1
|
Zhuang H, Li F, Pei R, Jiang X, Chen D, Li S, Ye P, Yuan J, Lian J, Jin J, Lu Y. High Expression of GPR183 Predicts Poor Survival in Cytogenetically Normal Acute Myeloid Leukemia. Biochem Genet 2025:10.1007/s10528-025-11026-1. [PMID: 39820826 DOI: 10.1007/s10528-025-11026-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 01/07/2025] [Indexed: 01/19/2025]
Abstract
Acute myeloid leukemia (AML) with a normal karyotype (CN-AML) constitutes approximately 50% of all AML cases, presenting significant prognostic variability, and highlighting the urgent need for the identification of novel molecular biomarkers. In this study, we systematically assessed GPR183 expression levels using qRT-PCR in our clinical follow-up study which included 283 CN-AML patients. Using Kaplan-Meier analysis, we found that patients with high GPR183 expression levels exhibited significantly worse overall survival (OS) (P = 0.046) and event-free survival (EFS) (P = 0.030) compared to those with low GPR183 expression. Comprehensive univariate and multivariate Cox regression analyses confirmed that GPR183 expression is a prognostic factor for OS and EFS (P < 0.05). To further validate these findings, we analyzed an independent cohort of 104 CN-AML patients from the GSE71014 dataset, corroborating our primary results, and indicating that high GPR183 expression is associated with poorer survival outcomes. Additionally, RNA-seq data from the GSE71014 dataset were analyzed by Gene Set Enrichment Analysis (GSEA). The results suggested that GPR183 may influence disease progression through the activation of the "TNFa Signaling Via NF-κB" pathway. Collectively, these findings suggested that GPR183 could serve as a valuable prognostic biomarker in CN-AML, offering insights into the underlying mechanisms of disease progression.
Collapse
Affiliation(s)
- Haihui Zhuang
- Department of Hematology, The Affiliated People's Hospital of Ningbo University, Ningbo, China
- Institute of Hematology, Ningbo University, Ningbo, China
| | - Fenglin Li
- Department of Hematology, The Affiliated People's Hospital of Ningbo University, Ningbo, China
- Institute of Hematology, Ningbo University, Ningbo, China
| | - Renzhi Pei
- Department of Hematology, The Affiliated People's Hospital of Ningbo University, Ningbo, China
- Institute of Hematology, Ningbo University, Ningbo, China
| | - Xia Jiang
- Department of Hematology, The Affiliated People's Hospital of Ningbo University, Ningbo, China
- Institute of Hematology, Ningbo University, Ningbo, China
| | - Dong Chen
- Department of Hematology, The Affiliated People's Hospital of Ningbo University, Ningbo, China
- Institute of Hematology, Ningbo University, Ningbo, China
| | - Shuangyue Li
- Department of Hematology, The Affiliated People's Hospital of Ningbo University, Ningbo, China
- Institute of Hematology, Ningbo University, Ningbo, China
| | - Peipei Ye
- Department of Hematology, The Affiliated People's Hospital of Ningbo University, Ningbo, China
- Institute of Hematology, Ningbo University, Ningbo, China
| | - Jiaojiao Yuan
- Department of Hematology, The Affiliated People's Hospital of Ningbo University, Ningbo, China
- Institute of Hematology, Ningbo University, Ningbo, China
| | - Jiangyin Lian
- Department of Hematology, The Affiliated People's Hospital of Ningbo University, Ningbo, China
- Institute of Hematology, Ningbo University, Ningbo, China
| | - Jie Jin
- Department of Hematology, Zhejiang University School of Medicine First Affiliated Hospital, Hangzhou, Zhejiang, PR China.
| | - Ying Lu
- Department of Hematology, The Affiliated People's Hospital of Ningbo University, Ningbo, China.
- Institute of Hematology, Ningbo University, Ningbo, China.
| |
Collapse
|
2
|
Bahramloo M, Shahabi SA, Kalarestaghi H, Rafat A, Mazloumi Z, Samimifar A, Asl KD. CAR-NK cell therapy in AML: Current treatment, challenges, and advantage. Biomed Pharmacother 2024; 177:117024. [PMID: 38941897 DOI: 10.1016/j.biopha.2024.117024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 06/21/2024] [Indexed: 06/30/2024] Open
Abstract
Over the last decade, discovery of novel therapeutic method has been attention by the researchers and has changed the therapeutic perspective of hematological malignancies. Although NK cell play a pivotal role in the elimination of abnormal and cancerous cells, there are evidence that NK cell are disarm in hematological malignancy. Chimeric antigen receptor NK (CAR-NK) cell therapy, which includes the engineering of NK cells to detect tumor-specific antigens and, as a result, clear of cancerous cells, has created various clinical advantage for several human malignancies treatment. In the current review, we summarized NK cell dysfunction and CAR-NK cell based immunotherapy to treat AML patient.
Collapse
Affiliation(s)
- Mohammadmahdi Bahramloo
- Department of Medical Sciences, Student Research Committee, Islamic Azad University, Tabriz Branch, Tabriz, Iran
| | - Sina Alinejad Shahabi
- Department of Medical Sciences, Student Research Committee, Islamic Azad University, Tabriz Branch, Tabriz, Iran
| | - Hossein Kalarestaghi
- Research Laboratory for Embryology and Stem Cell, Department of Anatomical Sciences, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Ali Rafat
- Anatomical Sciences Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Zeinab Mazloumi
- Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Arian Samimifar
- Department of Medical Sciences, Student Research Committee, Islamic Azad University, Tabriz Branch, Tabriz, Iran
| | - Khadijeh Dizaji Asl
- Department of Histopathology and Anatomy, Faculty of Medical Sciences, Tabriz Medical Sciences, Islamic Azad University, Tabriz, Iran.
| |
Collapse
|
3
|
Song J, Li W, Bai Y, Zhou P, Niu J, Niu X, Liu Y, Liu X, Drokow EK, Sun K, Zhou H. A blastic plasmacytoid dendritic cell neoplasm-like immunophenotype is negatively associated with CEBPA bZIP mutation and predicts unfavorable prognosis in acute myeloid leukemia. Ann Hematol 2024; 103:463-473. [PMID: 38183444 DOI: 10.1007/s00277-023-05594-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 12/17/2023] [Indexed: 01/08/2024]
Abstract
Blastic plasmacytoid dendritic cell neoplasm (BPDCN) is a rare and aggressive myeloid malignancy which characteristically expresses an atypical phenotype including CD123+, CD56+, and CD4+. We are aimed to investigate the clinical and prognostic characteristics of AML patients exhibiting BPDCN-like immunophenotype and provide additional insights for risk stratification of AML. A total of 241 newly diagnosed AML patients were enrolled in this retrospective study and categorized into BPDCN-like positive (n = 125)/negative (n = 116) groups, determined by the present with CD123+ along with either CD56+ or CD4+, or both. Subsequently, an analysis was conducted to examine the general clinical characteristics, genetic profiles, and prognosis of the two respective groups. Patients with BPDCN-like immunophenotype manifested higher frequencies of acute myelomonocytic leukemia and acute monoblastic leukemia. Surprisingly, the presence of the BPDCN-like immunophenotype exhibited an inverse relationship with CEBPA bZIP mutation. Notably, patients with BPDCN-like phenotype had both worse OS and EFS compared to those without BPDCN-like phenotype. In the CN-AML subgroups, the BPDCN-like phenotype was associated with worse EFS. Similarly, a statistically significant disparity was observed in both OS and EFS within the favorable-risk subgroup, while only OS was significant within the adverse-risk subgrouMoreover, patients possessing favorable-risk genetics without BPDCN-like phenotype had the longest survival, whereas those who had both adverse-risk genetics and BPDCN-like phenotype exhibited the worst survival. Our study indicated that BPDCN-like phenotype negatively associated with CEBPA bZIP mutation and revealed a significantly poor prognosis in AML. Moreover, the 2022 ELN classification, in combination with the BPDCN-like phenotype, may better distinguish between different risk groups.
Collapse
Affiliation(s)
- Juanjuan Song
- Department of Hematology, Affiliated Tumor Hospital of Zhengzhou University, Tumor Hospital of Henan Province, Institute of Hematology of Henan Province, No.127 Dongming Road, Jinshui District, Zhengzhou, 450000, Henan, People's Republic of China
| | - Weiya Li
- Department of Hematology, Zhengzhou University People's Hospital and Henan Provincial People's Hospital, No.7 Weiwu Road, Jinshui District, Zhengzhou, Henan, 450003, People's Republic of China
| | - Yanliang Bai
- Department of Hematology, Zhengzhou University People's Hospital and Henan Provincial People's Hospital, No.7 Weiwu Road, Jinshui District, Zhengzhou, Henan, 450003, People's Republic of China
| | - Pan Zhou
- Department of Hematology, Zhengzhou University People's Hospital and Henan Provincial People's Hospital, No.7 Weiwu Road, Jinshui District, Zhengzhou, Henan, 450003, People's Republic of China
| | - Junwei Niu
- Department of Hematology, Zhengzhou University People's Hospital and Henan Provincial People's Hospital, No.7 Weiwu Road, Jinshui District, Zhengzhou, Henan, 450003, People's Republic of China
| | - Xiaona Niu
- Department of Hematology, Zhengzhou University People's Hospital and Henan Provincial People's Hospital, No.7 Weiwu Road, Jinshui District, Zhengzhou, Henan, 450003, People's Republic of China
| | - Ying Liu
- Department of Hematology, Zhengzhou University People's Hospital and Henan Provincial People's Hospital, No.7 Weiwu Road, Jinshui District, Zhengzhou, Henan, 450003, People's Republic of China
| | - Xiaobo Liu
- Department of Hematology, Zhengzhou University People's Hospital and Henan Provincial People's Hospital, No.7 Weiwu Road, Jinshui District, Zhengzhou, Henan, 450003, People's Republic of China
| | - Emmanuel Kwateng Drokow
- Department of Hematology, Zhengzhou University People's Hospital and Henan Provincial People's Hospital, No.7 Weiwu Road, Jinshui District, Zhengzhou, Henan, 450003, People's Republic of China
| | - Kai Sun
- Department of Hematology, Zhengzhou University People's Hospital and Henan Provincial People's Hospital, No.7 Weiwu Road, Jinshui District, Zhengzhou, Henan, 450003, People's Republic of China.
| | - Hu Zhou
- Department of Hematology, Affiliated Tumor Hospital of Zhengzhou University, Tumor Hospital of Henan Province, Institute of Hematology of Henan Province, No.127 Dongming Road, Jinshui District, Zhengzhou, 450000, Henan, People's Republic of China.
| |
Collapse
|
4
|
Zhou YL, Zhao MY, Gale RP, Jiang H, Jiang Q, Liu LX, Qin JY, Cao SB, Lou F, Xu LP, Zhang XH, Huang XJ, Ruan GR. Mutations in DEAD/H-box helicase 11 correlate with increased relapse risk in adults with acute myeloid leukaemia with normal cytogenetics. Leukemia 2024; 38:223-225. [PMID: 37993668 DOI: 10.1038/s41375-023-02085-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 10/28/2023] [Accepted: 11/07/2023] [Indexed: 11/24/2023]
Affiliation(s)
- Ya-Lan Zhou
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University, Beijing, China
| | - Ming-Yue Zhao
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University, Beijing, China
| | - Robert Peter Gale
- Centre for Haematology, Department of Immunology and Inflammation, Imperial College London, London, UK
| | - Hao Jiang
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University, Beijing, China
| | - Qian Jiang
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University, Beijing, China
| | - Li-Xia Liu
- Acornmed Biotechnology Co., Ltd., Tianjin, China
| | - Jia-Yue Qin
- Acornmed Biotechnology Co., Ltd., Tianjin, China
| | - Shan-Bo Cao
- Acornmed Biotechnology Co., Ltd., Tianjin, China
| | - Feng Lou
- Acornmed Biotechnology Co., Ltd., Tianjin, China
| | - Lan-Ping Xu
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University, Beijing, China
| | - Xiao-Hui Zhang
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University, Beijing, China
| | - Xiao-Jun Huang
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University, Beijing, China.
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China.
| | - Guo-Rui Ruan
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University, Beijing, China.
| |
Collapse
|
5
|
Wang D, Rausch C, Buerger SA, Tschuri S, Rothenberg-Thurley M, Schulz M, Hasenauer J, Ziemann F, Metzeler KH, Marr C. Modeling early treatment response in AML from cell-free tumor DNA. iScience 2023; 26:108271. [PMID: 38047080 PMCID: PMC10690559 DOI: 10.1016/j.isci.2023.108271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 10/03/2023] [Accepted: 10/17/2023] [Indexed: 12/05/2023] Open
Abstract
Monitoring disease response after intensive chemotherapy for acute myeloid leukemia (AML) currently requires invasive bone marrow biopsies, imposing a significant burden on patients. In contrast, cell-free tumor DNA (ctDNA) in peripheral blood, carrying tumor-specific mutations, offers a less-invasive assessment of residual disease. However, the relationship between ctDNA levels and bone marrow blast kinetics remains unclear. We explored this in 10 AML patients with NPM1 and IDH2 mutations undergoing initial chemotherapy. Comparison of mathematical mixed-effect models showed that (1) inclusion of blast cell death in the bone marrow, (2) transition of ctDNA to peripheral blood, and (3) ctDNA decay in peripheral blood describes kinetics of blast cells and ctDNA best. The fitted model allows prediction of residual bone marrow blast content from ctDNA, and its scaling factor, representing clonal heterogeneity, correlates with relapse risk. Our study provides precise insights into blast and ctDNA kinetics, offering novel avenues for AML disease monitoring.
