1
|
Zhao Y, Wang Y, Liang T, Song X, Zhu Y, Liu X, Lv M, Zheng C, Ni F. Dysregulated glutathione metabolism impairs natural killer cell function in patients with acute leukemia. Int Immunopharmacol 2025; 154:114566. [PMID: 40184815 DOI: 10.1016/j.intimp.2025.114566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 03/11/2025] [Accepted: 03/25/2025] [Indexed: 04/07/2025]
Abstract
Natural killer (NK) cell function is markedly impaired in patients with acute leukemia, weakening their anti-tumor immune response. However, the mechanisms underlying NK cell dysfunction are not fully understood. Here, we reveal that NK cells from patients with acute leukemia (AL-NK) exhibit significantly reduced intracellular glutathione (GSH) levels, accompanied by disrupted redox homeostasis and increased levels of mitochondrial reactive oxygen species. Flow cytometry and transcriptomic analyses indicate that dysregulated GSH metabolism leads to mitochondrial dysfunction in NK cells, thereby impairing their antileukemic cytotoxicity and proliferative capacity. Notably, supplementation with glutathione reduced ethyl ester (GSHEE)-a GSH precursor-effectively restores GSH levels in AL-NK cells, enhancing mitochondrial activity, oxidative phosphorylation, ATP production, and NK cell-mediated cytotoxicity. Moreover, GSHEE treatment activates the mTOR signaling pathway in NK cells, further promoting their function and proliferation. Overall, our study identifies dysregulated GSH metabolism as a key driver of NK cell dysfunction in acute leukemia and suggests that GSH-based interventions may provide a promising strategy to enhance NK cell-mediated immunotherapies.
Collapse
Affiliation(s)
- Yue Zhao
- Department of Hematology, The First Affiliated Hospital of USTC, National Key Laboratory of Immune Response and Immunotherapy, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Institute of Blood and Cell Therapy and Anhui Provincial Key Laboratory of Blood Research and Applications, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China; Institute of Immunology, The CAS Key Laboratory of Innate Immunity and Chronic Disease, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230022, China
| | - Yan Wang
- Department of Hematology, The First Affiliated Hospital of USTC, National Key Laboratory of Immune Response and Immunotherapy, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Institute of Blood and Cell Therapy and Anhui Provincial Key Laboratory of Blood Research and Applications, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China; Department of Clinical Laboratory, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China
| | - Tingting Liang
- Department of Hematology, The First Affiliated Hospital of USTC, National Key Laboratory of Immune Response and Immunotherapy, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Institute of Blood and Cell Therapy and Anhui Provincial Key Laboratory of Blood Research and Applications, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China; Institute of Immunology, The CAS Key Laboratory of Innate Immunity and Chronic Disease, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230022, China
| | - Xian Song
- Department of Hematology, The First Affiliated Hospital of USTC, National Key Laboratory of Immune Response and Immunotherapy, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Institute of Blood and Cell Therapy and Anhui Provincial Key Laboratory of Blood Research and Applications, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China; Institute of Immunology, The CAS Key Laboratory of Innate Immunity and Chronic Disease, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230022, China
| | - Yingqiao Zhu
- Department of Hematology, The First Affiliated Hospital of USTC, National Key Laboratory of Immune Response and Immunotherapy, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Institute of Blood and Cell Therapy and Anhui Provincial Key Laboratory of Blood Research and Applications, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
| | - Xinru Liu
- Department of Hematology, The First Affiliated Hospital of USTC, National Key Laboratory of Immune Response and Immunotherapy, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Institute of Blood and Cell Therapy and Anhui Provincial Key Laboratory of Blood Research and Applications, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China; Institute of Immunology, The CAS Key Laboratory of Innate Immunity and Chronic Disease, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230022, China
| | - Mengya Lv
- Department of Hematology, The First Affiliated Hospital of USTC, National Key Laboratory of Immune Response and Immunotherapy, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Institute of Blood and Cell Therapy and Anhui Provincial Key Laboratory of Blood Research and Applications, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
| | - Changcheng Zheng
- Department of Hematology, The First Affiliated Hospital of USTC, National Key Laboratory of Immune Response and Immunotherapy, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Institute of Blood and Cell Therapy and Anhui Provincial Key Laboratory of Blood Research and Applications, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China.
| | - Fang Ni
- Department of Hematology, The First Affiliated Hospital of USTC, National Key Laboratory of Immune Response and Immunotherapy, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Institute of Blood and Cell Therapy and Anhui Provincial Key Laboratory of Blood Research and Applications, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China; Institute of Immunology, The CAS Key Laboratory of Innate Immunity and Chronic Disease, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230022, China.
| |
Collapse
|
2
|
Zhang A, Yang X, Zhang Y, Yu X, Mu W, Wei J. Unlocking the Potential of CAR-NK Cell Therapy: Overcoming Barriers and Challenges in the Treatment of Myeloid Malignancies. Mol Cancer Ther 2025; 24:536-549. [PMID: 39834301 DOI: 10.1158/1535-7163.mct-24-0721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 11/07/2024] [Accepted: 01/16/2025] [Indexed: 01/22/2025]
Abstract
Myeloid malignancies include various types of cancers that arise from the abnormal development or proliferation of myeloid cells within the bone marrow. Chimeric antigen receptor (CAR) T cell treatments, which show great potential for B cell and plasma cell cancers, face major challenges when used for myeloid malignancies. CAR natural killer (NK) cell-based immunotherapy encounters several challenges in treating myeloid cancers, including (i) poor gene transfer efficiency and expansion platforms in vitro, (ii) limited proliferation and persistence in vivo, (iii) antigenic heterogeneity, and (iv) an immunosuppressive tumor microenvironment. Despite these hurdles, "off-the-shelf" CAR-NK treatments showed encouraging results, marked by enhanced proliferation, prolonged persistence, enhanced tumor infiltration, and improved adaptability. This review offers a summary of the biological traits and cellular sources of NK cells along with a discussion of contemporary CAR designs. Furthermore, it addresses the challenges observed in preclinical research and clinical trials related to CAR-NK cell therapy for myeloid cancers, suggesting enhancement strategies.
Collapse
Affiliation(s)
- Anqi Zhang
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Immunotherapy Research Center for Hematologic Diseases of Hubei Province, Wuhan, China
| | - Xingcheng Yang
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Immunotherapy Research Center for Hematologic Diseases of Hubei Province, Wuhan, China
| | - Yicheng Zhang
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Immunotherapy Research Center for Hematologic Diseases of Hubei Province, Wuhan, China
- Key Laboratory of Organ Transplantation, Ministry of Education; NHC Key Laboratory of Organ Transplantation; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
| | - Xiaoxuan Yu
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing, P. R. China
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, P. R. China
| | - Wei Mu
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Immunotherapy Research Center for Hematologic Diseases of Hubei Province, Wuhan, China
| | - Jia Wei
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Immunotherapy Research Center for Hematologic Diseases of Hubei Province, Wuhan, China
- Department of Hematology, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China
- Sino-German Joint Oncological Research Laboratory, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Taiyuan, China
| |
Collapse
|
3
|
Zhong L, Luo J, Dong J, Yang X, Wang X. Identifying acute myeloid leukemia subtypes based on pathway enrichment. Front Pharmacol 2025; 16:1557112. [PMID: 40191420 PMCID: PMC11968745 DOI: 10.3389/fphar.2025.1557112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Accepted: 03/14/2025] [Indexed: 04/09/2025] Open
Abstract
Acute myeloid leukemia (AML) is the most common type of acute leukemia in adults and the second most common in children. Despite the introduction of targeted therapies, AML survival rates have shown limited improvement, particularly among older patients. This study explored personalized treatment strategies for AML by proposing a novel subtyping method. Through unsupervised clustering based on the enrichment scores of 14 pathways related to metabolism, immunity, DNA repair, and oncogenic signaling, we identified three AML subtypes: DNA repair (DR), immune-enriched (ImE), and immune-deprived (ImD), consistent in four independent datasets. DR is marked by high expression of DNA repair and metabolic pathways, high stemness and proliferation potential, as well as high sensitivity to chemotherapy. ImD is characterized by low expression of immune and oncogenic pathways, favorable survival prognosis, low mutation rates of RUNX1 and TP53, high homeostasis, and low migration potential. ImE exhibits high enrichment of immune and oncogenic pathways, low stemness and proliferation capacity, low homeostasis, high migration potential, and low sensitivity to chemotherapy. Our pathway enrichment-based subtyping approach would offer a promising framework for understanding the molecular heterogeneity of AML and guiding personalized treatment of this disease.
