1
|
Kumar A, Khwairakpam M. Comparative assessment of domestic wastewater treatment via Vermifiltration through various filter bed material. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024:10.1007/s11356-024-34756-y. [PMID: 39172340 DOI: 10.1007/s11356-024-34756-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 08/15/2024] [Indexed: 08/23/2024]
Abstract
Vermifilter (VF) is considered sustainable for rural areas; however, filter media is the most important but has been explored less. This study evaluated the performance of vermifilters in treating domestic wastewater (DWW) using various filter media, including areca nutshell (AS), rice straw (RS), dry leaves (DL), and chicken eggshells (ES). We compared the results with four different reactors: R1 (AS), R2 (RS), R3 (DL), and R4 (ES). DWW was applied with a hydraulic loading rate (HLR) of 1 m3/m2/d with Eisenia fetida earthworm species. The results showed the removal of biochemical oxygen demand (BOD) by 82%, 76%, 73%, and 87%; chemical oxygen demand (COD) by 75%, 73%, 72%, and 88%; phosphate by 36%, 25%, 27%, and 50%; sulfate by 56%, 54%, 53%, and 71% in R1, R2, R3, and R4, respectively. Simultaneously, R4 experienced a fivefold reduction in total bacteria and a sixfold reduction in total coliform. Moreover, the most exceptional filter media for vermifiltration is eggshells for the earthworm's growth and treatment efficacy.
Collapse
Affiliation(s)
- Ankit Kumar
- School of Agro and Rural Technology, Indian Institute of Technology, Guwahati, 781039, Assam, India.
| | - Meena Khwairakpam
- School of Agro and Rural Technology, Indian Institute of Technology, Guwahati, 781039, Assam, India
| |
Collapse
|
2
|
Y. Saapi SS, Andrianisa HA, Zorom M, Mounirou LA, Kouassi HAA, Ahossouhe MS. New developments on vermifiltration as a bio-ecological wastewater treatment technology: Mechanism, application, performance, modelling, optimization, and sustainability. Heliyon 2024; 10:e25795. [PMID: 38375316 PMCID: PMC10875448 DOI: 10.1016/j.heliyon.2024.e25795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 01/22/2024] [Accepted: 02/02/2024] [Indexed: 02/21/2024] Open
Abstract
The review discusses the advancements in vermifiltration research over the last decade, focusing on pollution removal mechanisms, system performance, the fate of filter components, and by-products. Vermifiltration has demonstrated remarkable capabilities, particularly in treating highly contaminated wastewater with Chemical Oxygen Demand (COD) levels exceeding 92,000 mg/L and Biochemical Oxygen Demand (BOD5) levels over 25,000 mg/L, achieving removal rates of approximately 89% and 91%, respectively. Importantly, vermifiltration maintains its effectiveness even with fluctuating organic loads at the inlet, thanks to optimization of parameters like Hydraulic Loading Rate, biodegradable organic strength, earthworm density and active layer depth. Clogging issues can be minimized through parameters optimization. The review also highlights vermifiltrations' potential in co-treating the organic fraction of municipal solid waste while significantly reducing heavy metal concentrations, including Cd, Ni, Pb, Cu, Cr, and Zn, during the treatment process. Earthworms play a pivotal role in the removal of various components, with impressive removal percentages, such as 75% for Total Organic Carbon (TOC), 86% for Total COD, 87% for BOD5, 59% for ammonia nitrogen, and 99.9% for coliforms. Furthermore, vermifiltration-treated effluents can be readily utilized in agriculture, with the added benefit of producing vermicompost, a nutrient-rich biofertilizer. The technology contributes to environmental sustainability, as it helps reduce greenhouse gas emissions (GHG), thanks to earthworm activity creating an aerobic environment, minimizing GHG production compared to other wastewater treatment methods. In terms of pollutant degradation modeling, the Stover-Kincannon model outperforms the first-order and Grau second-order models, with higher regression coefficients (R2 = 0.9961 for COD and R2 = 0.9353 for TN). Overall, vermifiltration emerges as an effective and sustainable wastewater treatment solution, capable of handling challenging wastewater sources, while also producing valuable by-products and minimizing environmental impacts.