Collapse
Affiliation(s)
- Dantong Wang
- Institute of AI for Health, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg 85764, Germany
- Center for Mathematics, Technische Universität München, Garching 85748, Germany
| | - Christian Rausch
- Laboratory for Leukemia Diagnostics, Department of Medicine III, University Hospital (LMU), Munich, Germany
- German Cancer Consortium (DKTK), partner sites Munich/Dresden, Germany
| | - Simon A. Buerger
- Laboratory for Leukemia Diagnostics, Department of Medicine III, University Hospital (LMU), Munich, Germany
| | - Sebastian Tschuri
- Laboratory for Leukemia Diagnostics, Department of Medicine III, University Hospital (LMU), Munich, Germany
| | - Maja Rothenberg-Thurley
- Laboratory for Leukemia Diagnostics, Department of Medicine III, University Hospital (LMU), Munich, Germany
| | - Melanie Schulz
- Institute of AI for Health, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg 85764, Germany
- Center for Mathematics, Technische Universität München, Garching 85748, Germany
| | - Jan Hasenauer
- Center for Mathematics, Technische Universität München, Garching 85748, Germany
- Computational Health Center, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg 85764, Germany
- Faculty of Mathematics and Natural Sciences, Rheinische Friedrich-Wilhelms-Universität Bonn, 53115 Bonn, Germany
| | - Frank Ziemann
- Laboratory for Leukemia Diagnostics, Department of Medicine III, University Hospital (LMU), Munich, Germany
- German Cancer Consortium (DKTK), partner sites Munich/Dresden, Germany
| | - Klaus H. Metzeler
- Department of Hematology and Cell Therapy, University Hospital Leipzig (UHL) 04103, Germany
| | - Carsten Marr
- Institute of AI for Health, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg 85764, Germany
- Center for Mathematics, Technische Universität München, Garching 85748, Germany
| |
Collapse
|
6
|
Medvedev KE, Schaeffer RD, Pei J, Grishin NV. Pathogenic mutation hotspots in protein kinase domain structure. Protein Sci 2023; 32:e4750. [PMID: 37572333 PMCID: PMC10464295 DOI: 10.1002/pro.4750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 08/04/2023] [Accepted: 08/08/2023] [Indexed: 08/14/2023]
Abstract
Control of eukaryotic cellular function is heavily reliant on the phosphorylation of proteins at specific amino acid residues, such as serine, threonine, tyrosine, and histidine. Protein kinases that are responsible for this process comprise one of the largest families of evolutionarily related proteins. Dysregulation of protein kinase signaling pathways is a frequent cause of a large variety of human diseases including cancer, autoimmune, neurodegenerative, and cardiovascular disorders. In this study, we mapped all pathogenic mutations in 497 human protein kinase domains from the ClinVar database to the reference structure of Aurora kinase A (AURKA) and grouped them by the relevance to the disease type. Our study revealed that the majority of mutation hotspots associated with cancer are situated within the catalytic and activation loops of the kinase domain, whereas non-cancer-related hotspots tend to be located outside of these regions. Additionally, we identified a hotspot at residue R371 of the AURKA structure that has the highest number of exclusively non-cancer-related pathogenic mutations (21) and has not been previously discussed.
Collapse
Affiliation(s)
- Kirill E. Medvedev
- Department of BiophysicsUniversity of Texas Southwestern Medical CenterDallasTexasUSA
| | - R. Dustin Schaeffer
- Department of BiophysicsUniversity of Texas Southwestern Medical CenterDallasTexasUSA
| | - Jimin Pei
- Eugene McDermott Center for Human Growth and DevelopmentUniversity of Texas Southwestern Medical CenterDallasTexasUSA
| | - Nick V. Grishin
- Department of BiophysicsUniversity of Texas Southwestern Medical CenterDallasTexasUSA
- Department of BiochemistryUniversity of Texas Southwestern Medical CenterDallasTexasUSA
| |
Collapse
|
7
|
Gao X. Identification of DUSP7 as an RNA Marker for Prognostic Stratification in Acute Myeloid Leukemia: Evidence from Large Population Cohorts. Genet Res (Camb) 2023; 2023:4348290. [PMID: 37538139 PMCID: PMC10396553 DOI: 10.1155/2023/4348290] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 07/03/2023] [Accepted: 07/16/2023] [Indexed: 08/05/2023] Open
Abstract
Background The problem of prognostic stratification in acute myeloid leukemia (AML) patients still has limitations. Methods The expression profile data and clinical features of AML patients were obtained from multiple publicly available sources, including GSE71014, TCGA-LAML, and TARGET-AML. Single-cell analysis was performed using the TISCH project. All the analysis was conducted in the R software. Results In our study, three public AML cohorts, GSE71014, TARGET-AML, and TCGA-AML, were selected. Then, we identified the prognosis-related molecules through bioinformatic analysis. Finally, the DUSP7 was noticed as a risk factor for AML patients, which has not been reported previously. Biological enrichment analysis and immune-related analysis were performed to illustrate the role of DUSP7 in AML. Single-cell analysis indicated that the DUSP7 was widely distributed in various cells, especially in monocyte/macrophages and malignant. Following this, a prognosis model based on DUSP7-derived genes was constructed, which showed a good prognosis prediction ability in all cohorts. Conclusions Our results preliminarily reveal the role and potential mechanism of DUSP7 in AML, providing direction for future research.
Collapse
Affiliation(s)
- Xin Gao
- Anhui Medical College, Hefei, China
| |
Collapse
|
8
|
Ye Z, Chen J, Huang P, Xuan Z, Zheng S. Ubiquitin-specific peptidase 10, a deubiquitinating enzyme: Assessing its role in tumor prognosis and immune response. Front Oncol 2022; 12:990195. [PMID: 36248971 PMCID: PMC9554417 DOI: 10.3389/fonc.2022.990195] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 09/09/2022] [Indexed: 12/24/2022] Open
Abstract
Ubiquitin-specific peptidase 10 (USP10) is a member of the ubiquitin-specific protease family that removes the ubiquitin chain from ubiquitin-conjugated protein substrates. We performed a literature search to evaluate the structure and biological activity of USP10, summarize its role in tumorigenesis and tumor progression, and discuss how USP10 may act as a tumor suppressor or a tumor-promoting gene depending on its mechanism of action. Subsequently, we elaborated further on these results through bioinformatics analysis. We demonstrated that abnormal expression of USP10 is related to tumorigenesis in various types of cancer, including liver, lung, ovarian, breast, prostate, and gastric cancers and acute myeloid leukemia. Meanwhile, in certain cancers, increased USP10 expression is associated with tumor suppression. USP10 was downregulated in kidney renal clear cell carcinoma (KIRC) and associated with reduced overall survival in patients with KIRC. In contrast, USP10 upregulation was associated with poor prognosis in head and neck squamous cell carcinoma (HNSC). In addition, we elucidated the novel role of USP10 in the regulation of tumor immunity in KIRC and HNSC through bioinformatics analysis. We identified several signaling pathways to be significantly associated with USP10 expression, such as ferroptosis, PI3K/AKT/mTOR, TGF-β, and G2/M checkpoint. In summary, this review outlines the role of USP10 in various forms of cancer, discusses the relevance of USP10 inhibitors in anti-tumor therapies, and highlights the potential function of USP10 in regulating the immune responses of tumors.
Collapse
Affiliation(s)
- Ziqi Ye
- Department of Clinical Pharmacy, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Provincial Key Laboratory for Drug Evaluation and Clinical Research, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jie Chen
- Department of Pharmacy, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ping Huang
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
- Key Laboratory of Endocrine Gland Diseases of Zhejiang Province, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
| | - Zixue Xuan
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
- Key Laboratory of Endocrine Gland Diseases of Zhejiang Province, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
- *Correspondence: Zixue Xuan, ; Shuilian Zheng,
| | - Shuilian Zheng
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
- *Correspondence: Zixue Xuan, ; Shuilian Zheng,
| |
Collapse
|
9
|
Mosquera Orgueira A, Peleteiro Raíndo A, Díaz Arias JÁ, Antelo Rodríguez B, López Riñón M, Cerchione C, de la Fuente Burguera A, González Pérez MS, Martinelli G, Montesinos Fernández P, Pérez Encinas MM. Evaluation of the Stellae-123 prognostic gene expression signature in acute myeloid leukemia. Front Oncol 2022; 12:968340. [PMID: 36059646 PMCID: PMC9428690 DOI: 10.3389/fonc.2022.968340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 07/28/2022] [Indexed: 11/17/2022] Open
Abstract
Risk stratification in acute myeloid leukemia (AML) has been extensively improved thanks to the incorporation of recurrent cytogenomic alterations into risk stratification guidelines. However, mortality rates among fit patients assigned to low or intermediate risk groups are still high. Therefore, significant room exists for the improvement of AML prognostication. In a previous work, we presented the Stellae-123 gene expression signature, which achieved a high accuracy in the prognostication of adult patients with AML. Stellae-123 was particularly accurate to restratify patients bearing high-risk mutations, such as ASXL1, RUNX1 and TP53. The intention of the present work was to evaluate the prognostic performance of Stellae-123 in external cohorts using RNAseq technology. For this, we evaluated the signature in 3 different AML cohorts (2 adult and 1 pediatric). Our results indicate that the prognostic performance of the Stellae-123 signature is reproducible in the 3 cohorts of patients. Additionally, we evidenced that the signature was superior to the European LeukemiaNet 2017 and the pediatric clinical risk scores in the prediction of survival at most of the evaluated time points. Furthermore, integration with age substantially enhanced the accuracy of the model. In conclusion, Stellae-123 is a reproducible machine learning algorithm based on a gene expression signature with promising utility in the field of AML.
Collapse
Affiliation(s)
- Adrián Mosquera Orgueira
- Department of Hematology, University Hospital of Santiago de Compostela, Santiago de Compostela, Spain
| | - Andrés Peleteiro Raíndo
- Department of Hematology, University Hospital of Santiago de Compostela, Santiago de Compostela, Spain
| | - José Ángel Díaz Arias
- Department of Hematology, University Hospital of Santiago de Compostela, Santiago de Compostela, Spain
| | - Beatriz Antelo Rodríguez
- Department of Hematology, University Hospital of Santiago de Compostela, Santiago de Compostela, Spain
| | | | - Claudio Cerchione
- Unit of Hematology, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “DinoAmadori”, Meldola, Italy
| | | | | | - Giovanni Martinelli
- Unit of Hematology, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “DinoAmadori”, Meldola, Italy
| | | | | |
Collapse
|
10
|
El-Masry OS, Alamri AM, Alzahrani F, Alsamman K. ADAMTS14, ARHGAP22, and EPDR1 as potential novel targets in acute myeloid leukaemia. Heliyon 2022; 8:e09065. [PMID: 35299609 PMCID: PMC8920923 DOI: 10.1016/j.heliyon.2022.e09065] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 12/13/2021] [Accepted: 03/03/2022] [Indexed: 11/25/2022] Open
Abstract
Acute myeloid leukaemia (AML) is a blood cancer with a heterogeneous genomic landscape. This study aimed to mine bioinformatics data generated by RNA sequencing to unveil an AML case transcriptome profile and identify novel therapeutic targets and markers. In this study, we have determined the transcriptomic profile and analysed gene variants of an AML patient at the time of diagnosis and validated some genes by quantitative reverse transcriptase polymerase chain reaction. ADAMTS14, ARHGAP22, and ependymin-related protein 1 (EPDR1) were markedly upregulated compared to the corresponding control. In addition, novel exonic single-nucleotide and insertion/deletion variants were identified in these genes. Hence, ADAMTS14, ARHGAP22, and EPDR1 can be proposed as potential novel targets in AML, and their exact roles should be further explored.
Collapse
Affiliation(s)
- Omar S El-Masry
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Imam Abdulrahaman Bin Faisal University, Dammam, 31441, Saudi Arabia
| | - Ali M Alamri
- Department of Internal Medicine, King Fahd Hospital of the University, Imam Abdulrahaman Bin Faisal University, Alkhobar, 34445, Saudi Arabia
| | - Faisal Alzahrani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Imam Abdulrahaman Bin Faisal University, Dammam, 31441, Saudi Arabia
| | - Khaldoon Alsamman
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Imam Abdulrahaman Bin Faisal University, Dammam, 31441, Saudi Arabia
| |
Collapse
|
11
|
Acute Myeloid Leukemia-Related Proteins Modified by Ubiquitin and Ubiquitin-like Proteins. Int J Mol Sci 2022; 23:ijms23010514. [PMID: 35008940 PMCID: PMC8745615 DOI: 10.3390/ijms23010514] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 12/24/2021] [Accepted: 12/30/2021] [Indexed: 11/17/2022] Open
Abstract
Acute myeloid leukemia (AML), the most common form of an acute leukemia, is a malignant disorder of stem cell precursors of the myeloid lineage. Ubiquitination is one of the post-translational modifications (PTMs), and the ubiquitin-like proteins (Ubls; SUMO, NEDD8, and ISG15) play a critical role in various cellular processes, including autophagy, cell-cycle control, DNA repair, signal transduction, and transcription. Also, the importance of Ubls in AML is increasing, with the growing research defining the effect of Ubls in AML. Numerous studies have actively reported that AML-related mutated proteins are linked to Ub and Ubls. The current review discusses the roles of proteins associated with protein ubiquitination, modifications by Ubls in AML, and substrates that can be applied for therapeutic targets in AML.
