1
|
Ballı JN, Gungor O, Kocer F, Kose M. DNA/BSA Binding and Antimicrobial Properties of Biguanide-Cu(II) Complexes. Chem Biodivers 2024; 21:e202400733. [PMID: 39051107 DOI: 10.1002/cbdv.202400733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 07/21/2024] [Accepted: 07/24/2024] [Indexed: 07/27/2024]
Abstract
The biguanide Cu(II) complexes [Cu(L1-4)2](ClO4)2 were synthesized and spectroscopic/analytical techniques were used to clarify their structures. Single crystals of complex [Cu(L4)2](ClO4)2 was obtained and its definite structure was determined by single crystal X-ray diffraction study. The complexes [Cu(L1-4)2](ClO4)2 were screened for their FSds-DNA interactions by using UV-Vis absorption and fluorescence spectroscopies. The complexes [Cu(L2)2](ClO4)2 and [Cu(L3)2](ClO4)2 were shown to exhibit higher affinity for binding DNA. Examining the EB-DNA interaction, it is believed that the complexes interact with DNA through a groove binding mechanism. The interaction of complexes with BSA were observed through the quenching of the fluorescence emission. Complexes [Cu(L2)2](ClO4)2 and [Cu(L3)2](ClO4)2 show moderate binding affinity to BSA through a static mode. Additionally, the Cu(II) complexes were screened for their antibacterial activities against various bacterial strains. Complexes showed potential antimicrobial activity against Salmonella typhimurium, Bacillus cereus, Salmonella typhimurium and S. aureus.
Collapse
Affiliation(s)
- Julide Nacaroğlu Ballı
- Chemistry Department, Science Faculty, Kahramanmaras Sutcu Imam University, Kahramanmaras, Turkiye
| | - Ozge Gungor
- Chemistry Department, Science Faculty, Kahramanmaras Sutcu Imam University, Kahramanmaras, Turkiye
| | - Ferudun Kocer
- Research and Development Centre for University-Industry-Public Relations (USKIM), Kahramanmaras Sutcu Imam University, 46040, Kahramanmaras, Turkiye
| | - Muhammet Kose
- Chemistry Department, Science Faculty, Kahramanmaras Sutcu Imam University, Kahramanmaras, Turkiye
| |
Collapse
|
2
|
Romeo R, Legnani L, Chiacchio MA, Giofrè SV, Iannazzo D. Antiviral Compounds to Address Influenza Pandemics: An Update from 2016-2022. Curr Med Chem 2024; 31:2507-2549. [PMID: 37691217 DOI: 10.2174/0929867331666230907093501] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 07/11/2023] [Accepted: 07/24/2023] [Indexed: 09/12/2023]
Abstract
In recent decades, the world has gained experience of the dangerous effects of pandemic events caused by emerging respiratory viruses. In particular, annual epidemics of influenza are responsible for severe illness and deaths. Even if conventional influenza vaccines represent the most effective tool for preventing virus infections, they are not completely effective in patients with severe chronic disease and immunocompromised and new small molecules have emerged to prevent and control the influenza viruses. Thus, the attention of chemists is continuously focused on the synthesis of new antiviral drugs able to interact with the different molecular targets involved in the virus replication cycle. To date, different classes of influenza viruses inhibitors able to target neuraminidase enzyme, hemagglutinin protein, Matrix-2 (M2) protein ion channel, nucleoprotein or RNAdependent RNA polymerase have been synthesized using several synthetic strategies comprising the chemical modification of currently used drugs. The best results, in terms of inhibitory activity, are in the nanomolar range and have been obtained from the chemical modification of clinically used drugs such as Peramivir, Zanamivir, Oseltamir, Rimantadine, as well as sialylated molecules, and hydroxypyridinone derivatives. The aim of this review is to report, covering the period 2016-2022, the most recent routes related to the synthesis of effective influenza virus inhibitors.