Collapse
Affiliation(s)
- Ling Zhong
- Biomedical Informatics Research Lab, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
- Intelligent Pharmacy Interdisciplinary Research Center, China Pharmaceutical University, Nanjing, China
- Big Data Research Institute, China Pharmaceutical University, Nanjing, China
- Institute of Innovative Drug Discovery and Development, China Pharmaceutical University, Nanjing, China
| | - Jiangti Luo
- Biomedical Informatics Research Lab, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
- Intelligent Pharmacy Interdisciplinary Research Center, China Pharmaceutical University, Nanjing, China
- Big Data Research Institute, China Pharmaceutical University, Nanjing, China
- Institute of Innovative Drug Discovery and Development, China Pharmaceutical University, Nanjing, China
| | - Junze Dong
- Nanjing Foreign Language School, Nanjing, China
| | - Xiang Yang
- Department of Oncology, JunXie Hospital, Nanjing, China
| | - Xiaosheng Wang
- Biomedical Informatics Research Lab, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
- Intelligent Pharmacy Interdisciplinary Research Center, China Pharmaceutical University, Nanjing, China
- Big Data Research Institute, China Pharmaceutical University, Nanjing, China
- Institute of Innovative Drug Discovery and Development, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
4
|
Phung SK, Zorko NA, Soignier Y, Waller RL, Shackelford M, Walker JT, Nelson TD, Selleck C, Bendzick LE, Kotz LE, Kile QM, Bozicevich AJ, Miller SE, Khaw M, Shetty M, Hinderlie P, Ehrhardt M, Li Y, Luo X, Dehm SM, Antonarakis ES, Kennedy PR, Miller JS, Felices M. A PSMA-Targeted Tri-Specific Killer Engager Enhances NK Cell Cytotoxicity against Prostate Cancer. Cancer Immunol Res 2025; 13:258-272. [PMID: 39545924 PMCID: PMC11790377 DOI: 10.1158/2326-6066.cir-24-0273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 08/07/2024] [Accepted: 11/14/2024] [Indexed: 11/17/2024]
Abstract
NK cell tumor infiltration is associated with good prognosis in patients with metastatic castration-resistant prostate cancer (mCRPC). NK cells recognize and kill targets by a process called natural cytotoxicity. We hypothesized that promoting an antigen-specific synapse with coactivation may enhance NK cell function in mCRPC. We describe a tri-specific killer engager (TriKE) construct that engages with the activating receptor CD16 on NK cells and prostate-specific membrane antigen (PSMA) on mCRPC cells and has an IL15 moiety that is essential for NK cell survival, proliferation, and priming. We show that the PSMA TriKE specifically binds to PSMA-expressing cells and significantly enhances expansion, degranulation, and cytokine production of NK cells derived from healthy donors or patients with prostate cancer. Bystander killing of PSMA-negative tumor cells was also achieved with PSMA TriKE treatment when cocultured with PSMA-positive cells, suggesting potential PSMA TriKE benefit in controlling tumor antigen escape. When tested under physiologic conditions recapitulating the mCRPC tumor microenvironment, NK cells treated with PSMA TriKE and prolonged exposure to hypoxia or myeloid-derived suppressor cells maintained their potent function whereas IL15-treated NK cells showed greatly impaired cytotoxicity. Finally, in vivo testing of PSMA TriKE showed improved tumor control and survival of mice as compared with IL15-treated and untreated control groups. In conclusion, PSMA TriKE demonstrates potential as a new therapy for advanced prostate cancer by providing additional signals to NK cells to maximize their antitumor potential in prostate cancer, especially in the setting of a hostile tumor microenvironment.
Collapse
Affiliation(s)
| | - Nicholas A. Zorko
- Masonic Cancer Center, Minneapolis, MN, USA
- Division of Hematology, Oncology, and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | | | | | | | | | | | - Carly Selleck
- Department of Obstetrics, Gynecology and Women’s Health, University of Minnesota, Minneapolis, MN, USA
| | - Laura E. Bendzick
- Department of Obstetrics, Gynecology and Women’s Health, University of Minnesota, Minneapolis, MN, USA
| | - Laura E. Kotz
- Department of Obstetrics, Gynecology and Women’s Health, University of Minnesota, Minneapolis, MN, USA
| | | | | | | | | | - Mihir Shetty
- Department of Obstetrics, Gynecology and Women’s Health, University of Minnesota, Minneapolis, MN, USA
| | | | - Michael Ehrhardt
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
| | | | - Xianghua Luo
- Masonic Cancer Center, Minneapolis, MN, USA
- Division of Biostatistics and Health Data Science, School of Public Health, University of Minnesota, Minneapolis, MN, USA
| | - Scott M. Dehm
- Masonic Cancer Center, Minneapolis, MN, USA
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, USA
- Department of Urology, University of Minnesota, Minneapolis, MN, USA
| | - Emmanuel S. Antonarakis
- Masonic Cancer Center, Minneapolis, MN, USA
- Division of Hematology, Oncology, and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Philippa R. Kennedy
- Masonic Cancer Center, Minneapolis, MN, USA
- Division of Hematology, Oncology, and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Jeffrey S. Miller
- Masonic Cancer Center, Minneapolis, MN, USA
- Division of Hematology, Oncology, and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Martin Felices
- Masonic Cancer Center, Minneapolis, MN, USA
- Division of Hematology, Oncology, and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
5
|
Eckstrom A, Tyagi A, Mahmood S, Wong L, Valamehr B, Rao A, Agrawal A, Siddiqui M, Battula VL. FT538, iPSC-derived NK cells, enhance AML cell killing when combined with chemotherapy. J Cell Mol Med 2025; 29:e70169. [PMID: 39797701 PMCID: PMC11724334 DOI: 10.1111/jcmm.70169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 10/08/2024] [Accepted: 10/14/2024] [Indexed: 01/13/2025] Open
Abstract
Induced pluripotent stem cell (iPSC)-derived natural killer (NK) cells offer an opportunity for a standardized, off-the-shelf treatment with the potential to treat a wider population of acute myeloid leukaemia (AML) patients than the current standard of care. FT538 iPSC-NKs express a high-affinity, noncleavable CD16 to maximize antibody dependent cellular cytotoxicity, a CD38 knockout to improve metabolic fitness, and an IL-15/IL-15 receptor fusion preventing the need for cytokine administration, the main source of adverse effects in NK cell-based therapies. Here, we sought to evaluate the potential of FT538 iPSC-NKs as a therapy for AML through their effect on AML cell lines and primary AML cells. We observed that FT538 iPSC-NKs induce effector-to-target cell ratio dependent apoptosis in cell lines and primary AML cells, including cells from high-risk patients. Flow cytometric analysis revealed that FT538 iPSC-NKs induce AML cell death when combined with the AML therapies: cytarabine, venetoclax and gilteritinib. Moreover, cytarabine did not affect FT538 iPSC-NK viability, suggesting that iPSC-derived NK therapies and chemotherapy may be a promising treatment combination. This study provides the basis for further study of iPSC-derived NK cell therapies as a treatment option for high-risk AML patients, particularly those with disease resistant to standard therapies.
