1
|
Márquez-Rangel I, Cruz M, Ruiz HA, Rodríguez-Jasso RM, Loredo-Treviño A, Belmares R. Evaluation of Agave salmiana by-products as a functional ingredient for the development of sustainable foods. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2025; 105:4349-4358. [PMID: 39898425 DOI: 10.1002/jsfa.14167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 12/10/2024] [Accepted: 01/21/2025] [Indexed: 02/04/2025]
Abstract
BACKGROUND The generation of agro-industrial wastes and strategies to reduce the environmental and economic impacts that this problem generates has aroused interest in the use of lignocellulosic wastes to promote food sustainability. These wastes are rich in polysaccharides, and their addition can affect the physicochemical characteristics of bakery food. In this study, agave wastes were evaluated at different substitution levels (0%, 10%, 20%, and 30%, w/w) in wheat flour to determine their nutritional, techno-functional, and thermal qualities. RESULTS There was an improvement in the proximal chemical composition in the flour blends, mainly in crude fiber (0.01%, 0.47%, 0.80%, and 1.70%, respectively). This also resulted in differences in the coloration (ΔE; 0, 12.43, 21.05, and 24.22) owing to the brown color of agave powder. An increase in water holding capacity was obtained (1.29, 1.44, 1.52, and 1.69%), while oil holding capacity presented a decrease (1.59%, 1.38%, 1.36%, and 1.33%). Viscosities were significantly affected by the addition of agave. However, the final viscosity (3195.67, 2573.33, 2430, and 2107.33 cP) suggested that the maximum level of substitution was 20%. Thermal properties indicated a decrease in the heat capacity required for starch gelatinization (39.45, 36.36, 35.33, and 34.47 J g-1) due to its partial substitution. CONCLUSION This study suggests that non-conventional fiber obtained from agave waste can be incorporated into conventional flours such as wheat flour for food development within the concept of a circular economy, which is an option for the functional improvement of food from wheat and valorizing wastes of economic importance. © 2025 Society of Chemical Industry.
Collapse
Affiliation(s)
- Isabel Márquez-Rangel
- Food Research Department, Faculty of Chemical Sciences, Autonomous University of Coahuila, Saltillo, Mexico
| | - Mario Cruz
- Department of Food Science and Technology, Antonio Narro Autonomous Agrarian University, Saltillo, Mexico
| | - Héctor A Ruiz
- Food Research Department, Faculty of Chemical Sciences, Autonomous University of Coahuila, Saltillo, Mexico
| | - Rosa M Rodríguez-Jasso
- Food Research Department, Faculty of Chemical Sciences, Autonomous University of Coahuila, Saltillo, Mexico
| | - Araceli Loredo-Treviño
- Food Research Department, Faculty of Chemical Sciences, Autonomous University of Coahuila, Saltillo, Mexico
| | - Ruth Belmares
- Food Research Department, Faculty of Chemical Sciences, Autonomous University of Coahuila, Saltillo, Mexico
| |
Collapse
|
2
|
Biswa Sarma J, Mahanta S, Tanti B. Maximizing microbial activity and synergistic interaction to boost biofuel production from lignocellulosic biomass. Arch Microbiol 2024; 206:448. [PMID: 39470782 DOI: 10.1007/s00203-024-04172-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 10/14/2024] [Accepted: 10/14/2024] [Indexed: 11/01/2024]
Abstract
Addressing global environmental challenges and meeting the escalating energy demands stand as two pivotal issues in the current landscape. Lignocellulosic biomass emerges as a promising renewable bio-energy source capable of fulfilling the world's energy requirements on a large scale. One of the most important steps in lowering reliance on fossil fuel and lessening environmental effect is turning lignocellulosic biomass into biofuel. As carbon-neutral substitutes for traditional fuel, biofuel offer a solution to environmental concerns compared to conventional fuel. Effective utilization of lignocellulosic biomass is imperative for sustainable development. Ongoing research focuses on exploring the potential of various microorganisms and their co-interactions to synthesize diverse biofuels from different starting materials, including lignocellulosic biomass. Co-culture techniques demonstrate resilience to nutrient scarcity and environmental fluctuations. By utilising a variety of carbon sources, microbes can enhance their adaptability to environmental stressors and potentially increase productivity through their symbiotic interactions. Furthermore, compared to single organism involvement, co-interactions allow faster execution of multistep processes. Lignocellulosic biomass serves as a primary substrate for pre-treatment, fermentation, and enzymatic hydrolysis processes. This review primarily delves into the pretreatment, enzymatic hydrolysis process and the biochemical pathways involved in converting lignocellulosic biomass into bioenergy.
Collapse
Affiliation(s)
- Janayita Biswa Sarma
- Department of Energy Engineering, Assam Science and Technology University, Jalukbari, Tetelia, Guwahati, 781011, Assam, India
| | - Saurov Mahanta
- National Institute of Electronics and Information Technology, Guwahati, 781022, Assam, India.
| | - Bhaben Tanti
- Department of Botany, Gauhati University, Jalukbari, Guwahati, 781014, Assam, India
| |
Collapse
|
3
|
Posoongnoen S, Preecharram S, Jandaruang J, Thummavongsa T. Optimization and characterization of immobilized thermostable α-amylase from germinating Sword bean ( Canavalia gladiata (Jacq.) DC.) seeds on DEAE-cellulose and chitosan bead for operational stability. PLANT BIOTECHNOLOGY (TOKYO, JAPAN) 2024; 41:129-136. [PMID: 39463774 PMCID: PMC11500564 DOI: 10.5511/plantbiotechnology.24.0326a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 03/26/2024] [Indexed: 10/29/2024]
Abstract
Thermostable α-amylase from germinating Sword bean (Canavalia gladiata (Jacq.) DC.) seeds has been successfully immobilized on DEAE-cellulose (ICgAmy1) and chitosan bead (ICgAmy2) support materials. Optimum conditions of immobilization for DEAE-cellulose and chitosan bead revealed 97% and 96% immobilization yield, respectively. The optimum pH and temperature of both DEAE-cellulose and chitosan bead immobilized α-amylases were pH 7 and 70°C. Both ICgAmy1 and ICgAmy2 were high stability over a wide pH range of pH 5-9 and a temperature range of 70-90°C. In addition, ICgAmy1 and ICgAmy2 led to an operationally stable biocatalyst with above 74% and 76% residual activity after 10 reuses, respectively. Immobilized α-amylases showed high storage stability with 81% (ICgAmy1) and 85% (ICgAmy2) residual activity after 120 days of storage. The easy immobilization process on low-cost, biodegradable, and renewable support materials exhibited an increase in the enzyme operation range and storage stability which reduces production costs. This makes immobilized amylases an effective biocatalyst in various industrial applications especially a potential candidate for bioethanol production, a key renewable energy source.