Collapse
Affiliation(s)
- Roberto Romeo
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, Università di Messina, Viale F. Stagno D'Alcontres, Messina, 98166, Italy
| | - Laura Legnani
- Dipartimento di Biotecnologie e Bioscienze, Università di Milano-Bicocca, Piazza della Scienza 2, Milano, 20126, Italy
| | - Maria Assunta Chiacchio
- Dipartimento di Scienze del Farmaco e della Salute, Università di Catania, Viale A. Doria 6, Catania, 95125, Italy
| | - Salvatore V Giofrè
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, Università di Messina, Viale F. Stagno D'Alcontres, Messina, 98166, Italy
| | - Daniela Iannazzo
- Dipartimento di Ingegneria, Università di Messina, Contrada di Dio, Messina, 98166, Italy
| |
Collapse
|
3
|
Said M, Khan H, Murtaza G, Sirajuddin M, Badshah A, Salman SM, Gul R, Najeebullah. Guanidine based copper(II) complexes: synthesis, structural elucidation, and biological evaluation. INORG NANO-MET CHEM 2022. [DOI: 10.1080/24701556.2022.2081185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Muhammad Said
- Department of Chemistry, University of Malakand, Chakdara, Pakistan
| | - Hizbullah Khan
- Department of Chemistry, University of Science and Technology Bannu, Bannu, Pakistan
| | - Ghulam Murtaza
- Department of Chemistry, Quaid-i-Azam University Islamabad, Islamabad, Pakistan
| | - Muhammad Sirajuddin
- Department of Chemistry, University of Science and Technology Bannu, Bannu, Pakistan
| | - Amin Badshah
- Department of Chemistry, Quaid-i-Azam University Islamabad, Islamabad, Pakistan
| | | | - Rukhsana Gul
- Department of Chemistry, Kohat University of Science and Technology, Kohat, Pakistan
| | - Najeebullah
- US Pak Center for Advanced Studies in Energy, University of Engineering and Technology Peshawar, Peshawar, Pakistan
| |
Collapse
|
4
|
Boer GE, Hickey SM, Elliott AG, Pfeffer FM. Synthesis of 2-[2-( tert-butoxycarbonyl)-3-(acyl)guanidino]ethylamine salts for convergent introduction of acyl guanidines. NEW J CHEM 2022. [DOI: 10.1039/d2nj01510b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
A series of acylguanidines with pre-installed ethylamino linkers are described that can be incorporated into larger structures through amide coupling.
Collapse
Affiliation(s)
- Gareth E. Boer
- School of Life and Environmental Sciences, Deakin University, Waurn Ponds, Victoria, 3216, Australia
| | - Shane M. Hickey
- Clinical and Health Sciences, University of South Australia, Adelaide, SA, 5000, Australia
| | - Alysha G. Elliott
- Centre for Superbug Solutions, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, 4072, Australia
| | - Frederick M. Pfeffer
- School of Life and Environmental Sciences, Deakin University, Waurn Ponds, Victoria, 3216, Australia
| |
Collapse
|
5
|
Liang P, Shen S, Xu Q, Wang S, Jin S, Lu H, Dong Y, Zhang J. Design, synthesis biological activity, and docking of novel fluopyram derivatives containing guanidine group. Bioorg Med Chem 2020; 29:115846. [PMID: 33191087 DOI: 10.1016/j.bmc.2020.115846] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 10/11/2020] [Accepted: 11/01/2020] [Indexed: 02/07/2023]
Abstract
Succinate dehydrogenase (SDH), a crucial bridge enzyme between the respiratory electron transfer chain and tricarboxylic acid (or Krebs) cycle, has been identified as an ideal target for the development of effective fungicide. In this study, a series of 24 novel SDH inhibitors (SDHIs) were designed, synthesized, and characterized by 1H NMR, 13C NMR, and HRMS. In vitro fungicidal activity experiments, most of the compounds exhibited broad-spectrum antifungal activities against five plant pathogenic fungi. Compounds 9j and 9k showed excellent activities against Pythium aphanidermatum with EC50 values of 9.93 mg/L and 10.50 mg/L, respectively, which were superior to the lead compound Fluopyram with an EC50 value of 19.10 mg/L. Furthermore, the toxicity of these compounds was also tested against Meloidogyne incognita J2 nematodes. The results indicated that compound 9x exhibited moderate nematicidal activity (LC50/48 h = 71.02 mg/L). Molecular docking showed that novel guanidine amide of 9j formed hydrogen bonds with crucial residues, which was crucial to the binding of an inhibitor and SDH. This present work indicates that these derivatives may serve as novel potential fungicides targeting SDH.