Collapse
MESH Headings
- Humans
- Killer Cells, Natural/immunology
- Killer Cells, Natural/metabolism
- Killer Cells, Natural/drug effects
- Leukemia, Myeloid, Acute/pathology
- Leukemia, Myeloid, Acute/immunology
- Leukemia, Myeloid, Acute/therapy
- Leukemia, Myeloid, Acute/drug therapy
- Induced Pluripotent Stem Cells/cytology
- Induced Pluripotent Stem Cells/immunology
- Induced Pluripotent Stem Cells/metabolism
- Cell Line, Tumor
- Apoptosis/drug effects
- Cytarabine/pharmacology
- Bridged Bicyclo Compounds, Heterocyclic/pharmacology
- Sulfonamides/pharmacology
- Cytotoxicity, Immunologic/drug effects
Collapse
Affiliation(s)
- Amanda Eckstrom
- Department of LeukemiaThe University of Texas MD Anderson Cancer CenterHoustonTexasUSA
| | - Anudishi Tyagi
- Department of LeukemiaThe University of Texas MD Anderson Cancer CenterHoustonTexasUSA
| | | | - Lilly Wong
- Fate Therapeutics, Inc.San DiegoCaliforniaUSA
| | | | - Adishwar Rao
- Department of LeukemiaThe University of Texas MD Anderson Cancer CenterHoustonTexasUSA
| | - Akriti Agrawal
- Department of LeukemiaThe University of Texas MD Anderson Cancer CenterHoustonTexasUSA
| | - Maryam Siddiqui
- Department of LeukemiaThe University of Texas MD Anderson Cancer CenterHoustonTexasUSA
| | - V. Lokesh Battula
- Department of LeukemiaThe University of Texas MD Anderson Cancer CenterHoustonTexasUSA
- Department of Breast Medical OncologyThe University of Texas MD Anderson Cancer CenterHoustonTexasUSA
| |
Collapse
|
6
|
Lee S, Chae SJ, Jang IH, Oh SC, Kim SM, Lee SY, Kim JH, Ko J, Kim HJ, Song IC, Kim JK, Kim TD. B7H6 is the predominant activating ligand driving natural killer cell-mediated killing in patients with liquid tumours: evidence from clinical, in silico, in vitro, and in vivo studies. EBioMedicine 2024; 110:105459. [PMID: 39579618 PMCID: PMC11621501 DOI: 10.1016/j.ebiom.2024.105459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 11/04/2024] [Accepted: 11/05/2024] [Indexed: 11/25/2024] Open
Abstract
BACKGROUND Natural killer (NK) cells are a subset of innate lymphoid cells that are inherently capable of recognizing and killing infected or tumour cells. This has positioned NK cells as a promising live drug for tumour immunotherapy, but limited success suggests incomplete knowledge of their killing mechanism. NK cell-mediated killing involves a complex decision-making process based on integrating activating and inhibitory signals from various ligand-receptor repertoires. However, the relative importance of the different activating ligand-receptor interactions in triggering NK killing remains unclear. METHODS We employed a systematic approach combining clinical, in silico, in vitro, and in vivo data analysis to quantify the impact of various activating ligands. Clinical data analysis was conducted using massive pan-cancer data (n = 10,595), where patients with high NK cell levels were stratified using CIBERSORT. Subsequently, multivariate Cox regression and Kaplan-Meier (KM) survival analysis were performed based on activating ligand expression. To examine the impact of ligand expression on NK killing at the cellular level, we assessed surface expression of five major activating ligands (B7H6, MICA/B, ULBP1, ULBP2/5/6, and ULBP3) of human tumour cell lines of diverse origins (n = 33) via flow cytometry (FACs) and their NK cell-mediated cytotoxicity on by calcein-AM assay using human primary NK cells and NK-92 cell lines. Based on this data, we quantified the contribution of each activating ligand to the NK killing activity using mathematical models and Bayesian statistics. To further validate the results, we performed calcein-AM assays upon ligand knockdown and overexpression, conjugation assays, and co-culture assays in activating ligand-downregulated/overexpressed in liquid tumour (LT) cell lines. Moreover, we established LT-xenograft mouse models to assess the efficacy of NK cell targeting toward tumours with dominant ligands. FINDINGS Through the clinical analysis, we discovered that among nearly all 18 activating ligands, only patients with LT who were NK cell-rich and specifically had higher B7H6 level exhibited a favorable survival outcome (p = 0.0069). This unexpected dominant role of B7H6 was further confirmed by the analysis of datasets encompassing multiple ligands and a variety of tumours, which showed that B7H6 exhibited the highest contribution to NK killing among five representative ligands. Furthermore, LT cell lines (acute myeloid leukemia (AML), B cell lymphoma, and T-acute lymphocytic leukemia (ALL)) with lowered B7H6 demonstrated decreased susceptibility to NK cell-mediated cytotoxicity compared to those with higher levels. Even within the same cell line, NK cells selectively targeted cells with higher B7H6 levels. Finally, LT-xenograft mouse models (n = 24) confirmed that higher B7H6 results in less tumour burden and longer survival in NK cell-treated LT mice (p = 0.0022). INTERPRETATION While NK cells have gained attention for their potent anti-tumour effects without causing graft-versus-host disease (GvHD), thus making them a promising off-the-shelf therapy, our limited understanding of NK killing mechanisms has hindered their clinical application. This study illuminates the crucial role of the activating ligand B7H6 in driving NK cell killing, particularly in the context of LT. Therefore, the expression level of B7H6 could serve as a prognostic marker for patients with LT. Moreover, for the development of NK cell-based immunotherapy, focusing on increasing the level of B7H6 on its cognate receptor, NKp30, could be the most effective strategy. FUNDING This work was supported by the National Research Council of Science & Technology (NST) grant (CAP-18-02-KRIBB, GTL24021-000), a National Research Foundation grant (2710012258, 2710004815), and an Institute for Basic Science grant (IBS-R029-C3).
Collapse
Affiliation(s)
- Sunyoung Lee
- Center for Cell and Gene Therapy, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea; Division of Life Sciences, Korea University, Seoul, 02841, Republic of Korea
| | - Seok Joo Chae
- Department of Mathematical Sciences, KAIST, Daejeon, 34141, Republic of Korea; Biomedical Mathematics Group, Pioneer Research Center for Mathematical and Computational Sciences, Institute for Basic Science, Daejeon, 34126, Republic of Korea; Department of Bioengineering, Rice University, Houston, TX, 77005, USA
| | - In-Hwan Jang
- Center for Cell and Gene Therapy, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea
| | - Se-Chan Oh
- Center for Cell and Gene Therapy, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea
| | - Seok-Min Kim
- Center for Cell and Gene Therapy, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea
| | - Soo Yun Lee
- Center for Cell and Gene Therapy, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea
| | - Ji Hyun Kim
- Center for Cell and Gene Therapy, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea; KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon, 34113, Republic of Korea
| | - Jesang Ko
- Division of Life Sciences, Korea University, Seoul, 02841, Republic of Korea
| | - Hang J Kim
- Division of Statistics and Data Science, University of Cincinnati, Cincinnati, OH, 45221, USA
| | - Ik-Chan Song
- Department of Internal Medicine, College of Medicine, Chungnam National University, Daejeon, 35015, South Korea
| | - Jae Kyoung Kim
- Department of Mathematical Sciences, KAIST, Daejeon, 34141, Republic of Korea; Biomedical Mathematics Group, Pioneer Research Center for Mathematical and Computational Sciences, Institute for Basic Science, Daejeon, 34126, Republic of Korea; Department of Medicine, College of Medicine, Korea University, Seoul, 02481, Republic of Korea.
| | - Tae-Don Kim
- Center for Cell and Gene Therapy, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea; Biomedical Mathematics Group, Pioneer Research Center for Mathematical and Computational Sciences, Institute for Basic Science, Daejeon, 34126, Republic of Korea; KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon, 34113, Republic of Korea; Department of Biopharmaceutical Convergence, School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| |
Collapse
|
7
|
Greppi M, De Franco F, Obino V, Rebaudi F, Goda R, Frumento D, Vita G, Baronti C, Melaiu O, Bozzo M, Candiani S, Vellone VG, Papaccio F, Pesce S, Marcenaro E. NK cell receptors in anti-tumor and healthy tissue protection: Mechanisms and therapeutic advances. Immunol Lett 2024; 270:106932. [PMID: 39303993 DOI: 10.1016/j.imlet.2024.106932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 09/10/2024] [Accepted: 09/17/2024] [Indexed: 09/22/2024]
Abstract
Natural Killer (NK) cells are integral to the innate immune system, renowned for their ability to target and eliminate cancer cells without the need for antigen presentation, sparing normal tissues. These cells are crucial in cancer immunosurveillance due to their diverse array of activating and inhibitory receptors that modulate their cytotoxic activity. However, the tumor microenvironment can suppress NK cell function through various mechanisms. Over recent decades, research has focused on overcoming these tumor escape mechanisms. Initially, efforts concentrated on enhancing T cell activity, leading to impressive results with immunotherapeutic approaches aimed at boosting T cell responses. Nevertheless, a substantial number of patients do not benefit from these treatments and continue to seek effective alternatives. In this context, NK cells present a promising avenue for developing new treatments, given their potent cytotoxic capabilities, safety profile, and activity against T cell-resistant tumors, such as those lacking HLA-I expression. Recent advancements in immunotherapy include strategies to restore and amplify NK cell activity through immune checkpoint inhibitors, cytokines, adoptive NK cell therapy, and CAR-NK cell technology. This review provides a comprehensive overview of NK cell receptors, the tumor escape mechanisms that hinder NK cell function, and the evolving field of NK cell-based cancer immunotherapy, highlighting ongoing efforts to develop more effective and targeted cancer treatment strategies.
