1
|
Abera GB, Trømborg E, Solli L, Walter JM, Wahid R, Govasmark E, Horn SJ, Aryal N, Feng L. Biofilm application for anaerobic digestion: a systematic review and an industrial scale case. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2024; 17:145. [PMID: 39695822 DOI: 10.1186/s13068-024-02592-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 11/27/2024] [Indexed: 12/20/2024]
Abstract
Biofilm is a syntrophic community of microorganisms enveloped by extracellular polymeric substances and displays remarkable adaptability to dynamic environments. Implementing biofilm in anaerobic digestion has been widely investigated and applied as it promotes microbial retention time and enhances the efficiency. Previous studies on anaerobic biofilm primarily focused on application in wastewater treatment, while its role has been significantly extended to accelerate the degradation of lignocellulosic biomass, improve gas-liquid mass transfer for biogas upgrading, or enhance resistance to inhibitors or toxic pollutants. This work comprehensively reviewed the current applications of biofilm in anaerobic digestion and focused on impacting factors, optimization strategies, reactor set-up, and microbial communities. Moreover, a full-scale biofilm reactor case from Norway is also reported. This review provides a state of-the- art insight on the role of biofilm in anaerobic digestion.
Collapse
Affiliation(s)
- Getachew Birhanu Abera
- Faculty of Environmental Science and Natural Resource Management, Norwegian University of Life Sciences (NMBU), Postbox 5003, 1432, Ås, Norway
- Wondo Genet College of Forestry and Natural Resources, Hawassa University, Postbox 128, Shashemene, Ethiopia
| | - Erik Trømborg
- Faculty of Environmental Science and Natural Resource Management, Norwegian University of Life Sciences (NMBU), Postbox 5003, 1432, Ås, Norway
| | - Linn Solli
- Norwegian Institute of Bioeconomy Research (NIBIO), Postbox 115, NO-1431, Ås, Norway
| | | | - Radziah Wahid
- Antec Biogas As, Olaf Helsets Vei 5, 0694, Oslo, Norway
| | | | - Svein Jarle Horn
- Norwegian Institute of Bioeconomy Research (NIBIO), Postbox 115, NO-1431, Ås, Norway
- Faculty of Chemistry, Biotechnology and Food Science (KBM), Norwegian University of Life Sciences (NMBU), Postbox 5003, 1432, Ås, Norway
| | - Nabin Aryal
- Department of Process, Energy and Environmental Technology, University of South-Eastern Norway (USN), Campus Porsgrunn, Kjølnes Ring 56, 3918, Porsgrunn, Norway
| | - Lu Feng
- Norwegian Institute of Bioeconomy Research (NIBIO), Postbox 115, NO-1431, Ås, Norway.
| |
Collapse
|
2
|
Mansour MN, Lendormi T, Drévillon L, Naji A, Louka N, Maroun RG, Hobaika Z, Lanoisellé JL. Influence of substrate/inoculum ratio, inoculum source and ammonia inhibition on anaerobic digestion of poultry waste. ENVIRONMENTAL TECHNOLOGY 2024; 45:1894-1907. [PMID: 36524389 DOI: 10.1080/09593330.2022.2157754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 12/06/2022] [Indexed: 06/17/2023]
Abstract
Poultry wastes are rich in organic matter, allowing their use as substrates for biogas production by anaerobic digestion (AD). The major difficulty in the anaerobic digestion of this protein-rich waste is ammonia inhibition. Different results of biochemical methane potential (BMP) were obtained after the mesophilic anaerobic digestion of different avian waste in batch mode. It was shown that using two different inoculum (Liger and Saint-Brieuc) sources and different substrate-to-inoculum (S/I) ratios does not have a significant effect on the biochemical methane potential of organic laying hen droppings (OLHD); an average of 0.272 Nm3 CH4·kg-1·VS was obtained with both inocula. Otherwise, it affects the hydrolysis constant KH, and it decreases when the substrate-to-inoculum ratio increases. Furthermore, Liger is the most suitable inoculum for our substrate because it shows stability during the process even with different organic loads. Comparing the biochemical methane potential of multiple avian wastes such as organic laying hen droppings and different slaughterhouse waste highlights the importance of slaughterhouse waste in the anaerobic digestion process because of the high methane yield observed especially with the viscera (0.779 Nm3 CH4·kg-1 VS, SD = 0.027 Nm3 CH4·kg-1 VS). Moreover, methane production was affected by increasing the ammonia concentrations; when [N-NH3] > 9.8 g·N-NH3·L-1, the biochemical methane potential decreases and the lag phase increases (λ > 30 days); a total inhibition of the process was observed when ammonia concentration is above 21.8 g·L-1.
Collapse
Affiliation(s)
- Marie-Noël Mansour
- Univ. Bretagne Sud, UMR CNRS 6027, IRDL, F-56300 Pontivy, France
- Faculté des Sciences, Centre d'Analyses et de Recherches, Unité de recherche Technologies et Valorisation Alimentaire, Université Saint-Joseph de Beyrouth, Beirut, Lebanon
| | - Thomas Lendormi
- Univ. Bretagne Sud, UMR CNRS 6027, IRDL, F-56300 Pontivy, France
| | - Lucie Drévillon
- Univ. Bretagne Sud, UMR CNRS 6027, IRDL, F-56300 Pontivy, France
| | - Amar Naji
- Univ. Bretagne Sud, UMR CNRS 6027, IRDL, F-56300 Pontivy, France
| | - Nicolas Louka
- Faculté des Sciences, Centre d'Analyses et de Recherches, Unité de recherche Technologies et Valorisation Alimentaire, Université Saint-Joseph de Beyrouth, Beirut, Lebanon
| | - Richard G Maroun
- Faculté des Sciences, Centre d'Analyses et de Recherches, Unité de recherche Technologies et Valorisation Alimentaire, Université Saint-Joseph de Beyrouth, Beirut, Lebanon
| | - Zeina Hobaika
- Faculté des Sciences, Centre d'Analyses et de Recherches, Unité de recherche Technologies et Valorisation Alimentaire, Université Saint-Joseph de Beyrouth, Beirut, Lebanon
| | | |
Collapse
|
3
|
Adnane I, Taoumi H, Elouahabi K, Lahrech K, Oulmekki A. Valorization of crop residues and animal wastes: Anaerobic co-digestion technology. Heliyon 2024; 10:e26440. [PMID: 38439870 PMCID: PMC10909651 DOI: 10.1016/j.heliyon.2024.e26440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 02/08/2024] [Accepted: 02/13/2024] [Indexed: 03/06/2024] Open
Abstract
To switch the over-reliance on fossil-based resources, curb environmental quality deterioration, and promote the use of renewable fuels, much attention has recently been directed toward the implementation of sustainable and environmentally benign 'waste-to-energy' technology exploiting a clean, inexhaustible, carbon-neutral, and renewable energy source, namely agricultural biomass. From this perspective, anaerobic co-digestion (AcoD) technology emerges as a potent and plausible approach to attain sustainable energy development, foster environmental sustainability, and, most importantly, circumvent the key challenges associated with mono-digestion. This review article provides a comprehensive overview of AcoD as a biochemical valorization pathway of crop residues and livestock manure for biogas production. Furthermore, this manuscript aims to assess the different biotic and abiotic parameters affecting co-digestion efficiency and present recent advancements in pretreatment technologies designed to enhance feedstock biodegradability and conversion rate. It can be concluded that the substantial quantities of crop residues and animal waste generated annually from agricultural practices represent valuable bioenergy resources that can contribute to meeting global targets for affordable renewable energy. Nevertheless, extensive and multidisciplinary research is needed to evolve the industrial-scale implementation of AcoD technology of livestock waste and crop residues, particularly when a pretreatment phase is included, and bridge the gap between small-scale studies and real-world applications.