Collapse
Affiliation(s)
- Peibo Liang
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, P.R. China
| | - Shengqiang Shen
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, P.R. China
| | - Qingbo Xu
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, P.R. China
| | - Simin Wang
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, P.R. China
| | - Shuhui Jin
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, P.R. China
| | - Huizhe Lu
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, P.R. China
| | - Yanhong Dong
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, P.R. China
| | - Jianjun Zhang
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, P.R. China.
| |
Collapse
|
6
|
Kumar S, Goicoechea S, Kumar S, Pearce CM, Durvasula R, Kempaiah P, Rathi B, Poonam. Oseltamivir analogs with potent anti-influenza virus activity. Drug Discov Today 2020; 25:1389-1402. [PMID: 32554062 DOI: 10.1016/j.drudis.2020.06.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 05/09/2020] [Accepted: 06/08/2020] [Indexed: 11/27/2022]
|
7
|
J. Murphy P, J. R. Ashworth Z, Bartholomew B, M. Evans D, Forde-Thomas J, F. Hoffmann K, Murdoch R, J. Nash R, Sharp H, Whiteland H. The Synthesis and Glycosidase Inhibitory Activity of Analogues of Tiruchanduramine. HETEROCYCLES 2020. [DOI: 10.3987/com-20-14236] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
8
|
Li Z, Meng Y, Xu S, Shen W, Meng Z, Wang Z, Ding G, Huang W, Xiao W, Xu J. Discovery of acylguanidine oseltamivir carboxylate derivatives as potent neuraminidase inhibitors. Bioorg Med Chem 2017; 25:2772-2781. [DOI: 10.1016/j.bmc.2017.03.052] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 03/22/2017] [Accepted: 03/24/2017] [Indexed: 12/12/2022]
|
9
|
Kapp TG, Fottner M, Kessler H. Modification and Functionalization of the Guanidine Group by Tailor-made Precursors. J Vis Exp 2017. [PMID: 28518069 DOI: 10.3791/54873] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
The guanidine group is one of the most important pharmacophoric groups in medicinal chemistry. The only amino acid carrying a guanidine group is arginine. In this article, an easy method for the modification of the guanidine group in peptidic ligands is provided, with an example of RGD-binding integrin ligands. It was recently demonstrated that the distinct modification of the guanidine group in these ligands allows for the selective modulation of the subtype (e.g., between the subtypes αv and α5). Moreover, a formerly unknown strategy for the functionalization via the guanidine group was demonstrated, and the synthetic approach is reviewed in this document. The modifications described here involve terminally (Nω) alkylated and acetylated guanidine groups. For the synthesis, tailor-made precursor molecules are synthesized, which are then subjected to a reaction with an orthogonally deprotected amine to transfer the pre-modified guanidine group. For the synthesis of alkylated guanidines, precursors based on N,N'-Di-Boc-1H-pyrazole-1-carboxamidine are used to synthesize acylated compounds, the precursor of choice being a correspondingly acylated derivative of N-Boc-S-methylisothiourea, which can be obtained in one- and two-step reactions.
Collapse
Affiliation(s)
- Tobias G Kapp
- Department of Chemistry, Technische Universität München;
| | | | - Horst Kessler
- Department of Chemistry, Technische Universität München
| |
Collapse
|
10
|
Keller M, Kuhn KK, Einsiedel J, Hübner H, Biselli S, Mollereau C, Wifling D, Svobodová J, Bernhardt G, Cabrele C, Vanderheyden PML, Gmeiner P, Buschauer A. Mimicking of Arginine by Functionalized N(ω)-Carbamoylated Arginine As a New Broadly Applicable Approach to Labeled Bioactive Peptides: High Affinity Angiotensin, Neuropeptide Y, Neuropeptide FF, and Neurotensin Receptor Ligands As Examples. J Med Chem 2016; 59:1925-45. [PMID: 26824643 DOI: 10.1021/acs.jmedchem.5b01495] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Derivatization of biologically active peptides by conjugation with fluorophores or radionuclide-bearing moieties is an effective and commonly used approach to prepare molecular tools and diagnostic agents. Whereas lysine, cysteine, and N-terminal amino acids have been mostly used for peptide conjugation, we describe a new, widely applicable approach to peptide conjugation based on the nonclassical bioisosteric replacement of the guanidine group in arginine by a functionalized carbamoylguanidine moiety. Four arginine-containing peptide receptor ligands (angiotensin II, neurotensin(8-13), an analogue of the C-terminal pentapeptide of neuropeptide Y, and a neuropeptide FF analogue) were subject of this proof-of-concept study. The N(ω)-carbamoylated arginines, bearing spacers with a terminal amino group, were incorporated into the peptides by standard Fmoc solid phase peptide synthesis. The synthesized chemically stable peptide derivatives showed high receptor affinities with Ki values in the low nanomolar range, even when bulky fluorophores had been attached. Two new tritiated tracers for angiotensin and neurotensin receptors are described.