Collapse
Affiliation(s)
- Marco Greppi
- Department of Experimental Medicine (DIMES), University of Genoa, Genoa, Italy
| | - Fabiana De Franco
- Department of Experimental Medicine (DIMES), University of Genoa, Genoa, Italy
| | - Valentina Obino
- Department of Experimental Medicine (DIMES), University of Genoa, Genoa, Italy
| | - Federico Rebaudi
- Department of Experimental Medicine (DIMES), University of Genoa, Genoa, Italy
| | - Rayan Goda
- Department of Experimental Medicine (DIMES), University of Genoa, Genoa, Italy
| | - Davide Frumento
- Department of Education Sciences, University of Rome Tre, Rome, Italy
| | - Giorgio Vita
- Department of Internal Medicine (DIMI), University of Genoa, Genoa, Italy
| | - Camilla Baronti
- Department of Experimental Medicine (DIMES), University of Genoa, Genoa, Italy
| | - Ombretta Melaiu
- Department of Clinical Sciences and Translational Medicine, University of Rome "Tor Vergata", Rome, Italy
| | - Matteo Bozzo
- Department of Earth, Environmental and Life Sciences (DISTAV), University of Genoa, Genoa, Italy
| | - Simona Candiani
- Department of Earth, Environmental and Life Sciences (DISTAV), University of Genoa, Genoa, Italy; IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Valerio G Vellone
- Department of Integrated Surgical and Diagnostic Sciences (DISC), University of Genoa, Genoa, Italy; Pathology Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Federica Papaccio
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Baronissi, Italy.
| | - Silvia Pesce
- Department of Experimental Medicine (DIMES), University of Genoa, Genoa, Italy; IRCCS Ospedale Policlinico San Martino, Genova, Italy.
| | - Emanuela Marcenaro
- Department of Experimental Medicine (DIMES), University of Genoa, Genoa, Italy; IRCCS Ospedale Policlinico San Martino, Genova, Italy.
| |
Collapse
|
8
|
Gao J, Yan X, Fan D, Li Y. Single-cell data revealed the function of natural killer cells and macrophage cells in chemotherapy tolerance in acute myeloid leukemia. PeerJ 2024; 12:e18521. [PMID: 39583114 PMCID: PMC11586048 DOI: 10.7717/peerj.18521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 10/23/2024] [Indexed: 11/26/2024] Open
Abstract
Background Acute myeloid leukemia (AML) is highly prevalent and heterogeneous among adult acute leukemias. Current chemotherapeutic approaches for AML often face the challenge of drug resistance, and AML immune cells play an important role in the regulation of AML drug resistance. Thus, it is of key significance to explore the regulatory mechanisms of immune cells in AML to alleviate chemotherapy resistance in AML. Methods Based on AML single-cell transcriptomic data, this study revealed the differences in the expression of immune cell subpopulations and marker genes in AML patients in the complete remission group (CR) compared to AML patients in the non-complete remission group (non-CR) after chemotherapy. Functional enrichment by clusterprofiler revealed the regulatory functions of differentially expressed genes (DEGs) in AML. AUCell enrichment scores were used to assess the immunoregulatory functions of immune cells. Pseudotime analysis was used to construct immune cell differentiation trajectories. CellChat was used for cellular communication analysis to elucidate the interactions between immune cells. Survival analysis with the R package "survival" revealed the role of immune cell marker genes on AML prognosis. Finally, the wound healing and trans-well assay were performed. Results Single-cell clustering analysis revealed that NK/T cells and macrophage cells subpopulations were significantly higher in non-CR AML patients than in CR AML. AUCell enrichment analysis revealed that FCAR+ and FCGR3A+ macrophages were significantly more active in the non-CR group and correlated with processes regulating cellular energy metabolism and immune cell activity. Differentially expressed NK cell marker genes between CR and non-CR groups mainly included HBA1, S100A8, and S100A9, which were associated with cancer drug resistance regulation, these marker genes of (FCAR, FCGR3A, PREX1, S100A8 and S100A9) were upregulated in human chronic myeloid leukemia cells (HAP1) and silencing of S100A8 affected migration and invasion of HAP1 cells. In particular, the differentiation pathways of macrophages and NK cells in non-CR differed from those of patients in the CR group. Cellular communication analyses showed that ligand-receptor pairs between NK cells and macrophage cells mainly included HLA-E-KLRK1, HLA-E-KLRC1, HLA-E-CD94:NKG2A, CLEC2B-KLRB1. In addition, LGALS9-CD45, CCL3L1- CCR1, CCL3-CCR1 between these two immune cells mainly regulate secreted signaling to mediate AML progression. Marker genes in NK/T cells and macrophage cells were significantly associated with AML prognosis. Conclusion This study reveals the potential role of NK cells and macrophages in AML chemoresistance through the analysis of single-cell RNA sequencing data. This provides new ideas and insights into the key mechanisms of immune cells in AML treatment.
Collapse
MESH Headings
- Humans
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/immunology
- Leukemia, Myeloid, Acute/genetics
- Killer Cells, Natural/drug effects
- Killer Cells, Natural/immunology
- Macrophages/drug effects
- Macrophages/immunology
- Macrophages/metabolism
- Single-Cell Analysis
- Drug Resistance, Neoplasm/genetics
- Drug Resistance, Neoplasm/drug effects
- Drug Tolerance
- Transcriptome/drug effects
- Prognosis
Collapse
Affiliation(s)
- Jing Gao
- Department of Hematology, The Second Affiliated Hospital of Air Force Medical University, Xi’an, China
| | - Xueqian Yan
- Department of Hematology, The Second Affiliated Hospital of Air Force Medical University, Xi’an, China
| | - Dan Fan
- Department of Hematology, The Second Affiliated Hospital of Air Force Medical University, Xi’an, China
| | - Yuanchun Li
- Department of Hematology, The Second Affiliated Hospital of Air Force Medical University, Xi’an, China
| |
Collapse
|
9
|
Miyahira AK, Kamran SC, Jamaspishvili T, Marshall CH, Maxwell KN, Parolia A, Zorko NA, Pienta KJ, Soule HR. Disrupting prostate cancer research: Challenge accepted; report from the 2023 Coffey-Holden Prostate Cancer Academy Meeting. Prostate 2024; 84:993-1015. [PMID: 38682886 DOI: 10.1002/pros.24721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 04/16/2024] [Indexed: 05/01/2024]
Abstract
INTRODUCTION The 2023 Coffey-Holden Prostate Cancer Academy (CHPCA) Meeting, themed "Disrupting Prostate Cancer Research: Challenge Accepted," was convened at the University of California, Los Angeles, Luskin Conference Center, in Los Angeles, CA, from June 22 to 25, 2023. METHODS The 2023 marked the 10th Annual CHPCA Meeting, a discussion-oriented scientific think-tank conference convened annually by the Prostate Cancer Foundation, which centers on innovative and emerging research topics deemed pivotal for advancing critical unmet needs in prostate cancer research and clinical care. The 2023 CHPCA Meeting was attended by 81 academic investigators and included 40 talks across 8 sessions. RESULTS The central topic areas covered at the meeting included: targeting transcription factor neo-enhancesomes in cancer, AR as a pro-differentiation and oncogenic transcription factor, why few are cured with androgen deprivation therapy and how to change dogma to cure metastatic prostate cancer without castration, reducing prostate cancer morbidity and mortality with genetics, opportunities for radiation to enhance therapeutic benefit in oligometastatic prostate cancer, novel immunotherapeutic approaches, and the new era of artificial intelligence-driven precision medicine. DISCUSSION This article provides an overview of the scientific presentations delivered at the 2023 CHPCA Meeting, such that this knowledge can help in facilitating the advancement of prostate cancer research worldwide.