Collapse
Affiliation(s)
- Sidesse S. Y. Saapi
- Laboratoire Eaux, Hydro-Systèmes et Agriculture (LEHSA), Institut International d’Ingénierie de l’Eau et de l’Environnement (2iE), Rue de la Science, P.O. Box 594, Ouagadougou, 01, Burkina Faso
| | - Harinaivo A. Andrianisa
- Laboratoire Eaux, Hydro-Systèmes et Agriculture (LEHSA), Institut International d’Ingénierie de l’Eau et de l’Environnement (2iE), Rue de la Science, P.O. Box 594, Ouagadougou, 01, Burkina Faso
| | - Malicki Zorom
- Laboratoire Eaux, Hydro-Systèmes et Agriculture (LEHSA), Institut International d’Ingénierie de l’Eau et de l’Environnement (2iE), Rue de la Science, P.O. Box 594, Ouagadougou, 01, Burkina Faso
| | - Lawani A. Mounirou
- Laboratoire Eaux, Hydro-Systèmes et Agriculture (LEHSA), Institut International d’Ingénierie de l’Eau et de l’Environnement (2iE), Rue de la Science, P.O. Box 594, Ouagadougou, 01, Burkina Faso
| | - Hemez Ange Aurélien Kouassi
- Laboratoire Eaux, Hydro-Systèmes et Agriculture (LEHSA), Institut International d’Ingénierie de l’Eau et de l’Environnement (2iE), Rue de la Science, P.O. Box 594, Ouagadougou, 01, Burkina Faso
| | - Mahugnon Samuel Ahossouhe
- Laboratoire Eaux, Hydro-Systèmes et Agriculture (LEHSA), Institut International d’Ingénierie de l’Eau et de l’Environnement (2iE), Rue de la Science, P.O. Box 594, Ouagadougou, 01, Burkina Faso
| |
Collapse
|
3
|
Dey Chowdhury S, Bhunia P, Surampalli RY, Zhang TC. Effects of bed depths and the ratio of aerobic to anaerobic zone on the performance of horizontal subsurface flow macrophyte-assisted high-rate vermifilters treating synthetic brewery wastewater. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2024; 96:e10993. [PMID: 38348629 DOI: 10.1002/wer.10993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 12/31/2023] [Accepted: 01/25/2024] [Indexed: 02/15/2024]
Abstract
Effects of total vermibed depth, as well as the ratio of aerobic (the unsubmerged) to anaerobic (the submerged) zone on the performance of the horizontal subsurface flow macrophyte-assisted vermifilters (HSSF-MAVFs) treating synthetic brewery wastewater at a higher hydraulic loading rate (HLR), were investigated for the first time. Results showed that the HSSF-MAVF with a 50 cm total and 18 cm submerged vermibed depth yielded the optimum removal of the pollutants, ensuring a (91.2 ± 1.7)%, (81.8 ± 1.9)%, (67.4 ± 3.9)%, and (63.1 ± 2.3)% removal of chemical oxygen demand (COD), ammonium N (NH4 + -N), total N (TN), and organic N, respectively, whereas there was an increase of (142 ± 6.3)% in the effluent nitrate-N (NO3 - -N) than that in the influent. At the optimum condition, the effluent concentrations of all the pollutants including COD, NH4 + -N, NO3 - -N, TN, and organic N were well below the surface water discharge standards specified by the Central Pollution Control Board (CPCB), and thus, the effluent of the HSSF-MAVF could be safely discharged into the surface water bodies. PRACTITIONER POINTS: Total vermibed depth of HSSF-MAVFs was optimized for organic and nitrogen removal. HSSF-MAVFs were subjected to the higher HLR of synthetic brewery wastewater. Removal of COD and NH4 + -N was decreased with the increase in submerged bed depth. Removal of organic N and TN was increased with the increase in submerged bed depth. Total/unsubmerged bed depth had a positive impact on the organic and N removal.