Collapse
Affiliation(s)
- Max Keller
- Institute of Pharmacy, Faculty of Chemistry and Pharmacy, University of Regensburg , Universitätsstrasse 31, D-93053 Regensburg, Germany
| | - Kilian K Kuhn
- Institute of Pharmacy, Faculty of Chemistry and Pharmacy, University of Regensburg , Universitätsstrasse 31, D-93053 Regensburg, Germany
| | - Jürgen Einsiedel
- Department of Chemistry and Pharmacy, Emil Fischer Center, Friedrich Alexander University , Schuhstrasse 19, D-91052 Erlangen, Germany
| | - Harald Hübner
- Department of Chemistry and Pharmacy, Emil Fischer Center, Friedrich Alexander University , Schuhstrasse 19, D-91052 Erlangen, Germany
| | - Sabrina Biselli
- Institute of Pharmacy, Faculty of Chemistry and Pharmacy, University of Regensburg , Universitätsstrasse 31, D-93053 Regensburg, Germany
| | - Catherine Mollereau
- Institut de Pharmacologie et Biologie Structurale, CNRS/IPBS , 205 route de Narbonne, 31077 Toulouse cedex 5, France
| | - David Wifling
- Institute of Pharmacy, Faculty of Chemistry and Pharmacy, University of Regensburg , Universitätsstrasse 31, D-93053 Regensburg, Germany
| | - Jaroslava Svobodová
- Institute of Pharmacy, Faculty of Chemistry and Pharmacy, University of Regensburg , Universitätsstrasse 31, D-93053 Regensburg, Germany
| | - Günther Bernhardt
- Institute of Pharmacy, Faculty of Chemistry and Pharmacy, University of Regensburg , Universitätsstrasse 31, D-93053 Regensburg, Germany
| | - Chiara Cabrele
- Department of Molecular Biology, University of Salzburg , Billrothstrasse 11, A-5020 Salzburg, Austria
| | - Patrick M L Vanderheyden
- Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel , Pleinlaan 2, B-1050 Brussels, Belgium
| | - Peter Gmeiner
- Department of Chemistry and Pharmacy, Emil Fischer Center, Friedrich Alexander University , Schuhstrasse 19, D-91052 Erlangen, Germany
| | - Armin Buschauer
- Institute of Pharmacy, Faculty of Chemistry and Pharmacy, University of Regensburg , Universitätsstrasse 31, D-93053 Regensburg, Germany
| |
Collapse
|
11
|
Kapp TG, Fottner M, Maltsev OV, Kessler H. Kleine Ursache, große Wirkung: Modifikation der Guanidiniumgruppe im RGD-Motiv reguliert die Integrinsubtypselektivität. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201508713] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Tobias G. Kapp
- Institute for Advanced Study and Center for Integrated Protein Science (CIPSM); Technische Universität München; Lichtenbergstraße 4 85747 Garching Deutschland
| | - Maximilian Fottner
- Institute for Advanced Study and Center for Integrated Protein Science (CIPSM); Technische Universität München; Lichtenbergstraße 4 85747 Garching Deutschland
| | - Oleg V. Maltsev
- Institute for Advanced Study and Center for Integrated Protein Science (CIPSM); Technische Universität München; Lichtenbergstraße 4 85747 Garching Deutschland
| | - Horst Kessler
- Institute for Advanced Study and Center for Integrated Protein Science (CIPSM); Technische Universität München; Lichtenbergstraße 4 85747 Garching Deutschland
| |
Collapse
|
12
|
Kapp TG, Fottner M, Maltsev OV, Kessler H. Small Cause, Great Impact: Modification of the Guanidine Group in the RGD Motif Controls Integrin Subtype Selectivity. Angew Chem Int Ed Engl 2015; 55:1540-3. [PMID: 26663700 DOI: 10.1002/anie.201508713] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Revised: 10/26/2015] [Indexed: 01/09/2023]
Abstract