Collapse
Affiliation(s)
- Imane Adnane
- Sidi Mohamed Ben Abdellah University (USMBA), IPI Laboratory, ENS, Fez, Morocco
| | - Hamza Taoumi
- Sidi Mohamed Ben Abdellah University (USMBA), IPI Laboratory, ENS, Fez, Morocco
| | - Karim Elouahabi
- Sidi Mohamed Ben Abdellah University (USMBA), IPI Laboratory, ENS, Fez, Morocco
| | - Khadija Lahrech
- Sidi Mohamed Ben Abdellah University (USMBA), ENSA, Fez, Morocco
| | - Abdellah Oulmekki
- Laboratory of Processes, Materials and Environment (LPME), Faculty of Science and Technology, Sidi Mohamed Ben Abdellah University, Fez, Morocco
| |
Collapse
|
4
|
Das A, Verma M, Mishra V. Food waste to resource recovery: a way of green advocacy. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:17874-17886. [PMID: 37186182 DOI: 10.1007/s11356-023-27193-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 04/19/2023] [Indexed: 05/17/2023]
Abstract
Due to the massive growth in population and urbanization, there has been a huge increase in the volume of food waste globally. The Food and Agriculture Organization (FAO) has estimated that around one-third of all food produced each year is wasted. Food waste leads to the emission of greenhouse gas and depletion of the soil fertility. Nevertheless, it has immense potential for the recovery of high-value energy, fuel, and other resources. This review summarizes the latest advances in resource recovery from food waste by using technologies that include food waste-mediated microbial fuel cell (MFC) for bioenergy production. In addition to this, utilization of food waste for the production of bioplastic, biogas, bioethanol, and fertilizer has been also discussed in detail. Competitive benefits and accompanying difficulties of these technologies have also been highlighted. Furthermore, future approaches for more efficient use of food waste for the recovery of valuable resources have been also offered from an interdisciplinary perspective.
Collapse
Affiliation(s)
- Alok Das
- School of Biochemical Engineering, IIT (BHU), U.P, Varanasi, 221005, India
| | - Manisha Verma
- School of Biochemical Engineering, IIT (BHU), U.P, Varanasi, 221005, India
| | - Vishal Mishra
- School of Biochemical Engineering, IIT (BHU), U.P, Varanasi, 221005, India.
| |
Collapse
|
5
|
Liu C, Li S, Niu H, Yang H, Tan J, Zhang J, Ren L, Yan B. Effect of Lipid Type on the Acidogenic Performance of Food Waste. FERMENTATION-BASEL 2023. [DOI: 10.3390/fermentation9040348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
Abstract
Due to its high lipid content and intricate constitution, food waste poses a considerable challenge for biotreatment. This research aims to investigate the potential influence of diverse lipid species on anaerobic fermentation, induced by the varying dietary patterns observed in distinct regions. The investigation involved incorporating 5% (w/w) of beef tallow, mutton fat, soybean oil, peanut oil, and rapeseed oil, separately, into simulated food waste, and subjected it to batch mode acidogenic fermentation. The inclusion of unsaturated fatty acids resulted in a redirection of the metabolic pathway from the lactic acid type to the ethanol, acetic acid, and butyric acid types. The succession of the acidogenic metabolic pathway was highly correlated with the lipid types; beef tallow, mutton fat, soybean oil, and peanut oil delayed the metabolic process by 1, 2, 3, and 8 d, respectively, whereas rapeseed oil accelerated it by 2 d. The lipids contained within the food waste did not facilitate the buildup of soluble substances, resulting in a decrease of 14.0~59.7%. Notwithstanding, valeric acid was exclusively generated during the beef tallow and peanut oil treatments, whereas the production of lactic acid in peanut oil showed a 35.9% increase in comparison to the control.
Collapse
Affiliation(s)
- Chao Liu
- College of Environment & Ecology, Hunan Agricultural University, Changsha 410128, China
| | - Sheng Li
- College of Environment & Ecology, Hunan Agricultural University, Changsha 410128, China
| | - Hongyu Niu
- College of Environment & Ecology, Hunan Agricultural University, Changsha 410128, China
| | - Haijun Yang
- College of Environment & Ecology, Hunan Agricultural University, Changsha 410128, China
| | - Ju Tan
- Changsha Environmental Monitoring Center Station, Changsha 410001, China
| | - Jiachao Zhang
- College of Environment & Ecology, Hunan Agricultural University, Changsha 410128, China
| | - Liheng Ren
- College of Environment & Ecology, Hunan Agricultural University, Changsha 410128, China
| | - Binghua Yan
- College of Environment & Ecology, Hunan Agricultural University, Changsha 410128, China
| |
Collapse
|
6
|
Singh A, Prajapati P, Vyas S, Gaur VK, Sindhu R, Binod P, Kumar V, Singhania RR, Awasthi MK, Zhang Z, Varjani S. A Comprehensive Review of Feedstocks as Sustainable Substrates for Next-Generation Biofuels. BIOENERGY RESEARCH 2023; 16:105-122. [DOI: 10.1007/s12155-022-10440-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 03/18/2022] [Indexed: 08/20/2023]
|
7
|
Cubero-Cardoso J, Maluf Braga AF, Trujillo-Reyes Á, Alonso-Segovia G, Serrano A, Borja R, Fermoso FG. Effect of metals on mesophilic anaerobic digestion of strawberry extrudate in batch mode. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 326:116783. [PMID: 36435128 DOI: 10.1016/j.jenvman.2022.116783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 10/27/2022] [Accepted: 11/11/2022] [Indexed: 06/16/2023]
Abstract
According to recent studies, the anaerobic digestion of strawberry extrudate is a promising option with potential in the berry industry biorefinery. However, the lack and/or unbalance of concentrations of metals in some agro-industrial residues could hamper methane production during the anaerobic digestion of these kinds of wastes. In this study, a fractional factorial design was applied to screen the supplementation requirements regarding six metals (Co, Ni, Fe, Cu, Mn, and Zn) for methane production from strawberry extrudate (SE). The logistic model was used to fit the experimental data of methane production-time. It allowed identifying two different stages in the anaerobic process and obtaining the kinetic parameters for each step. Maximum methane production obtained in the first (Bmax) kinetic stage, the methane production in the second stage (P), and the maximum methane production rates (Rmax) concluded a statistically significant effect for Ni and Zn. The second set of experiments was carried out with Ni and Zn through a central composite design to study the concentration effect in the anaerobic digestion process of the strawberry extrudate. The parameters P and Rmax demonstrated a positive interaction between Ni and Zn. Although, Bmax did not prove a statistically significant effect between Ni and Zn.
Collapse
Affiliation(s)
- Juan Cubero-Cardoso
- Instituto de Grasa, Spanish National Research Council (CSIC), Ctra. de Utrera, Km. 1, 41013 Seville, Spain.
| | - Adriana Ferreira Maluf Braga
- Biological Process Laboratory, São Carlos School of Engineering, University of São Paulo (LPB/EESC/USP), Av.João Dagnone 1100, São Carlos, São Paulo, 13563-120, Brazil.
| | - Ángeles Trujillo-Reyes
- Instituto de Grasa, Spanish National Research Council (CSIC), Ctra. de Utrera, Km. 1, 41013 Seville, Spain.
| | - Gabriel Alonso-Segovia
- Instituto de Grasa, Spanish National Research Council (CSIC), Ctra. de Utrera, Km. 1, 41013 Seville, Spain.
| | - Antonio Serrano
- Institute of Water Research, University of Granada, Granada, 18071, Spain; Department of Microbiology, Pharmacy Faculty, University of Granada, Campus de Cartuja S/n, Granada, 18071, Spain.
| | - Rafael Borja
- Instituto de Grasa, Spanish National Research Council (CSIC), Ctra. de Utrera, Km. 1, 41013 Seville, Spain.
| | - Fernando G Fermoso
- Instituto de Grasa, Spanish National Research Council (CSIC), Ctra. de Utrera, Km. 1, 41013 Seville, Spain.
| |
Collapse
|
8
|
Impact of temperature, inoculum flow pattern, inoculum type, and their ratio on dry anaerobic digestion for biogas production. Sci Rep 2022; 12:6162. [PMID: 35418699 PMCID: PMC9007994 DOI: 10.1038/s41598-022-10025-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 03/16/2022] [Indexed: 12/03/2022] Open
Abstract
This study is aimed to apply dry anaerobic digestion (DAD) for methane (CH4) enriched biogas production from unsorted organic municipal solid waste (MSW). Cumulative biogas production was monitored for 35 days of operation in batch digesters at fixed feedstock to inoculum (F/I) ratio 2. Anaerobic sludge (AS) and cow manure (CM) were used as inoculum in single and mixed modes. Several process parameters such as inoculum flow pattern (single layer, multilayer, and spiral), digestion temperature (25 to 40 °C), inoculation modes (single and mixed mode), and inoculation proportion (AS:CM = 1:1, 1:2, 1:3, and 2:1) were investigated to determine the optimum DAD conditions to maximize the CH4 laden biogas yield. The study of inoculum flow pattern showed that digester with multilayer inoculum configuration generated the maximum 555 mL cumulative biogas with the production rate of 195 mL/day (at 25 °C). Biogas production rate and cumulative biogas production were found to increase with a rise in temperature and the maximum values of 380 mL/day and 1515 mL respectively were observed at 37 °C. The mixed mode of inoculation containing AS and CM augmented the biogas yield at previously optimized conditions. Final results showed that digester with multilayer inoculum flow pattern at 37 °C produced 1850 mL cumulative biogas with 1256.58 mL CH4/kg volatile solid (VS) when the mixed inoculum was used at the AS:CM—1:2 ratio. Biogas production with this significant amount of CH4 justifies the use of the DAD process for energy (biogas) generation from widely available biomass feedstock (MSW), offering various advantages to the environment.