Collapse
Affiliation(s)
- Andrea K Miyahira
- Science Department, Prostate Cancer Foundation, Santa Monica, California, USA
| | - Sophia C Kamran
- Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Tamara Jamaspishvili
- Department of Pathology and Laboratory Medicine, SUNY Upstate Medical University, Syracuse, New York, USA
| | - Catherine H Marshall
- Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Kara N Maxwell
- Department of Medicine-Hematology/Oncology and Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Medicine Service, Corporal Michael J. Crescenz VA Medical Center, Philadelphia, Pennsylvania, USA
| | - Abhijit Parolia
- Department of Pathology, Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan, USA
| | - Nicholas A Zorko
- Division of Hematology, Oncology and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, Minnesota, USA
- University of Minnesota Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA
| | - Kenneth J Pienta
- The James Buchanan Brady Urological Institute, The Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Howard R Soule
- Science Department, Prostate Cancer Foundation, Santa Monica, California, USA
| |
Collapse
|
10
|
Lupo KB, Panjwani MK, Shahid S, Sottile R, Lawry C, Kolk G, Kontopolous T, Daniyan AF, Chandran SS, Klebanoff CA, Hsu KC. Engineered NKG2C + NK-like T cells exhibit superior antitumor efficacy while mitigating cytokine release syndrome. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.16.603785. [PMID: 39211122 PMCID: PMC11360970 DOI: 10.1101/2024.07.16.603785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Engineered T and NK cell therapies have widely been used to treat hematologic malignancies and solid tumors, with promising clinical results. Current chimeric antigen receptor (CAR) T cell therapeutics have, however, been associated with treatment-related adverse events such as cytokine release syndrome (CRS) and are prone to immunologic exhaustion. CAR-NK therapeutics, while not associated with CRS, have limited in vivo persistence. We now demonstrate that an NK-like TCRαβ + CD8 T cell subset, identified and expanded ex vivo through its expression of the activating receptor NKG2C (NKG2C + NK-like T cells), can be transduced to express a second-generation CD19 CAR (1928z), resulting in superior tumor clearance, longer persistence and decreased exhaustion compared to conventional 1928z CAR + CD8 T cells and 1928z CAR+ NK cells. Moreover, CAR-modified NKG2C + NK-like T cells resulted in significantly reduced CRS compared to conventional CAR + CD8 T cells. Similarly, NKG2C + NK-like T cells engineered with a TCR targeting the NY-ESO-1 antigen exhibit robust tumor control and minimal exhaustion compared to TCR-engineered conventional CD8 T cells. These data establish NKG2C + NK-like T cells as a robust platform for cell engineering, and offer a safer, more durable alternative to conventional CAR-T and CAR-NK therapies.
Collapse
|
11
|
Zang J, Mei Y, Zhu S, Yin S, Feng N, Ci T, Lyu Y. Natural Killer-Based Therapy: A Prospective Thought for Cancer Treatment Related to Diversified Drug Delivery Pathways. Pharmaceutics 2024; 16:939. [PMID: 39065636 PMCID: PMC11279587 DOI: 10.3390/pharmaceutics16070939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 07/08/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024] Open
Abstract
Immunotherapy has been a research hotspot due to its low side effects, long-lasting efficacy, and wide anti-tumor spectrum. Recently, NK cell-based immunotherapy has gained broad attention for its unique immunological character of tumor identification and eradication and low risk of graft-versus-host disease and cytokine storm. With the cooperation of a drug delivery system (DDS), NK cells activate tumoricidal activity by adjusting the balance of the activating and inhibitory signals on their surface after drug-loaded DDS administration. Moreover, NK cells or NK-derived exosomes can also be applied as drug carriers for distinct modification to promote NK activation and exert anti-tumor effects. In this review, we first introduce the source and classification of NK cells and describe the common activating and inhibitory receptors on their surface. Then, we summarize the strategies for activating NK cells in vivo through various DDSs. Finally, the application prospects of NK cells in tumor immunotherapy are also discussed.
Collapse
Affiliation(s)
- Jing Zang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; (J.Z.); (N.F.)
| | - Yijun Mei
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China;
| | - Shiguo Zhu
- Department of Immunology and Pathogenic Biology, School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China;
| | - Shaoping Yin
- School of Pharmacy, Jiangsu Provincial Engineering Research Center of Traditional Chinese Medicine External Medication Development and Application, Nanjing University of Chinese Medicine, Nanjing 210023, China;
| | - Nianping Feng
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; (J.Z.); (N.F.)
| | - Tianyuan Ci
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; (J.Z.); (N.F.)
| | - Yaqi Lyu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; (J.Z.); (N.F.)
| |
Collapse
|
12
|
Chen Y, Di M, Tang Y, Zhao J, Wang Q, Guo Z, Li Y, Ouyang D, Yang J, Chen H, Wang Y, Weng D, Pan Q, Xiang T, Xia J. Epstein-Barr virus causes vascular abnormalities in epithelial malignancies through upregulating ANXA3-HIF-1α-VEGF pathway. Oncogene 2024; 43:2143-2159. [PMID: 38778160 DOI: 10.1038/s41388-024-03061-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 04/29/2024] [Accepted: 05/07/2024] [Indexed: 05/25/2024]
Abstract
Angiogenesis is one of the characteristics of malignant tumors, and persistent generation of abnormal tumor blood vessels is an important factor contributing to tumor treatment resistance. Epstein-Barr virus (EBV) is a highly prevalent DNA oncogenic virus that is associated with the development of various epithelial malignancies. However, the relationship between EBV infection and tumor vascular abnormalities as well as its underlying mechanisms is still unclear. In this study, we found that compared to EBV-uninfected tumors, EBV-infected tumors were more angiogenic, but the neovascularization was mostly immature vessels without pericyte attachment in both clinical patient tumor samples and mouse xenograft models; These immature vessels exhibited aberrant functionality, characterized by poor blood perfusion and increased vascular permeability. The vascular abnormalities caused by EBV infection exacerbated tumor hypoxia and was responsible for accelerated tumor growth. Mechanistically, EBV infection upregulated ANXA3-HIF-1α-VEGF pathway. Silencing the ANXA3 gene or neutralizing ANXA3 with an antibody can diminish vascular abnormalities, thereby increasing immune cell infiltration and alleviating treatment resistance. Finally, a new therapy combining ANXA3 blockade and NK cell + PD1 antibody significantly inhibited the growth of EBV-infected xenografts in mice. In conclusion, our study identified a previously unrecognized role for EBV infection in tumor vascular abnormalities and revealed its underlying mechanism that upregulated the ANXA3-HIF-1α-VEGF pathway. ANXA3 is a potential therapeutic target for EBV-infected tumors and ANXA3 blockade to improve vascular conditions, in combination with NK cell + PD1 antibody therapy, holds promise as an effective treatment strategy for EBV-associated epithelial malignancies.
Collapse
Affiliation(s)
- Yuanyuan Chen
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, 510060, Guangzhou, China
- Department of Biotherapy, Sun Yat-sen University Cancer Center, 510060, Guangzhou, China
| | - Muping Di
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Avenue, Guangzhou, 510515, China
| | - Yan Tang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, 510060, Guangzhou, China
- Department of Biotherapy, Sun Yat-sen University Cancer Center, 510060, Guangzhou, China
| | - Jingjing Zhao
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, 510060, Guangzhou, China
- Department of Biotherapy, Sun Yat-sen University Cancer Center, 510060, Guangzhou, China
| | - Qijing Wang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, 510060, Guangzhou, China
- Department of Biotherapy, Sun Yat-sen University Cancer Center, 510060, Guangzhou, China
| | - Zhixing Guo
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, 510060, Guangzhou, China
- Department of UItrasonic Diagnosis, Sun Yat-sen University Cancer Center, 510060, Guangzhou, China
| | - Yongqiang Li
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, 510060, Guangzhou, China
- Department of Biotherapy, Sun Yat-sen University Cancer Center, 510060, Guangzhou, China
| | - Dijun Ouyang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, 510060, Guangzhou, China
- Department of Biotherapy, Sun Yat-sen University Cancer Center, 510060, Guangzhou, China
| | - Jieying Yang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, 510060, Guangzhou, China
- Department of Biotherapy, Sun Yat-sen University Cancer Center, 510060, Guangzhou, China
| | - Hao Chen
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, 510060, Guangzhou, China
- Department of Biotherapy, Sun Yat-sen University Cancer Center, 510060, Guangzhou, China
| | - Yan Wang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, 510060, Guangzhou, China
- Department of Biotherapy, Sun Yat-sen University Cancer Center, 510060, Guangzhou, China
| | - Desheng Weng
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, 510060, Guangzhou, China
- Department of Biotherapy, Sun Yat-sen University Cancer Center, 510060, Guangzhou, China
| | - Qiuzhong Pan
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, 510060, Guangzhou, China.
- Department of Biotherapy, Sun Yat-sen University Cancer Center, 510060, Guangzhou, China.
| | - Tong Xiang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, 510060, Guangzhou, China.
- Department of Experimental Research, Sun Yat-sen University Cancer Center, 510060, Guangzhou, China.
| | - Jianchuan Xia
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, 510060, Guangzhou, China.