Collapse
Affiliation(s)
- Saijai Posoongnoen
- Division of Chemistry, Faculty of Science and Technology, Nakhon Ratchasima Rajabhat University
| | - Sutthidech Preecharram
- Department of General Science, Faculty of Science and Engineering, Kasetsart University Chalermphrakiat Sakon Nakhon Province Campus
| | - Jinda Jandaruang
- Chemistry Program, Faculty of Science and Technology, Sakon Nakhon Rajabhat University
| | - Theera Thummavongsa
- Division of Biology, Faculty of Science and Technology, Nakhon Ratchasima Rajabhat University
| |
Collapse
|
4
|
Kislitsin VY, Chulkin AM, Dotsenko AS, Sinelnikov IG, Sinitsyn AP, Rozhkova AM. The role of intracellular β-glucosidase in cellulolytic response induction in filamentous fungus Penicillium verruculosum. Res Microbiol 2024; 175:104178. [PMID: 38160731 DOI: 10.1016/j.resmic.2023.104178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 12/25/2023] [Accepted: 12/26/2023] [Indexed: 01/03/2024]
Abstract
In this study, CRISPR/Cas9 genome editing was used to knockout the bgl2 gene encoding intracellular β-glucosidase filamentous fungus Penicillium verruculosum. This resulted in a dramatic reduction of secretion of cellulolytic enzymes. The study of P. verruculosum Δbgl2 found that the transcription of the cbh1 gene, which encodes cellobiohydrolase 1, was impaired when induced by cellobiose and cellotriose. However, the transcription of the cbh1 gene remains at level of the host strain when induced by gentiobiose. This implies that gentiobiose is the true inducer of the cellulolytic response in P. verruculosum, in contrast to Neurospora crassa where cellobiose acts as an inducer.
Collapse
Affiliation(s)
- Valeriy Yu Kislitsin
- FSI Federal Research Centre Fundamentals of Biotechnology of the Russian Academy of Sciences, Moscow 119071, Russia.
| | - Andrey M Chulkin
- FSI Federal Research Centre Fundamentals of Biotechnology of the Russian Academy of Sciences, Moscow 119071, Russia.
| | - Anna S Dotsenko
- FSI Federal Research Centre Fundamentals of Biotechnology of the Russian Academy of Sciences, Moscow 119071, Russia.
| | - Igor G Sinelnikov
- FSI Federal Research Centre Fundamentals of Biotechnology of the Russian Academy of Sciences, Moscow 119071, Russia.
| | - Arkady P Sinitsyn
- FSI Federal Research Centre Fundamentals of Biotechnology of the Russian Academy of Sciences, Moscow 119071, Russia; Faculty of Chemistry, Lomonosov Moscow State University, Moscow 119991, Russia.
| | - Aleksandra M Rozhkova
- FSI Federal Research Centre Fundamentals of Biotechnology of the Russian Academy of Sciences, Moscow 119071, Russia.
| |
Collapse
|
5
|
Kaur G, Taggar MS, Kalia A. Cellulase-immobilized chitosan-coated magnetic nanoparticles for saccharification of lignocellulosic biomass. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:111627-111647. [PMID: 37280490 DOI: 10.1007/s11356-023-27919-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 05/22/2023] [Indexed: 06/08/2023]
Abstract
Devising and consolidating cost-effective and greener technologies for sustainable energy production pertain to some of the most pressing needs of the present times. Bioconversion of abundantly available lignocellulosic materials into fermentable sugars to produce biofuels involves the cost-extensive requirement of hydrolytic enzymes called cellulases. Cellulases are highly selective and eco-friendly biocatalysts responsible for deconstruction of complex polysaccharides into simple sugars. Currently, immobilization of cellulases is being carried out on magnetic nanoparticles functionalized with suitable biopolymers such as chitosan. Chitosan, a biocompatible polymer, exhibits high surface area, chemical/thermal stability, functionality, and reusability. The chitosan-functionalized magnetic nanocomposites (Ch-MNCs) present a nanobiocatalytic system that enables easy retrieval, separation, and recycling of cellulases, thereby offering a cost-effective and sustainable approach for biomass hydrolysis. These functional nanostructures show enormous potential owing to certain physicochemical and structural features that have been discussed in a comprehensive manner in this review. It provides an insight into the synthesis, immobilization, and application of cellulase immobilized Ch-MNCs for biomass hydrolysis. This review aims to bridge the gap between sustainable utilization and economic viability of employing replenishable agro-residues for cellulosic ethanol production by incorporating the recently emerging nanocomposite immobilization approach.
Collapse
Affiliation(s)
- Gurkanwal Kaur
- Department of Biochemistry, College of Basic Sciences & Humanities, Punjab Agricultural University, Ludhiana-141004, Punjab, India.
| | - Monica Sachdeva Taggar
- Department of Renewable Energy Engineering, College of Agricultural Engineering & Technology, Punjab Agricultural University, Ludhiana-141004, Punjab, India
| | - Anu Kalia
- Electron Microscopy and Nanoscience Laboratory, Department of Soil Science, College of Agriculture, Punjab Agricultural University, Ludhiana-141004, Punjab, India
| |
Collapse
|
6
|
Rocha Balbino T, Sánchez-Muñoz S, Díaz-Ruíz E, Moura Rocha T, Mier-Alba E, Custódio Inácio S, Jose Castro-Alonso M, de Carvalho Santos-Ebinuma V, Fernando Brandão Pereira J, César Santos J, Silvério da Silva S. Lignocellulosic biorefineries as a platform for the production of high-value yeast derived pigments - A review. BIORESOURCE TECHNOLOGY 2023; 386:129549. [PMID: 37499926 DOI: 10.1016/j.biortech.2023.129549] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/21/2023] [Accepted: 07/22/2023] [Indexed: 07/29/2023]
Abstract
Lignocellulosic byproducts, mainly generated by the agro-industrial sector, have great potential as cost-effective feedstocks for bioprocesses because of their abundant availability and high content of sugar-rich and nutrient-rich elements. This biomass can be employed as a carbon source to produce various molecules using several microorganisms. Yeast strains have shown their capability to metabolize diverse C5 and C6 carbon sources, thereby facilitating their use in the bioprocessing of lignocellulosic biomass. Furthermore, yeasts can produce a wide range of valuable products, including biofuels, enzymes, proteins, and pigments, making them attractive for use in integrated biorefineries. Yeast-derived pigments have versatile applications and are environmentally friendly alternatives to their synthetic counterparts. This review emphasizes the potential of lignocellulosic biomass as a feedstock for producing yeast-derived products with a focus on pigments as valuable molecules. It also proposes a yeast-derived pigment platform utilizing lignocellulosic byproducts and explores its potential integration in biorefineries.
Collapse
Affiliation(s)
- Thercia Rocha Balbino
- Bioprocesses and Sustainable Products Laboratory, Department of Biotechnology, Engineering School of Lorena, University of São Paulo (EEL-USP), 12.602.810. Lorena, São Paulo, Brazil.