Due to its unique role as a hydrogen-bond donor and its positive charge, the guanidine group is an important pharmacophoric group and often used in synthetic ligands. The chemical modification of the guanidine group is often considered to destroy its function. Herein, we show that the N-methylation, N-alkylation, or N-acylation of the guanidine group can be used to modify the receptor subtype specificity of the integrin ligand cilengitide. Using the αvβ6/α5β1-biselective ligand c(isoDGRkphg) and the αvβ6-specific ligand c(FRGDLAFp(NMe)K(Ac) as examples, we show that the binding affinities of the ligands can be fine-tuned by this method to enhance the selectivity for αvβ6. Furthermore, we describe a new strategy for the functionalization of integrin ligands. By introducing longer N-alkylguanidine and N-acylguanidine groups, we are able to simultaneously identify a hitherto unknown anchoring point and enhance the subtype selectivity of the ligand.
Collapse
Affiliation(s)
- Tobias G Kapp
- Institute for Advanced Study and Center for Integrated Protein Science (CIPSM), Technische Universität München, Lichtenbergstrasse 4, 85747, Garching b. München, Germany
| | - Maximilian Fottner
- Institute for Advanced Study and Center for Integrated Protein Science (CIPSM), Technische Universität München, Lichtenbergstrasse 4, 85747, Garching b. München, Germany
| | - Oleg V Maltsev
- Institute for Advanced Study and Center for Integrated Protein Science (CIPSM), Technische Universität München, Lichtenbergstrasse 4, 85747, Garching b. München, Germany
| | - Horst Kessler
- Institute for Advanced Study and Center for Integrated Protein Science (CIPSM), Technische Universität München, Lichtenbergstrasse 4, 85747, Garching b. München, Germany.
| |
Collapse
|
13
|
Rauf MK, Gul R, Rashid Z, Badshah A, Tahir MN, Shahid M, Khan A. Synthesis, characterization, DNA binding and in vitro antimicrobial studies of a novel tetra-substituted N-isopropyl-N-(4-ferrocenylphenyl)-N'-(2,6-diethylphenyl)-N″-benzoylguanidine: crystallographic structure and quantum chemical computations. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2015; 136 Pt B:1099-1106. [PMID: 25459507 DOI: 10.1016/j.saa.2014.09.134] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Revised: 09/26/2014] [Accepted: 09/30/2014] [Indexed: 06/04/2023]
Abstract
A novel tetra-substituted guanidine, N-isopropyl-N-(4-ferrocenylphenyl)-N'-(2,6-diethylphenyl)-N″-benzoylguanidine (1), [(CH3)2CH)(C5H5FeC5H4C6H4)NC(NHCOC6H5)(NHC6H3(CH2CH3)2] has been synthesized and characterized by elemental analysis, FT-IR, multinuclear ((1)H, (13)C) NMR spectroscopy, single crystal X-rays diffraction analysis and density functional theory based quantum chemical calculations. The torsion angles indicating that the guanidine moiety and carbonyl group are almost co-planar, due to the pseudo hexagonal ring formed by intramolecular N-H⋯O hydrogen bonds. The DNA interaction studies performed by cyclic voltammetry and UV-visible spectroscopy are in close agreement with the binding constants (K) 1.4×10(4) and 1.2×10(4) respectively. The shift in peak potential, current and absorption maxima of the studied ferrocenyl guanidine in the presence of DNA discovered that CV coupled with UV-vis spectroscopy could provide an opportunity to elaborate DNA interaction mechanism, a prerequisite for the design of new drug like agents and understanding the molecular basis of their action. The synthesized compound (1) has also been screened for their antibacterial and antifungal.