Collapse
|
12
|
Pimenta DB, Varela VA, Datoguia TS, Caraciolo VB, Lopes GH, Pereira WO. The Bone Marrow Microenvironment Mechanisms in Acute Myeloid Leukemia. Front Cell Dev Biol 2021; 9:764698. [PMID: 34869355 PMCID: PMC8639599 DOI: 10.3389/fcell.2021.764698] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 10/20/2021] [Indexed: 12/13/2022] Open
Abstract
Bone marrow (BM) is a highly complex tissue that provides important regulatory signals to orchestrate hematopoiesis. Resident and transient cells occupy and interact with some well characterized niches to produce molecular and cellular mechanisms that interfere with differentiation, migration, survival, and proliferation in this microenvironment. The acute myeloid leukemia (AML), the most common and severe hematological neoplasm in adults, arises and develop in the BM. The osteoblastic, vascular, and reticular niches provide surface co-receptors, soluble factors, cytokines, and chemokines that mediate important functions on hematopoietic cells and leukemic blasts. There are some evidences of how AML modify the architecture and function of these three BM niches, but it has been still unclear how essential those modifications are to maintain AML development. Basic studies and clinical trials have been suggesting that disturbing specific cells and molecules into the BM niches might be able to impair leukemia competencies. Either through niche-specific molecule inhibition alone or in combination with more traditional drugs, the bone marrow microenvironment is currently considered the potential target for new strategies to treat AML patients. This review describes the cellular and molecular constitution of the BM niches under healthy and AML conditions, presenting this anatomical compartment by a new perspective: as a prospective target for current and next generation therapies.
Collapse
Affiliation(s)
- Débora Bifano Pimenta
- Faculdade Israelita de Ciências da Saúde Albert Einstein, Hospital Israelita Albert Einstein, São Paulo, Brazil
| | - Vanessa Araujo Varela
- Faculdade Israelita de Ciências da Saúde Albert Einstein, Hospital Israelita Albert Einstein, São Paulo, Brazil
| | - Tarcila Santos Datoguia
- Faculdade Israelita de Ciências da Saúde Albert Einstein, Hospital Israelita Albert Einstein, São Paulo, Brazil
| | - Victória Bulcão Caraciolo
- Faculdade Israelita de Ciências da Saúde Albert Einstein, Hospital Israelita Albert Einstein, São Paulo, Brazil
| | - Gabriel Herculano Lopes
- Faculdade Israelita de Ciências da Saúde Albert Einstein, Hospital Israelita Albert Einstein, São Paulo, Brazil
| | - Welbert Oliveira Pereira
- Faculdade Israelita de Ciências da Saúde Albert Einstein, Hospital Israelita Albert Einstein, São Paulo, Brazil
| |
Collapse
|
13
|
Zhou F, Chen B. Prognostic significance of ferroptosis-related genes and their methylation in AML. Hematology 2021; 26:919-930. [PMID: 34789073 DOI: 10.1080/16078454.2021.1996055] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Ferroptosis involves in the development and therapeutic response of various types of tumors. This study aims to explore ferroptosis-related prognostic genes that could further accurately stratify AML patients. METHODS We investigated the prognosis significance of ferroptosis-related genes in AML by Univariate and multivariate Cox proportional hazards regression analyses. With the methylation data of TCGA samples, we looked for methylation sites associated with prognostic genes and compared the correlation between methylation and mRNA expression. R software and 'edgeR' packages were used to identify the DEGs between the high-and-low-risk groups divided by the FRPGs prognosis model and then run GO enrichment, KEGG pathway, and PPI network. RESULTS We found a prognostic risk model that included AKR1C2 and SOCS1 predicted outcomes in AML patients. Methylation analysis showed that AKR1C2 and SOCS1 are negatively regulated by their methylation, leading to their low expression in AML patients. Besides, both decreased SOCS1 expression and hypermethylation predicted favorable OS and PFS in AML patients. Finally, this prognostic risk model exhibited a close correlation with several clinical features, especially with age (P=0.005), cytogenetic type (P=0.031), risk_cytogenetic (P=0.001), and risk_molecular (P<0.001). Functional enrichment analysis showed that DEGs are most enriched in the regulation of cell death and the PI3K-Akt signaling pathway. CONCLUSION AKR1C2 and SOCS1 are promising biomarkers for predicting prognosis in patients with AML.
Collapse
Affiliation(s)
- Fang Zhou
- Medical School, Southeast University, Nanjing, Jiangsu Province, People's Republic of China
| | - Baoan Chen
- Department of Hematology and Oncology, Zhongda Hospital, Medical School, Southeast University, Nanjing, Jiangsu Province, People's Republic of China
| |
Collapse
|
14
|
La Manna S, Florio D, Di Natale C, Scognamiglio PL, Sibillano T, Netti PA, Giannini C, Marasco D. Type F mutation of nucleophosmin 1 Acute Myeloid Leukemia: A tale of disorder and aggregation. Int J Biol Macromol 2021; 188:207-214. [PMID: 34364939 DOI: 10.1016/j.ijbiomac.2021.08.023] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 07/19/2021] [Accepted: 08/03/2021] [Indexed: 01/15/2023]
Abstract
Protein aggregation is suggested as a reversible, wide-spread physiological process used by cells to regulate their growth and adapt to different stress conditions. Nucleophosmin 1(NPM1) protein is an abundant multifunctional nucleolar chaperone and its gene is the most frequently mutated in Acute Myeloid Leukemia (AML) patients. So far, the role of NPM1 mutations in leukemogenesis has remained largely elusive considering that they have the double effect of unfolding the C-terminal domain (CTD) and delocalizing the protein in the cytosol (NPM1c+). This mislocalization heavily impacts on cell cycle regulation. Our recent investigations unequivocally demonstrated an amyloid aggregation propensity introduced by AML mutations. Herein, employing complementary biophysical assays, we have characterized a N-terminal extended version of type F AML mutation of CTD and proved that it is able to form assemblies with amyloid character and fibrillar morphology. The present study represents an additional phase of knowledge to deepen the roles exerted by different types of cytoplasmatic NPM1c+ forms to develop in the future potential therapeutics for their selective targeting.
Collapse
Affiliation(s)
- Sara La Manna
- Department of Pharmacy, University of Naples "Federico II", 80134 Naples, Italy
| | - Daniele Florio
- Department of Pharmacy, University of Naples "Federico II", 80134 Naples, Italy
| | - Concetta Di Natale
- Interdisciplinary Research Centre on Biomaterials (CRIB), Department of Ingegneria Chimica del Materiali e della Produzione Industriale (DICMAPI), University of Naples "Federico II", Italy
| | - Pasqualina Liana Scognamiglio
- Interdisciplinary Research Centre on Biomaterials (CRIB), Department of Ingegneria Chimica del Materiali e della Produzione Industriale (DICMAPI), University of Naples "Federico II", Italy
| | - Teresa Sibillano
- Institute of Crystallography (IC), National Research Council, 70125 Bari, Italy
| | - Paolo A Netti
- Interdisciplinary Research Centre on Biomaterials (CRIB), Department of Ingegneria Chimica del Materiali e della Produzione Industriale (DICMAPI), University of Naples "Federico II", Italy
| | - Cinzia Giannini
- Institute of Crystallography (IC), National Research Council, 70125 Bari, Italy
| | - Daniela Marasco
- Department of Pharmacy, University of Naples "Federico II", 80134 Naples, Italy.
| |
Collapse
|
15
|
Lai SH, Li YC, Zhang S, Deng R, Deng Y, Fan FY. Whole genome, exon mutation and transcriptomic profiling of acute myeloid leukemia: A case report. Oncol Lett 2021; 22:559. [PMID: 34084226 PMCID: PMC8161460 DOI: 10.3892/ol.2021.12820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 12/14/2020] [Indexed: 11/28/2022] Open
Abstract
The present study aimed to observe previously unidentified gene mutation and expression profiles associated with acute myeloid leukemia (AML) at the individual level, based on the blood samples of a father-son pair. Genomic DNA and RNA samples from blood serum were collected. Whole-genome sequencing (WGS) and whole-exome sequencing (WES), as well as mRNA sequencing of the son, were performed. For the father's sample, a total of 3,897,164 single nucleotide polymorphisms (SNPs) and 780,834 insertion and deletions (indels) were identified. Regarding amino acid translation, there were 11,316 non-synonymous, 12 stop-loss, 12,033 synonymous, 92 stop-gain SNPs, 63 frameshift insertions, 73 frameshift deletions, 242 non-frameshift insertions, 248 non-frameshift deletions, four stop-gains and two stop-loss for indel variants. Among the AML-related genes that had been previously identified, 14 genes were found in the father's exon region. For WES of the son's DNA, 96,639 SNPs were identified, including 10,504 non-synonymous SNPs. Seven mutant genes were found in sons' exon region compared with 121 AML-related genes. Based on the transcriptomic sequencing, there were 54 differentially expressed mRNAs, including 31 upregulated and 23 downregulated mRNAs. In the exon region, 10,072 SNPs were detected, and different types of alternative splicing in the son's sample were observed. Overall, whole genome, exon mutation and transcriptomic profiling of the present two patients with AML may provide a new insight into the molecular events governing the development of AML.
Collapse
Affiliation(s)
- Si-Han Lai
- Hematology Department and Hematopoietic Stem Cell Transplantation Center, The General Hospital of Western Theater Command, Chengdu, Sichuan 610083, P.R. China
| | - Ye-Cheng Li
- Hematology Department and Hematopoietic Stem Cell Transplantation Center, The General Hospital of Western Theater Command, Chengdu, Sichuan 610083, P.R. China
| | - Shan Zhang
- Hematology Department and Hematopoietic Stem Cell Transplantation Center, The General Hospital of Western Theater Command, Chengdu, Sichuan 610083, P.R. China
| | - Rui Deng
- Hematology Department and Hematopoietic Stem Cell Transplantation Center, The General Hospital of Western Theater Command, Chengdu, Sichuan 610083, P.R. China
| | - Yan Deng
- Hematology Department and Hematopoietic Stem Cell Transplantation Center, The General Hospital of Western Theater Command, Chengdu, Sichuan 610083, P.R. China
| | - Fang-Yi Fan
- Hematology Department and Hematopoietic Stem Cell Transplantation Center, The General Hospital of Western Theater Command, Chengdu, Sichuan 610083, P.R. China
| |
Collapse
|
16
|
Wei X, Li Y, Zhang G, Wang N, Mi M, Xin Y, Jiang H, Sun C. IL-37 Was Involved in Progress of Acute Myeloid Leukemia Through Regulating IL-6 Expression. Cancer Manag Res 2021; 13:3393-3402. [PMID: 33907463 PMCID: PMC8064683 DOI: 10.2147/cmar.s303017] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 03/17/2021] [Indexed: 12/11/2022] Open
Abstract
Background Interleukin-37, which was discovered in 2000, is a natural suppressor of immune and inflammatory responses. Recent studies reported that IL-37 was abnormally expressed in several tumor patients, including those with hepatocellular carcinoma, gastric cancer, lung cancer, colon cancer, epithelial ovarian cancer, and multiple myeloma. However, the expression and potential function of IL-37 in leukemia remain unknown. Objective The aim of this study was to evaluate IL-37 as a prognostic factor and its possible mechanism of action. Methods Polymerase chain reaction products were analyzed by agarose gel electrophoresis and were purified and subsequently sequenced by a genetic testing laboratory. Human PBMC was purified from whole blood samples by using Ficoll-Paque PLUS. The concentrations of human IL-37 and human IL-6 were measured using enzyme-linked immunosorbent assay (ELISA) kits. Results IL-37, especially isoform b and d, was expressed in the bone marrow of AML, CML, ALL, and CLL. Importantly, IL-37 expression was downregulated in newly diagnosed AML patients and restored in patients in complete remission. Moreover, a significant association was found between IL-37 expression and NPM1 mutation or possible prognosis evaluated by karyotype and gene mutation. Further analysis revealed that IL-37 expression was negatively correlated with IL-6 expression. With regard to the mechanism, recombinant human IL-37 could suppress IL-6 expression stimulated by LPS in PBMC of AML patients. Conclusion Our study suggested that IL-37 may be an important prognostic factor in AML and is involved in AML via the IL-6 signaling pathway, indicating that IL-37 is an innovative research strategy for AML pathogenesis and therapy.
Collapse
Affiliation(s)
- Xiaonan Wei
- Qingdao Women and Children's Hospital, Qingdao University, Qingdao, Shandong, 266000, People's Republic of China
| | - Yulan Li
- Center for Laboratory Diagnosis, Yantai Yuhuangding Hospital Affiliated to Qingdao University, Yantai Shandong, 264000, People's Republic of China
| | - Guili Zhang
- Center for Laboratory Diagnosis, Yantai Yuhuangding Hospital Affiliated to Qingdao University, Yantai Shandong, 264000, People's Republic of China
| | - Na Wang
- Center for Laboratory Diagnosis, Yantai Yuhuangding Hospital Affiliated to Qingdao University, Yantai Shandong, 264000, People's Republic of China
| | - Miaomiao Mi
- School of Medicine, Qingdao University, Qingdao, Shandong, 266000, People's Republic of China
| | - Yu Xin
- School of Clinical Medical, Binzhou Medical University Clinical Laboratory, Yantai Yuhuangding Hospital, Yantai, Shandong, 264000, People's Republic of China
| | - Huihui Jiang
- School of Medicine, Qingdao University, Qingdao, Shandong, 266000, People's Republic of China
| | - Chengming Sun
- Center for Laboratory Diagnosis, Yantai Yuhuangding Hospital Affiliated to Qingdao University, Yantai Shandong, 264000, People's Republic of China
| |
Collapse
|
17
|
Wu ZJ, Sun Q, Gu DL, Wang LQ, Li JY, Jin H. [Expression of circ-KEL in acute myeloid leukemia and its regulatory mechanisms in leukemic cells]. ZHONGHUA XUE YE XUE ZA ZHI = ZHONGHUA XUEYEXUE ZAZHI 2021; 42:230-237. [PMID: 33910309 PMCID: PMC8081935 DOI: 10.3760/cma.j.issn.0253-2727.2021.03.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Indexed: 11/05/2022]
Abstract
Objective: To explore the expression of circ-KEL in patients with acute myeloid leukemia (AML) and the effect and mechanism of circ-KEL on leukemic cells. Methods: The expression of circ-KEL was detected by quantitative real-time polymerase chain reaction in bone marrow mononuclear cells collected from 116 patients with AML and 40 healthy donors. The correlation of circ-KEL expression with the clinical characteristics of patients with AML was further systematically analyzed. The modulations among circ-KEL, miR-335-5p, and LRG1 were predicted through bioinformatics analysis and validated by dual luciferase assay. Cell proliferation and apoptosis were detected using CCK8 and flow cytometry. Results: The expression of circ-KEL was significantly elevated in patients with AML compared with the healthy controls (Relative expression level, -Δct, AML: -7.117±1.831; control: -8.669±1.771, P<0.001) . Moreover, patients with high circ-KEL expression have significantly worse overall survival. The level of circ-KEL in patients with AML was downregulated after chemo-treatment. In addition, circ-KEL could serve as the sponge of miR-335-5p and regulate LRG1. Bioinformatics analysis showed that miR-335-5p correlates with good prognosis and was negatively associated with LRG1. LRG1 could promote cell proliferation and inhibit cell apoptosis. Our results also exhibited the higher expression of LRG1 in patients with AML. Moreover, circ-KEL exerted functional effects via sponging miR-335-5p and regulating LRG1. Conclusion: circ-KEL expresses highly in patients with AML and correlates with poor prognosis, suggesting its important role in the genesis and progress of AML.