Collapse
|
9
|
Kalaiselvan N, Glivin G, Bakthavatsalam AK, Mariappan V, Premalatha M, Raveendran PS, Jayaraj S, Sekhar SJ. A waste to energy technology for Enrichment of biomethane generation: A review on operating parameters, types of biodigesters, solar assisted heating systems, socio economic benefits and challenges. CHEMOSPHERE 2022; 293:133486. [PMID: 35016951 DOI: 10.1016/j.chemosphere.2021.133486] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 12/22/2021] [Accepted: 12/29/2021] [Indexed: 06/14/2023]
Abstract
Anaerobic Digestion (AD) is one of the promising wastestoenergy (WtE) technologies that convert organic wastes to useful gaseous fuel (biogas). In this process methane is produced in the presence of methanogens (bacteria). The survival and activities of methanogens are based on several parameters such as pH, temperature, organic loading rate, types of biodigester. Moreover, these parameters influence the production of biogas in terms of yield and composition. Maintaining an appropriate temperaturefor AD is highly critical and energy intensive. This study reviews the various hybrid technologies assistedbio gas production schemes particularly from renewable energy sources. Also discuss the direct and indirect solar assisted bio-digester impacts and recommendation to improve its performance. In addition, the performance analysis Solar Photovoltaic (PV) and thermal collector assisted bio gas plants; besides their impact on the performance of anaerobic digesters. Since opportunities of solar energy are attractive, the effective utilization of the same is selected for the discussion. Besides, the various constraints that affect the yield and composition of biogas are also evaluated along with the current biogas technologies and the biodigesters. The environmental benefits, challenges and socio-economic factors are also discussed for the successful implementation of various technologies.
Collapse
Affiliation(s)
- N Kalaiselvan
- Department of Energy and Environment, National Institute of Technology Tiruchirappalli, Tamilnadu, India
| | - Godwin Glivin
- Department of Energy and Environment, National Institute of Technology Tiruchirappalli, Tamilnadu, India.
| | - A K Bakthavatsalam
- Department of Energy and Environment, National Institute of Technology Tiruchirappalli, Tamilnadu, India
| | - V Mariappan
- Department of Mechanical Engineering, National Institute of Technology Tiruchirappalli, Tamil Nadu, India
| | - M Premalatha
- Department of Energy and Environment, National Institute of Technology Tiruchirappalli, Tamilnadu, India
| | - P Saji Raveendran
- Department of Mechanical Engineering, Kongu Engineering College, Erode, Tamil Nadu, India
| | - S Jayaraj
- Department of Mechanical Engineering, National Institute of Technology Calicut, Kerala, India
| | - S Joseph Sekhar
- Department of Engineering, University of Technology and Applied Sciences, Shinas, PC 324, Oman
| |
Collapse
|
10
|
Zainal A, Harun R, Idrus S. Performance Monitoring of Anaerobic Digestion at Various Organic Loading Rates of Commercial Malaysian Food Waste. Front Bioeng Biotechnol 2022; 10:775676. [PMID: 35402398 PMCID: PMC8988436 DOI: 10.3389/fbioe.2022.775676] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 03/02/2022] [Indexed: 11/18/2022] Open
Abstract
Application of anaerobic digestion (AD) has become common in treating palm oil mill effluent in Malaysia; however, employing AD in treating the organic fraction of municipal solid waste (OFMSW), especially food waste, is still scarce. This study aims to characterize the commercial Malaysian food waste (CMFW) and determine its potential as sustainable bioenergy feedstock through biogas production. The sample was digested via the biomethane potential (BMP) test with the variation of organic loading rates (OLRs), ranging from 0.38 to 3.83 gCOD/L. day, under mesophilic conditions. The digestion process was further evaluated in continuous operation using a 6-L continuous stirred-tank reactor (CSTR). The kinetic properties of the process were also determined. It was found that the CMFW had a significant amount of chemical oxygen demand of 230 g/L and an acidic pH of 4.5 with the carbon to nitrogen (C/N) ratio at 121:1. A maximum methane composition of 81% was obtained at 1.92 gCOD/L in the BMP test with specific methane production (SMP) at 0.952 L. CH4/L.COD fed. The biogas production was well-fitted with the modified Gompertz model with R2 at 0.9983 and the maximum biogas potential production rate at Rm 0.1573 L/day, whereas in the CSTR operation, a maximum methane composition of 85% was produced at OLR 6 gCOD/L. day with the SMP of 1.13 L. CH4/L.COD fed. The CSTR system was in high stability as the pH was maintained in a range of 6.6–6.7, with an alkalinity ratio of 0.28. This study indicates the CMFW is a sustainable feedstock for biogas production in Malaysia. Toward a circular economy approach, the authorities shall introduce commercial scale CMFW AD as part of managing municipal solid waste issues in Malaysia.
Collapse
Affiliation(s)
- Afifi Zainal
- Department of Generation and Environment, Renewable Energy and Green Technology Unit, TNB Research Sdn. Bhd., Kajang, Malaysia
- Department of Chemical and Environmental Engineering, Faculty of Engineering, Universiti Putra Malaysia, Serdang, Malaysia
| | - Razif Harun
- Department of Chemical and Environmental Engineering, Faculty of Engineering, Universiti Putra Malaysia, Serdang, Malaysia
- *Correspondence: Razif Harun,
| | - Syazwani Idrus
- Department of Civil Engineering, Faculty of Engineering, Universiti Putra Malaysia, Serdang, Malaysia
| |
Collapse
|
11
|
Singh A, Singh A. Microbial Degradation and Value Addition to Food and Agriculture Waste. Curr Microbiol 2022; 79:119. [PMID: 35235053 DOI: 10.1007/s00284-022-02809-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 02/11/2022] [Indexed: 11/26/2022]
Abstract
Food and agriculture waste (FAW) is a serious problem that is increasing globally. Wastage of raw materials or processed food due to various man-made activities is huge. This solid waste which is either being discarded by humans in their daily activities or an obligatory residue of agricultural processes is severely harming our environment. This becomes a major concern in densely populated agri-based countries, like India, China, and the USA. It is strongly debated that such issues need to be addressed very emphatically for sustainable development of ourselves and our surroundings. Lots of economic benefits can be obtained by reducing the food loss or converting the agricultural waste into useful products and these advantages can be in the form of better food security, reduced production cost, biodegradable products, and environment sustainability with cleaner options to reduce the ever-increasing global problem of garbage and waste management. Proper management of these substances can considerably lessen the risks to individual health. Reprocessing of waste is of great advantage as FAW has many components which may form an available resource to be converted to another useful product. Several approaches have been made for converting food waste into fruitful products. Bioconversion being the most prominent approach is helping us in a major way to overcome the problem of FAW. Microorganisms are at the forefront of this and have been extensively explored for their bioconversion potential. The present work focuses on the current state of food and agriculture waste and their valorization approaches. Through extensive literature review, we have highlighted and discussed the potential of microorganisms in bioconversion of waste, major types of functional ingredients derived during the process, and potential constraints in implementation of such state-of-the-art technology at industrial scale. The review also gives a brief technical overview of the conversion of waste products into energy generation and biofuels.