| | - Salvador Sánchez-Muñoz
- Bioprocesses and Sustainable Products Laboratory, Department of Biotechnology, Engineering School of Lorena, University of São Paulo (EEL-USP), 12.602.810. Lorena, São Paulo, Brazil
| | - Erick Díaz-Ruíz
- Bioprocesses and Sustainable Products Laboratory, Department of Biotechnology, Engineering School of Lorena, University of São Paulo (EEL-USP), 12.602.810. Lorena, São Paulo, Brazil
| | - Thiago Moura Rocha
- Bioprocesses and Sustainable Products Laboratory, Department of Biotechnology, Engineering School of Lorena, University of São Paulo (EEL-USP), 12.602.810. Lorena, São Paulo, Brazil
| | - Edith Mier-Alba
- Bioprocesses and Sustainable Products Laboratory, Department of Biotechnology, Engineering School of Lorena, University of São Paulo (EEL-USP), 12.602.810. Lorena, São Paulo, Brazil
| | - Stephanie Custódio Inácio
- Bioprocesses and Sustainable Products Laboratory, Department of Biotechnology, Engineering School of Lorena, University of São Paulo (EEL-USP), 12.602.810. Lorena, São Paulo, Brazil
| | - Maria Jose Castro-Alonso
- Bioprocesses and Sustainable Products Laboratory, Department of Biotechnology, Engineering School of Lorena, University of São Paulo (EEL-USP), 12.602.810. Lorena, São Paulo, Brazil
| | - Valéria de Carvalho Santos-Ebinuma
- School of Pharmaceutical Sciences, Department of Bioprocess Engineering and Biotechnology, São Paulo State University (UNESP), Araraquara, São Paulo 14801-902, Brazil
| | - Jorge Fernando Brandão Pereira
- University of Coimbra, CIEPQPF, FCTUC, Department of Chemical Engineering, Rua Sílvio Lima, Pólo II - Pinhal de Marrocos, 3030-790, Coimbra 30-790, Portugal
| | - Júlio César Santos
- Laboratory of Biopolymers, Bioreactors and Process Simulation, Department of Biotechnology, Engineering School of Lorena, University of São Paulo (EEL-USP), 12.602.810. Lorena, São Paulo, Brazil
| | - Silvio Silvério da Silva
- Bioprocesses and Sustainable Products Laboratory, Department of Biotechnology, Engineering School of Lorena, University of São Paulo (EEL-USP), 12.602.810. Lorena, São Paulo, Brazil
| |
Collapse
|
7
|
A Critical Evaluation of Recent Studies on Packed-Bed Bioreactors for Solid-State Fermentation. Processes (Basel) 2023. [DOI: 10.3390/pr11030872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023] Open
Abstract
Packed-bed bioreactors are often used for aerobic solid-state fermentation, since the forced aeration supplies O2 and removes metabolic heat from the bed. Motivated by the potential for applications in biorefineries, we review studies conducted on packed-bed bioreactors over the last decade, evaluating the insights these studies provide into how large-scale packed beds should be designed and operated. Many studies have used low superficial air velocities and suffer from preferential airflow, such that parts of the bed are not properly aerated. Moreover, some studies have proposed ineffective strategies, such as reversing the direction of the airflow or introducing air through perforated pipes within the bed. Additionally, many studies have used narrow water-jacketed packed-bed bioreactors, but these bioreactors do not reflect heat removal in wide large-scale packed beds, in which heat removal through the side walls makes a minor contribution. Finally, we conclude that, although some attention has been given to characterizing the porosities, water sorption isotherms and volumetric heat and mass transfer coefficients of substrate beds, this work needs to be extended to cover a wider range of solid substrates, and work needs to be done to characterize how these bed properties change due to microbial growth.
Collapse
|
8
|
Singh A, Chen CW, Patel AK, Dong CD, Singhania RR. Subcritical Water Pretreatment for the Efficient Valorization of Sorghum Distillery Residue for the Biorefinery Platform. BIOENGINEERING (BASEL, SWITZERLAND) 2022; 10:bioengineering10010038. [PMID: 36671609 PMCID: PMC9854917 DOI: 10.3390/bioengineering10010038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/23/2022] [Accepted: 12/25/2022] [Indexed: 12/30/2022]
Abstract
The depletion of fossil fuels is resulting in an increased energy crisis, which is leading the paradigm shift towards alternative energy resources to overcome the issue. Lignocellulosic biomass or agricultural residue could be utilized to produce energy fuel (bioethanol) as it can resolve the issue of energy crisis and reduce environmental pollution that occurs due to waste generation from agriculture and food industries. A huge amount of sorghum distillery residue (SDR) is produced during the Kaoliang liquor production process, which may cause environmental problems. Therefore, the SDR generated can be utilized to produce bioethanol to meet current energy demands and resolve environmental problems. Using a central composite experimental design, the SDR was subjected to hydrothermal pretreatment. The conditions selected for hydrothermal pretreatment are 155 °C, 170 °C, and 185 °C for 10, 30, and 50 min, respectively. Based on the analysis, 150 °C for 30 min conditions for SDR hydrothermal pretreatment were selected as no dehydration product (Furfural and HMF) was detected in the liquid phase. Therefore, the pretreated slurry obtained using hydrothermal pretreatment at 150 °C for 30 min was subjected to enzymatic hydrolysis at 5% solid loading and 15 FPU/gds. The saccharification yield obtained at 72 h was 75.05 ± 0.5%, and 5.33 g/L glucose concentration. This non-conventional way of enzymatic hydrolysis eliminates the separation and detoxification process, favoring the concept of an economical and easy operational strategy in terms of biorefinery.
Collapse
Affiliation(s)
- Anusuiya Singh
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan
| | - Chiu-Wen Chen
- Sustainable Environment Research Center, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan
- Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan
- College of Hydrosphere, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan
| | - Anil Kumar Patel
- Sustainable Environment Research Center, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan
- Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan
- Centre for Energy and Environmental Sustainability, Lucknow 226 029, India
| | - Cheng-Di Dong
- Sustainable Environment Research Center, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan
- Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan
- College of Hydrosphere, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan
- Correspondence: (C.-D.D.); (R.R.S.)
| | - Reeta Rani Singhania
- Sustainable Environment Research Center, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan
- College of Hydrosphere, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan
- Centre for Energy and Environmental Sustainability, Lucknow 226 029, India
- Correspondence: (C.-D.D.); (R.R.S.)
| |
Collapse
|
9
|
Chiang CJ, Hu MC, Ta T, Chao YP. Glutamate as a non-conventional substrate for high production of the recombinant protein in Escherichia coli. Front Microbiol 2022; 13:991963. [PMID: 36187956 PMCID: PMC9515452 DOI: 10.3389/fmicb.2022.991963] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 08/23/2022] [Indexed: 11/13/2022] Open
Abstract
The economic viability of the biomass-based biorefinery is readily acknowledged by implementation of a cascade process that produces value-added products such as enzymes prior to biofuels. Proteins from the waste stream of biorefinery processes generally contain glutamate (Glu) in abundance. Accordingly, this study was initiated to explore the potential of Glu for production of recombinant proteins in Escherichia coli. The approach was first adopted by expression of D-hydantoinase (HDT) in commercially-available BL21(DE3) strain. Equipped with the mutant gltS (gltS*), the strain grown on Glu produced the maximum HDT as compared to the counterpart on glucose, glycerol, or acetate. The Glu-based production scheme was subsequently reprogrammed based on the L-arabinose-regulated T7 expression system. The strain with gltS* was further engineered by rewiring metabolic pathways. With low ammonium, the resulting strain produced 1.63-fold more HDT. The result indicates that Glu can serve as a carbon and nitrogen source. Overall, our proposed approach may open up a new avenue for the enzyme biorefinery platform based on Glu.