Collapse
Affiliation(s)
| | - Rukhsana Gul
- Department of Chemistry, Quaid-I-Azam University, Islamabad 45320, Pakistan; Department of Chemistry, Gomal University, Dera Ismail Khan, Pakistan
| | - Zahid Rashid
- Department of Chemistry, Quaid-I-Azam University, Islamabad 45320, Pakistan
| | - Amin Badshah
- Department of Chemistry, Quaid-I-Azam University, Islamabad 45320, Pakistan.
| | | | - Muhammad Shahid
- Department of Chemistry, Quaid-I-Azam University, Islamabad 45320, Pakistan
| | - Azim Khan
- Department of Chemistry, Gomal University, Dera Ismail Khan, Pakistan
| |
Collapse
|
14
|
Hickey SM, Ashton TD, Pfeffer FM. Facile Synthesis of Guanidine Functionalised Building Blocks. ASIAN J ORG CHEM 2015. [DOI: 10.1002/ajoc.201402242] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
15
|
Gul R, Rauf MK, Badshah A, Azam SS, Tahir MN, Khan A. Ferrocene-based guanidine derivatives: In vitro antimicrobial, DNA binding and docking supported urease inhibition studies. Eur J Med Chem 2014; 85:438-49. [DOI: 10.1016/j.ejmech.2014.07.109] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2014] [Revised: 07/11/2014] [Accepted: 07/30/2014] [Indexed: 11/29/2022]
|
16
|
Alegre-Requena JV, Marqués-López E, Herrera RP. Guanidine Motif in Biologically Active Peptides. Aust J Chem 2014. [DOI: 10.1071/ch14043] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
In the past decade, guanidines have attracted attention as valuable hydrogen bond-based catalysts while they have long been considered as organic superbases with a broad scope of synthetic applicability. Their easy modification has also expanded their capacity to form complexes with a wide range of metal salts as effective metal scavengers. All these attractive aspects have promoted a huge growth in the field of organic synthesis involving guanidines and examples of such reactions have been collected in numerous reviews and some books. Moreover, this structural motif is also present in a large number of natural products and biologically active compounds that exhibit appealing properties and play important roles in medicinal chemistry. In this highlight, we will only cover the synthesis and properties of biologically active guanidine-containing peptides reported in the past 3 years.
Collapse
|
17
|
Zou Y, Li L, Chen W, Chen T, Ma L, Wang X, Xiong B, Xu Y, Shen J. Virtual screening and structure-based discovery of indole acylguanidines as potent β-secretase (BACE1) inhibitors. Molecules 2013; 18:5706-22. [PMID: 23681056 PMCID: PMC6270065 DOI: 10.3390/molecules18055706] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Revised: 04/09/2013] [Accepted: 05/09/2013] [Indexed: 11/19/2022] Open
Abstract
Proteolytic cleavage of amyloid precursor protein by β-secretase (BACE1) is a key step in generating the N-terminal of β-amyloid (Aβ), which further forms into amyloid plaques that are considered as the hallmark of Alzheimer’s disease. Inhibitors of BACE1 can reduce the levels of Aβ and thus have a therapeutic potential for treating the disease. We report here the identification of a series of small molecules bearing an indole acylguanidine core structure as potent BACE1 inhibitors. The initial weak fragment was discovered by virtual screening, and followed with a hit-to-lead optimization. With the aid of co-crystal structures of two discovered inhibitors (compounds 19 and 25) with BACE1, we explored the SAR around the indole and aryl groups, and obtained several BACE1 inhibitors about 1,000-fold more potent than the initial fragment hit. Accompanying the lead optimization, a previously under-explored sub-site opposite the flap loop was redefined as a potential binding site for later BACE1 inhibitor design.