Collapse
Affiliation(s)
- Aditi Singh
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow Campus, Gomti Nagar Extension, Near Malhaur Railway Station, Lucknow, 226028, India.
| | - Avishka Singh
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow Campus, Gomti Nagar Extension, Near Malhaur Railway Station, Lucknow, 226028, India
| |
Collapse
|
12
|
Hassanein A, Naresh Kumar A, Lansing S. Impact of electro-conductive nanoparticles additives on anaerobic digestion performance - A review. BIORESOURCE TECHNOLOGY 2021; 342:126023. [PMID: 34852449 DOI: 10.1016/j.biortech.2021.126023] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 09/16/2021] [Accepted: 09/19/2021] [Indexed: 06/13/2023]
Abstract
Anaerobic digestion (AD) is a biochemical process that converts waste organic matter into energy-rich biogas with methane as the main component. Addition of electric electro-conductive, such as that nanoparticles (NP), has been shown to improve biogas generation. Interspecies electron transfer and direct interspecies electron transfer (DIET) using conductive materials is one of the mechanisms responsible for observed increases in CH4. This article discusses the effect of the type and size of electro-conductive NPs on improving microbial degradation within AD systems, as well as the effect of electro-conductive NPs on microbial community shifts and syntrophic metabolism. Limitations and future perspectives of using NPs in an AD system is also discussed.
Collapse
Affiliation(s)
- Amro Hassanein
- Department of Environmental Science and Technology, University of Maryland, College Park, MD 20742, USA.
| | - A Naresh Kumar
- Department of Environmental Science and Technology, University of Maryland, College Park, MD 20742, USA
| | - Stephanie Lansing
- Department of Environmental Science and Technology, University of Maryland, College Park, MD 20742, USA
| |
Collapse
|
13
|
Mohd Johari SA, Mahad Nasir MM, Ali S, Hamza A, Aleem W, Ameen M, Aqsha A. Recent Technology Developments in Biogas Production from Waste Materials in Malaysia. CHEMBIOENG REVIEWS 2021. [DOI: 10.1002/cben.202100016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Siti Aminah Mohd Johari
- Universiti Teknologi PETRONAS Higher Institution Centre of Excellence (HiCoE) Centre for Biofuel and Biochemical Research (CBBR) Institute of Sustainable Living (ISB) 32610 Seri Iskandar Malaysia
- Universiti Teknologi PETRONAS Department of Chemical Engineering 32610 Seri Iskandar Malaysia
| | | | - Sundas Ali
- University of Punjab Institute of Chemical Engineering and Technology 54590 Lahore Pakistan
| | - Ameer Hamza
- University of Punjab Institute of Chemical Engineering and Technology 54590 Lahore Pakistan
| | - Waqas Aleem
- Mir Chakar Khan Rind University of Technology Department of Chemical Engineering & Technology Dera Ghazi Khan Pakistan
| | - Mariam Ameen
- Universiti Teknologi PETRONAS Higher Institution Centre of Excellence (HiCoE) Centre for Biofuel and Biochemical Research (CBBR) Institute of Sustainable Living (ISB) 32610 Seri Iskandar Malaysia
- Universiti Teknologi PETRONAS Department of Chemical Engineering 32610 Seri Iskandar Malaysia
| | - Aqsha Aqsha
- Institut Teknologi Bandung Department of Bioenergy and Chemurgy Engineering, Faculty of Technology Industry 45363 Bandung Indonesia
| |
Collapse
|
14
|
Odour Nuisance at Municipal Waste Biogas Plants and the Effect of Feedstock Modification on the Circular Economy—A Review. ENERGIES 2021. [DOI: 10.3390/en14206470] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The increase in the amount of municipal solid waste (MSW) generated, among other places, in households is a result of the growing population, economic development, as well as the urbanisation of areas with accompanying insufficiently effective measures to minimise waste generation. There are many methods for treating municipal waste, with the common goal of minimising environmental degradation and maximising resource recovery. Biodegradable waste, including selectively collected biowaste (BW), also plays an essential role in the concept of the circular economy (CE), which maximises the proportion of waste that can be returned to the system through organic recycling and energy recovery. Methane fermentation is a waste treatment process that is an excellent fit for the CE, both technically, economically, and environmentally. This study aims to analyse and evaluate the problem of odour nuisance in municipal waste biogas plants (MWBPs) and the impact of the feedstock (organic fraction of MSW-OFMSW and BW) on this nuisance in the context of CE assumptions. A literature review on the subject was carried out, including the results of our own studies, showing the odour nuisance and emissions from MWBPs processing both mixed MSW and selectively collected BW. The odour nuisance of MWBPs varies greatly. Odour problems should be considered regarding particular stages of the technological line. They are especially seen at the stages of waste storage, fermentation preparation, and digestate dewatering. At examined Polish MWBPs cod ranged from 4 to 78 ou/m3 for fermentation preparation and from 8 to 448 ou/m3 for digestate dewatering. The conclusions drawn from the literature review indicate both the difficulties and benefits that can be expected with the change in the operation of MWBPs because of the implementation of CE principles.
Collapse
|
15
|
Bonassa G, Bolsan AC, Hollas CE, Venturin B, Candido D, Chini A, De Prá MC, Antes FG, Campos JL, Kunz A. Organic carbon bioavailability: Is it a good driver to choose the best biological nitrogen removal process? THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 786:147390. [PMID: 33964770 DOI: 10.1016/j.scitotenv.2021.147390] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 04/19/2021] [Accepted: 04/23/2021] [Indexed: 06/12/2023]
Abstract
Organic carbon can affect the biological nitrogen removal process since the Anammox, heterotrophic and denitrifying bacteria have different affinities and feedback in relation to carbon/nitrogen ratio. Therefore, we reviewed the wastewater carbon concentration, its biodegradability and bioavailability to choose the appropriate nitrogen removal process between conventional (nitrification-denitrification) and Anammox-based process (i.e. integrated with the partial nitritation, nitritation, simultaneous partial nitrification and denitrification or partial-denitrification). This review will cover: (i) strategies to choose the best nitrogen removal route according to the wastewater characteristics in relation to the organic matter bioavailability and biodegradability; (ii) strategies to efficiently remove nitrogen and the remaining carbon from effluent in anammox-based process and its operating cost; (iii) an economic analysis to determine the operational costs of two-units Anammox-based process when compared with the commonly applied one-unit Anammox system (partial-nitritation-Anammox). On this review, a list of alternatives are summarized and explained for different nitrogen and biodegradable organic carbon concentrations, which are the main factors to determine the best treatment process, based on operational and economic terms. In summary, it depends on the wastewater carbon biodegradability, which implies in the wastewater treatment cost. Thus, to apply the conventional nitrification/denitrification process a CODb/N ratio higher than 3.5 is required to achieve full nitrogen removal efficiency. For an economic point of view, according to the analysis the minimum CODb/gN for successful nitrogen removal by nitrification/denitrification is 5.8 g. If ratios lower than 3.5 are applied, for successfully higher nitrogen removal rates and the economic feasibility of the treatment, Anammox-based routes can be applied to the wastewater treatment plant.