Collapse
Affiliation(s)
- Chung-Jen Chiang
- Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung, Taiwan
| | - Mu-Chen Hu
- Department of Chemical Engineering, Feng Chia University, Taichung, Taiwan
| | - Thanh Ta
- Department of Chemical Engineering, Feng Chia University, Taichung, Taiwan
| | - Yun-Peng Chao
- Department of Chemical Engineering, Feng Chia University, Taichung, Taiwan
- Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
- Department of Food Nutrition and Health Biotechnology, Asia University, Taichung, Taiwan
- *Correspondence: Yun-Peng Chao,
| |
Collapse
|
10
|
Advances and Challenges in Biocatalysts Application for High Solid-Loading of Biomass for 2nd Generation Bio-Ethanol Production. Catalysts 2022. [DOI: 10.3390/catal12060615] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Growth in population and thereby increased industrialization to meet its requirement, has elevated significantly the demand for energy resources. Depletion of fossil fuel and environmental sustainability issues encouraged the exploration of alternative renewable eco-friendly fuel resources. Among major alternative fuels, bio-ethanol produced from lignocellulosic biomass is the most popular one. Lignocellulosic biomass is the most abundant renewable resource which is ubiquitous on our planet. All the plant biomass is lignocellulosic which is composed of cellulose, hemicellulose and lignin, intricately linked to each other. Filamentous fungi are known to secrete a plethora of biomass hydrolyzing enzymes. Mostly these enzymes are inducible, hence the fungi secrete them economically which causes challenges in their hyperproduction. Biomass’s complicated structure also throws challenges for which pre-treatments of biomass are necessary to make the biomass amorphous to be accessible for the enzymes to act on it. The enzymatic hydrolysis of biomass is the most sustainable way for fermentable sugar generation to convert into ethanol. To have sufficient ethanol concentration in the broth for efficient distillation, high solid loading ~<20% of biomass is desirable and is the crux of the whole technology. High solid loading offers several benefits including a high concentration of sugars in broth, low equipment sizing, saving cost on infrastructure, etc. Along with the benefits, several challenges also emerged simultaneously, like issues of mass transfer, low reaction rate due to water constrains in, high inhibitor concentration, non-productive binding of enzyme lignin, etc. This article will give an insight into the challenges for cellulase action on cellulosic biomass at a high solid loading of biomass and its probable solutions.
Collapse
|
11
|
Ranganathan S, Mahesh S, Suresh S, Nagarajan A, Z Sen T, M Yennamalli R. Experimental and computational studies of cellulases as bioethanol enzymes. Bioengineered 2022; 13:14028-14046. [PMID: 35730402 PMCID: PMC9345620 DOI: 10.1080/21655979.2022.2085541] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Bioethanol industries and bioprocesses have many challenges that constantly impede commercialization of the end product. One of the bottlenecks in the bioethanol industry is the challenge of discovering highly efficient catalysts that can improve biomass conversion. The current promising bioethanol conversion catalysts are microorganism-based cellulolytic enzymes, but lack optimization for high bioethanol conversion, due to biological and other factors. A better understanding of molecular underpinnings of cellulolytic enzyme mechanisms and significant ways to improve them can accelerate the bioethanol commercial production process. In order to do this, experimental methods are the primary choice to evaluate and characterize cellulase’s properties, but they are time-consuming and expensive. A time-saving, complementary approach involves computational methods that evaluate the same properties and improves our atomistic-level understanding of enzymatic mechanism of action. Theoretical methods in many cases have proposed research routes for subsequent experimental testing and validation, reducing the overall research cost. Having a plethora of tools to evaluate cellulases and the yield of the enzymatic process will aid in planning more optimized experimental setups. Thus, there is a need to connect the computational evaluation methods with the experimental methods to overcome the bottlenecks in the bioethanol industry. This review discusses various experimental and computational methods and their use in evaluating the multiple properties of cellulases.
Collapse
Affiliation(s)
- Shrivaishnavi Ranganathan
- Department of Biotechnology, School of Chemical and Biotechnology, SASTRA Deemed to be University, Tirumalaisamudram, Thanjavur, India
| | - Sankar Mahesh
- Department of Biotechnology, School of Chemical and Biotechnology, SASTRA Deemed to be University, Tirumalaisamudram, Thanjavur, India
| | - Sruthi Suresh
- Department of Biotechnology, School of Chemical and Biotechnology, SASTRA Deemed to be University, Tirumalaisamudram, Thanjavur, India
| | - Ayshwarya Nagarajan
- Department of Bioinformatics, School of Chemical and Biotechnology, SASTRA Deemed to be University, Tirumalaisamudram, Thanjavur, India
| | - Taner Z Sen
- S. Department of Agriculture, Agricultural Research Service, Crop Improvement and Genetics Research UnitU., California, USA
| | - Ragothaman M Yennamalli
- Department of Bioinformatics, School of Chemical and Biotechnology, SASTRA Deemed to be University, Tirumalaisamudram, Thanjavur, India
| |
Collapse
|
12
|
Tong KTX, Tan IS, Foo HCY, Lam MK, Lim S, Lee KT. Advancement of biorefinery-derived platform chemicals from macroalgae: a perspective for bioethanol and lactic acid. BIOMASS CONVERSION AND BIOREFINERY 2022; 14:1-37. [PMID: 35316983 PMCID: PMC8929714 DOI: 10.1007/s13399-022-02561-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 02/24/2022] [Accepted: 03/05/2022] [Indexed: 06/14/2023]
Abstract
The extensive growth of energy and plastic demand has raised concerns over the depletion of fossil fuels. Moreover, the environmental conundrums worldwide integrated with global warming and improper plastic waste management have led to the development of sustainable and environmentally friendly biofuel (bioethanol) and biopolymer (lactic acid, LA) derived from biomass for fossil fuels replacement and biodegradable plastic production, respectively. However, the high production cost of bioethanol and LA had limited its industrial-scale production. This paper has comprehensively reviewed the potential and development of third-generation feedstock for bioethanol and LA production, including significant technological barriers to be overcome for potential commercialization purposes. Then, an insight into the state-of-the-art hydrolysis and fermentation technologies using macroalgae as feedstock is also deliberated in detail. Lastly, the sustainability aspect and perspective of macroalgae biomass are evaluated economically and environmentally using a developed cascading system associated with techno-economic analysis and life cycle assessment, which represent the highlights of this review paper. Furthermore, this review provides a conceivable picture of macroalgae-based bioethanol and lactic acid biorefinery and future research directions that can be served as an important guideline for scientists, policymakers, and industrial players. Graphical abstract
Collapse
Affiliation(s)
- Kevin Tian Xiang Tong
- Department of Chemical and Energy Engineering, Faculty of Engineering and Science, Curtin University Malaysia, CDT 250, 98009 Miri, Sarawak, Malaysia
| | - Inn Shi Tan
- Department of Chemical and Energy Engineering, Faculty of Engineering and Science, Curtin University Malaysia, CDT 250, 98009 Miri, Sarawak, Malaysia
| | - Henry Chee Yew Foo
- Department of Chemical and Energy Engineering, Faculty of Engineering and Science, Curtin University Malaysia, CDT 250, 98009 Miri, Sarawak, Malaysia
| | - Man Kee Lam
- Chemical Engineering Department, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak, Malaysia
- HICoE-Centre for Biofuel and Biochemical Research, Institute of Self-Sustainable Building, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak, Malaysia
| | - Steven Lim
- Department of Chemical Engineering, Lee Kong Chian Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, 43000 Kajang, Selangor, Malaysia
- Centre of Photonics and Advanced Materials Research, Universiti Tunku Abdul Rahman, 43000 Kajang, Selangor, Malaysia
| | - Keat Teong Lee
- School of Chemical Engineering, Universiti Sains Malaysia, Engineering Campus, 14300 Nibong Tebal, Penang, Malaysia
| |
Collapse
|
13
|
Duarah P, Haldar D, Patel AK, Dong CD, Singhania RR, Purkait MK. A review on global perspectives of sustainable development in bioenergy generation. BIORESOURCE TECHNOLOGY 2022; 348:126791. [PMID: 35114366 DOI: 10.1016/j.biortech.2022.126791] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 01/24/2022] [Accepted: 01/26/2022] [Indexed: 06/14/2023]
Abstract
Over the last few decades, the globe has much relied on fossil fuels; however, environmental concerns forced the World to look at biofuel as an alternative for stable economic development. Biofuel also facilitates national energy security maintenance and reduces environmental complications. The present study is focused on an in-depth analysis of bioenergy policy measures undertaken by various federal agencies of different countries in order to shed light on the bottlenecks that impede biofuel's growth as a sustainable and alternative fuel. An in-depth assessment of feedstock utilization, blending targets, and policy assistance schemes have been thoroughly reviewed. In addition, the potential of commercial firms for the production of bioenergy is highlighted in order to grasp the current bioenergy market scenario better. Finally, the article is concluded with the viewpoints of the authors to address the standing issues of global bioenergy generation.