Collapse
Affiliation(s)
- Yiquan Zou
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Zhangjiang Hi-Tech Park, Shanghai 201203, China; E-Mails: (Y.Z.); (L.M.); (X.W.)
| | - Li Li
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Zhangjiang Hi-Tech Park, Shanghai 201203, China; E-Mails: (L.L.); (W.C.); (T.C.)
| | - Wuyan Chen
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Zhangjiang Hi-Tech Park, Shanghai 201203, China; E-Mails: (L.L.); (W.C.); (T.C.)
| | - Tiantian Chen
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Zhangjiang Hi-Tech Park, Shanghai 201203, China; E-Mails: (L.L.); (W.C.); (T.C.)
| | - Lanping Ma
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Zhangjiang Hi-Tech Park, Shanghai 201203, China; E-Mails: (Y.Z.); (L.M.); (X.W.)
| | - Xin Wang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Zhangjiang Hi-Tech Park, Shanghai 201203, China; E-Mails: (Y.Z.); (L.M.); (X.W.)
| | - Bing Xiong
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Zhangjiang Hi-Tech Park, Shanghai 201203, China; E-Mails: (Y.Z.); (L.M.); (X.W.)
- Authors to whom correspondence should be addressed; E-Mail: (B.X.); (Y.X.); (J.S.); Tel.: +86-21-5080-6600 (ext. 5412) (B.X.); Fax: +86-21-5080-7088 (B.X.)
| | - Yechun Xu
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Zhangjiang Hi-Tech Park, Shanghai 201203, China; E-Mails: (L.L.); (W.C.); (T.C.)
- Authors to whom correspondence should be addressed; E-Mail: (B.X.); (Y.X.); (J.S.); Tel.: +86-21-5080-6600 (ext. 5412) (B.X.); Fax: +86-21-5080-7088 (B.X.)
| | - Jingkang Shen
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Zhangjiang Hi-Tech Park, Shanghai 201203, China; E-Mails: (Y.Z.); (L.M.); (X.W.)
- Authors to whom correspondence should be addressed; E-Mail: (B.X.); (Y.X.); (J.S.); Tel.: +86-21-5080-6600 (ext. 5412) (B.X.); Fax: +86-21-5080-7088 (B.X.)
| |
Collapse
|
18
|
|
19
|
Mitchell N, Kalber TL, Cooper MS, Sunassee K, Chalker SL, Shaw KP, Ordidge KL, Badar A, Janes SM, Blower PJ, Lythgoe MF, Hailes HC, Tabor AB. Incorporation of paramagnetic, fluorescent and PET/SPECT contrast agents into liposomes for multimodal imaging. Biomaterials 2013; 34:1179-92. [PMID: 23131536 PMCID: PMC3520009 DOI: 10.1016/j.biomaterials.2012.09.070] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2012] [Accepted: 09/28/2012] [Indexed: 12/20/2022]
Abstract
A series of metal-chelating lipid conjugates has been designed and synthesized. Each member of the series bears a 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) macrocycle attached to the lipid head group, using short n-ethylene glycol (n-EG) spacers of varying length. Liposomes incorporating these lipids, chelated to Gd(3+), (64)Cu(2+), or (111)In(3+), and also incorporating fluorescent lipids, have been prepared, and their application in optical, magnetic resonance (MR) and single-photon emission tomography (SPECT) imaging of cellular uptake and distribution investigated in vitro and in vivo. We have shown that these multimodal liposomes can be used as functional MR contrast agents as well as radionuclide tracers for SPECT, and that they can be optimized for each application. When shielded liposomes were formulated incorporating 50% of a lipid with a short n-EG spacer, to give nanoparticles with a shallow but even coverage of n-EG, they showed good cellular internalization in a range of tumour cells, compared to the limited cellular uptake of conventional shielded liposomes formulated with 7% 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[carboxy(polyethyleneglycol)(2000)] (DSPE-PEG2000). Moreover, by matching the depth of n-EG coverage to the length of the n-EG spacers of the DOTA lipids, we have shown that similar distributions and blood half lives to DSPE-PEG2000-stabilized liposomes can be achieved. The ability to tune the imaging properties and distribution of these liposomes allows for the future development of a flexible tri-modal imaging agent.