Collapse
Affiliation(s)
| | | | | | - Bruno Venturin
- Western Paraná State University, 85819-110 Cascavel, PR, Brazil
| | - Daniela Candido
- Federal University of Fronteira Sul, 99700-000 Erechim, Brazil
| | - Angélica Chini
- Western Paraná State University, 85819-110 Cascavel, PR, Brazil
| | - Marina C De Prá
- Federal University of Technology - Parana (UTFPR), 85660-000 Dois Vizinhos, PR, Brazil
| | | | - José Luis Campos
- Facultad de Ingeniería y Ciencias, Universidad Adolfo Ibáñez, Avda. Padre Hurtado 750, 2503500 Viña del Mar, Chile
| | - Airton Kunz
- Western Paraná State University, 85819-110 Cascavel, PR, Brazil; Federal University of Fronteira Sul, 99700-000 Erechim, Brazil; Embrapa Suínos e Aves, 89715-899 Concórdia, SC, Brazil.
| |
Collapse
|
16
|
Velasco P, Jegatheesan V, Thangavadivel K, Othman M, Zhang Y. A focused review on membrane contactors for the recovery of dissolved methane from anaerobic membrane bioreactor (AnMBR) effluents. CHEMOSPHERE 2021; 278:130448. [PMID: 34126683 DOI: 10.1016/j.chemosphere.2021.130448] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 03/16/2021] [Accepted: 03/28/2021] [Indexed: 06/12/2023]
Abstract
The need for a more sustainable wastewater treatment is more relevant now due to climate change. Production and reuse of methane from anaerobic treatment is one pathway. However, this is defeated by the presence of dissolved methane in the effluent and would be released to the environment, adding to the greenhouse gas emissions. This review paper provided summary and analysis of studies involved in the production of dissolved methane from AnMBR, focusing with actual methane measurement (gas and dissolved) from AnMBR with different types of wastewater. Then more focused discussion and analysis on the use of membrane-based technology or membrane contactors in the recovery of dissolved methane from AnMBR effluent are included, with its development and energy analysis. The dissolved methane removal and recovery rate of membrane contactors can be as high as 96% and 0.05 mol methane/m2/h, respectively, with very low additional energy requirement of 0.01 kWh/m3 for the recovery. Future perspectives presented focus on the long-term evaluation and modelling of membrane contactors and on the membrane modifications to improve the selectivity of membranes to methane and to limit their fouling and wetting, thus making the technology more economical for resource recovery.
Collapse
Affiliation(s)
- Perlie Velasco
- Chemical and Environmental Engineering, School of Engineering, RMIT University, Melbourne, Victoria, 3000, Australia; Department of Civil Engineering, University of the Philippines - Los Baños, Pili Drive, College, Laguna, 4031, Philippines.
| | - Veeriah Jegatheesan
- Chemical and Environmental Engineering, School of Engineering, RMIT University, Melbourne, Victoria, 3000, Australia
| | | | - Maazuza Othman
- Chemical and Environmental Engineering, School of Engineering, RMIT University, Melbourne, Victoria, 3000, Australia
| | - Yang Zhang
- Membrane Innovation and Resource Recovery (MIRR), School of Environmental and Safety Engineering, Qingdao University of Science and Technology, 53 Zhengzhou Road, Qingdao, 266042, Shandong, China
| |
Collapse
|
17
|
Okoro-Shekwaga CK, Ross AB, Camargo-Valero MA. Enhanced in-situ biomethanation of food waste by sequential inoculum acclimation: Energy efficiency and carbon savings analysis. WASTE MANAGEMENT (NEW YORK, N.Y.) 2021; 130:12-22. [PMID: 34044360 DOI: 10.1016/j.wasman.2021.04.053] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 04/10/2021] [Accepted: 04/27/2021] [Indexed: 06/12/2023]
Abstract
The increasing rate of food waste (FW) generation globally, makes it an attractive resource for renewable energy through anaerobic digestion (AD). The biogas recovered from AD can be upgraded by the methanation of internally produced carbon dioxide, CO2 with externally sourced hydrogen gas, H2 (biomethanation). In this work, H2 was added to AD reactors processing FW in three successive phases, with digestate from preceding phases recycled in succession with the addition of fresh inoculum to enhance acclimation. The concentration of H2 was increased for succeeding phases: 5%, 10% and 15% of the reactor headspace in Phase 1 (EH1), Phase 2 (EH2) and Phase 3 (EH3), respectively. The H2 utilisation rate and biomethane yields increased as acclimation progressed from EH1 through EH3. Biomethane yield from the controls: EH1_Control, EH2_Control and EH3_Control were 417.6, 435.4 and 453.3 NmL-CH4/gVSadded accounting for 64.8, 73.9 and 77.8% of the biogas respectively. And the biomethane yield from the test reactors EH1_Test, EH2_Test and EH3_Test were 468.3, 483.6, and 499.0 NmL-CH4/gVSadded, accounting for 77.2, 78.1 and 81.0% of the biogas respectively. A progressive in-situ biomethanation could lead to biomethane production that meets higher fuel standards for gas-to-grid (GtG) injections and vehicle fuel - i.e. >95% CH4. This would increase the energy yield and carbon savings compared to conventional biogas upgrade methods. For example, biogas upgrade for GtG by in-situ biomethanation could yield 7.3 MWh/tFW energy and 1343 kg-CO2e carbon savings, which is better than physicochemical upgrade options (i.e., 4.6-4.8 MWh/tFW energy yield and 846-883 kg-CO2e carbon savings).
Collapse
Affiliation(s)
- Cynthia Kusin Okoro-Shekwaga
- BioResource Systems Research Group, School of Civil Engineering, University of Leeds, Leeds LS2 9JT, United Kingdom; Department of Agricultural and Bioresources Engineering, Federal University of Technology, Minna P.M.B. 65, Niger State, Nigeria
| | - Andrew Barry Ross
- School of Chemical and Process Engineering, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Miller Alonso Camargo-Valero
- BioResource Systems Research Group, School of Civil Engineering, University of Leeds, Leeds LS2 9JT, United Kingdom; Departamento de Ingeniería Química, Universidad Nacional de Colombia, Campus La Nubia, Manizales, Colombia.
| |
Collapse
|
18
|
Morais NWS, Coelho MMH, Silva ADSE, Silva FSS, Ferreira TJT, Pereira EL, Dos Santos AB. Biochemical potential evaluation and kinetic modeling of methane production from six agro-industrial wastewaters in mixed culture. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 280:116876. [PMID: 33774550 DOI: 10.1016/j.envpol.2021.116876] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 02/12/2021] [Accepted: 03/02/2021] [Indexed: 06/12/2023]
Abstract
Methane (CH4) production from anaerobic digestion of solid and liquid agro-industrial wastes is an attractive strategy to meet the growing need for renewable energy sources and promote environmentally appropriate disposal of organic wastes. This work aimed at determining the CH4 production potential of six agro-industrial wastewaters (AWW), evaluating the most promising for methanization purposes. It also aims to provide kinetic parameters and stoichiometric coefficients of CH4 production and define which kinetic models are most suitable for simulating the CH4 production of the evaluated substrates. The AWW studied were swine wastewater (SW), slaughterhouse wastewater (SHW), dairy wastewater (DW), brewery wastewater (BW), fruit processing wastewater (FPW), and residual glycerol (RG) of biodiesel production. RG was the substrate that showed the highest methanization potential. Exponential kinetic models can be efficiently applied for describing CH4 production of more soluble substrates. On the other hand, logistic models were more suitable to predict the CH4 production of more complex substrates.
Collapse
Affiliation(s)
- Naassom Wagner Sales Morais
- Department of Hydraulic and Environmental Engineering, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | | | - Amanda de Sousa E Silva
- Department of Hydraulic and Environmental Engineering, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | | | | | - Erlon Lopes Pereira
- Department of Hydraulic and Environmental Engineering, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - André Bezerra Dos Santos
- Department of Hydraulic and Environmental Engineering, Federal University of Ceará, Fortaleza, Ceará, Brazil.
| |
Collapse
|
19
|
Gao S, Lu D, Qian T, Zhou Y. Thermal hydrolyzed food waste liquor as liquid organic fertilizer. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 775:145786. [PMID: 33621877 DOI: 10.1016/j.scitotenv.2021.145786] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 02/05/2021] [Accepted: 02/06/2021] [Indexed: 06/12/2023]
Abstract
Thermal hydrolysis (TH) is an efficient technology for food waste (FW) management. This study investigated the nutrients released from FW under various TH temperature (140, 160, 180, 200 and 220 °C) and evaluated the feasibility of the hydrolyzed liquor (HL) as liquid organic fertilizer. The phytotoxicity and biotoxicity of HL was analyzed using wheat seed and Pseudomonas putida. Results revealed that TH could effectively solubilize FW and release nutrients (N, P and K) and organic substances. The highest content of total nitrogen (TN, 1685 mgN/L) and phosphorus (TP, 235 mgP/L) in the HL was obtained under 180 °C. The K+ was 278-293 mg/L regardless of treatment temperature. Secondary nutrients (Ca and Mg) and micro metals (Fe, Cu, Zn, Al, Co and Mn) were all detected at relatively high level, while heavy metals (As and Cd) were generally lower than 0.5 mg/L. Twenty types of free amino acid were identified and the maximum total concentration was 4965.13 mg/L. 2% HL displayed higher germination index (>80%) and enhanced root and shoot lengths. No biotoxicity was observed as confirmed by the bioassay. This study proposes a feasible method to solubilize food waste and produce liquid organic fertilizer.