Collapse
Affiliation(s)
- Z J Wu
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University (Jiangsu Provincial People Hospital), Nanjing 210029, China
| | - Q Sun
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University (Jiangsu Provincial People Hospital), Nanjing 210029, China
| | - D L Gu
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University (Jiangsu Provincial People Hospital), Nanjing 210029, China
| | - L Q Wang
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University (Jiangsu Provincial People Hospital), Nanjing 210029, China
| | - J Y Li
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University (Jiangsu Provincial People Hospital), Nanjing 210029, China
| | - H Jin
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University (Jiangsu Provincial People Hospital), Nanjing 210029, China
| |
Collapse
|
18
|
Abstract
Mouse models of human myeloid malignancies support the detailed and focused investigation of selected driver mutations and represent powerful tools in the study of these diseases. Carefully developed murine models can closely recapitulate human myeloid malignancies in vivo, enabling the interrogation of a number of aspects of these diseases including their preclinical course, interactions with the microenvironment, effects of pharmacological agents, and the role of non-cell-autonomous factors, as well as the synergy between co-occurring mutations. Importantly, advances in gene-editing technologies, particularly CRISPR-Cas9, have opened new avenues for the development and study of genetically modified mice and also enable the direct modification of mouse and human hematopoietic cells. In this review we provide a concise overview of some of the important mouse models that have advanced our understanding of myeloid leukemogenesis with an emphasis on models relevant to clonal hematopoiesis, myelodysplastic syndromes, and acute myeloid leukemia with a normal karyotype.
Collapse
Affiliation(s)
- Faisal Basheer
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Department of Haematology, University of Cambridge, Cambridge CB2 0AW, United Kingdom
- Haematological Cancer Genetics, Wellcome Trust Sanger Institute, Cambridge CB10 1SA, United Kingdom
- Department of Haematology, Cambridge University Hospitals NHS Foundation Trust, Cambridge CB2 0QQ, United Kingdom
| | - George Vassiliou
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Department of Haematology, University of Cambridge, Cambridge CB2 0AW, United Kingdom
- Haematological Cancer Genetics, Wellcome Trust Sanger Institute, Cambridge CB10 1SA, United Kingdom
- Department of Haematology, Cambridge University Hospitals NHS Foundation Trust, Cambridge CB2 0QQ, United Kingdom
| |
Collapse
|
19
|
Benmebarek MR, Cadilha BL, Herrmann M, Lesch S, Schmitt S, Stoiber S, Darwich A, Augsberger C, Brauchle B, Rohrbacher L, Oner A, Seifert M, Schwerdtfeger M, Gottschlich A, Rataj F, Fenn NC, Klein C, Subklewe M, Endres S, Hopfner KP, Kobold S. A modular and controllable T cell therapy platform for acute myeloid leukemia. Leukemia 2021; 35:2243-2257. [PMID: 33414484 PMCID: PMC7789085 DOI: 10.1038/s41375-020-01109-w] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 11/09/2020] [Accepted: 12/01/2020] [Indexed: 01/29/2023]
Abstract
Targeted T cell therapy is highly effective in disease settings where tumor antigens are uniformly expressed on malignant cells and where off-tumor on-target-associated toxicity is manageable. Although acute myeloid leukemia (AML) has in principle been shown to be a T cell-sensitive disease by the graft-versus-leukemia activity of allogeneic stem cell transplantation, T cell therapy has so far failed in this setting. This is largely due to the lack of target structures both sufficiently selective and uniformly expressed on AML, causing unacceptable myeloid cell toxicity. To address this, we developed a modular and controllable MHC-unrestricted adoptive T cell therapy platform tailored to AML. This platform combines synthetic agonistic receptor (SAR) -transduced T cells with AML-targeting tandem single chain variable fragment (scFv) constructs. Construct exchange allows SAR T cells to be redirected toward alternative targets, a process enabled by the short half-life and controllability of these antibody fragments. Combining SAR-transduced T cells with the scFv constructs resulted in selective killing of CD33+ and CD123+ AML cell lines, as well as of patient-derived AML blasts. Durable responses and persistence of SAR-transduced T cells could also be demonstrated in AML xenograft models. Together these results warrant further translation of this novel platform for AML treatment.
Collapse
Affiliation(s)
- Mohamed-Reda Benmebarek
- grid.5252.00000 0004 1936 973XCenter of Integrated Protein Science Munich (CIPS-M) and Division of Clinical Pharmacology, Department of Medicine IV, Klinikum der Universität München, LMU, Munich, Germany
| | - Bruno L. Cadilha
- grid.5252.00000 0004 1936 973XCenter of Integrated Protein Science Munich (CIPS-M) and Division of Clinical Pharmacology, Department of Medicine IV, Klinikum der Universität München, LMU, Munich, Germany
| | - Monika Herrmann
- grid.5252.00000 0004 1936 973XDepartment of Medicine III, Klinikum der Universität München, LMU, Munich, Germany
| | - Stefanie Lesch
- grid.5252.00000 0004 1936 973XCenter of Integrated Protein Science Munich (CIPS-M) and Division of Clinical Pharmacology, Department of Medicine IV, Klinikum der Universität München, LMU, Munich, Germany
| | - Saskia Schmitt
- grid.5252.00000 0004 1936 973XDepartment of Medicine III, Klinikum der Universität München, LMU, Munich, Germany
| | - Stefan Stoiber
- grid.5252.00000 0004 1936 973XCenter of Integrated Protein Science Munich (CIPS-M) and Division of Clinical Pharmacology, Department of Medicine IV, Klinikum der Universität München, LMU, Munich, Germany
| | - Abbass Darwich
- grid.417728.f0000 0004 1756 8807Mucosal Immunology and Microbiota Lab, Humanitas Clinical and Research Center, Milan, Italy
| | - Christian Augsberger
- grid.5252.00000 0004 1936 973XDepartment of Medicine III, Klinikum der Universität München, LMU, Munich, Germany
| | - Bettina Brauchle
- grid.5252.00000 0004 1936 973XDepartment of Medicine III, Klinikum der Universität München, LMU, Munich, Germany ,grid.5252.00000 0004 1936 973XLaboratory for Translational Cancer Immunology, Gene Center, LMU Munich, Munich, Germany
| | - Lisa Rohrbacher
- grid.5252.00000 0004 1936 973XDepartment of Medicine III, Klinikum der Universität München, LMU, Munich, Germany ,grid.5252.00000 0004 1936 973XLaboratory for Translational Cancer Immunology, Gene Center, LMU Munich, Munich, Germany
| | - Arman Oner
- grid.5252.00000 0004 1936 973XCenter of Integrated Protein Science Munich (CIPS-M) and Division of Clinical Pharmacology, Department of Medicine IV, Klinikum der Universität München, LMU, Munich, Germany
| | - Matthias Seifert
- grid.5252.00000 0004 1936 973XCenter of Integrated Protein Science Munich (CIPS-M) and Division of Clinical Pharmacology, Department of Medicine IV, Klinikum der Universität München, LMU, Munich, Germany
| | - Melanie Schwerdtfeger
- grid.5252.00000 0004 1936 973XCenter of Integrated Protein Science Munich (CIPS-M) and Division of Clinical Pharmacology, Department of Medicine IV, Klinikum der Universität München, LMU, Munich, Germany
| | - Adrian Gottschlich
- grid.5252.00000 0004 1936 973XCenter of Integrated Protein Science Munich (CIPS-M) and Division of Clinical Pharmacology, Department of Medicine IV, Klinikum der Universität München, LMU, Munich, Germany
| | - Felicitas Rataj
- grid.5252.00000 0004 1936 973XCenter of Integrated Protein Science Munich (CIPS-M) and Division of Clinical Pharmacology, Department of Medicine IV, Klinikum der Universität München, LMU, Munich, Germany
| | - Nadja C. Fenn
- grid.5252.00000 0004 1936 973XDepartment of Medicine III, Klinikum der Universität München, LMU, Munich, Germany
| | - Christian Klein
- grid.417570.00000 0004 0374 1269Roche Innovation Center Zurich, Schlieren, Switzerland
| | - Marion Subklewe
- grid.5252.00000 0004 1936 973XDepartment of Medicine III, Klinikum der Universität München, LMU, Munich, Germany ,grid.5252.00000 0004 1936 973XLaboratory for Translational Cancer Immunology, Gene Center, LMU Munich, Munich, Germany ,German Center for Translational Cancer Research (DKTK), Partner Site Munich, Munich, Germany
| | - Stefan Endres
- grid.5252.00000 0004 1936 973XCenter of Integrated Protein Science Munich (CIPS-M) and Division of Clinical Pharmacology, Department of Medicine IV, Klinikum der Universität München, LMU, Munich, Germany ,German Center for Translational Cancer Research (DKTK), Partner Site Munich, Munich, Germany ,grid.4567.00000 0004 0483 2525Einheit für Klinische Pharmakologie (EKLiP), Helmholtz Zentrum München, German Research Center for Environmental Health (HMGU), Neuherberg, Germany
| | | | - Sebastian Kobold
- grid.5252.00000 0004 1936 973XCenter of Integrated Protein Science Munich (CIPS-M) and Division of Clinical Pharmacology, Department of Medicine IV, Klinikum der Universität München, LMU, Munich, Germany ,German Center for Translational Cancer Research (DKTK), Partner Site Munich, Munich, Germany ,grid.4567.00000 0004 0483 2525Einheit für Klinische Pharmakologie (EKLiP), Helmholtz Zentrum München, German Research Center for Environmental Health (HMGU), Neuherberg, Germany
| |
Collapse
|
20
|
Thakral D, Gupta R, Sahoo RK, Verma P, Kumar I, Vashishtha S. Real-Time Molecular Monitoring in Acute Myeloid Leukemia With Circulating Tumor DNA. Front Cell Dev Biol 2020; 8:604391. [PMID: 33363162 PMCID: PMC7759522 DOI: 10.3389/fcell.2020.604391] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 10/21/2020] [Indexed: 02/06/2023] Open
Abstract
The clonal evolution of acute myeloid leukemia (AML), an oligoclonal hematological malignancy, is driven by a plethora of cytogenetic abnormalities, gene mutations, abnormal epigenetic patterns, and aberrant gene expressions. These alterations in the leukemic blasts promote clinically diverse manifestations with common characteristics of high relapse and drug resistance. Defining and real-time monitoring of a personalized panel of these predictive genetic biomarkers is rapidly being adapted in clinical setting for diagnostic, prognostic, and therapeutic decision-making in AML. A major challenge remains the frequency of invasive biopsy procedures that can be routinely performed for monitoring of AML disease progression. Moreover, a single-site biopsy is not representative of the tumor heterogeneity as it is spatially and temporally constrained and necessitates the understanding of longitudinal and spatial subclonal dynamics in AML. Hematopoietic cells are a major contributor to plasma cell-free DNA, which also contain leukemia-specific aberrations as the circulating tumor-derived DNA (ctDNA) fraction. Plasma cell-free DNA analysis holds immense potential as a minimally invasive tool for genomic profiling at diagnosis as well as clonal evolution during AML disease progression. With the technological advances and increasing sensitivity for detection of ctDNA, both genetic and epigenetic aberrations can be qualitatively and quantitatively evaluated. However, challenges remain in validating the utility of liquid biopsy tools in clinics, and universal recommendations are still awaited towards reliable diagnostics and prognostics. Here, we provide an overview on the scope of ctDNA analyses for prognosis, assessment of response to treatment and measurable residual disease, prediction of disease relapse, development of acquired resistance and beyond in AML.
Collapse
Affiliation(s)
- Deepshi Thakral
- Laboratory Oncology Unit, Dr. BRA IRCH, All India Institute of Medical Sciences, New Delhi, India
| | - Ritu Gupta
- Laboratory Oncology Unit, Dr. BRA IRCH, All India Institute of Medical Sciences, New Delhi, India
| | - Ranjit Kumar Sahoo
- Department of Medical Oncology, Dr. BRA IRCH, All India Institute of Medical Sciences, New Delhi, India
| | - Pramod Verma
- Laboratory Oncology Unit, Dr. BRA IRCH, All India Institute of Medical Sciences, New Delhi, India
| | - Indresh Kumar
- Laboratory Oncology Unit, Dr. BRA IRCH, All India Institute of Medical Sciences, New Delhi, India
| | - Sangeeta Vashishtha
- Laboratory Oncology Unit, Dr. BRA IRCH, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
21
|
El-Masry OS, Al-Amri AM, Alqatari A, Alsamman K. RNA sequencing-based identification of potential targets in acute myeloid leukemia: A case report. Biomed Rep 2020; 13:42. [PMID: 32934815 PMCID: PMC7469581 DOI: 10.3892/br.2020.1349] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 08/06/2020] [Indexed: 12/20/2022] Open
Abstract
Acute myeloid leukemia (AML) refers to heterogenous types of blood cancer which possess a complicated genomic landscape, and multiple novel mutational alterations are frequently being reported. Herein, a case report of a 37-year old AML patient is presented, who was diagnosed following laboratory investigation after admission. The patient had thrombocytopenia, and three consecutive blast counts of 40, 30 and 41%, respectively. A blood sample was collected for whole-genome RNA sequencing to understand the transcriptomic profile at the time of diagnosis and compared with a matched female control. Gene expression was quantified using the RSEM software package. Bioinformatics analysis revealed a significant number of differentially expressed genes in the patient, suggesting a marked change in the transcriptomic landscape in this patient. By mining the bioinformatics data and screening the highly expressed genes with ≥80% probability of gene expression, four novel genes were highlighted that may serve as potential future targets in AML patients; Rh associated glycoprotein, succinate receptor 1, transmembrane-4 L-six family member-1 and ADGRA3, although further validation of their value is required.
