis of TP exhibited a higher biological activity than those obtained through a conventional extraction (80% v/v acetone, 25 °C, 24 h at 180 rpm).
Collapse
|
8
|
Peng W, Wang Z, Shu Y, Lü F, Zhang H, Shao L, He P. Fate of a biobased polymer via high-solid anaerobic co-digestion with food waste and following aerobic treatment: Insights on changes of polymer physicochemical properties and the role of microbial and fungal communities. BIORESOURCE TECHNOLOGY 2022; 343:126079. [PMID: 34610428 DOI: 10.1016/j.biortech.2021.126079] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 09/29/2021] [Accepted: 10/01/2021] [Indexed: 06/13/2023]
Abstract
Degradation of bioplastics in food-waste-treating anaerobic digestion (AD) plants is becoming an increasingly concerning issue as they are inevitably mixed with food waste during the waste collection process. The aim of this study was to assess the degradation of PBAT/PLA based biopolymer bags during mesophilic and thermophilic AD, co-digested with food waste, and subsequent aerobic post-treatment. After the AD process, no discernable biological degradation was observed for all of the PBAT/PLA polymers. The comparison of FTIR, XRD, TG analysis and contact angle analysis between raw and degraded PBAT/PLA polymer revealed structural changes after anaerobic incubation. Subsequent aerobic treatment facilitated the degradation of the PBAT/PLA polymers from thermophilic AD, which was attributed to the polymer-degrading microorganisms Brevundimonas and Sphingobacterium. Physical disintegration of the PBAT/PLA polymer was observed under thermophilic conditions. Those undegraded polymer fragments could affect digestate quality and increase the risk of releasing microplastics into the environment.
Collapse
Affiliation(s)
- Wei Peng
- Institute of Waste Treatment and Reclamation, Tongji University, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China; Shanghai Engineering Research Center of Multi-source Solid Wastes Co-processing and Energy Utilization, Shanghai 200092, PR China
| | - Zhijie Wang
- Institute of Waste Treatment and Reclamation, Tongji University, Shanghai 200092, PR China; Shanghai Engineering Research Center of Multi-source Solid Wastes Co-processing and Energy Utilization, Shanghai 200092, PR China
| | - Yinhui Shu
- Institute of Waste Treatment and Reclamation, Tongji University, Shanghai 200092, PR China; Shanghai Engineering Research Center of Multi-source Solid Wastes Co-processing and Energy Utilization, Shanghai 200092, PR China
| | - Fan Lü
- Institute of Waste Treatment and Reclamation, Tongji University, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China; Shanghai Engineering Research Center of Multi-source Solid Wastes Co-processing and Energy Utilization, Shanghai 200092, PR China
| | - Hua Zhang
- Institute of Waste Treatment and Reclamation, Tongji University, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China; Shanghai Engineering Research Center of Multi-source Solid Wastes Co-processing and Energy Utilization, Shanghai 200092, PR China
| | - Liming Shao
- Institute of Waste Treatment and Reclamation, Tongji University, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China; Shanghai Engineering Research Center of Multi-source Solid Wastes Co-processing and Energy Utilization, Shanghai 200092, PR China
| | - Pinjing He
- Institute of Waste Treatment and Reclamation, Tongji University, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China; Shanghai Engineering Research Center of Multi-source Solid Wastes Co-processing and Energy Utilization, Shanghai 200092, PR China.
| |
Collapse
|
9
|
Che J, Bai Y, Li X, Ye J, Liao H, Cui P, Yu Z, Zhou S. Linking microbial community structure with molecular composition of dissolved organic matter during an industrial-scale composting. JOURNAL OF HAZARDOUS MATERIALS 2021; 405:124281. [PMID: 33097342 DOI: 10.1016/j.jhazmat.2020.124281] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 09/21/2020] [Accepted: 10/12/2020] [Indexed: 05/23/2023]
Abstract
This study explored the interactions between dissolved organic matter (DOM) composition and microbial community structure during an industrial-scale composting by Fourier transform ion cyclotron resonance mass spectrometry and 16S rRNA sequencing analysis. The results revealed that DOM from matured compost contained primarily lignins/carboxylic-rich alicyclic molecules (73.6%), the higher double bond equivalent (5.97) and aromaticity index (0.18), indicating that the molecular composition of DOM had changed substantially. Drastic changes in microbial community structure were also observed along with the DOM transformation process of composting. Network analysis further indicated that Caldicoprobacter, Bacillus, and Dechloromonas were associated with the most DOM subcategories. Caldicoprobacter could degrade carbohydrates, Bacillus accelerated the humification by transforming N-containing compounds, and Dechloromonas could degrade polycyclic aromatic hydrocarbons distributed in low O/C. These findings are helpful for understanding the molecular mechanisms of DOM transformation and humification of sludge composting.