Collapse
Affiliation(s)
- Shumei Gao
- Advanced Environmental Biotechnology Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, Singapore 637141, Singapore; College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, Zhejiang, China
| | - Dan Lu
- Advanced Environmental Biotechnology Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, Singapore 637141, Singapore
| | - Tingting Qian
- Advanced Environmental Biotechnology Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, Singapore 637141, Singapore
| | - Yan Zhou
- Advanced Environmental Biotechnology Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, Singapore 637141, Singapore; School of Civil and Environmental Engineering, Nanyang Technological University, Singapore 639798, Singapore.
| |
Collapse
|
20
|
Tufaner F. Environmental assessment of refectory waste based on approaches zero-waste project in Turkey: the production of biogas from the refectory waste. ENVIRONMENTAL MONITORING AND ASSESSMENT 2021; 193:403. [PMID: 34109450 DOI: 10.1007/s10661-021-09147-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Accepted: 05/17/2021] [Indexed: 06/12/2023]
Abstract
The zero-waste project in Turkey, which was started in 2017, is planned to be implemented until 2023, starting from public institutions and organizations. However, in refectories where high amounts of organic waste are generated, these organic wastes are generally transported to the landfill site by the municipalities and, consequently, they go beyond the scope of the zero-waste project. In this study, the anaerobic treatment of refectory wastes based on the scope of the zero-waste approach in Turkey has been developed as an innovative and holistic approach. As a result of the informing studies in the refectories, the waste of bread could be zero, while the waste of meals could not be zero, but a significant decrease in meal waste was found. In addition, this holistic approach has also strengthened recycling. Anaerobic digestion was selected to complete the zero-waste target for food wastes that are still generated. In the study using the UASB reactor operated in mesophilic conditions (36.5-37 °C), feeding has been done with approximately 21.9 kg VSadded m-3 OLR in 10-day HRT. As a result, it was observed that the production of biogas and organic fertilizers from food waste using anaerobic technologies is an important solution on behalf of realizing the zero-waste application. The results showed that 1 kg of food waste with 62 ± 3.2% solid content could produce 640 L of biogas with approximately 62.2 ± 0.6% methane content. In addition, a 26.2-L bio-fertilizer with an average COD concentration of 3354 ± 106 mg L-1 was produced. This research paper with a successful method at the Adıyaman University in Turkey focuses on the goal of zero waste. This study illustrated how it is possible to implement an effective initiative to reduce food waste with a holistic approach.
Collapse
Affiliation(s)
- Fatih Tufaner
- Department of Environmental Engineering, Faculty of Engineering, Adiyaman University, 02040, Adiyaman, Turkey.
- Environmental Management Application and Research Center, Adiyaman University, 02040, Adiyaman, Turkey.
| |
Collapse
|
21
|
Pan SY, Tsai CY, Liu CW, Wang SW, Kim H, Fan C. Anaerobic co-digestion of agricultural wastes toward circular bioeconomy. iScience 2021; 24:102704. [PMID: 34258548 PMCID: PMC8253966 DOI: 10.1016/j.isci.2021.102704] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
A huge amount of agricultural wastes and waste activated-sludge are being generated every year around the world. Anaerobic co-digestion (AcD) has been considered as an alternative for the utilization of organic matters from such organic wastes by producing bioenergy and biochemicals to realize a circular bioeconomy. Despite recent advancement in AcD processes, the effect of feedstock compositions and operating conditions on the biomethane production processe has not been critically explored. In this paper, we have reviewed the effects of feedstock (organic wastes) characteristics, including particle size, carbon-to-nitrogen ratio, and pretreatment options, on the performance of an anaerobic digestion process. In addition, we provided an overview of the effect of key control parameters, including retention time, temperature, pH of digestate, volatile fatty acids content, total solids content, and organic loading rate. Lastly, based on the findings from the literature, we have presented several perspectives and prospects on priority research to promote AcD to a steppingstone for a circular bioeconomy.
Collapse
Affiliation(s)
- Shu-Yuan Pan
- Department of Bioenvironmental Systems Engineering, National Taiwan University, No. 1, Section 4, Roosevelt Road, Taipei 10617, Taiwan (ROC)
| | - Cheng-Yen Tsai
- Graduate Institute of Environmental Engineering, National Taiwan University, No. 1, Section 4, Roosevelt Road, Taipei 10617, Taiwan (ROC)
| | - Chen-Wuing Liu
- Department of Bioenvironmental Systems Engineering, National Taiwan University, No. 1, Section 4, Roosevelt Road, Taipei 10617, Taiwan (ROC)
| | - Sheng-Wei Wang
- Department of Water Resources and Environmental Engineering, Tamkang University, New Taipei City 25137, Taiwan (ROC)
| | - Hyunook Kim
- Department of Environmental Engineering, The University of Seoul, 163, Seoulsiripdae‑ro, Dongdaemun‑gu, Seoul 02504, South Korea
| | - Chihhao Fan
- Department of Bioenvironmental Systems Engineering, National Taiwan University, No. 1, Section 4, Roosevelt Road, Taipei 10617, Taiwan (ROC)
| |
Collapse
|
22
|
Karimi A, Kazemi M, Samani SA, Simal-Gandara J. Bioactive compounds from by-products of eggplant: Functional properties, potential applications and advances in valorization methods. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.04.027] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
23
|
Mu L, Zhang L, Ma J, Zhu K, Chen C, Li A. Enhanced biomethanization of waste polylactic acid plastic by mild hydrothermal pretreatment: Taguchi orthogonal optimization and kinetics modeling. WASTE MANAGEMENT (NEW YORK, N.Y.) 2021; 126:585-596. [PMID: 33862510 DOI: 10.1016/j.wasman.2021.03.044] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 02/20/2021] [Accepted: 03/25/2021] [Indexed: 06/12/2023]
Abstract
Polylactic acid (PLA) plastic is becoming a popular alternative to traditional petroleum-based plastics, but the biodegradability in engineered biological system is still a matter of concern. In this study, the biodegradability of PLA plastic at mesophilic and thermophilic AD were investigated, and a hydrothermal pretreatment was proposed to enhance the hydrolysis of PLA plastic and subsequent biomethanization. For raw PLA plastic, the biodegradation results indicated that PLA was hardly biodegraded at mesophilic conditions (only 50.5 ± 0.5 mL/g VS after 146 days). Although it was converted into biogas at thermophilic conditions after long incubation period (442.6 ± 1.1 mL/g VS), the long digestion time (T90 95.8 days) was destined to be infeasible for practical application. In contrast, hydrothermal pretreatment significantly enhanced the hydrolysis rates of PLA plastic in AD process from 0.001 day-1 for raw PLA plastic to 0.004-0.111 day-1. By balancing biogas production efficiency, energy and reagent cost, the conditions of 200 °C, 10 min and no alkali addition were recommended for hydrothermal pretreatment of waste PLA plastic in practice. At the optimized hydrothermal pretreatment conditions, 460.1 ± 25.0 mL/g VS was achieved in less than 30 days, which was comparable for AD of food waste (FW). Furthermore, LC-QEMS analysis proved that cleavages of ester bonds in PLA and its reaction with water molecule was the mechanism of triggering the hydrothermally decomposition of PLA. These results suggested the PLA-plastic waste co-mingled with OFMSW could be efficiently biomethanized into biogas by involving a mild hydrothermal pretreatment in practical application.