- Department of Biotherapy, Sun Yat-sen University Cancer Center, 510060, Guangzhou, China.
| |
Collapse
|
13
|
Zhang Y, Shi Q, Wang P, Huang C, Tang S, Zhou M, Hu Q, Wu L, Liang D. iPSC-derived NK cells with site-specific integration of CAR19 and IL24 at the multi-copy rDNA locus enhanced antitumor activity and proliferation. MedComm (Beijing) 2024; 5:e553. [PMID: 38737469 PMCID: PMC11082533 DOI: 10.1002/mco2.553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 02/22/2024] [Accepted: 04/01/2024] [Indexed: 05/14/2024] Open
Abstract
The generation of chimeric antigen receptor-modified natural killer (CAR-NK) cells using induced pluripotent stem cells (iPSCs) has emerged as one of the paradigms for manufacturing off-the-shelf universal immunotherapy. However, there are still some challenges in enhancing the potency, safety, and multiple actions of CAR-NK cells. Here, iPSCs were site-specifically integrated at the ribosomal DNA (rDNA) locus with interleukin 24 (IL24) and CD19-specific chimeric antigen receptor (CAR19), and successfully differentiated into iPSC-derived NK (iNK) cells, followed by expansion using magnetic beads in vitro. Compared with the CAR19-iNK cells, IL24 armored CAR19-iNK (CAR19-IL24-iNK) cells showed higher cytotoxic capacity and amplification ability in vitro and inhibited tumor progression more effectively with better survival in a B-cell acute lymphoblastic leukaemia (B-ALL) (Nalm-6 (Luc1))-bearing mouse model. Interestingly, RNA-sequencing analysis showed that IL24 may enhance iNK cell function through nuclear factor kappa B (NFκB) pathway-related genes while exerting a direct effect on tumor cells. This study proved the feasibility and potential of combining IL24 with CAR-iNK cell therapy, suggesting a novel and promising off-the-shelf immunotherapy strategy.
Collapse
Affiliation(s)
- Yuxuan Zhang
- Center for Medical Genetics & Hunan Key Laboratory of Medical GeneticsSchool of Life SciencesCentral South UniversityChangshaChina
| | - Qingxin Shi
- Center for Medical Genetics & Hunan Key Laboratory of Medical GeneticsSchool of Life SciencesCentral South UniversityChangshaChina
| | - Peiyun Wang
- Center for Medical Genetics & Hunan Key Laboratory of Medical GeneticsSchool of Life SciencesCentral South UniversityChangshaChina
| | - Chujun Huang
- Center for Medical Genetics & Hunan Key Laboratory of Medical GeneticsSchool of Life SciencesCentral South UniversityChangshaChina
| | - Shuqing Tang
- Center for Medical Genetics & Hunan Key Laboratory of Medical GeneticsSchool of Life SciencesCentral South UniversityChangshaChina
| | - Miaojin Zhou
- Center for Medical Genetics & Hunan Key Laboratory of Medical GeneticsSchool of Life SciencesCentral South UniversityChangshaChina
| | - Qian Hu
- Center for Medical Genetics & Hunan Key Laboratory of Medical GeneticsSchool of Life SciencesCentral South UniversityChangshaChina
| | - Lingqian Wu
- Center for Medical Genetics & Hunan Key Laboratory of Medical GeneticsSchool of Life SciencesCentral South UniversityChangshaChina
| | - Desheng Liang
- Center for Medical Genetics & Hunan Key Laboratory of Medical GeneticsSchool of Life SciencesCentral South UniversityChangshaChina
- Hunan Key Laboratory of Animal Models for Human DiseasesSchool of Life SciencesCentral South UniversityChangshaChina
| |
Collapse
|
14
|
Lunn-Halbert MC, Laszlo GS, Erraiss S, Orr MT, Jessup HK, Thomas HJ, Chan H, Jahromi MA, Lloyd J, Cheung AF, Chang GP, Dichwalkar T, Fallon D, Grinberg A, Rodríguez-Arbolí E, Lim SYT, Kehret AR, Huo J, Cole FM, Scharffenberger SC, Walter RB. Preclinical Characterization of the Anti-Leukemia Activity of the CD33/CD16a/NKG2D Immune-Modulating TriNKET ® CC-96191. Cancers (Basel) 2024; 16:877. [PMID: 38473239 PMCID: PMC10931532 DOI: 10.3390/cancers16050877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 02/11/2024] [Accepted: 02/20/2024] [Indexed: 03/14/2024] Open
Abstract
Increasing efforts are focusing on natural killer (NK) cell immunotherapies for AML. Here, we characterized CC-96191, a novel CD33/CD16a/NKG2D immune-modulating TriNKET®. CC-96191 simultaneously binds CD33, NKG2D, and CD16a, with NKG2D and CD16a co-engagement increasing the avidity for, and activation of, NK cells. CC-96191 was broadly active against human leukemia cells in a strictly CD33-dependent manner, with maximal efficacy requiring the co-engagement of CD16a and NKG2D. A frequent CD33 single nucleotide polymorphism, R69G, reduced CC-96191 potency but not maximal activity, likely because of reduced CD33 binding. Similarly, the potency, but not the maximal activity, of CC-96191 was reduced by high concentrations of soluble CD33; in contrast, the soluble form of the NKG2D ligand MICA did not impact activity. In the presence of CD33+ AML cells, CC-96191 activated NK cells but not T cells; while maximum anti-AML efficacy was similar, soluble cytokine levels were 10- to >100-fold lower than with a CD33/CD3 bispecific antibody. While CC-96191-mediated cytolysis was not affected by ABC transporter proteins, it was reduced by anti-apoptotic BCL-2 family proteins. Finally, in patient marrow specimens, CC-96191 eliminated AML cells but not normal monocytes, suggesting selectivity of TriNKET-induced cytotoxicity toward neoplastic cells. Together, these findings support the clinical exploration of CC-96191 as in NCT04789655.
Collapse
Affiliation(s)
- Margaret C. Lunn-Halbert
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - George S. Laszlo
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Sarah Erraiss
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Mark T. Orr
- Immuno-Oncology Cellular Therapy Thematic Research Center, Bristol Myers Squibb, Seattle, WA 98109, USA
| | - Heidi K. Jessup
- Immuno-Oncology Cellular Therapy Thematic Research Center, Bristol Myers Squibb, Seattle, WA 98109, USA
| | - Heather J. Thomas
- Immuno-Oncology Cellular Therapy Thematic Research Center, Bristol Myers Squibb, Seattle, WA 98109, USA
| | - Henry Chan
- Bristol Myers Squibb, San Diego, CA 92121, USA
| | | | | | | | | | | | | | | | - Eduardo Rodríguez-Arbolí
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
- Department of Hematology, Hospital Universitario Virgen del Rocío, Instituto de Biomedicina de Sevilla (IBIS/CSIC/CIBERONC), University of Seville, 41013 Seville, Spain
| | - Sheryl Y. T. Lim
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Allie R. Kehret
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Jenny Huo
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Frances M. Cole
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Samuel C. Scharffenberger
- Molecular Medicine and Mechanisms of Disease (M3D) Ph.D. Program, University of Washington, Seattle, WA 98195, USA
| | - Roland B. Walter
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
- Department of Medicine, Division of Hematology and Oncology, University of Washington, Seattle, WA 98195, USA
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
15
|
Edri A, Ben-Haim N, Hailu A, Brycman N, Berhani-Zipori O, Rifman J, Cohen S, Yackoubov D, Rosenberg M, Simantov R, Teru H, Kurata K, Anderson KC, Hendel A, Pato A, Geffen Y. Nicotinamide-Expanded Allogeneic Natural Killer Cells with CD38 Deletion, Expressing an Enhanced CD38 Chimeric Antigen Receptor, Target Multiple Myeloma Cells. Int J Mol Sci 2023; 24:17231. [PMID: 38139060 PMCID: PMC10743602 DOI: 10.3390/ijms242417231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 12/01/2023] [Accepted: 12/01/2023] [Indexed: 12/24/2023] Open
Abstract
Natural killer (NK) cells are a vital component of cancer immune surveillance. They provide a rapid and potent immune response, including direct cytotoxicity and mobilization of the immune system, without the need for antigen processing and presentation. NK cells may also be better tolerated than T cell therapy approaches and are susceptible to various gene manipulations. Therefore, NK cells have become the focus of extensive translational research. Gamida Cell's nicotinamide (NAM) platform for cultured NK cells provides an opportunity to enhance the therapeutic potential of NK cells. CD38 is an ectoenzyme ubiquitously expressed on the surface of various hematologic cells, including multiple myeloma (MM). It has been selected as a lead target for numerous monoclonal therapeutic antibodies against MM. Monoclonal antibodies target CD38, resulting in the lysis of MM plasma cells through various antibody-mediated mechanisms such as antibody-dependent cellular cytotoxicity (ADCC), complement-dependent cytotoxicity, and antibody-dependent cellular phagocytosis, significantly improving the outcomes of patients with relapsed or refractory MM. However, this therapeutic strategy has inherent limitations, such as the anti-CD38-induced depletion of CD38-expressing NK cells, thus hindering ADCC. We have developed genetically engineered NK cells tailored to treat MM, in which CD38 was knocked-out using CRISPR-Cas9 technology and an enhanced chimeric antigen receptor (CAR) targeting CD38 was introduced using mRNA electroporation. This combined genetic approach allows for an improved cytotoxic activity directed against CD38-expressing MM cells without self-inflicted NK-cell-mediated fratricide. Preliminary results show near-complete abolition of fratricide with a 24-fold reduction in self-lysis from 19% in mock-transfected and untreated NK cells to 0.8% of self-lysis in CD38 knock-out CAR NK cells. Furthermore, we have observed significant enhancements in CD38-mediated activity in vitro, resulting in increased lysis of MM target cell lines. CD38 knock-out CAR NK cells also demonstrated significantly higher levels of NK activation markers in co-cultures with both untreated and αCD38-treated MM cell lines. These NAM-cultured NK cells with the combined genetic approach of CD38 knockout and addition of CD38 CAR represent a promising immunotherapeutic tool to target MM.