Collapse
Affiliation(s)
- Sanket Dey Chowdhury
- Environmental Engineering, School of Infrastructure, Indian Institute of Technology Bhubaneswar, Bhubaneswar, India
| | - Puspendu Bhunia
- Environmental Engineering, School of Infrastructure, Indian Institute of Technology Bhubaneswar, Bhubaneswar, India
| | - Rao Y Surampalli
- Global Institute for Energy, Environment, and Sustainability, Lenexa, Kansas, USA
| | - Tian C Zhang
- Civil & Environmental Engineering Department, College of Engineering, Scott Campus (Omaha), University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| |
Collapse
|
4
|
Das P, Paul K. A review on integrated vermifiltration as a sustainable treatment method for wastewater. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 328:116974. [PMID: 36516714 DOI: 10.1016/j.jenvman.2022.116974] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 12/03/2022] [Accepted: 12/03/2022] [Indexed: 06/17/2023]
Abstract
To overcome the scarcity of fresh water, concerned authorities worldwide are bound to think about remediation and reuse of domestic and industrial effluents. The present review study on integrated vermifiltrationwith hydroponic system explains mechanism followed in system and presently the reutilization and remediation of domestic and industrial effluents. It explains the result of integrated vermifiltration and recognizes factors such as clogging, hydraulic loading rate or rain on bed, salinity, and sunlight affect the efficiency of system. The study also focuses on limitations associated with vermifiltration and also suggestions have been made for enhancing the sustainability and performance of existing practices. After literature review, integrated vermifiltration with hydroponic system considered as a natural and eco-friendly method for treating polluted water. Active zone of vermifilter remove organics, nitrate from nitrogen, total and dissolved phosphorus from wastewater. The vermifiltration and integrated vermifiltration with macrophyte able remove chemical oxygen demand (COD) in the range (53.7%-64.4%) and (75.5%-82.8%) respectively. The integrated system reduces land consumption and wastewater can be reutilized in cultivation.
Collapse
Affiliation(s)
- Pragyan Das
- Department of Civil Engineering, National Institute of Technology, Rourkela, 769008, India.
| | - KakoliKarar Paul
- Department of Civil Engineering, National Institute of Technology, Rourkela, 769008, India.
| |
Collapse
|
5
|
Mungruaiklang N, Iwai CB. Using vermiwash to enhance performance of small-scale vermifiltration for swine farm wastewater. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2021; 43:3323-3341. [PMID: 33512603 DOI: 10.1007/s10653-021-00816-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 01/07/2021] [Indexed: 06/12/2023]
Abstract
Pollution caused by swine wastewater is a growing concern in many countries. In the developing countries, swine wastewater is not properly collected and treated, the wastewater from swine farm pollutes the ecosystem. Especially for small swine farms, they could not afford to have wastewater treatment system. Therefore, farmers need cheap, sustainable technology for future mixed farming. Vermifiltration by earthworm has been introduced to be an answer for enhancing wastewater treatment. Vermiwash is the liquid gathered from vermicomposting that has high microbial activities and nutrients. This study was carried out on a small pilot scale to investigate swine wastewater treatment efficiency of vermifiltration system with and without vermiwash and compared with the geofiltration system. Vermiwash was incubated in vermifiltration and geofiltration systems for 1 week before the treatment. The result showed improved efficiency of vermifiltration incubated with vermiwash in swine wastewater treatment for biological oxygen demand (BOD), chemical oxygen demand (COD) and total suspended solids (TSS) removal, which was highest followed by vermifiltration without incubated vermiwash, geofilter incubated with vermiwash and geofilter, respectively. Good performance of vermifiltration incubated with vermiwash compared with the geofilter treatment was demonstrated for removal of BOD (91.29 ± 9.89%, n = 10), COD (91.42 ± 6.34%, n = 10) and TSS (86.02 ± 10.45%, n = 10). Furthermore, the burrowing activity of the test earthworm (Eisenia fetida) promoted the aeration condition in vermifilter which led to more dissolved oxygen (DO) in effluent (61.28 ± 20.05%, n = 10). Moreover, the amount of copper (Cu) in effluent was decreased compared with influent by up to 88% in all treatment. After 10 weeks of the experiment, the vermicompost that was incubated with vermiwash and produced from earthworm on the top layer was analyzed and showed that nutrients (nitrogen, phosphorus) and soil organic carbon were increased with vermifilter treatment (47.65, 81.61 and 31.79%, respectively) compared with geofilter treatment. In addition, bioavailability of Cu in soil in form of exchangeable Cu was decreased by increasing the bound to organic matter fraction. Transformation of Cu during vermifiltration happened and alleviated the mobility and availability of Cu. Copper in exchangeable form can change into non-toxic form. Therefore, vermifiltration process incubated with vermiwash could reduce the dispersion of copper in swine waste. In conclusion, vermiwash could enhance performance of vermifiltration for swine farm wastewater treatment. The available fraction of copper in vermicompost produced from vermifiltration decreased. Therefore, the farmer could produce vermicompost as the biofertilizer for agricultural production. Using vermifiltration for wastewater treatment in small swine farm could be the eco-solution for nutrient recovery, water resource recycles and minimize pollution.
Collapse
Affiliation(s)
- Natthawut Mungruaiklang
- Department of Soil Sciences and Environment, Faculty of Agriculture, Khon Kaen University, 123 Moo 16, Mittraphap Road, Khon Kaen, 40002, Thailand
| | - Chuleemas Boonthai Iwai
- Department of Soil Sciences and Environment, Faculty of Agriculture, Khon Kaen University, 123 Moo 16, Mittraphap Road, Khon Kaen, 40002, Thailand.
- Integrated Land and Water Resource Management Research and Development Center in Northeast Thailand, Khon Kaen University, 123 Moo 16, Khon Kaen, 40002, Thailand.
| |
Collapse
|
6
|
Yuvaraj A, Thangaraj R, Karmegam N, Ravindran B, Chang SW, Awasthi MK, Kannan S. Activation of biochar through exoenzymes prompted by earthworms for vermibiochar production: A viable resource recovery option for heavy metal contaminated soils and water. CHEMOSPHERE 2021; 278:130458. [PMID: 34126688 DOI: 10.1016/j.chemosphere.2021.130458] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 03/26/2021] [Accepted: 03/28/2021] [Indexed: 06/12/2023]
Abstract
The industrial revolution and indiscriminate usage of a wide spectrum of agrochemicals account for the dumping of heavy metals in the environment. In-situ/ex-situ physical, chemical, and bioremediation strategies with pros and cons have been adopted for recovering metal contaminated soils and water. Therefore, there is an urgent requirement for a cost-effective and environment-friendly technique to combat metal pollution. Biochar combined with earthworms and vermifiltration is a suitable emerging technique for the remediation of metal-polluted soils and water. The chemical substances (e.g., sodium hydroxide, zinc chloride, potassium hydroxide, and phosphoric acid) have been used to activate biochar, which also faces several shortcomings. Studies reveal that extracellular enzymes have been used to activate biochar which is produced by earthworms and microbes that can alter the surface of the biochar. The present review focuses on the global scenario of metal pollution and its remediation through biochar activation using earthworms. The earthworms and biochar can produce "vermibiochar" which is capable of reducing the metal ions from contaminated water and soils. The vermifiltration can be a suitable technology for metal removal from wastewater/effluent. Thus, the biochar has a trick of producing entirely new options at a time when vermifiltration and other technologies are least expected. Further attention to the biochar-assisted vermifiltration of different sources of wastewater is required to be explored for the large-scale utilization of the process.