Collapse
Affiliation(s)
- Lan Mu
- Key Laboratory of Industrial Ecology and Environmental Engineering, School of Environmental Science and Technology, Dalian University of Technology, Linggong Road 2, Dalian 116024, PR China
| | - Lei Zhang
- Key Laboratory of Industrial Ecology and Environmental Engineering, School of Environmental Science and Technology, Dalian University of Technology, Linggong Road 2, Dalian 116024, PR China.
| | - Jiao Ma
- Tianjin Key Laboratory of Clean Energy and Pollutant Control, School of Energy and Environmental Engineering, Hebei University of Technology, Xiping Road, Tianjin 300401, PR China
| | - Kongyun Zhu
- Key Laboratory of Industrial Ecology and Environmental Engineering, School of Environmental Science and Technology, Dalian University of Technology, Linggong Road 2, Dalian 116024, PR China
| | - Chuanshuai Chen
- Key Laboratory of Industrial Ecology and Environmental Engineering, School of Environmental Science and Technology, Dalian University of Technology, Linggong Road 2, Dalian 116024, PR China
| | - Aimin Li
- Key Laboratory of Industrial Ecology and Environmental Engineering, School of Environmental Science and Technology, Dalian University of Technology, Linggong Road 2, Dalian 116024, PR China
| |
Collapse
|
24
|
Talan A, Tiwari B, Yadav B, Tyagi RD, Wong JWC, Drogui P. Food waste valorization: Energy production using novel integrated systems. BIORESOURCE TECHNOLOGY 2021; 322:124538. [PMID: 33352392 DOI: 10.1016/j.biortech.2020.124538] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 12/07/2020] [Accepted: 12/08/2020] [Indexed: 06/12/2023]
Abstract
Management of food waste (FW) is a global challenge due to increasing population and economic activities. Presently, landfill and incineration are the keyways of FW management, while economical and environmental sustainability have been an issue. Therefore, the biological processes have been investigated for resource and energy recovery from FW. However, these biological approaches have certain drawbacks and cannot be a complete solution for FW management. Therefore, this review aims to offer a detailed and complete analysis of current available technologies to achieve environmental and economical sustainability. In this context, zero solid waste discharge for resource and energy recovery has been put into view. Corresponding to which several innovative technologies using integrated biological methods for resource and energy recovery from FW have been elucidated.
Collapse
Affiliation(s)
- Anita Talan
- INRS Eau, Terre et Environnement, 490, rue de la Couronne, Québec G1K 9A9, Canada
| | - Bhagyashree Tiwari
- INRS Eau, Terre et Environnement, 490, rue de la Couronne, Québec G1K 9A9, Canada
| | - Bhoomika Yadav
- INRS Eau, Terre et Environnement, 490, rue de la Couronne, Québec G1K 9A9, Canada
| | - R D Tyagi
- BOSK-Bioproducts, 100-399 rue Jacquard, Québec (QC) G1N 4J6, Canada; School of Technology, Huzhou University, Huzhou 311800, China.
| | - J W C Wong
- Hong Kong Baptist University, 224 Waterloo Rd, Kowloon Tong, Hong Kong, China
| | - P Drogui
- INRS Eau, Terre et Environnement, 490, rue de la Couronne, Québec G1K 9A9, Canada
| |
Collapse
|
25
|
Anaerobic digestion performance and microbial community structures in biogas production from whiskey distillers organic by-products. ACTA ACUST UNITED AC 2020. [DOI: 10.1016/j.biteb.2020.100565] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
26
|
Effect of Pasteurisation on Methane Yield from Food Waste and Other Substrates in Anaerobic Digestion. Processes (Basel) 2020. [DOI: 10.3390/pr8111351] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The effect of pasteurisation and co-pasteurisation on biochemical methane potential values in anaerobic digestion (AD) was studied. Pasteurisation prior to digestion in a biogas plant is a common hygienisation method for organic materials which contain or have been in contact with animal by-products. Tests were carried out on food waste, slaughterhouse waste, animal blood, cattle slurry, potato waste, card packaging and the organic fraction of municipal solid waste (OFMSW); pasteurisation at 70 °C for 1 h was applied. Pasteurisation had increased the methane yields of blood (+15%) and potato waste (+12%) only, which both had a low content of structural carbohydrates (hemi-cellulose and cellulose) but a particularly high content of either non-structural carbohydrates such as starch (potato waste) or proteins (blood). With food waste, card packaging and cattle slurry, pasteurisation had no observable impact on the methane yield. Slaughterhouse waste and OFMSW yielded less methane after pasteurisation in the experiments (but statistical significance of the difference between pasteurised and unpasteurised slaughterhouse waste or OFMSW was not confirmed in this work). It is concluded that pasteurisation can positively impact the methane yield of some specific substrates, such as potato waste, where heat-treatment may induce gelatinisation with release of the starch molecules. For most substrates, however, pasteurisation at 70 °C is unlikely to increase the methane yield. It is unlikely to improve biodegradability of lignified materials, and it may reduce the methane yield from substrates which contain high contents of volatile components. Furthermore, in this experimental study, the obtained methane yield was unaffected by whether the substrates were pasteurised individually and then co-digested or co-pasteurised as a mixture before batch digestion.
Collapse
|
27
|
Oladejo OS, Dahunsi SO, Adesulu-Dahunsi AT, Ojo SO, Lawal AI, Idowu EO, Olanipekun AA, Ibikunle RA, Osueke CO, Ajayi OE, Osueke N, Evbuomwan I. Energy generation from anaerobic co-digestion of food waste, cow dung and piggery dung. BIORESOURCE TECHNOLOGY 2020; 313:123694. [PMID: 32563793 DOI: 10.1016/j.biortech.2020.123694] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Revised: 06/11/2020] [Accepted: 06/13/2020] [Indexed: 06/11/2023]
Abstract
The study investigated bioenergy generation from anaerobic co-digestion of food wastes (FW), cow dung (CD) and piggery dung (PD). The physicochemical parameters of the substrates were determined before and after digestion following standard procedures after mechanical pretreatment. Throughout the study, pH remained slightly alkaline while temperature varied between 26 and 32 °C. The highest cumulative biogas yield of 0.0488 L was recorded from the digestion of FW + CD + PD on the ninth day. After analyses, the highest methane content of 64.6 was obtained from the digestion of FW + PD while the lowest (54.0%) was from the digestion of FW only. Overall, cumulative biogas production for the four digestion regimes followed the order: FW + CD + PD, FW + PD, FW + CD and FW only respectively. Accumulation of VFAs was recorded at a slow rate during the digestions.
Collapse
Affiliation(s)
- Oladipupo S Oladejo
- Department of Civil Engineering, Ladoke Akintola University of Technology, Ogbomosho, Oyo State, Nigeria
| | - Samuel O Dahunsi
- Sustainable Management of Natural Resources and Environment Research Group, Faculty of Environment and Labour Safety, Ton Duc Thang University, Ho Chi Minh City, Viet Nam.
| | | | - Samuel O Ojo
- Department of Civil Engineering, Ladoke Akintola University of Technology, Ogbomosho, Oyo State, Nigeria
| | | | - Eunice O Idowu
- Department of Civil Engineering, Ladoke Akintola University of Technology, Ogbomosho, Oyo State, Nigeria
| | - Adewoye A Olanipekun
- Department of Civil Engineering, Ladoke Akintola University of Technology, Ogbomosho, Oyo State, Nigeria
| | | | | | | | - Ngozi Osueke
- Landmark University, Omu Aran, Kwara State, Nigeria
| | | |
Collapse
|
28
|
Kothri M, Mavrommati M, Elazzazy AM, Baeshen MN, Moussa TAA, Aggelis G. Microbial sources of polyunsaturated fatty acids (PUFAs) and the prospect of organic residues and wastes as growth media for PUFA-producing microorganisms. FEMS Microbiol Lett 2020; 367:5735438. [PMID: 32053204 DOI: 10.1093/femsle/fnaa028] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 02/11/2020] [Indexed: 12/17/2022] Open
Abstract
The discovery of non-fish sources of polyunsaturated fatty acids (PUFAs) is of great biotechnological importance. Although various oleaginous microalgae and fungi are able of accumulating storage lipids (single cell oils - SCOs) containing PUFAs, the industrial applications utilizing these organisms are rather limited due to the high-fermentation cost. However, combining SCO production with other biotechnological applications, including waste and by-product valorization, can overcome this difficulty. In the current review, we present the major sources of fungi (i.e. members of Mucoromycota, fungoid-like Thraustochytrids and genetically modified strains of Yarrowia lipolytica) and microalgae (e.g. Isochrysis, NannochloropsisandTetraselmis) that have come recently to the forefront due to their ability to produce PUFAs. Approaches adopted in order to increase PUFA productivity and the potential of using various residues, such as agro-industrial, food and aquaculture wastes as fermentation substrates for SCO production have been considered and discussed. We concluded that several organic residues can be utilized as feedstock in the SCO production increasing the competitiveness of oleaginous organisms against conventional PUFA producers.