Collapse
Affiliation(s)
- Omar S. El-Masry
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Imam Abdulrahman Bin Faisal University, Dammam, Eastern Province 34212, Kingdom of Saudi Arabia
| | - Ali M. Al-Amri
- Department of Internal Medicine/Oncology, College of Medicine, Imam Abdulrahman Bin Faisal University, King Fahd Hospital of The University, Al-Khobar, Eastern Province 34445, Kingdom of Saudi Arabia
| | - Ahlam Alqatari
- Hematology Laboratory/Hematopathology, College of Medicine, Imam Abdulrahman Bin Faisal University, King Fahd Hospital of The University, Al-Khobar, Eastern Province 34445, Kingdom of Saudi Arabia
| | - Khaldoon Alsamman
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Imam Abdulrahman Bin Faisal University, Dammam, Eastern Province 34212, Kingdom of Saudi Arabia
| |
Collapse
|
22
|
Cheng J, Liao Y, Bin T, OUYang J, Chen S, Chen X, Zou W. Secondary chronic myeloid leukemia following acute myeloid leukemia treated with autologous hematopoietic stem cell transplantation: a case report. Curr Med Res Opin 2020; 36:1807-1812. [PMID: 32936052 DOI: 10.1080/03007995.2020.1808452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
OBJECTIVE Acute myeloid leukemia (AML) is a hematopoietic stem cell malignancy and the most common type of leukemia, with the 5-year relative survival rate of 19% in Europe. Chronic myeloid leukemia (CML) is a slowly progressive clonal malignant disease, and a myeloproliferative disorder which is derived from biphasic hematopoietic stem cells but driven by progenitor cells. AML following CML is common, which can be caused by an antecedent myeloid malignancy, leukemogenic therapy, or without an identifiable prodrome or exposure to cytotoxic agents. However, the case of secondary chronic myeloid leukemia following acute myeloid leukemia treated with autologous hematopoietic stem cell transplantation is rare. METHODS Here we report a unique case of secondary CML after AML treated by chemotherapy and autologous peripheral blood stem cell transplantation. The 34-year-old male was diagnosed with AML subtype M5b according to clinical features in 2011. The patient was treated with the MAE program (mitoxantrone, cytosine arabinoside, etoposide) for two courses, followed by the IAE program (idarubicin, cytosine arabinoside, etoposide) and cytosine arabinoside for consolidation chemotherapy. An autologous hematopoietic stem cell transplantation with prophylactic intrathecal methotrexate cytarabine and dexamethasone was initiated. RESULTS Subsequently, the patient achieved complete remission in 2012. After 4 years, the patient presented with leukocyte elevation of more than 4 months, and then was diagnosed with secondary CML. Based on this diagnosis, and with respect to the patient's severely compromised overall condition, tyrosine kinase inhibitors (TKI) therapy was conducted in 2016. The patient achieved, and continue to be in, complete remission. CONCLUSIONS The case expands the understanding of secondary CML and emphasizes the importance of oncological vigilance in patients with secondary CML after AML therapy.
Collapse
MESH Headings
- Adult
- Antineoplastic Combined Chemotherapy Protocols/therapeutic use
- Combined Modality Therapy
- Cytarabine/administration & dosage
- Etoposide/administration & dosage
- Hematopoietic Stem Cell Transplantation
- Humans
- Imatinib Mesylate/therapeutic use
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/etiology
- Leukemia, Myeloid, Acute/pathology
- Leukemia, Myeloid, Acute/therapy
- Male
- Mitoxantrone/administration & dosage
- Pyrimidines/therapeutic use
- Remission Induction
- Transplantation, Autologous
Collapse
Affiliation(s)
- Jing Cheng
- Department of Laboratory Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yaping Liao
- Department of Hematology, The Eight Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Ting Bin
- Department of Hematology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Juan OUYang
- Department of Laboratory Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Shaoqian Chen
- Department of Laboratory Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xueyan Chen
- Department of Laboratory Medicine, The People's Hospital of Longhua Shenzhen, Shenzhen, China
| | - Waiyi Zou
- Department of Hematology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
23
|
Cela I, Di Matteo A, Federici L. Nucleophosmin in Its Interaction with Ligands. Int J Mol Sci 2020; 21:E4885. [PMID: 32664415 PMCID: PMC7402337 DOI: 10.3390/ijms21144885] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 07/07/2020] [Accepted: 07/08/2020] [Indexed: 12/13/2022] Open
Abstract
Nucleophosmin (NPM1) is a mainly nucleolar protein that shuttles between nucleoli, nucleoplasm and cytoplasm to fulfill its many functions. It is a chaperone of both nucleic acids and proteins and plays a role in cell cycle control, centrosome duplication, ribosome maturation and export, as well as the cellular response to a variety of stress stimuli. NPM1 is a hub protein in nucleoli where it contributes to nucleolar organization through heterotypic and homotypic interactions. Furthermore, several alterations, including overexpression, chromosomal translocations and mutations are present in solid and hematological cancers. Recently, novel germline mutations that cause dyskeratosis congenita have also been described. This review focuses on NPM1 interactions and inhibition. Indeed, the list of NPM1 binding partners is ever-growing and, in recent years, many studies contributed to clarifying the structural basis for NPM1 recognition of both nucleic acids and several proteins. Intriguingly, a number of natural and synthetic ligands that interfere with NPM1 interactions have also been reported. The possible role of NPM1 inhibitors in the treatment of multiple cancers and other pathologies is emerging as a new therapeutic strategy.
Collapse
Affiliation(s)
- Ilaria Cela
- Center for Advanced Studies and Technology (CAST), University of Chieti “G. d’Annunzio”, Via Polacchi, 66100 Chieti, Italy;
- Department of Medical, Oral and Biotechnological Sciences, University of Chieti “G. d’Annunzio”, Via dei Vestini 31, 66100 Chieti, Italy
| | - Adele Di Matteo
- Institute of Molecular Biology and Pathology (IBPM) of the CNR, c/o “Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Roma, Italy;
| | - Luca Federici
- Center for Advanced Studies and Technology (CAST), University of Chieti “G. d’Annunzio”, Via Polacchi, 66100 Chieti, Italy;
- Department of Medical, Oral and Biotechnological Sciences, University of Chieti “G. d’Annunzio”, Via dei Vestini 31, 66100 Chieti, Italy
| |
Collapse
|
24
|
Li G, Gao Y, Li K, Lin A, Jiang Z. Genomic analysis of biomarkers related to the prognosis of acute myeloid leukemia. Oncol Lett 2020; 20:1824-1834. [PMID: 32724426 PMCID: PMC7377096 DOI: 10.3892/ol.2020.11700] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Accepted: 04/09/2020] [Indexed: 01/26/2023] Open
Abstract
Acute myeloid leukemia (AML) is the most common childhood cancer and is a major cause of morbidity among adults with hematologic malignancies. Several novel genetic alterations, which target critical cellular pathways, including alterations in lymphoid development-regulating genes, tumor suppressors and oncogenes that contribute to leukemogenesis, have been identified. The present study aimed to identify molecular markers associated with the occurrence and poor prognosis of AML. Information on these molecular markers may facilitate prediction of clinical outcomes. Clinical data and RNA expression profiles of AML specimens from The Cancer Genome Atlas database were assessed. Mutation data were analyzed and mapped using the maftools package in R software. Kyoto Encyclopedia of Genes and Genomes, Reactome and Gene Ontology analyses were performed using the clusterProfiler package in R software. Furthermore, Kaplan-Meier survival analysis was performed using the survminer package in R software. The expression data of RNAs were subjected to univariate Cox regression analysis, which demonstrated that the mutation loads varied considerably among patients with AML. Subsequently, the expression data of mRNAs, microRNAs (miRNAs/miR) and long non-coding RNAs (lncRNAs) were subjected to univariate Cox regression analysis to determine the the 100 genes most associated with the survival of patients with AML, which revealed 48 mRNAs and 52 miRNAs. The top 1,900 mRNAs (P<0.05) were selected through enrichment analysis to determine their functional role in AML prognosis. The results demonstrated that these molecules were involved in the transforming growth factor-β, SMAD and fibroblast growth factor receptor-1 fusion mutant signaling pathways. Survival analysis indicated that patients with AML, with high MYH15, TREML2, ATP13A2, MMP7, hsa-let-7a-2-3p, hsa-miR-362-3p, hsa-miR-500a-5p, hsa-miR-500b-5p, hsa-miR-362-5p, LINC00987, LACAT143, THCAT393, THCAT531 and KHCAT230 expression levels had a shorter survival time compared with those without these factors. Conversely, a high KANSL1L expression level in patients was associated with a longer survival time. The present study determined genetic mutations, mRNAs, miRNAs, lncRNAs and signaling pathways involved in AML, in order to elucidate the underlying molecular mechanisms of the development and recurrence of this disease.
Collapse
Affiliation(s)
- Guilan Li
- Department of Hematology, General Hospital of Southern Theatre Command of PLA, Guangzhou, Guangdong 510010, P.R. China
| | - Yang Gao
- Department of Hematology, General Hospital of Southern Theatre Command of PLA, Guangzhou, Guangdong 510010, P.R. China
| | - Kun Li
- Department of Oncology, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong 510282, P.R. China
| | - Anqi Lin
- Department of Oncology, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong 510282, P.R. China
| | - Zujun Jiang
- Department of Hematology, General Hospital of Southern Theatre Command of PLA, Guangzhou, Guangdong 510010, P.R. China
| |
Collapse
|
25
|
AMLVaran: a software approach to implement variant analysis of targeted NGS sequencing data in an oncological care setting. BMC Med Genomics 2020; 13:17. [PMID: 32019565 PMCID: PMC7001226 DOI: 10.1186/s12920-020-0668-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 01/21/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Next-Generation Sequencing (NGS) enables large-scale and cost-effective sequencing of genetic samples in order to detect genetic variants. After successful use in research-oriented projects, NGS is now entering clinical practice. Consequently, variant analysis is increasingly important to facilitate a better understanding of disease entities and prognoses. Furthermore, variant calling allows to adapt and optimize specific treatments of individual patients, and thus is an integral part of personalized medicine.However, the analysis of NGS data typically requires a number of complex bioinformatics processing steps. A flexible and reliable software that combines the variant analysis process with a simple, user-friendly interface is therefore highly desirable, but still lacking. RESULTS With AMLVaran (AML Variant Analyzer), we present a web-based software, that covers the complete variant analysis workflow of targeted NGS samples. The software provides a generic pipeline that allows free choice of variant calling tools and a flexible language (SSDL) for filtering variant lists. AMLVaran's interactive website presents comprehensive annotation data and includes curated information on relevant hotspot regions and driver mutations. A concise clinical report with rule-based diagnostic recommendations is generated.An AMLVaran configuration with eight variant calling tools and a complex scoring scheme, based on the somatic variant calling pipeline appreci8, was used to analyze three datasets from AML and MDS studies with 402 samples in total. Maximum sensitivity and positive predictive values were 1.0 and 0.96, respectively. The tool's usability was found to be satisfactory by medical professionals. CONCLUSION Coverage analysis, reproducible variant filtering and software usability are important for clinical assessment of variants. AMLVaran performs reliable NGS variant analyses and generates reports fulfilling the requirements of a clinical setting. Due to its generic design, the software can easily be adapted for use with different targeted panels for other tumor entities, or even for whole-exome data. AMLVaran has been deployed to a public web server and is distributed with Docker scripts for local use.
Collapse
|
26
|
Chen Y, Hu J. Nucleophosmin1 (NPM1) abnormality in hematologic malignancies, and therapeutic targeting of mutant NPM1 in acute myeloid leukemia. Ther Adv Hematol 2020; 11:2040620719899818. [PMID: 32071709 PMCID: PMC6997955 DOI: 10.1177/2040620719899818] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 12/18/2019] [Indexed: 01/07/2023] Open
Abstract
Nucleophosmin (NPM1) is an abundant nucleolar protein that is
implicated in a variety of biological processes and in the pathogenesis of
several human malignancies. For hematologic malignancies, approximately
one-third of anaplastic large-cell non-Hodgkin’s lymphomas were found to express
a fusion between NPM1 and the catalytic domain of anaplastic
lymphoma receptor tyrosine kinase. About 50–60% of acute myeloid leukemia
patients with normal karyotype carry NPM1 mutations, which are
characterized by cytoplasmic dislocation of the NPM1 protein.
Nevertheless, NPM1 is overexpressed in various hematologic and
solid tumor malignancies. NPM1 overexpression is considered a
prognostic marker of recurrence and progression of cancer. Thus,
NPM1 abnormalities play a critical role in several types of
hematologic malignancies. This has led to intense interest in the development of
an NPM1 targeting strategy for cancer therapy. The aim of this
review is to summarize present knowledge on NPM1 origin,
pathogenesis, and therapeutic interventions in hematologic malignancies.