Collapse
Affiliation(s)
- Prangan Duarah
- Centre for the Environment, Indian Institute of Technology Guwahati, Assam 781039, India
| | - Dibyajyoti Haldar
- Department of Biotechnology, Karunya Institute of Technology and Sciences, Coimbatore, Tamil Nadu 641114, India
| | - Anil Kumar Patel
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan; Centre for Energy and Environmental Sustainability, Lucknow 226 029, India
| | - Cheng-Di Dong
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | - Reeta Rani Singhania
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan; Centre for Energy and Environmental Sustainability, Lucknow 226 029, India.
| | - Mihir Kumar Purkait
- Department of Chemical Engineering, Indian Institute of Technology Guwahati, Assam 781039, India
| |
Collapse
|
14
|
Tarazona NA, Machatschek R, Balcucho J, Castro-Mayorga JL, Saldarriaga JF, Lendlein A. Opportunities and challenges for integrating the development of sustainable polymer materials within an international circular (bio)economy concept. MRS ENERGY & SUSTAINABILITY : A REVIEW JOURNAL 2022; 9:28-34. [PMID: 37521367 PMCID: PMC9127038 DOI: 10.1557/s43581-021-00015-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 09/22/2021] [Indexed: 11/27/2022]
Abstract
Highlights The production and consumption of commodity polymers have been an indispensable part of the development of our modern society. Owing to their adjustable properties and variety of functions, polymer-based materials will continue playing important roles in achieving the Sustainable Development Goals (SDG)s, defined by the United Nations, in key areas such as healthcare, transport, food preservation, construction, electronics, and water management. Considering the serious environmental crisis, generated by increasing consumption of plastics, leading-edge polymers need to incorporate two types of functions: Those that directly arise from the demands of the application (e.g. selective gas and liquid permeation, actuation or charge transport) and those that enable minimization of environmental harm, e.g., through prolongation of the functional lifetime, minimization of material usage, or through predictable disintegration into non-toxic fragments. Here, we give examples of how the incorporation of a thoughtful combination of properties/functions can enhance the sustainability of plastics ranging from material design to waste management. We focus on tools to measure and reduce the negative impacts of plastics on the environment throughout their life cycle, the use of renewable sources for their synthesis, the design of biodegradable and/or recyclable materials, and the use of biotechnological strategies for enzymatic recycling of plastics that fits into a circular bioeconomy. Finally, we discuss future applications for sustainable plastics with the aim to achieve the SDGs through international cooperation. Abstract Leading-edge polymer-based materials for consumer and advanced applications are necessary to achieve sustainable development at a global scale. It is essential to understand how sustainability can be incorporated in these materials via green chemistry, the integration of bio-based building blocks from biorefineries, circular bioeconomy strategies, and combined smart and functional capabilities. Graphic abstract
Collapse
Affiliation(s)
- Natalia A. Tarazona
- Institute of Active Polymers, Helmholtz-Zentrum Hereon, Kantstraße 55, 14513 Teltow, Germany
| | - Rainhard Machatschek
- Institute of Active Polymers, Helmholtz-Zentrum Hereon, Kantstraße 55, 14513 Teltow, Germany
- Institute of Chemistry, University of Potsdam, Karl-Liebknecht-Straße 24-25, 14469 Potsdam, Germany
| | - Jennifer Balcucho
- Institute of Active Polymers, Helmholtz-Zentrum Hereon, Kantstraße 55, 14513 Teltow, Germany
| | - Jinneth Lorena Castro-Mayorga
- Department of Bioproducts, Corporación Colombiana de Investigación Agropecuaria (Agrosavia), 250047 Mosquera-Cundinamarca, Colombia
| | - Juan F. Saldarriaga
- Civil and Environmental Engineering Department, Universidad de los Andes (UniAndes), 111711 Bogotá, Colombia
| | - Andreas Lendlein
- Institute of Active Polymers, Helmholtz-Zentrum Hereon, Kantstraße 55, 14513 Teltow, Germany
- Institute of Chemistry, University of Potsdam, Karl-Liebknecht-Straße 24-25, 14469 Potsdam, Germany
| |
Collapse
|
15
|
Schmitz E, Leontakianakou S, Norlander S, Nordberg Karlsson E, Adlercreutz P. Lignocellulose degradation for the bioeconomy: The potential of enzyme synergies between xylanases, ferulic acid esterase and laccase for the production of arabinoxylo-oligosaccharides. BIORESOURCE TECHNOLOGY 2022; 343:126114. [PMID: 34648963 DOI: 10.1016/j.biortech.2021.126114] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/06/2021] [Accepted: 10/07/2021] [Indexed: 06/13/2023]
Abstract
The success of establishing bioeconomies replacing current economies based on fossil resources largely depends on our ability to degrade recalcitrant lignocellulosic biomass. This study explores the potential of employing various enzymes acting synergistically on previously pretreated agricultural side streams (corn bran, oat hull, soluble and insoluble oat bran). Degrees of synergy (oligosaccharide yield obtained with the enzyme combination divided by the sum of yields obtained with individual enzymes) of up to 88 were obtained. Combinations of a ferulic acid esterase and xylanases resulted in synergy on all substrates, while a laccase and xylanases only acted synergistically on the more recalcitrant substrates. Synergy between different xylanases (glycoside hydrolase (GH) families 5 and 11) was observed particularly on oat hulls, producing a yield of 57%. The synergistic ability of the enzymes was found to be partly due to the increased enzyme stability when in combination with the substrates.
Collapse
Affiliation(s)
- Eva Schmitz
- Biotechnology, Department of Chemistry, Lund University, PO Box 124, Lund, SE-22100, Sweden.
| | - Savvina Leontakianakou
- Biotechnology, Department of Chemistry, Lund University, PO Box 124, Lund, SE-22100, Sweden
| | - Siri Norlander
- Biotechnology, Department of Chemistry, Lund University, PO Box 124, Lund, SE-22100, Sweden
| | - Eva Nordberg Karlsson
- Biotechnology, Department of Chemistry, Lund University, PO Box 124, Lund, SE-22100, Sweden
| | - Patrick Adlercreutz
- Biotechnology, Department of Chemistry, Lund University, PO Box 124, Lund, SE-22100, Sweden
| |
Collapse
|
16
|
Singh A, Rodríguez-Jasso RM, Saxena R, Cerda RB, Singhania RR, Ruiz HA. Subcritical water pretreatment for agave bagasse fractionation from tequila production and enzymatic susceptibility. BIORESOURCE TECHNOLOGY 2021; 338:125536. [PMID: 34289430 DOI: 10.1016/j.biortech.2021.125536] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 07/06/2021] [Accepted: 07/07/2021] [Indexed: 06/13/2023]
Abstract
This work focuses on the effect of subcritical water pretreatment conditions on agave bagasse chemical composition, biomass fractionation, and enzymatic hydrolysis obtained from the different tequila production processes. The pretreatment was carried out in a batch pressurized reactor within an isothermal regime. The operational conditions for subcritical water pretreatment were (150-190 °C) and (10-50 min). The best operational conditions were selected, based on the increased cellulose content (>50%) in the pretreated solid phase. The conditions for 190 °C for 50 and 30 min of pretreated agave bagasse solids were chosen for enzymatic hydrolysis susceptibility (15 FPU/g of the substrate). The maximum conversion yield (cellulose to glucose) during enzymatic hydrolysis achieved was up to 61.62% (5.86 g/L) in industrial bagasse at 72 h and initial saccharification rate was 0.34 g/(L*h) at 12 h. This study indicates that the agave bagasse is a promising raw material in the development of second-generation biorefineries.