Collapse
Affiliation(s)
- Maria Kothri
- Unit of Microbiology, Division of Genetics, Cell and Developmental Biology, Department of Biology, University of Patras, 26504 Patras, Greece
| | - Maria Mavrommati
- Unit of Microbiology, Division of Genetics, Cell and Developmental Biology, Department of Biology, University of Patras, 26504 Patras, Greece
| | - Ahmed M Elazzazy
- Department of Biology, Faculty of Science, University of Jeddah, 23218 Jeddah, Saudi Arabi.,Department of Chemistry of Natural and Microbial Products, Division of Pharmaceutical and Drug Industries, National Research Centre, 12622 Dokki, Giza, Egypt
| | - Mohamed N Baeshen
- Department of Biology, Faculty of Science, University of Jeddah, 23218 Jeddah, Saudi Arabi
| | - Tarek A A Moussa
- Department of Biology, Faculty of Science, University of Jeddah, 23218 Jeddah, Saudi Arabi.,Botany and Microbiology Department, Faculty of Science, Cairo University, 12613 Giza, Egypt
| | - George Aggelis
- Unit of Microbiology, Division of Genetics, Cell and Developmental Biology, Department of Biology, University of Patras, 26504 Patras, Greece.,Department of Biology, Faculty of Science, University of Jeddah, 23218 Jeddah, Saudi Arabi
| |
Collapse
|
29
|
Chakravarty I, Mandavgane SA. Valorization of fruit and vegetable waste for biofertilizer and biogas. J FOOD PROCESS ENG 2020. [DOI: 10.1111/jfpe.13512] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Ipsita Chakravarty
- Department of Chemical Engineering Visvesvaraya National Institute of Technology Nagpur India
| | - Sachin A. Mandavgane
- Department of Chemical Engineering Visvesvaraya National Institute of Technology Nagpur India
| |
Collapse
|
30
|
Yukesh Kannah R, Merrylin J, Poornima Devi T, Kavitha S, Sivashanmugam P, Kumar G, Rajesh Banu J. Food waste valorization: Biofuels and value added product recovery. ACTA ACUST UNITED AC 2020. [DOI: 10.1016/j.biteb.2020.100524] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
31
|
The Circular Economy and Organic Fraction of Municipal Solid Waste Recycling Strategies. ENERGIES 2020. [DOI: 10.3390/en13174366] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Densely populated areas with large incoming populations have difficulty achieving high separate collection rates of municipal solid waste. The manuscript analyzes the link between biowaste collection and circular economy requirements as a fulfilment of the recycling rates and using biogas as a sustainable energy source. Three biowaste collection scenarios and three technical scenarios for its treatment are considered. The first scenario assumes only composting for biowaste treatment, the next includes also anaerobic digestion. In the years 2020–2050, the separate biowaste collection level will increase, depending on the scenario, from 26.9 kg/inh. up to 148.1kg/inh. By 2030, the quantity of biogas generated from biowaste can grow to almost 9 million m3/year, enabling the production of renewable energy at annual levels of almost 17 GWh and 69 TJ. Using the third scenario, the quantity of biogas generated grows more than twice (in 2035). If the capture rate of biowaste increases from 15% to 20% and then to 25%, the quantity of biogas generated grows by, respectively, 65% and more than 100%. Unfortunately, none of the scenarios enables the required municipal solid waste recycling rates in 2030 (60%) and 2035 (65%), which demonstrates the significant need to develop more effective separate collection systems, including biowaste. Methodology applied in the paper can be used for other cities and regions trying to meet circular economy demands.
Collapse
|
32
|
Giwa AS, Ali N, Vakili M, Guo X, Liu D, Wang K. Opportunities for holistic waste stream valorization from food waste treatment facilities: a review. REV CHEM ENG 2020. [DOI: 10.1515/revce-2019-0064] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Difficult-to-biodegrade fractions (DBFs) generated from the biological treatment of food waste (FW) account for approximately 30% of the actual waste. These wastes are difficult to degrade or are considered indigestible residues of the aerobic and anaerobic fermentation treatment of FW treatment facilities. The currently applied disposal routes for DBFs exert environmental pressure and underutilize waste as resources. Therefore, these challenges must be overcome. An innovative strategy for the enhancement of the energy value and beneficial products from FW and the associated DBFs is proposed in this review. We propose conceptual future optimization routes for FW and DBFs via three types of technology integration. Pyrolysis techniques thoroughly treat DBFs to produce various value-added bio-energy products, such as pyrogenic bio-char, syngas, and bio-oil. Anaerobic digestion treats FW while utilizing pyrolysis products for robust performance enhancement and bio-methane upgrade. This holistic route offers conceptual information and proper direction as crucial knowledge for real application to harness the inherent resources of waste streams generated from FW treatment facilities.
Collapse
Affiliation(s)
- Abdulmoseen Segun Giwa
- Green Intelligence Environmental School , Yangtze Normal University , Chongqing 408100 , China
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment , Tsinghua University , Beijing 100084 , China
| | - Nasir Ali
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment , Tsinghua University , Beijing 100084 , China
- Key Laboratory of Biofuels , Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences , Qingdao 266101 , China
| | - Mohammadtaghi Vakili
- Green Intelligence Environmental School , Yangtze Normal University , Chongqing 408100 , China
| | - Xiaogang Guo
- College of Chemistry and Chemical Engineering, Yangtze Normal University , Chongqing 408003 , China
| | - Dongsheng Liu
- Green Intelligence Environmental School , Yangtze Normal University , Chongqing 408100 , China
| | - Kaijun Wang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment , Tsinghua University , Beijing 100084 , China
| |
Collapse
|
33
|
Comparison of Variable and Constant Loading for Mesophilic Food Waste Digestion in a Long-Term Experiment. ENERGIES 2020. [DOI: 10.3390/en13051279] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Operators of commercial anaerobic digestion (AD) plants frequently note the challenge of transferring research results to an industrial setting, especially in matching well-controlled laboratory studies at a constant organic loading rate (OLR) with full-scale digesters subject to day-to-day variation in loadings. This study compared the performance of food waste digesters at fluctuating and constant OLR. In a long-term experiment over nearly three years, variable daily OLR with a range as wide as 0 to 10.0 g VS L−1 day−1 (weekly average 5.0 g VS L−1 day−1) were applied to one laboratory-scale digester, while a pair of control digesters was operated at a constant daily loading of 5.0 g VS L−1 day−1. Different schemes of trace elements (TE) supplementation were also tested to examine how they contributed to process stability. Variable loading had no adverse impact on biogas production or operational stability when 11 TE species were dosed. When TE addition was limited to cobalt and selenium, the stability of the variable-load digester was well maintained for nearly 300 days before the experiment was terminated, while the control digesters required re-supplementation with other TE species to reverse an accumulation of volatile fatty acids. This work demonstrated that variation in daily OLR across quite a wide range of applied loadings is possible with no adverse effects on methane production or stability of food waste digestion, giving confidence in the transferability of research findings. The positive effect of variable OLR on TE requirement requires further investigation considering its practical significance for AD industry.
Collapse
|
34
|
Assessment of Municipal Solid Waste Generation in Universiti Putra Malaysia and Its Potential for Green Energy Production. SUSTAINABILITY 2019. [DOI: 10.3390/su11143909] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The global waste generation keeps increasing over the years and it requires innovative solutions to minimize its impacts on environmental quality and public health. A strategic plan must be ascertained to overcome the future challenges of Municipal solid waste (MSW) locally and globally. Universiti Putra Malaysia (UPM) coined an initiative to demonstrate a showcase pilot plant for green energy production from MSW. The data was obtained from the survey and actual sampling within the UPM compound shows that UPM has generated 5.0–7.0 t/d of MSW generated consist of 30–35% organic fraction. Restaurants are the main source of the organic fraction. Upon separation, the organic fractions were digested into biogas. At a maximum conversion of the organic fraction, 715 kWh of electricity might be generated from the 2.2 t/d of organic waste generated in UPM. In this study, organic components from UPM were proposed to be subsequently used as a substrate via anaerobic digestion to produce green energy in the form of electricity or flammable fuels.
Collapse
|