Collapse
Affiliation(s)
- Yingyu Chen
- Department of Hematology, Fujian Institute of Hematology, Fujian Medical University Union Hospital, No.29 Xinquan Road, Fuzhou, Fujian 350001, China
| | - Jianda Hu
- Department of Hematology, Fujian Institute of Hematology, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
| |
Collapse
|
27
|
Richardson DR, Foster MC, Coombs CC, Zeidner JF. Advances in Genomic Profiling and Risk Stratification in Acute Myeloid Leukemia. Semin Oncol Nurs 2019; 35:150957. [PMID: 31759819 PMCID: PMC10246438 DOI: 10.1016/j.soncn.2019.150957] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
OBJECTIVE To review the current state of molecular and genetic profiling of acute myeloid leukemia (AML) and its implications. DATA SOURCE Peer-reviewed journal articles. CONCLUSION Significant advances in the understanding of the pathology of acute myeloid leukemia have led to refined risk stratification of patients and application of novel targeted therapies based on genetic profiles. Minimal residual disease testing allows for highly sensitive disease surveillance that can be used to predict relapse and assess treatment response. IMPLICATIONS FOR NURSING PRACTICE Accurate prognostication and therapeutic decision-making for patients with acute myeloid leukemia is dependent on molecular profiling. Being knowledgeable of the implications of minimal residual disease testing is critical for patient-centered care.
Collapse
Affiliation(s)
- Daniel R Richardson
- UNC Lineberger Comprehensive Cancer Center, Division of Hematology/Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC; The Cecil G. Sheps Center for Health Services Research, University of North Carolina at Chapel Hill, Chapel Hill, NC.
| | - Matthew C Foster
- UNC Lineberger Comprehensive Cancer Center, Division of Hematology/Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Catherine C Coombs
- UNC Lineberger Comprehensive Cancer Center, Division of Hematology/Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Joshua F Zeidner
- UNC Lineberger Comprehensive Cancer Center, Division of Hematology/Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC
| |
Collapse
|
28
|
Pearson JM, Tan SF, Sharma A, Annageldiyev C, Fox TE, Abad JL, Fabrias G, Desai D, Amin S, Wang HG, Cabot MC, Claxton DF, Kester M, Feith DJ, Loughran TP. Ceramide Analogue SACLAC Modulates Sphingolipid Levels and MCL-1 Splicing to Induce Apoptosis in Acute Myeloid Leukemia. Mol Cancer Res 2019; 18:352-363. [PMID: 31744877 DOI: 10.1158/1541-7786.mcr-19-0619] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 08/30/2019] [Accepted: 11/15/2019] [Indexed: 02/06/2023]
Abstract
Acute myeloid leukemia (AML) is a disease characterized by uncontrolled proliferation of immature myeloid cells in the blood and bone marrow. The 5-year survival rate is approximately 25%, and recent therapeutic developments have yielded little survival benefit. Therefore, there is an urgent need to identify novel therapeutic targets. We previously demonstrated that acid ceramidase (ASAH1, referred to as AC) is upregulated in AML and high AC activity correlates with poor patient survival. Here, we characterized a novel AC inhibitor, SACLAC, that significantly reduced the viability of AML cells with an EC50 of approximately 3 μmol/L across 30 human AML cell lines. Treatment of AML cell lines with SACLAC effectively blocked AC activity and induced a decrease in sphingosine 1-phosphate and a 2.5-fold increase in total ceramide levels. Mechanistically, we showed that SACLAC treatment led to reduced levels of splicing factor SF3B1 and alternative MCL-1 mRNA splicing in multiple human AML cell lines. This increased proapoptotic MCL-1S levels and contributed to SACLAC-induced apoptosis in AML cells. The apoptotic effects of SACLAC were attenuated by SF3B1 or MCL-1 overexpression and by selective knockdown of MCL-1S. Furthermore, AC knockdown and exogenous C16-ceramide supplementation induced similar changes in SF3B1 level and MCL-1S/L ratio. Finally, we demonstrated that SACLAC treatment leads to a 37% to 75% reduction in leukemic burden in two human AML xenograft mouse models. IMPLICATIONS: These data further emphasize AC as a therapeutic target in AML and define SACLAC as a potent inhibitor to be further optimized for future clinical development.
Collapse
Affiliation(s)
- Jennifer M Pearson
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, Virginia
| | - Su-Fern Tan
- Department of Medicine, Division of Hematology & Oncology, University of Virginia, Charlottesville, Virginia
| | - Arati Sharma
- Penn State Cancer Institute, Hershey, Pennsylvania.,Department of Pharmacology, Penn State College of Medicine, Hershey, Pennsylvania
| | | | - Todd E Fox
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia
| | - Jose Luis Abad
- Department of Biological Chemistry, Networking Biomedical Research Centre on Liver and Digestive Diseases (CIBER-EHD), Institute for Advanced Chemistry of Catalonia, Spanish National Research Council (IQAC-CSIC), Barcelona, Spain
| | - Gemma Fabrias
- Department of Biological Chemistry, Networking Biomedical Research Centre on Liver and Digestive Diseases (CIBER-EHD), Institute for Advanced Chemistry of Catalonia, Spanish National Research Council (IQAC-CSIC), Barcelona, Spain
| | - Dhimant Desai
- Department of Pharmacology, Penn State College of Medicine, Hershey, Pennsylvania
| | - Shantu Amin
- Department of Pharmacology, Penn State College of Medicine, Hershey, Pennsylvania
| | - Hong-Gang Wang
- Penn State Cancer Institute, Hershey, Pennsylvania.,Department of Pediatrics, Penn State College of Medicine, Hershey, Pennsylvania
| | - Myles C Cabot
- Department of Biochemistry and Molecular Biology, East Carolina Diabetes and Obesity Institute, Brody School of Medicine, East Carolina University, Greenville, North Carolina
| | | | - Mark Kester
- Department of Pharmacology, Penn State College of Medicine, Hershey, Pennsylvania.,University of Virginia Cancer Center, Charlottesville, Virginia
| | - David J Feith
- Department of Medicine, Division of Hematology & Oncology, University of Virginia, Charlottesville, Virginia.,University of Virginia Cancer Center, Charlottesville, Virginia
| | - Thomas P Loughran
- Department of Medicine, Division of Hematology & Oncology, University of Virginia, Charlottesville, Virginia. .,University of Virginia Cancer Center, Charlottesville, Virginia
| |
Collapse
|
29
|
Multi-study reanalysis of 2,213 acute myeloid leukemia patients reveals age- and sex-dependent gene expression signatures. Sci Rep 2019; 9:12413. [PMID: 31455838 PMCID: PMC6712049 DOI: 10.1038/s41598-019-48872-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 08/14/2019] [Indexed: 11/19/2022] Open
Abstract
In 2019 it is estimated that more than 21,000 new acute myeloid leukemia (AML) patients will be diagnosed in the United States, and nearly 11,000 are expected to die from the disease. AML is primarily diagnosed among the elderly (median 68 years old at diagnosis). Prognoses have significantly improved for younger patients, but as much as 70% of patients over 60 years old will die within a year of diagnosis. In this study, we conducted a reanalysis of 2,213 acute myeloid leukemia patients compared to 548 healthy individuals, using curated publicly available microarray gene expression data. We carried out an analysis of normalized batch corrected data, using a linear model that included considerations for disease, age, sex, and tissue. We identified 974 differentially expressed probe sets and 4 significant pathways associated with AML. Additionally, we identified 375 age- and 70 sex-related probe set expression signatures relevant to AML. Finally, we trained a k nearest neighbors model to classify AML and healthy subjects with 90.9% accuracy. Our findings provide a new reanalysis of public datasets, that enabled the identification of new gene sets relevant to AML that can potentially be used in future experiments and possible stratified disease diagnostics.
Collapse
|
30
|
Ferrara F, Vitagliano O. Induction therapy in acute myeloid leukemia: Is it time to put aside standard 3 + 7? Hematol Oncol 2019; 37:558-563. [DOI: 10.1002/hon.2615] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 03/23/2019] [Indexed: 12/17/2022]
|
31
|
Guo J, Luan X, Cong Z, Sun Y, Wang L, McKenna SL, Cahill MR, O'Driscoll CM. The potential for clinical translation of antibody-targeted nanoparticles in the treatment of acute myeloid leukaemia. J Control Release 2018; 286:154-166. [DOI: 10.1016/j.jconrel.2018.07.024] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Revised: 07/12/2018] [Accepted: 07/13/2018] [Indexed: 02/06/2023]
|
32
|
Abstract
For several decades, few substantial therapeutic advances have been made for patients with acute myeloid leukaemia. However, since 2017 unprecedented growth has been seen in the number of drugs available for the treatment of acute myeloid leukaemia, with several new drugs receiving regulatory approval. In addition to advancing our therapeutic armamentarium, an increased understanding of the biology and genomic architecture of acute myeloid leukaemia has led to refined risk assessment of this disease, with consensus risk stratification guidelines now incorporating a growing number of recurrent molecular aberrations that aid in the selection of risk-adapted management strategies. Despite this promising recent progress, the outcomes of patients with acute myeloid leukaemia remain unsatisfactory, with more than half of patients ultimately dying from their disease. Enrolment of patients into clinical trials that evaluate novel drugs and rational combination therapies is imperative to continuing this progress and further improving the outcomes of patients with acute myeloid leukaemia.
Collapse
MESH Headings
- Aminoglycosides/therapeutic use
- Antibodies, Monoclonal, Humanized/therapeutic use
- Antineoplastic Agents/therapeutic use
- Antineoplastic Combined Chemotherapy Protocols/therapeutic use
- Consolidation Chemotherapy
- Cytarabine/administration & dosage
- Gemtuzumab
- Genomics
- Hematopoietic Stem Cell Transplantation
- Humans
- Leukemia, Myeloid, Acute/diagnosis
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/therapy
- Patient Selection
- Recurrence
- Remission Induction
- Risk Assessment
- Risk Factors
- Staurosporine/analogs & derivatives
- Staurosporine/therapeutic use
Collapse
Affiliation(s)
- Nicholas J Short
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Michael E Rytting
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; Department of Pediatrics-Patient Care, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jorge E Cortes
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
33
|
Cheng YQ, Zhai XW. [Clinical application of minimal residual disease detection in childhood acute leukemia]. ZHONGGUO DANG DAI ER KE ZA ZHI = CHINESE JOURNAL OF CONTEMPORARY PEDIATRICS 2018; 20:416-420. [PMID: 29764581 PMCID: PMC7389056 DOI: 10.7499/j.issn.1008-8830.2018.05.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 03/13/2018] [Indexed: 06/08/2023]
Abstract
In recent years, great progress has been made in the treatment outcome of childhood acute leukemia with the improvement of chemotherapy regimens and the introduction of risk-stratified therapy; however, minimal residual disease (MRD) is still a difficult problem which affects the prognosis of acute leukemia. MRD influences the selection of chemotherapy regimens and recurrence risk stratification, and meanwhile, it can be used for prognostic prediction. At present, flow cytometry and polymerase chain reaction are mainly used for MRD detection. The next-generation sequencing also plays an important role in MRD detection, especially in MRD detection after stem cell transplantation. This article reviews the methodology and significance of MRD detection in childhood acute leukemia.
Collapse
Affiliation(s)
- Yan-Qin Cheng
- Department of Hematology, Children′s Hospital of Fudan University, Shanghai 201102, China.
| | | |
Collapse
|
34
|
Mutation of the DNMT3A and IDH1/2 genes in Iranian acute myeloid leukemia patients with normal karyotype (CN-AML): association with other gene mutation and clinical and laboratory characteristics. J Hematop 2018. [DOI: 10.1007/s12308-018-0320-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022] Open
|
35
|
Han X, Li W, He N, Feng P, Pang Y, Ji C, Ma D. Gene mutation patterns of Chinese acute myeloid leukemia patients by targeted next-generation sequencing and bioinformatic analysis. Clin Chim Acta 2018; 479:25-37. [PMID: 29309772 DOI: 10.1016/j.cca.2018.01.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2017] [Revised: 12/31/2017] [Accepted: 01/04/2018] [Indexed: 12/20/2022]
Abstract
PURPOSES The conventional risk stratification of acute myeloid leukemia (AML), based on cytogenetics, cannot meet the demand for accurate prognostic evaluations. In recent years, gene mutations are found to be potential markers for more accurate risk stratification, but reports on mutation screening of Chinese AML are limited. We aim to display the mutation patterns of Chinese AML patients, reveal the genotype-phenotype correlations and make a comparison with Caucasians patients. METHODS Genome DNA from 78 patients' bone marrow were extracted for targeted gene mutation panel by next-generation sequencing (NGS) technology. Statistics and bioinformatics were used to analyze the correlations between gene mutations and clinical features, as well as the comparison of our results with the Cancer Genome Atlas Research Network (TCGA) public AML dataset. RESULTS We found patients with mutations of FLT3 and TET2 had higher bone marrow blasts, peripheral blasts and white blood cell (WBC) count, mutations of SRSF2 were related with age, and mutations of FLT3-ITD, DNMT3A, IDH1, TET2 and SRSF2 were risk factors for overall survival. What's more, we discovered 15 novel mutations and difference of mutational incidence in 6 genes between Chinese and Caucasians AML. Bioinformatic analysis revealed some relationship between gene mutations and expressions as well as drug sensitivities. CONCLUSIONS We made an investigation on the mutation patterns of Chinese AML patients by NGS technique and revealed correlations between gene mutations and clinical features. Thus we recommend routine testing of suspected genes for better prognostic prediction and individualized treatment.