Collapse
Affiliation(s)
- Jiangang Che
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yudan Bai
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xi Li
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jie Ye
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Hanpeng Liao
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Peng Cui
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zhen Yu
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Guangdong Institute of Eco-environmental Science & Technology, Guangdong Academy of Sciences, Guangzhou 510650, China.
| | - Shungui Zhou
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China; National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Guangdong Institute of Eco-environmental Science & Technology, Guangdong Academy of Sciences, Guangzhou 510650, China
| |
Collapse
|
10
|
Meena RAA, Rajesh Banu J, Yukesh Kannah R, Yogalakshmi KN, Kumar G. Biohythane production from food processing wastes - Challenges and perspectives. BIORESOURCE TECHNOLOGY 2020; 298:122449. [PMID: 31784253 DOI: 10.1016/j.biortech.2019.122449] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 11/16/2019] [Accepted: 11/18/2019] [Indexed: 06/10/2023]
Abstract
The food industry generates enormous quantity of food waste (FW) either directly or indirectly including the processing sector, which turned into biofuels for waste remediation. Six types of food processing wastes (FPW) such as oil, fruit and vegetable, dairy, brewery, livestock and finally agriculture based materials that get treated via dark fermentation/anaerobic digestion has been discussed. Production of both hydrogen and methane is daunting for oil, fruit and vegetable processing wastes because of the presence of polyphenols and essential oils. Moreover, acidic pH and high protein are the reasons for increased concentration of ammonia and accumulation of volatile fatty acids in FPW, especially in dairy, brewery, and livestock waste streams. Moreover, the review brought to forefront the enhancing methods, (pretreatment and co-digestion) operational, and environmental parameters that can influence the production of biohythane. Finally, the nature of feedstock's role in achieving successful circular bio economy is also highlighted.
Collapse
Affiliation(s)
| | - J Rajesh Banu
- Department of Civil Engineering, Anna University Regional Campus Tirunelveli, India
| | - R Yukesh Kannah
- Department of Civil Engineering, Anna University Regional Campus Tirunelveli, India
| | - K N Yogalakshmi
- Department of Environmental Science and Technology, School of Environment and Earth Sciences, Central University of Punjab, Bathinda 151001, Punjab, India
| | - Gopalakrishnan Kumar
- Green Processing, Bioremediation and Alternative Energies Research Group, Faculty of Environment and Labour Safety, Ton Duc Thang University, Ho Chi Minh City, Viet Nam.
| |
Collapse
|
11
|
|
12
|
Mirmohamadsadeghi S, Karimi K, Tabatabaei M, Aghbashlo M. Biogas production from food wastes: A review on recent developments and future perspectives. ACTA ACUST UNITED AC 2019. [DOI: 10.1016/j.biteb.2019.100202] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
13
|
Hu YY, Wu J, Li HZ, Poncin S, Wang KJ, Zuo JE. Novel insight into high solid anaerobic digestion of swine manure after thermal treatment: Kinetics and microbial community properties. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2019; 235:169-177. [PMID: 30682669 DOI: 10.1016/j.jenvman.2019.01.047] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 12/24/2018] [Accepted: 01/16/2019] [Indexed: 06/09/2023]
Abstract
Compared to traditional anaerobic digestion (AD), high solid anaerobic digestion (HSAD) had the advantages of small digester, low heating energy and less digestate. However, the methane production was poor. In our previous study, thermal treatment (70 ± 1 °C, 3 days) without any dilution could satisfactorily enhance the methane production rate of HSAD by up to 39.5%. However, effects of solid content on HSAD after thermal treatment were not yet studied. In this study, HSAD was conducted at 11.7-17.6% solid content, and the control experiment was conducted at low solid content (4.4% solid content). Results showed that HSAD's methane production rate was the highest at 11.7% solid content (158 mL CH4/g VS), and could reach up to 89.2% of that at 4.4% solid content. The utilization of organics was revealed by kinetics analysis that the readily biodegradable organics could be utilized at increasing solid content with decreasing hydrolysis rate. Furthermore, it was notable that methylotrophic methanogens predominated in HSAD with the abundance of 82.6%. This was quite unique from the general belief that AD system was usually dominated by acetoclastic or hydrogenotrophic methanogenic pathways. In this study, the microbial community structure of HSAD after thermal treatment was firstly studied, its unique specific methanogenic pathways was firstly revealed.
Collapse
Affiliation(s)
- Yu-Ying Hu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China; School of Civil Engineering and Architecture, East China Jiao Tong University, Nanchang, 330013, China
| | - Jing Wu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China.
| | - Huai-Zhi Li
- Laboratory of Reactions and Process Engineering, Université de Lorraine, CNRS, 1, rue Grandville, BP 20451, 54001, Nancy Cedex, France
| | - Souhila Poncin
- Laboratory of Reactions and Process Engineering, Université de Lorraine, CNRS, 1, rue Grandville, BP 20451, 54001, Nancy Cedex, France
| | - Kai-Jun Wang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China
| | - Jian-E Zuo
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China
| |
Collapse
|