Collapse
Affiliation(s)
- Anusuiya Singh
- Biorefinery Group, Food Research Department, Faculty of Chemistry Sciences, Autonomous University of Coahuila, Saltillo, Coahuila 25280, Mexico
| | - Rosa M Rodríguez-Jasso
- Biorefinery Group, Food Research Department, Faculty of Chemistry Sciences, Autonomous University of Coahuila, Saltillo, Coahuila 25280, Mexico
| | - Rohit Saxena
- Biorefinery Group, Food Research Department, Faculty of Chemistry Sciences, Autonomous University of Coahuila, Saltillo, Coahuila 25280, Mexico
| | - Ruth Belmares Cerda
- Biorefinery Group, Food Research Department, Faculty of Chemistry Sciences, Autonomous University of Coahuila, Saltillo, Coahuila 25280, Mexico
| | - Reeta Rani Singhania
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | - Héctor A Ruiz
- Biorefinery Group, Food Research Department, Faculty of Chemistry Sciences, Autonomous University of Coahuila, Saltillo, Coahuila 25280, Mexico.
| |
Collapse
|
17
|
Singhania RR, Patel AK, Tsai ML, Chen CW, Di Dong C. Genetic modification for enhancing bacterial cellulose production and its applications. Bioengineered 2021; 12:6793-6807. [PMID: 34519629 PMCID: PMC8806912 DOI: 10.1080/21655979.2021.1968989] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Bacterial cellulose (BC) is higher in demand due to its excellent properties which is attributed to its purity and nano size. Komagataeibacter xylinum is a model organism where BC production has been studied in detail because of its higher cellulose production capacity. BC production mechanism shows involvement of a series of sequential reactions with enzymes for biosynthesis of cellulose. It is necessary to know the mechanism to understand the involvement of regulatory proteins which could be the probable targets for genetic modification to enhance or regulate yield of BC and to alter BC properties as well. For the industrial production of BC, controlled synthesis is desired so as to save energy, hence genetic manipulation opens up avenues for upregulating or controlling the cellulose synthesis in the bacterium by targeting genes involved in cellulose biosynthesis. In this review article genetic modification has been presented as a tool to introduce desired changes at genetic level resulting in improved yield or properties. There has been a lack of studies on genetic modification for BC production due to limited availability of information on whole genome and genetic toolkits; however, in last few years, the number of studies has been increased on this aspect as whole genome sequencing of several Komagataeibacter strains are being done. In this review article, we have presented the mechanisms and the targets for genetic modifications in order to achieve desired changes in the BC production titer as well as its characteristics.
Collapse
Affiliation(s)
- Reeta Rani Singhania
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | - Anil Kumar Patel
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | - Mei-Ling Tsai
- Department of Seafood Science, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | - Chiu-Wen Chen
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | - Cheng Di Dong
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| |
Collapse
|
18
|
Mazzei R, Yihdego Gebreyohannes A, Papaioannou E, Nunes SP, Vankelecom IFJ, Giorno L. Enzyme catalysis coupled with artificial membranes towards process intensification in biorefinery- a review. BIORESOURCE TECHNOLOGY 2021; 335:125248. [PMID: 33991878 DOI: 10.1016/j.biortech.2021.125248] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 04/26/2021] [Accepted: 04/28/2021] [Indexed: 06/12/2023]
Abstract
In this review, for the first time, the conjugation of the major types of enzymes used in biorefineries and the membrane processes to develop different configurations of MBRs, was analyzedfor the production of biofuels, phytotherapics and food ingredients. In particular, the aim is to critically review all the works related to the application of MBR in biorefinery, highlighting the advantages and the main drawbacks which can interfere with the development of this system at industrial scale. Alternatives strategies to overcome main limits will be also described in the different application fields, such as the use of biofunctionalized magnetic nanoparticles associated with membrane processes for enzyme re-use and membrane cleaning or the membrane fouling control by the use of integrated membrane process associated with MBR.
Collapse
Affiliation(s)
- Rosalinda Mazzei
- Institute on Membrane Technology, National Research Council, ITM-CNR, via P. Bucci, 17/C, I-87030 Rende (Cosenza), Italy.
| | - Abaynesh Yihdego Gebreyohannes
- King Abdullah University of Science and Technology (KAUST), Biological and Environmental Science and Engineering Division (BESE), Advanced Membranes and Porous Materials Center (AMPM), 23955-6900 Thuwal, Saudi Arabia.
| | - Emmaouil Papaioannou
- Engineering Department, Lancaster University, Lancaster, LA1 4YW, United Kingdom
| | - Suzana P Nunes
- King Abdullah University of Science and Technology (KAUST), Biological and Environmental Science and Engineering Division (BESE), Advanced Membranes and Porous Materials Center (AMPM), 23955-6900 Thuwal, Saudi Arabia
| | - Ivo F J Vankelecom
- Membrane Technology Group, Division cMACS, Faculty of Bioscience Engineering, KU Leuven, Celestijnenlaan 200F, PO Box 2454, 3001 Leuven, Belgium
| | - Lidietta Giorno
- Institute on Membrane Technology, National Research Council, ITM-CNR, via P. Bucci, 17/C, I-87030 Rende (Cosenza), Italy
| |
Collapse
|
19
|
Hot Compressed Water Pretreatment and Surfactant Effect on Enzymatic Hydrolysis Using Agave Bagasse. ENERGIES 2021. [DOI: 10.3390/en14164746] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Agave bagasse is a residual biomass in the production of the alcoholic beverage tequila, and therefore, it is a promising raw material in the development of biorefineries using hot compressed water pretreatment (hydrothermal processing). Surfactants application has been frequently reported as an alternative to enhance monomeric sugars production efficiency and as a possibility to reduce the enzyme loading required. Nevertheless, the surfactant’s action mechanisms in the enzymatic hydrolysis is still not elucidated. In this work, hot compressed water pretreatment was applied on agave bagasse for biomass fractionation at 194 °C in isothermal regime for 30 min, and the effect of non-ionic surfactants (Tween 20, Tween 80, Span 80, and Polyethylene glycol (PEG 400)) was studied as a potential enhancer of enzymatic saccharification of hydrothermally pretreated solids of agave bagasse (AGB). It was found that non-ionic surfactants show an improvement in the conversion yield of cellulose to glucose (100%) and production of glucose (79.76 g/L) at 15 FPU/g glucan, the highest enhancement obtained being 7% regarding the control (no surfactant addition), using PEG 400 as an additive. The use of surfactants allows improving the production of fermentable sugars for the development of second-generation biorefineries.