Collapse
Affiliation(s)
- Xiaoyu Han
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, Shandong 250012, PR China
| | - Wei Li
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, Shandong 250012, PR China
| | - Na He
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, Shandong 250012, PR China
| | - Panpan Feng
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, Shandong 250012, PR China
| | - Yihua Pang
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, Shandong 250012, PR China
| | - Chunyan Ji
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, Shandong 250012, PR China.
| | - Daoxin Ma
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, Shandong 250012, PR China.
| |
Collapse
|
36
|
Conventional and Molecular Cytogenomic Basis of Hematologic Malignancies. Hematology 2018. [DOI: 10.1016/b978-0-323-35762-3.00056-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
37
|
Aziz H, Ping CY, Alias H, Ab Mutalib NS, Jamal R. Gene Mutations as Emerging Biomarkers and Therapeutic Targets for Relapsed Acute Myeloid Leukemia. Front Pharmacol 2017; 8:897. [PMID: 29270125 PMCID: PMC5725465 DOI: 10.3389/fphar.2017.00897] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 11/24/2017] [Indexed: 12/19/2022] Open
Abstract
It is believed that there are key differences in the genomic profile between adult and childhood acute myeloid leukemia (AML). Relapse is the significant contributor of mortality in patients with AML and remains as the leading cause of cancer death among children, posing great challenges in the treatment of AML. The knowledge about the genomic lesions in childhood AML is still premature as most genomic events defined in children were derived from adult cohorts. However, the emerging technologies of next generation sequencing have narrowed the gap of knowledge in the biology of AML by the detection of gene mutations for each sub-type which have led to the improvement in terms of prognostication as well as the use of targeted therapies. In this review, we describe the recent understanding of the genomic landscape including the prevalence of mutation, prognostic impact, and targeted therapies that will provide an insight into the pathogenesis of AML relapse in both adult and childhood cases.
Collapse
Affiliation(s)
- Habsah Aziz
- UKM Medical Molecular Biology Institute, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Chow Y Ping
- UKM Medical Molecular Biology Institute, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Hamidah Alias
- Department of Paediatrics, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | | | - Rahman Jamal
- UKM Medical Molecular Biology Institute, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| |
Collapse
|
38
|
Inhibition of SDF-1-induced migration of oncogene-driven myeloid leukemia by the L-RNA aptamer (Spiegelmer), NOX-A12, and potentiation of tyrosine kinase inhibition. Oncotarget 2017; 8:109973-109984. [PMID: 29299123 PMCID: PMC5746358 DOI: 10.18632/oncotarget.22409] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2017] [Accepted: 10/25/2017] [Indexed: 01/06/2023] Open
Abstract
Resistance to targeted tyrosine kinase inhibitors (TKI) remains a challenge for the treatment of myeloid leukemias. Following treatment with TKIs, the bone marrow microenvironment has been found to harbor a small pool of surviving leukemic CD34+ progenitor cells. The long-term survival of these leukemic cells has been attributed, at least in part, to the protective effects of bone marrow stroma. We found that the NOX-A12 'Spiegelmer', an L-enantiomeric RNA oligonucleotide that inhibits SDF-1α, showed in vitro and in vivo activity against BCR-ABL- and FLT3-ITD-dependent leukemia cells. NOX-A12 was sufficient to suppress SDF-1-induced migration in vitro. The combination of NOX-A12 with TKIs reduced cell migration in the same in vitro model of SDF-1-induced chemotaxis to a greater extent than either drug alone, suggesting positive cooperativity as a result of the SDF-1 blocking function of NOX-A12 and cytotoxicity resulting from targeted oncogenic kinase inhibition. These results are consistent with our in vivo findings using a functional pre-clinical mouse model of chronic myeloid leukemia (CML), whereby we demonstrated the ability of NOX-A12, combined with the ABL kinase inhibitor, nilotinib, to reduce the leukemia burden in mice to a greater extent than either agent alone. Overall, the data support the idea of using SDF-1 inhibition in combination with targeted kinase inhibition to override drug resistance in oncogene-driven leukemia to significantly diminish or eradicate residual leukemic disease.
Collapse
|
39
|
Inhibition of USP10 induces degradation of oncogenic FLT3. Nat Chem Biol 2017; 13:1207-1215. [PMID: 28967922 DOI: 10.1038/nchembio.2486] [Citation(s) in RCA: 100] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Accepted: 08/25/2017] [Indexed: 01/07/2023]
Abstract
Oncogenic forms of the kinase FLT3 are important therapeutic targets in acute myeloid leukemia (AML); however, clinical responses to small-molecule kinase inhibitors are short-lived as a result of the rapid emergence of resistance due to point mutations or compensatory increases in FLT3 expression. We sought to develop a complementary pharmacological approach whereby proteasome-mediated FLT3 degradation could be promoted by inhibitors of the deubiquitinating enzymes (DUBs) responsible for cleaving ubiquitin from FLT3. Because the relevant DUBs for FLT3 are not known, we assembled a focused library of most reported small-molecule DUB inhibitors and carried out a cellular phenotypic screen to identify compounds that could induce the degradation of oncogenic FLT3. Subsequent target deconvolution efforts allowed us to identify USP10 as the critical DUB required to stabilize FLT3. Targeting of USP10 showed efficacy in preclinical models of mutant-FLT3 AML, including cell lines, primary patient specimens and mouse models of oncogenic-FLT3-driven leukemia.
Collapse
|
40
|
Weisberg EL, Puissant A, Stone R, Sattler M, Buhrlage SJ, Yang J, Manley PW, Meng C, Buonopane M, Daley JF, Lazo S, Wright R, Weinstock DM, Christie AL, Stegmaier K, Griffin JD. Characterization of midostaurin as a dual inhibitor of FLT3 and SYK and potentiation of FLT3 inhibition against FLT3-ITD-driven leukemia harboring activated SYK kinase. Oncotarget 2017; 8:52026-52044. [PMID: 28881711 PMCID: PMC5581010 DOI: 10.18632/oncotarget.19036] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 05/12/2017] [Indexed: 01/13/2023] Open
Abstract
Oncogenic FLT3 kinase is a clinically validated target in acute myeloid leukemia (AML), and both multi-targeted and selective FLT3 inhibitors have been developed. Spleen tyrosine kinase (SYK) has been shown to be activated and increased in FLT3-ITD-positive AML patients, and has further been shown to be critical for transformation and maintenance of the leukemic clone in these patients. Further, over-expression of constitutively activated SYK causes resistance to highly selective FLT3 tyrosine kinase inhibitors (TKI). Up to now, the activity of the multi-targeted FLT3 inhibitor, midostaurin, against cells expressing activated SYK has not been explored in the context of leukemia, although SYK has been identified as a target of midostaurin in systemic mastocytosis. We compared the ability of midostaurin to inhibit activated SYK in mutant FLT3-positive AML cells with that of inhibitors displaying dual SYK/FLT3 inhibition, targeted SYK inhibition, and targeted FLT3 inhibition. Our findings suggest that dual FLT3/SYK inhibitors and FLT3-targeted drugs potently kill oncogenic FLT3-transformed cells, while SYK-targeted small molecule inhibition displays minimal activity. However, midostaurin and other dual FLT3/SYK inhibitors display superior anti-proliferative activity when compared to targeted FLT3 inhibitors, such as crenolanib and quizartinib, against cells co-expressing FLT3-ITD and constitutively activated SYK-TEL. Interestingly, additional SYK suppression potentiated the effects of dual FLT3/SYK inhibitors and targeted FLT3 inhibitors against FLT3-ITD-driven leukemia, both in the absence and presence of activated SYK. Taken together, our findings have important implications for the design of drug combination studies in mutant FLT3-positive patients and for the design of future generations of FLT3 inhibitors.
Collapse
Affiliation(s)
- Ellen L Weisberg
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA.,Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Alexandre Puissant
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA.,Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Richard Stone
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA.,Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Martin Sattler
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA.,Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Sara J Buhrlage
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA.,Department of Biological Chemistry and Molecular Pharmacology, Boston, Massachusetts, USA.,Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Jing Yang
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA.,Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Paul W Manley
- Novartis Institutes of Biomedical Research, Basel, Switzerland
| | - Chengcheng Meng
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Michael Buonopane
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - John F Daley
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Suzan Lazo
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Renee Wright
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - David M Weinstock
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA.,Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Amanda L Christie
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Kimberly Stegmaier
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA.,Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - James D Griffin
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA.,Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
41
|
Zou Q, Tan S, Yang Z, Zhan Q, Jin H, Xian J, Zhang S, Yang L, Wang L, Zhang L. NPM1 Mutant Mediated PML Delocalization and Stabilization Enhances Autophagy and Cell Survival in Leukemic Cells. Am J Cancer Res 2017; 7:2289-2304. [PMID: 28740552 PMCID: PMC5505061 DOI: 10.7150/thno.19439] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 04/18/2017] [Indexed: 12/11/2022] Open
Abstract
Accumulating evidence has defined nucleophosmin 1 (NPM1) mutation as a driver genetic event in acute myeloid leukemia (AML), whereas the pathogenesis of NPM1-mutated AML remains to be fully elucidated. In this study, we showed that mutant NPM1 elevated autophagic activity and autophagic activation contributed to leukemic cell survival in vitro. Meanwhile, we also found high expression of promyelocytic leukemia gene (PML) and its cytoplasmic dislocation in primary NPM1-mutated AML blasts and NPM1-mA positive OCI-AML3 cells. Mechanically, mutant NPM1 interacted with PML and mediated it delocalization as well as stabilization. Notably, NPM1-mA knockdown impaired autophagic activity, while induced expression of PML reversed this effect. Finally, we confirmed that PML modulated autophagic activity via AKT signal. These findings suggest that aberrant PML expression and autophagy are beneficial to the leukemic transformation driven by NPM1 mutations. This indicates an attractive therapeutic avenue for PML targeting and/or autophagy inhibition in the treatment of NPM1-mutated AML.
Collapse
|
42
|
Guo J, Russell EG, Darcy R, Cotter TG, McKenna SL, Cahill MR, O’Driscoll CM. Antibody-Targeted Cyclodextrin-Based Nanoparticles for siRNA Delivery in the Treatment of Acute Myeloid Leukemia: Physicochemical Characteristics, in Vitro Mechanistic Studies, and ex Vivo Patient Derived Therapeutic Efficacy. Mol Pharm 2017; 14:940-952. [DOI: 10.1021/acs.molpharmaceut.6b01150] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Jianfeng Guo
- School
of Pharmaceutical Sciences, Jilin University, Changchun 130021, China
- Pharmacodelivery
Group, School of Pharmacy, University College Cork, Cork, Ireland
| | - Eileen G. Russell
- Tumour
Biology Laboratory, School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
| | - Raphael Darcy
- Pharmacodelivery
Group, School of Pharmacy, University College Cork, Cork, Ireland
| | - Thomas G. Cotter
- Tumour
Biology Laboratory, School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
| | | | - Mary R. Cahill
- Department
of Haematology, Cork University Hospital, Cork, Ireland
| | | |
Collapse
|
43
|
Gaymes TJ, Mohamedali A, Eiliazadeh AL, Darling D, Mufti GJ. FLT3 and JAK2 Mutations in Acute Myeloid Leukemia Promote Interchromosomal Homologous Recombination and the Potential for Copy Neutral Loss of Heterozygosity. Cancer Res 2017; 77:1697-1708. [DOI: 10.1158/0008-5472.can-16-1678] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Revised: 12/09/2016] [Accepted: 01/04/2017] [Indexed: 11/16/2022]
|
44
|
Factors predicting outcome after allogeneic transplant in refractory acute myeloid leukemia: a retrospective analysis of Gruppo Italiano Trapianto di Midollo Osseo (GITMO). Bone Marrow Transplant 2017; 52:955-961. [DOI: 10.1038/bmt.2016.325] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 09/27/2016] [Accepted: 09/30/2016] [Indexed: 01/30/2023]
|
45
|
Andresen V, Erikstein BS, Mukherjee H, Sulen A, Popa M, Sørnes S, Reikvam H, Chan KP, Hovland R, McCormack E, Bruserud Ø, Myers AG, Gjertsen BT. Anti-proliferative activity of the NPM1 interacting natural product avrainvillamide in acute myeloid leukemia. Cell Death Dis 2016; 7:e2497. [PMID: 27906185 PMCID: PMC5260983 DOI: 10.1038/cddis.2016.392] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Revised: 10/04/2016] [Accepted: 10/20/2016] [Indexed: 02/06/2023]
Abstract
Mutated nucleophosmin 1 (NPM1) acts as a proto-oncogene and is present in ~30% of patients with acute myeloid leukemia (AML). Here we examined the in vitro and in vivo anti-leukemic activity of the NPM1 and chromosome region maintenance 1 homolog (CRM1) interacting natural product avrainvillamide (AVA) and a fully syntetic AVA analog. The NPM1-mutated cell line OCI-AML3 and normal karyotype primary AML cells with NPM1 mutations were significantly more sensitive towards AVA than cells expressing wild-type (wt) NPM1. Furthermore, the presence of wt p53 sensitized cells toward AVA. Cells exhibiting fms-like tyrosine kinase 3 (FLT3) internal tandem duplication mutations also displayed a trend toward increased sensitivity to AVA. AVA treatment induced nuclear retention of the NPM1 mutant protein (NPMc+) in OCI-AML3 cells and primary AML cells, caused proteasomal degradation of NPMc+ and the nuclear export factor CRM1 and downregulated wt FLT3 protein. In addition, both AVA and its analog induced differentiation of OCI-AML3 cells together with an increased phagocytotic activity and oxidative burst potential. Finally, the AVA analog displayed anti-proliferative activity against subcutaneous xenografted HCT-116 and OCI-AML3 cells in mice. Our results demonstrate that AVA displays enhanced potency against defined subsets of AML cells, suggesting that therapeutic intervention employing AVA or related compounds may be feasible.