Collapse
Affiliation(s)
- Avishay Edri
- Gamida-Cell, Jerusalem 34670, Israel; (A.E.); (A.H.); (N.B.); (O.B.-Z.); (J.R.); (S.C.); (D.Y.); (A.P.)
| | - Nimrod Ben-Haim
- Institute of Nanotechnology and Advanced Materials, The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 52900, Israel; (N.B.-H.); (M.R.)
| | - Astar Hailu
- Gamida-Cell, Jerusalem 34670, Israel; (A.E.); (A.H.); (N.B.); (O.B.-Z.); (J.R.); (S.C.); (D.Y.); (A.P.)
| | - Nurit Brycman
- Gamida-Cell, Jerusalem 34670, Israel; (A.E.); (A.H.); (N.B.); (O.B.-Z.); (J.R.); (S.C.); (D.Y.); (A.P.)
| | - Orit Berhani-Zipori
- Gamida-Cell, Jerusalem 34670, Israel; (A.E.); (A.H.); (N.B.); (O.B.-Z.); (J.R.); (S.C.); (D.Y.); (A.P.)
| | - Julia Rifman
- Gamida-Cell, Jerusalem 34670, Israel; (A.E.); (A.H.); (N.B.); (O.B.-Z.); (J.R.); (S.C.); (D.Y.); (A.P.)
| | - Sherri Cohen
- Gamida-Cell, Jerusalem 34670, Israel; (A.E.); (A.H.); (N.B.); (O.B.-Z.); (J.R.); (S.C.); (D.Y.); (A.P.)
| | - Dima Yackoubov
- Gamida-Cell, Jerusalem 34670, Israel; (A.E.); (A.H.); (N.B.); (O.B.-Z.); (J.R.); (S.C.); (D.Y.); (A.P.)
| | - Michael Rosenberg
- Institute of Nanotechnology and Advanced Materials, The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 52900, Israel; (N.B.-H.); (M.R.)
| | | | - Hideshima Teru
- Jerome Lipper Multiple Myeloma Center, LeBow Institute for Myeloma Therapeutics, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA; (H.T.); (K.K.); (K.C.A.)
| | - Keiji Kurata
- Jerome Lipper Multiple Myeloma Center, LeBow Institute for Myeloma Therapeutics, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA; (H.T.); (K.K.); (K.C.A.)
| | - Kenneth Carl Anderson
- Jerome Lipper Multiple Myeloma Center, LeBow Institute for Myeloma Therapeutics, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA; (H.T.); (K.K.); (K.C.A.)
| | - Ayal Hendel
- Institute of Nanotechnology and Advanced Materials, The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 52900, Israel; (N.B.-H.); (M.R.)
| | - Aviad Pato
- Gamida-Cell, Jerusalem 34670, Israel; (A.E.); (A.H.); (N.B.); (O.B.-Z.); (J.R.); (S.C.); (D.Y.); (A.P.)
| | - Yona Geffen
- Gamida-Cell, Jerusalem 34670, Israel; (A.E.); (A.H.); (N.B.); (O.B.-Z.); (J.R.); (S.C.); (D.Y.); (A.P.)
| |
Collapse
|
16
|
Sahu S, Poplawska M, Lim SH, Dutta D. CRISPR-based precision medicine for hematologic disorders: Advancements, challenges, and prospects. Life Sci 2023; 333:122165. [PMID: 37832631 DOI: 10.1016/j.lfs.2023.122165] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 10/04/2023] [Accepted: 10/07/2023] [Indexed: 10/15/2023]
Abstract
The development of programmable nucleases to introduce defined alterations in genomic sequences has been a powerful tool for precision medicine. While several nucleases such as zinc-finger nucleases (ZFN), transcriptor activator-like effector nucleases (TALEN), and meganucleases have been explored, the advent of CRISPR/Cas9 technology has revolutionized the field of genome engineering. In addition to disease modeling, the CRISPR/Cas9 technology has contributed to safer and more effective treatment strategies for hematologic diseases and personalized T-cell-based therapies. Here we discuss the applications of the CRISPR technology in the treatment of hematologic diseases, their efficacy, and ongoing clinical trials. We examine the obstacles to their successful use and the approaches investigated to overcome these challenges. Finally, we provide our perspectives to improve this genome editing tool for targeted therapies.
Collapse
Affiliation(s)
- Sounak Sahu
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, 1050 Boyles Street, Building 560, Room 32-04, Frederick, MD 21702, USA.
| | - Maria Poplawska
- Department of Medicine (Division of Hematology and Oncology), State University of New York Downstate Health Sciences University, Brooklyn, NY 11203, USA
| | - Seah H Lim
- Department of Medicine (Division of Hematology and Oncology), State University of New York Upstate Medical University, 750 E Adams, Syracuse, NY 13210, USA
| | - Dibyendu Dutta
- Department of Medicine (Division of Hematology and Oncology), State University of New York Upstate Medical University, 750 E Adams, Syracuse, NY 13210, USA.
| |
Collapse
|
17
|
Golubovskaya V. Editorial on "Cell Therapy, Bispecific Antibodies and Other Immunotherapies against Cancer". Cancers (Basel) 2023; 15:5053. [PMID: 37894420 PMCID: PMC10605091 DOI: 10.3390/cancers15205053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 10/17/2023] [Indexed: 10/29/2023] Open
Abstract
This Special Issue in Cancers, "Cell Therapy, Bispecific Antibodies and other Immunotherapies Against Cancer", includes interesting reports and reviews on cell therapies and bispecific antibodies [...].
Collapse
|
18
|
Smith R. Bringing cell therapy to tumors: considerations for optimal CAR binder design. Antib Ther 2023; 6:225-239. [PMID: 37846297 PMCID: PMC10576856 DOI: 10.1093/abt/tbad019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2023] Open
Abstract
Chimeric antigen receptor (CAR)-T cells have revolutionized the immunotherapy of B-cell malignancies and are poised to expand the range of their impact across a broad range of oncology and non-oncology indications. Critical to the success of a given CAR is the choice of binding domain, as this is the key driver for specificity and plays an important role (along with the rest of the CAR structure) in determining efficacy, potency and durability of the cell therapy. While antibodies have proven to be effective sources of CAR binding domains, it has become apparent that the desired attributes for a CAR binding domain do differ from those of a recombinant antibody. This review will address key factors that need to be considered in choosing the optimal binding domain for a given CAR and how binder properties influence and are influenced by the rest of the CAR.
Collapse
Affiliation(s)
- Richard Smith
- Department of Research, Kite, a Gilead Company, 5858 Horton Street, Suite 240, Emeryville, CA 94070, USA
| |
Collapse
|
19
|
Golubovskaya V, Sienkiewicz J, Sun J, Zhang S, Huang Y, Zhou H, Harto H, Xu S, Berahovich R, Wu L. CAR-NK Cells Generated with mRNA-LNPs Kill Tumor Target Cells In Vitro and In Vivo. Int J Mol Sci 2023; 24:13364. [PMID: 37686170 PMCID: PMC10487516 DOI: 10.3390/ijms241713364] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 08/23/2023] [Accepted: 08/25/2023] [Indexed: 09/10/2023] Open
Abstract
Natural killer (NK) cells are cytotoxic lymphocytes that are critical for the innate immune system. Engineering NK cells with chimeric antigen receptors (CARs) allows CAR-NK cells to target tumor antigens more effectively. In this report, we present novel CAR mRNA-LNP (lipid nanoparticle) technology to effectively transfect NK cells expanded from primary PBMCs and to generate functional CAR-NK cells. CD19-CAR mRNA and BCMA-CAR mRNA were embedded into LNPs that resulted in 78% and 95% CAR expression in NK cells, respectively. BCMA-CAR-NK cells after transfection with CAR mRNA-LNPs killed multiple myeloma RPMI8226 and MM1S cells and secreted IFN-gamma and Granzyme B in a dose-dependent manner in vitro. In addition, CD19-CAR-NK cells generated with CAR mRNA-LNPs killed Daudi and Nalm-6 cells and secreted IFN-gamma and Granzyme B in a dose-dependent manner. Both BCMA-CAR-NK and CD19-CAR-NK cells showed significantly higher cytotoxicity, IFN-gamma, and Granzyme B secretion compared with normal NK cells. Moreover, CD19-CAR-NK cells significantly blocked Nalm-6 tumor growth in vivo. Thus, non-viral delivery of CAR mRNA-LNPs can be used to generate functional CAR-NK cells with high anti-tumor activity.