Collapse
|
20
|
Potential Role of Sequential Solid-State and Submerged-Liquid Fermentations in a Circular Bioeconomy. FERMENTATION 2021. [DOI: 10.3390/fermentation7020076] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
An efficient processing of organic solid residues will be pivotal in the development of the circular bioeconomy. Due to their composition, such residues comprise a great biochemical conversion potential through fermentations. Generally, the carbohydrates and proteins present in the organic wastes cannot be directly metabolized by microorganisms. Thus, before fermentation, enzymes are used in a hydrolysis step to release digestible sugars and nitrogen. Although enzymes can be efficiently produced from organic solid residues in solid-state fermentations (SsF), challenges in the development and scale-up of SsF technologies, especially bioreactors, have hindered a wider application of such systems. Therefore, most of the commercial enzymes are produced in submerged-liquid fermentations (SmF) from expensive simple sugars. Instead of independently evaluating SsF and SmF, the review covers the option of combining them in a sequential process in which, enzymes are firstly produced in SsF and then used for hydrolysis, yielding a suitable medium for SmF. The article reviews experimental work that has demonstrated the feasibility of the process and underlines the benefits that such combination has. Finally, a discussion is included which highlights that, unlike typically perceived, SsF should not be considered a counterpart of SmF but, in contrast, the main advantages of each type of fermentation are accentuated in a synergistic sequential SsF-SmF.
Collapse
|
21
|
Nait M'Barek H, Arif S, Taidi B, Hajjaj H. Consolidated bioethanol production from olive mill waste: Wood-decay fungi from central Morocco as promising decomposition and fermentation biocatalysts. ACTA ACUST UNITED AC 2020; 28:e00541. [PMID: 33102160 PMCID: PMC7578684 DOI: 10.1016/j.btre.2020.e00541] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 10/05/2020] [Accepted: 10/09/2020] [Indexed: 11/24/2022]
Abstract
First report on lignocellulolytic activity and diversity of fungi from central Morocco. Olive Mill Waste (OMW) is a suitable biomass for local biorefinery in Meknes region. Fusaria isolates produce high and diversified lignocellulases using Consolidated Bioprocess. Fusarium oxysporum (76) achieves 2.47 g.L−1 bioethanol production and 0.84 g.g−1 yield. Bioethanol is maximally produced during the oxygen-limiting phase.
Meknes region is a Moroccan olive-processing area generating high amounts of non-valorized Olive Mill Waste (OMW). Fungi are natural decomposers producing varied enzyme classes and effectively contributing to the carbon cycle. However, structural complexity of biomass and modest performances of wild fungi are major limits for local biorefineries. The objective of current research is to assess the ability of local fungi for bioethanol production from OMW using Consolidated Bioprocessing (CBP). This is done by characterizing lignocellulolytic potential of six wood-decay and compost-inhabiting ascomycetes and selecting potent fermentation biocatalysts. High and diversified activities were expressed by Fusarium solani and Fusarium oxysporum: 9.36 IU. mL−1 and 2.88 IU. mL−1 total cellulase activity, 0.54 IU. mL−1 and 0.57 IU. mL−1 laccase activity, respectively, and 8.43 IU. mL−1 lignin peroxidase activity for the latter. F. oxysporum had maximum bioethanol production and yield of 2.47 g.L-1 and 0.84 g.g−1, respectively, qualifying it as an important bio-agent for single-pot local biorefinery.
Collapse
Affiliation(s)
- Hasna Nait M'Barek
- Faculty of Sciences of Meknes, Laboratory of Plant Biotechnology and Molecular Biology, BP 11201, Zitoune Meknes City, Morocco.,Cluster of Competency «Agri-food, Safety and Security» IUC VLIR-UOS, Moulay Ismail University, Marjane 2, BP 298, Meknes City, Morocco
| | - Soukaina Arif
- Faculty of Sciences of Meknes, Laboratory of Plant Biotechnology and Molecular Biology, BP 11201, Zitoune Meknes City, Morocco.,Cluster of Competency «Agri-food, Safety and Security» IUC VLIR-UOS, Moulay Ismail University, Marjane 2, BP 298, Meknes City, Morocco
| | - Behnam Taidi
- CentraleSupélec, SFR Condorcet FR, CNRS 3417, Paris-Saclay University, European Center of Biotechnology and Bioeconomy (CEBB) - LGPM, 3 Rue des Rouges Terres, 51110, Pomacle, France
| | - Hassan Hajjaj
- Faculty of Sciences of Meknes, Laboratory of Plant Biotechnology and Molecular Biology, BP 11201, Zitoune Meknes City, Morocco.,Cluster of Competency «Agri-food, Safety and Security» IUC VLIR-UOS, Moulay Ismail University, Marjane 2, BP 298, Meknes City, Morocco
| |
Collapse
|
22
|
Sheehan NP, Ng A, Murray K, Martinez E, Quell K, Ouellette C, Flagg T, Boyle J. Bioenergy from biofuel residues and waste. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2020; 92:1433-1439. [PMID: 32574406 DOI: 10.1002/wer.1381] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 06/16/2020] [Indexed: 06/11/2023]
Abstract
This article is a review of the scientific literature published in 2019 on topics relating to bioenergy from biofuel residues and waste. This literature review is divided into the following sections: Feedstocks, Biodiesel, Bioethanol, Hydrogen, Biohydrogen, Biofuel Residues, Microalgae, and Lignocelluloses.
Collapse
Affiliation(s)
- Nathaniel P Sheehan
- Department of Geography and Environmental Engineering, United States Military Academy, West Point, New York, USA
| | - Andrew Ng
- Department of Geography and Environmental Engineering, United States Military Academy, West Point, New York, USA
| | - Kyle Murray
- Department of Geography and Environmental Engineering, United States Military Academy, West Point, New York, USA
| | - Erick Martinez
- Department of Chemistry and Life Science, United States Military Academy, West Point, New York, USA
| | - Kimberly Quell
- Department of Geography and Environmental Engineering, United States Military Academy, West Point, New York, USA
| | - Charles Ouellette
- Department of Chemistry and Life Science, United States Military Academy, West Point, New York, USA
| | - Timothy Flagg
- Department of Geography and Environmental Engineering, United States Military Academy, West Point, New York, USA
| | - John Boyle
- Department of Geography and Environmental Engineering, United States Military Academy, West Point, New York, USA
| |
Collapse
|
23
|
Hernández-Guzmán A, Navarro-Gutiérrez IM, Meléndez-Hernández PA, Hernández-Beltrán JU, Hernández-Escoto H. Enhancement of alkaline-oxidative delignification of wheat straw by semi-batch operation in a stirred tank reactor. BIORESOURCE TECHNOLOGY 2020; 312:123589. [PMID: 32498011 DOI: 10.1016/j.biortech.2020.123589] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 05/22/2020] [Accepted: 05/23/2020] [Indexed: 05/26/2023]
Abstract
This paper compares a semi-batch operation and a conventional one of an alkaline oxidative pretreatment of wheat straw carried out in a stirred tank reactor. For the pretreatment, different concentrations of biomass (6% up to 12% w/v) and two different particle sizes (mesh #40-60 and #>60) were experimented. The performance of processes was evaluated through the analysis of lignocellulosic composition of the biomass, and the enzymatic hydrolysis of pretreated biomass using the Cellic® CTec2 enzyme complex by Novozymes®. The process time of semi-batch operation is significantly lower than the batch one and enables a higher load of biomass, showing a delignification yield between 55 and 60%. In the first 5 h of reaction time, the enzymatic hydrolysis experiments reached their maximum yields of 72 and 66% according to reducing sugars conversion when using the mesh #>60 mesh and #40-60, respectively.