Collapse
Affiliation(s)
- Ananthanarayanan Yuvaraj
- Vermitechnology and Ecotoxicology Laboratory, Department of Zoology, School of Life Sciences, Periyar University, Salem, 636 011, Tamil Nadu, India
| | - Ramasundaram Thangaraj
- Vermitechnology and Ecotoxicology Laboratory, Department of Zoology, School of Life Sciences, Periyar University, Salem, 636 011, Tamil Nadu, India.
| | - Natchimuthu Karmegam
- Department of Botany, Government Arts College (Autonomous), Salem, 636 007, Tamil Nadu, India
| | - Balasubramani Ravindran
- Department of Environmental Energy and Engineering, Kyonggi University, Youngtong - Gu, Suwon, 16227, South Korea; Center for Environmental Nuclear Research, Directorate of Research, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur, 603203, Kanchipuram, Chennai, Tamil Nadu, India.
| | - Soon Woong Chang
- Department of Environmental Energy and Engineering, Kyonggi University, Youngtong - Gu, Suwon, 16227, South Korea
| | - Mukesh Kumar Awasthi
- College of Natural Resources and Environment, Northwest A&F University, Taicheng Road 3#, Yangling, Shaanxi, 712100, China.
| | - Soundarapandian Kannan
- Cancer Nanomedicine Laboratory, Department of Zoology, School of Life Sciences, Periyar University, Salem, 636 011, Tamil Nadu, India
| |
Collapse
|
7
|
Zhong H, Yang S, Zhu L, Liu C, Zhang Y, Zhang Y. Effect of microplastics in sludge impacts on the vermicomposting. BIORESOURCE TECHNOLOGY 2021; 326:124777. [PMID: 33540214 DOI: 10.1016/j.biortech.2021.124777] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/20/2021] [Accepted: 01/22/2021] [Indexed: 06/12/2023]
Abstract
To investigate the effect of microplastics (MPs) particles in vermicomposting, polyethylene (PE) particles added into sludge. Results showed that the vermicomposting with high MPs addition obtained lower removal efficiencies for organics than the vermicomposting with low MPs addition. The content of DOC and NH4+-N in M4 reactor (with the highest MPs addition) at 80 days was 8.4 mg/kg and 74.2 mg/kg, respectively. The pH, C/N, electrical conductivity (EC), and germination index (GI) results showed that the addition amount of MPs was directly proportional to the negative effect of composting. The negative effect mainly occurred after 20 days of composting. High MPs addition resulted in apparent oxidative stress and neurotoxicity on earthworm, the values of catalase (CAT) and acetylcholine esterase (AChE) in M4 reactor increased by 2.03 times and 1.60 times. The bacteria in M4 were more barren and lower in terms of diversity.
Collapse
Affiliation(s)
- Huiyuan Zhong
- Laboratory of Water Supply and Drainage Science and Engineering, North China University of Science and Technology, Tangshan 063000, PR China.
| | - Sen Yang
- Laboratory of Water Supply and Drainage Science and Engineering, North China University of Science and Technology, Tangshan 063000, PR China
| | - Li Zhu
- Laboratory of Water Supply and Drainage Science and Engineering, North China University of Science and Technology, Tangshan 063000, PR China
| | - Chang Liu
- South China Institute of Environmental Sciences, MEE, PR China
| | - Ying Zhang
- Laboratory of Water Supply and Drainage Science and Engineering, North China University of Science and Technology, Tangshan 063000, PR China
| | - Yaozong Zhang
- Laboratory of Water Supply and Drainage Science and Engineering, North China University of Science and Technology, Tangshan 063000, PR China
| |
Collapse
|