Collapse
Affiliation(s)
- Vita Golubovskaya
- Promab Biotechnologies, 2600 Hilltop Drive, Richmond, CA 94806, USA; (J.S.); (H.Z.); (H.H.); (R.B.)
| | - John Sienkiewicz
- Promab Biotechnologies, 2600 Hilltop Drive, Richmond, CA 94806, USA; (J.S.); (H.Z.); (H.H.); (R.B.)
| | - Jinying Sun
- Promab Biotechnologies, 2600 Hilltop Drive, Richmond, CA 94806, USA; (J.S.); (H.Z.); (H.H.); (R.B.)
| | - Shiming Zhang
- Promab Biotechnologies, 2600 Hilltop Drive, Richmond, CA 94806, USA; (J.S.); (H.Z.); (H.H.); (R.B.)
| | - Yanwei Huang
- Promab Biotechnologies, 2600 Hilltop Drive, Richmond, CA 94806, USA; (J.S.); (H.Z.); (H.H.); (R.B.)
| | - Hua Zhou
- Promab Biotechnologies, 2600 Hilltop Drive, Richmond, CA 94806, USA; (J.S.); (H.Z.); (H.H.); (R.B.)
| | - Hizkia Harto
- Promab Biotechnologies, 2600 Hilltop Drive, Richmond, CA 94806, USA; (J.S.); (H.Z.); (H.H.); (R.B.)
| | - Shirley Xu
- Promab Biotechnologies, 2600 Hilltop Drive, Richmond, CA 94806, USA; (J.S.); (H.Z.); (H.H.); (R.B.)
| | - Robert Berahovich
- Promab Biotechnologies, 2600 Hilltop Drive, Richmond, CA 94806, USA; (J.S.); (H.Z.); (H.H.); (R.B.)
| | - Lijun Wu
- Promab Biotechnologies, 2600 Hilltop Drive, Richmond, CA 94806, USA; (J.S.); (H.Z.); (H.H.); (R.B.)
- Laboratory for Critical Quality Attributes of Cell Therapy Products, Forevertek Biotechnology, Janshan Road, Changsha Hi-Tech Industrial Development Zone, Changsha 410205, China
| |
Collapse
|
20
|
Rubino V, Carriero F, Palatucci AT, Giovazzino A, Leone S, Nicolella V, Calabrò M, Montanaro R, Brancaleone V, Pane F, Chiurazzi F, Ruggiero G, Terrazzano G. Adaptive and Innate Cytotoxic Effectors in Chronic Lymphocytic Leukaemia (CLL) Subjects with Stable Disease. Int J Mol Sci 2023; 24:9596. [PMID: 37298547 PMCID: PMC10253385 DOI: 10.3390/ijms24119596] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 05/29/2023] [Accepted: 05/30/2023] [Indexed: 06/12/2023] Open
Abstract
Chronic lymphocytic leukaemia (CLL) is characterised by the expansion of a neoplastic mature B cell clone. CLL clinical outcome is very heterogeneous, with some subjects never requiring therapy and some showing an aggressive disease. Genetic and epigenetic alterations and pro-inflammatory microenvironment influence CLL progression and prognosis. The involvement of immune-mediated mechanisms in CLL control needs to be investigated. We analyse the activation profile of innate and adaptive cytotoxic immune effectors in a cohort of 26 CLL patients with stable disease, as key elements for immune-mediated control of cancer progression. We observed an increase in CD54 expression and interferon (IFN)-γ production by cytotoxic T cells (CTL). CTL ability to recognise tumour-targets depends on human leukocyte antigens (HLA)-class I expression. We observed a decreased expression of HLA-A and HLA-BC on B cells of CLL subjects, associated with a significant reduction in intracellular calnexin that is relevant for HLA surface expression. Natural killer (NK) cells and CTL from CLL subjects show an increased expression of the activating receptor KIR2DS2 and a reduction of 3DL1 and NKG2A inhibiting molecules. Therefore, an activation profile characterises CTL and NK cells of CLL subjects with stable disease. This profile is conceivable with the functional involvement of cytotoxic effectors in CLL control.
Collapse
Affiliation(s)
- Valentina Rubino
- Department of Translational Medical Sciences, University of Naples “Federico II”, 80131 Naples, Italy; (V.R.); (A.G.); (V.N.)
| | - Flavia Carriero
- Department of Science, University of Basilicata, 85100 Potenza, Italy; (F.C.); (A.T.P.); (R.M.); (V.B.)
| | - Anna Teresa Palatucci
- Department of Science, University of Basilicata, 85100 Potenza, Italy; (F.C.); (A.T.P.); (R.M.); (V.B.)
| | - Angela Giovazzino
- Department of Translational Medical Sciences, University of Naples “Federico II”, 80131 Naples, Italy; (V.R.); (A.G.); (V.N.)
| | - Stefania Leone
- Division of Hematology, Department of Clinical Medicine and Surgery, University of Naples “Federico II”, 80131 Naples, Italy; (S.L.); (M.C.); (F.P.); (F.C.)
| | - Valerio Nicolella
- Department of Translational Medical Sciences, University of Naples “Federico II”, 80131 Naples, Italy; (V.R.); (A.G.); (V.N.)
| | - Martina Calabrò
- Division of Hematology, Department of Clinical Medicine and Surgery, University of Naples “Federico II”, 80131 Naples, Italy; (S.L.); (M.C.); (F.P.); (F.C.)
| | - Rosangela Montanaro
- Department of Science, University of Basilicata, 85100 Potenza, Italy; (F.C.); (A.T.P.); (R.M.); (V.B.)
| | - Vincenzo Brancaleone
- Department of Science, University of Basilicata, 85100 Potenza, Italy; (F.C.); (A.T.P.); (R.M.); (V.B.)
| | - Fabrizio Pane
- Division of Hematology, Department of Clinical Medicine and Surgery, University of Naples “Federico II”, 80131 Naples, Italy; (S.L.); (M.C.); (F.P.); (F.C.)
| | - Federico Chiurazzi
- Division of Hematology, Department of Clinical Medicine and Surgery, University of Naples “Federico II”, 80131 Naples, Italy; (S.L.); (M.C.); (F.P.); (F.C.)
| | - Giuseppina Ruggiero
- Department of Translational Medical Sciences, University of Naples “Federico II”, 80131 Naples, Italy; (V.R.); (A.G.); (V.N.)
| | - Giuseppe Terrazzano
- Department of Science, University of Basilicata, 85100 Potenza, Italy; (F.C.); (A.T.P.); (R.M.); (V.B.)
| |
Collapse
|
21
|
Premnath N, Madanat YF. Novel Investigational Agents and Pathways That May Influence the Future Management of Acute Myeloid Leukemia. Cancers (Basel) 2023; 15:2958. [PMID: 37296920 PMCID: PMC10252053 DOI: 10.3390/cancers15112958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/24/2023] [Accepted: 05/27/2023] [Indexed: 06/12/2023] Open
Abstract
Acute Myeloid leukemia (AML) is a clinically heterogeneous disease with a 5-year overall survival of 32% between 2012 to 2018. The above number severely dwindles with age and adverse risk of disease, presenting opportunities for new drug development and is an area of dire unmet need. Basic science and clinical investigators across the world have been working on many new and old molecule formulations and combination strategies to improve outcomes in this disease. In this review, we discuss select promising novel agents in various stages of clinical development for patients with AML.
Collapse
Affiliation(s)
- Naveen Premnath
- Division of Hematology and Medical Oncology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75235, USA;
| | - Yazan F. Madanat
- Division of Hematology and Medical Oncology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75235, USA;
- Harold C. Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, TX 75235, USA
| |
Collapse
|