Collapse
Affiliation(s)
- Vibeke Andresen
- Centre for Cancer Biomarkers (CCBIO), Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Bjarte S Erikstein
- Centre for Cancer Biomarkers (CCBIO), Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Herschel Mukherjee
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
| | - André Sulen
- Centre for Cancer Biomarkers (CCBIO), Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Mihaela Popa
- KinN Therapeutics, Bergen, Norway
- Department of Internal Medicine, Haukeland University Hospital, Bergen, Norway
| | - Steinar Sørnes
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Håkon Reikvam
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Kok-Ping Chan
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
- Institute of Chemical and Engineering Sciences, Agency for Science, Technology, and Research (A*STAR), Singapore 138667, Singapore
| | - Randi Hovland
- Centre of Medical Genetics and Molecular Medicine, Haukeland University Hospital, Bergen, Norway
| | - Emmet McCormack
- Department of Internal Medicine, Haukeland University Hospital, Bergen, Norway
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Øystein Bruserud
- Department of Internal Medicine, Haukeland University Hospital, Bergen, Norway
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Andrew G Myers
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
| | - Bjørn T Gjertsen
- Centre for Cancer Biomarkers (CCBIO), Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Internal Medicine, Haukeland University Hospital, Bergen, Norway
| |
Collapse
|
46
|
Rotiroti MC, Arcangeli S, Casucci M, Perriello V, Bondanza A, Biondi A, Tettamanti S, Biagi E. Acute Myeloid Leukemia Targeting by Chimeric Antigen Receptor T Cells: Bridging the Gap from Preclinical Modeling to Human Studies. Hum Gene Ther 2016; 28:231-241. [PMID: 27967241 DOI: 10.1089/hum.2016.092] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Acute myeloid leukemia (AML) still represents an unmet clinical need for adult and pediatric high-risk patients, thus demanding advanced and personalized therapies. In this regard, different targeted immunotherapeutic approaches are available, ranging from naked monoclonal antibodies (mAb) to conjugated and multifunctional mAbs (i.e., BiTEs and DARTs). Recently, researchers have focused their attention on novel techniques of genetic manipulation specifically to redirect cytotoxic T cells endowed with chimeric antigen receptors (CARs) toward selected tumor associated antigens. So far, CAR T cells targeting the CD19 antigen expressed by B-cell origin hematological cancers have gained impressive clinical results, leading to the possibility of translating the CAR platform to treat other hematological malignancies such as AML. However, one of the main concerns in the field of AML CAR immunotherapy is the identification of an ideal target cell surface antigen, being highly expressed on tumor cells but minimally present on healthy tissues, together with the design of an anti-AML CAR appropriately balancing efficacy and safety profiles. The current review focuses mainly on AML target antigens and the related immunotherapeutic approaches developed so far, deeply dissecting methods of CAR T cell safety improvements, when designing novel CARs approaching human studies.
Collapse
Affiliation(s)
- Maria Caterina Rotiroti
- 1 Molecular Therapy Unit, Tettamanti Research Center, Pediatric Clinic, University of Milano Bicocca , San Gerardo Hospital/MBBM Foundation, Monza, Italy
| | - Silvia Arcangeli
- 1 Molecular Therapy Unit, Tettamanti Research Center, Pediatric Clinic, University of Milano Bicocca , San Gerardo Hospital/MBBM Foundation, Monza, Italy
| | - Monica Casucci
- 2 Innovative Immunotherapies Unit, Division of Immunology, Transplantation and Infectious Diseases, San Raffaele Hospital Scientific Institute, Vita-Salute San Raffaele University , Milan, Italy
| | - Vincenzo Perriello
- 1 Molecular Therapy Unit, Tettamanti Research Center, Pediatric Clinic, University of Milano Bicocca , San Gerardo Hospital/MBBM Foundation, Monza, Italy
| | - Attilio Bondanza
- 2 Innovative Immunotherapies Unit, Division of Immunology, Transplantation and Infectious Diseases, San Raffaele Hospital Scientific Institute, Vita-Salute San Raffaele University , Milan, Italy
| | - Andrea Biondi
- 1 Molecular Therapy Unit, Tettamanti Research Center, Pediatric Clinic, University of Milano Bicocca , San Gerardo Hospital/MBBM Foundation, Monza, Italy
| | - Sarah Tettamanti
- 1 Molecular Therapy Unit, Tettamanti Research Center, Pediatric Clinic, University of Milano Bicocca , San Gerardo Hospital/MBBM Foundation, Monza, Italy
| | - Ettore Biagi
- 1 Molecular Therapy Unit, Tettamanti Research Center, Pediatric Clinic, University of Milano Bicocca , San Gerardo Hospital/MBBM Foundation, Monza, Italy
| |
Collapse
|
47
|
Yang XY, Zhang MY, Zhou Q, Wu SY, Zhao Y, Gu WY, Pan J, Cen JN, Chen ZX, Guo WG, Chen CS, Yan WH, Hu SY. High expression of S100A8 gene is associated with drug resistance to etoposide and poor prognosis in acute myeloid leukemia through influencing the apoptosis pathway. Onco Targets Ther 2016; 9:4887-99. [PMID: 27540302 PMCID: PMC4982505 DOI: 10.2147/ott.s101594] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
S100A8 has been increasingly recognized as a biomarker in multiple solid tumors and has played pivotal roles in hematological malignancies. S100A8 is potentially an indicator for poor survival in acute myeloid leukemia (AML) in retrospective studies. However, the mechanisms of S100A8 are diverse in cancers. In this study, we investigated the correlation of S100A8 at the transcription level with clinical parameters in 91 de novo AML patients and explored its mechanisms of chemoresistance to etoposide in vitro. The transcription level of S100A8 was significantly lower at initial and relapse stages of AML samples than at complete remission (P<0.001) and than in the control group (P=0.0078), while no significant difference could be found between initial and relapse stages (P=0.257). Patients with high transcription levels of S100A8 exhibited a shorter overall survival (P=0.0012). HL-60 cells transfected with S100A8 showed resistance to etoposide with a higher level IC50 value and lower apoptosis rate compared with HL-60 cells transfected with empty vector. Thirty-six genes were significantly downregulated and 12 genes were significantly upregulated in S100A8 overexpression group compared with control group in which 360 genes involved in apoptotic genes array were performed by real-time reverse transcriptase polymerase chain reaction. Among them, the caspase-3, Bcl-2, and Bax were verified by Western blot analysis which indicated that the role of S100A8 in resistance to chemotherapy was closely related with antiapoptosis. In conclusion, critical S100A8 provided useful clinical information in predicting the outcome of AML. The main mechanism of S100A8 which promoted chemoresistance was antiapoptosis.
Collapse
Affiliation(s)
- Xiao-Yan Yang
- Department of Haematology and Oncology, Children's Hospital of Soochow University
| | - Ming-Ying Zhang
- Department of Haematology and Oncology, Children's Hospital of Soochow University
| | - Qi Zhou
- Department of Haematology and Oncology, Children's Hospital of Soochow University
| | - Shui-Yan Wu
- Department of Haematology and Oncology, Children's Hospital of Soochow University
| | - Ye Zhao
- Department of Haematology, The First Affiliated Hospital of Soochow University, Suzhou
| | - Wei-Ying Gu
- Department of Haematology, The Third Affiliated Hospital of Soochow University, Changzhou, People's Republic of China
| | - Jian Pan
- Department of Haematology and Oncology, Children's Hospital of Soochow University
| | - Jian-Nong Cen
- Department of Haematology, The First Affiliated Hospital of Soochow University, Suzhou
| | - Zi-Xing Chen
- Department of Haematology, The First Affiliated Hospital of Soochow University, Suzhou
| | - Wen-Ge Guo
- Department of Mathematical Sciences, New Jersey Institute of Technology, Newark, NJ
| | - Chien-Shing Chen
- Department of Internal Medicine, Division of Hematology and Medical Oncology and Biospecimen Laboratory, Loma Linda University, Loma Linda, CA, USA
| | - Wen-Hua Yan
- Department of Cardiology, Children's Hospital of Soochow University, Suzhou, People's Republic of China
| | - Shao-Yan Hu
- Department of Haematology and Oncology, Children's Hospital of Soochow University
| |
Collapse
|
48
|
Rubio P, Campos B, Digiorge JA, Gallego MS, Medina A, Rossi JG, Felice MS, Alonso CN. NPM1, FLT3 and CEBPA mutations in pediatric patients with AML from Argentina: incidence and prognostic value. Int J Hematol 2016; 104:582-590. [PMID: 27436336 DOI: 10.1007/s12185-016-2064-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Revised: 07/13/2016] [Accepted: 07/13/2016] [Indexed: 01/13/2023]
Abstract
Mutations in NPM1, FLT3 and CEBPA genes are found in 25-35 % of adult acute myeloblastic leukemia (AML) cases and correlate with prognosis. To date, there have been no reports about these mutations in pediatric AML from Argentina. The aims of the present study were to describe the incidence of NPM1, FLT3 and CEBPA mutations and to analyze their prognostic impact in this population. The incidences of these mutations within a population of 216 pediatric AML cases were: NPM1-mutated 4.2 %, CEBPA-mutated 1.9 %, FLT3-ITD 10.2 % and FLT3-TKD 7.9 %. Among 33 patients with normal karyotype, we found significantly higher frequencies for NPM1-mutated 24.2 % and CEBPA-mutated 12.1 %. Overall survival (pOS) for the 163 eligible non-acute promyelocytic leukemia cases was 46.2 ± 4.3 %, while leukemia-free survival probability was 51.0 ± 4.4 % (n = 135). The NPM1-mutated/FLT3-ITD-negative genotype showed better outcome than any other combined NPM1/FLT3 genotype; this difference was statistically significant within the group of high-risk patients (pOS ± SE 83.3 ± 15.2 % versus 33.1 ± 4.7 %; p = 0.0251). This is the first report of the frequencies of these mutations in Argentina. Despite the limited number of patients, a favorable prognosis of AML with genotype NPM1-mutated/FLT3-ITD-negative was confirmed. This is especially relevant within the high-risk group of patients, as it may contribute to the detection of patients with better prognosis, and thus avoid unnecessary treatment intensification.
Collapse
Affiliation(s)
- Patricia Rubio
- Department of Hematology and Oncology, Hospital de Pediatría Prof. Dr. J. P. Garrahan, Combate de los Pozos 1881, 1245, Buenos Aires, Argentina.
| | - B Campos
- Department of Hematology and Oncology, Hospital de Pediatría Prof. Dr. J. P. Garrahan, Combate de los Pozos 1881, 1245, Buenos Aires, Argentina
| | - J A Digiorge
- Department of Hematology and Oncology, Hospital de Pediatría Prof. Dr. J. P. Garrahan, Combate de los Pozos 1881, 1245, Buenos Aires, Argentina
| | - M S Gallego
- Department of Genetics, Hospital de Pediatría Prof. Dr. J. P. Garrahan, Buenos Aires, Argentina
| | - A Medina
- Department of Hematology and Oncology, Hospital de Pediatría Prof. Dr. J. P. Garrahan, Combate de los Pozos 1881, 1245, Buenos Aires, Argentina
| | - J G Rossi
- Department of Immunology and Rheumatology, Hospital de Pediatría Prof. Dr. J. P. Garrahan, Buenos Aires, Argentina
| | - M S Felice
- Department of Hematology and Oncology, Hospital de Pediatría Prof. Dr. J. P. Garrahan, Combate de los Pozos 1881, 1245, Buenos Aires, Argentina
| | - C N Alonso
- Department of Hematology and Oncology, Hospital de Pediatría Prof. Dr. J. P. Garrahan, Combate de los Pozos 1881, 1245, Buenos Aires, Argentina
| |
Collapse
|
49
|
Schulz WL, Tormey CA, Torres R. Computational Approach to Annotating Variants of Unknown Significance in Clinical Next Generation Sequencing. Lab Med 2016; 46:285-9. [PMID: 26489672 DOI: 10.1309/lmwzh57brwopr5rq] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
Next generation sequencing (NGS) has become a common technology in the clinical laboratory, particularly for the analysis of malignant neoplasms. However, most mutations identified by NGS are variants of unknown clinical significance (VOUS). Although the approach to define these variants differs by institution, software algorithms that predict variant effect on protein function may be used. However, these algorithms commonly generate conflicting results, potentially adding uncertainty to interpretation. In this review, we examine several computational tools used to predict whether a variant has clinical significance. In addition to describing the role of these tools in clinical diagnostics, we assess their efficacy in analyzing known pathogenic and benign variants in hematologic malignancies.
Collapse
Affiliation(s)
- Wade L Schulz
- Department of Laboratory Medicine, Yale University School of Medicine, West Haven, CT
| | - Christopher A Tormey
- Department of Laboratory Medicine, Yale University School of Medicine, West Haven, CT Pathology and Laboratory Medicine Service, VA Connecticut Healthcare System, West Haven, CT
| | - Richard Torres
- Department of Laboratory Medicine, Yale University School of Medicine, West Haven, CT
| |
Collapse
|
50
|
A Crowdsourcing Approach to Developing and Assessing Prediction Algorithms for AML Prognosis. PLoS Comput Biol 2016; 12:e1004890. [PMID: 27351836 PMCID: PMC4924788 DOI: 10.1371/journal.pcbi.1004890] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Accepted: 03/31/2016] [Indexed: 11/19/2022] Open
Abstract
Acute Myeloid Leukemia (AML) is a fatal hematological cancer. The genetic abnormalities underlying AML are extremely heterogeneous among patients, making prognosis and treatment selection very difficult. While clinical proteomics data has the potential to improve prognosis accuracy, thus far, the quantitative means to do so have yet to be developed. Here we report the results and insights gained from the DREAM 9 Acute Myeloid Prediction Outcome Prediction Challenge (AML-OPC), a crowdsourcing effort designed to promote the development of quantitative methods for AML prognosis prediction. We identify the most accurate and robust models in predicting patient response to therapy, remission duration, and overall survival. We further investigate patient response to therapy, a clinically actionable prediction, and find that patients that are classified as resistant to therapy are harder to predict than responsive patients across the 31 models submitted to the challenge. The top two performing models, which held a high sensitivity to these patients, substantially utilized the proteomics data to make predictions. Using these models, we also identify which signaling proteins were useful in predicting patient therapeutic response.
Collapse
|