Collapse
Affiliation(s)
- Alicia Hernández-Guzmán
- Universidad de Guanajuato, Departamento de Ingeniería Química, Laboratorio de Análisis de Bio-Procesos Industriales, Noria Alta s/n, Guanajuato 36050, Mexico
| | - Ivette Michelle Navarro-Gutiérrez
- Universidad de Guanajuato, Departamento de Ingeniería Química, Laboratorio de Análisis de Bio-Procesos Industriales, Noria Alta s/n, Guanajuato 36050, Mexico
| | - Perla Araceli Meléndez-Hernández
- Universidad de Guanajuato, Departamento de Ingeniería Química, Laboratorio de Análisis de Bio-Procesos Industriales, Noria Alta s/n, Guanajuato 36050, Mexico
| | - Javier Ulises Hernández-Beltrán
- Universidad Autónoma de Coahuila, Facultad de Ciencias Biológicas, Laboratorio de Biorremediación, Carretera Torreón-Matamóros Km. 7.5, Torreón, Coahuila 27000, Mexico
| | - Héctor Hernández-Escoto
- Universidad de Guanajuato, Departamento de Ingeniería Química, Laboratorio de Análisis de Bio-Procesos Industriales, Noria Alta s/n, Guanajuato 36050, Mexico.
| |
Collapse
|
24
|
Infanzón-Rodríguez MI, Ragazzo-Sánchez JA, Del Moral S, Calderón-Santoyo M, Aguilar-Uscanga MG. Production and characterization of an enzyme extract with cellulase activity produced by an indigenous strain of Fusarium verticillioides ITV03 using sweet sorghum bagasse. Biotechnol Lett 2020; 42:2271-2283. [PMID: 32533374 DOI: 10.1007/s10529-020-02940-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 06/09/2020] [Indexed: 11/30/2022]
Abstract
OBJECTIVES To evaluate a strain of Fusarium verticillioides ITV03 isolated from wood residues in the Veracruz region of Mexico. Endoglucanase and β-glucosidase production by submerged fermentation was optimized using a Box-Behnken design, where the independent variables were urea, ammonium sulfate and yeast extract. RESULTS After optimization, an endoglucanase activity of 0.27 U/mL was achieved; subsequently, three carbon sources were evaluated (carboxymethyl cellulose, sweet sorghum bagasse cellulose and delignified sweet sorghum bagasse (DSSB). The results showed that DSSB yielded the greatest endoglucanase (0.28 U/mL) and β-glucosidase (0.12 U/mL) activities. Both enzymatic activities were characterized for the effect of pH, temperature and thermostability. The optimal parameters of β-glucosidase and endoglucanase activity were pH 5 and 4 respectively, the optimum temperature 60 °C. These enzymes were stable at 50 °C for 150.68 h and 8.54 h, with an activation energy (Ea(day)) of 265.55 kJ/mol and 44.40 kJ/mol respectively, for β-glucosidase and endoglucanase. CONCLUSION The present work shows that a native strain like F. verticillioides ITV03 using DSSB supplemented with nitrogen has a great potential as a producer of cellulase for lignocellulosic residue hydrolysis.
Collapse
Affiliation(s)
- María Inés Infanzón-Rodríguez
- Laboratorio Integral de Investigación en Alimentos, Tecnológico Nacional de México/Instituto Tecnológico de Tepic, C.P. 63175, Tepic, NAY, Mexico
| | - Juan Arturo Ragazzo-Sánchez
- Laboratorio Integral de Investigación en Alimentos, Tecnológico Nacional de México/Instituto Tecnológico de Tepic, C.P. 63175, Tepic, NAY, Mexico
| | - Sandra Del Moral
- Cátedra-CONACYT, Tecnológico Nacional de México/Instituto Tecnológico de Veracruz-UNIDA, Av. M. A. de Quevedo Núm. 2779, C.P. 91860, Veracruz, VER, Mexico
| | - Montserrat Calderón-Santoyo
- Laboratorio Integral de Investigación en Alimentos, Tecnológico Nacional de México/Instituto Tecnológico de Tepic, C.P. 63175, Tepic, NAY, Mexico
| | - María Guadalupe Aguilar-Uscanga
- Cátedra-CONACYT, Tecnológico Nacional de México/Instituto Tecnológico de Veracruz-UNIDA, Av. M. A. de Quevedo Núm. 2779, C.P. 91860, Veracruz, VER, Mexico.
| |
Collapse
|
25
|
Ubando AT, Felix CB, Chen WH. Biorefineries in circular bioeconomy: A comprehensive review. BIORESOURCE TECHNOLOGY 2020; 299:122585. [PMID: 31901305 DOI: 10.1016/j.biortech.2019.122585] [Citation(s) in RCA: 200] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 12/05/2019] [Accepted: 12/06/2019] [Indexed: 05/23/2023]
Abstract
Biorefinery is a sustainable means of generating multiple bioenergy products from various biomass feedstocks through the incorporation of relevant conversion technologies. With the increased attention of circular economy in the past half-decade with the emphasis of holistically addressing economic, environmental, and social aspects of the industrial-sector, biorefinery acts as a strategic mechanism for the realization of a circular bioeconomy. This study presents a comprehensive review of different biorefinery models used for various biomass feedstocks such as lignocelluloses, algae, and numerous waste-types. The review focuses on how biorefinery is instrumental in the transition of various biomass-based industries in a circular bioeconomy. The results reveal that the social-economic aspect of the industrial sector has a major influence on the full adoption of biorefineries in circular bioeconomy. Biomass wastes have played a major role in the implementation of biorefinery in circular bioeconomy. The current challenges are also presented along with future perspectives.
Collapse
Affiliation(s)
- Aristotle T Ubando
- Department of Aeronautics and Astronautics, National Cheng Kung University, Tainan 701, Taiwan; Mechanical Engineering Department, De La Salle University, 2401 Taft Avenue, 0922 Manila, Philippines
| | - Charles B Felix
- Mechanical Engineering Department, De La Salle University, 2401 Taft Avenue, 0922 Manila, Philippines
| | - Wei-Hsin Chen
- Department of Aeronautics and Astronautics, National Cheng Kung University, Tainan 701, Taiwan; Department of Chemical and Materials Engineering, College of Engineering, Tunghai University, Taichung 407, Taiwan; Department of Mechanical Engineering, National Chin-Yi University of Technology, Taichung 411, Taiwan; Research Center for Energy Technology and Strategy, National Cheng Kung University, Tainan 701, Taiwan.
| |
Collapse
|
26
|
Enzymatic hydrolysis of cellulose using extracts from insects. Carbohydr Res 2019; 485:107811. [PMID: 31526927 DOI: 10.1016/j.carres.2019.107811] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 09/02/2019] [Accepted: 09/08/2019] [Indexed: 11/20/2022]
Abstract
The use of Zophobas morio extracts in the aspect of cellulose hydrolysis is presented for the first time. The aim of this study was to investigate the action of enzymes obtained from Z. morio on cellulose hydrolysis and to determine their influence on the structural properties of cellulose with use the Fourier transform infrared spectroscopy (FTIR) and gel permeation chromatography (GPC). Cellulose hydrolysis products were analyzed by high performance liquid chromatography (HPLC). This analysis indicated that microcrystalline cellulose with smaller particle size was more susceptible to enzymatically treatment. Moreover, our investigation of cellulase activity showed a different profile of the used enzyme during particular developmental stages of Z. morio. Midgut extracts obtained from adult insects are more effective in degrading cellulose than extracts from larvae. The analysis of cellulose hydrolysis confirms that the efficiency of this reaction also depends on the structure of cellulosic materials and internal conditions of enzymatic reaction. In this study the cellulolytic activity of Z. morio midgut extracts showed that these insects could be valuable sources of cellulases.
Collapse
|