Collapse
Key Words
- dota-lipid
- liposome
- mri (magnetic resonance imaging)
- peg (poly(ethylene)glycol)
- spect (single-photon emission tomography)
- dcc, n,n-dicyclohexylcarbodiimide
- deg1sl, dioleylethyleneglycol-1-succidimidyl linker
- deg3sl, dioleylethyleneglycol-3-succidimidyl linker
- deg6sl, dioleylethyleneglycol-6-succidimidyl linker
- dodeg4, dioleyldimethyl ethylene glycol 4
- dope, 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine
- dota, 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid
- dotma, n-[1-(2,3-dioleyloxy)propyl]-n,n,n-trimethylammonium chloride
- dspe-peg2000, 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-n-[carboxy(polyethyleneglycol)2000]
- dtpa, diethylenetriamine pentacetic acid
- n-eg, n-ethylene glycol
- epr, enhanced permeability and retention effect
- fl-dhpe, n-(fluorescein-5-thiocarbamoyl)-1,2-dihexa-decanoyl-sn-glycero-3-phosphoethanolamine
- hbtu, o-(benzotriazol-1-yl)-n,n,n′,n′-tetramethyluronium hexafluorophosphate
- itlc, instant thin layer chromatography
- mr, magnetic resonance
- peg, polyethylene glycol
- pet, positron emission tomography
- res, reticuloendothelial system
- spect, single-photon emission tomography
Collapse
Affiliation(s)
- Nick Mitchell
- Department of Chemistry, University College London, Christopher Ingold Laboratories, 20 Gordon St, London WC1H 0AJ, UK
| | - Tammy L. Kalber
- Centre of Advanced Biomedical Imaging, Division of Medicine and Institute of Child Health, University College London, 72 Huntley Street, WC1E 6DD, UK
- Centre for Respiratory Research, University College London, Rayne Building, 5 University Street, WC1E 6JJ, UK
| | - Margaret S. Cooper
- King's College London, St. Thomas' Hospital, Division of Imaging Sciences and Biomedical Engineering, 4th Floor, Lambeth Wing, St Thomas' Hospital, London SE1 7EH, UK
| | - Kavitha Sunassee
- King's College London, St. Thomas' Hospital, Division of Imaging Sciences and Biomedical Engineering, 4th Floor, Lambeth Wing, St Thomas' Hospital, London SE1 7EH, UK
| | - Samantha L. Chalker
- Department of Chemistry, University College London, Christopher Ingold Laboratories, 20 Gordon St, London WC1H 0AJ, UK
- Royal Institution of Great Britain, Davy Faraday Research Laboratories, 21 Albemarle Street, London W1S 4BS, UK
| | - Karen P. Shaw
- Centre for Respiratory Research, University College London, Rayne Building, 5 University Street, WC1E 6JJ, UK
| | - Katherine L. Ordidge
- Centre of Advanced Biomedical Imaging, Division of Medicine and Institute of Child Health, University College London, 72 Huntley Street, WC1E 6DD, UK
- Centre for Respiratory Research, University College London, Rayne Building, 5 University Street, WC1E 6JJ, UK
| | - Adam Badar
- Centre of Advanced Biomedical Imaging, Division of Medicine and Institute of Child Health, University College London, 72 Huntley Street, WC1E 6DD, UK
| | - Samuel M. Janes
- Centre for Respiratory Research, University College London, Rayne Building, 5 University Street, WC1E 6JJ, UK
| | - Philip J. Blower
- King's College London, St. Thomas' Hospital, Division of Imaging Sciences and Biomedical Engineering, 4th Floor, Lambeth Wing, St Thomas' Hospital, London SE1 7EH, UK
- King's College London, Division of Chemistry, Hodgkin Building, Guy's Campus, London SE1 1UL, UK
| | - Mark F. Lythgoe
- Centre of Advanced Biomedical Imaging, Division of Medicine and Institute of Child Health, University College London, 72 Huntley Street, WC1E 6DD, UK
| | - Helen C. Hailes
- Department of Chemistry, University College London, Christopher Ingold Laboratories, 20 Gordon St, London WC1H 0AJ, UK
| | - Alethea B. Tabor
- Department of Chemistry, University College London, Christopher Ingold Laboratories, 20 Gordon St, London WC1H 0AJ, UK
| |
Collapse
|
20
|
Berlinck RGS, Trindade-Silva AE, Santos MFC. The chemistry and biology of organic guanidine derivatives. Nat Prod Rep 2012; 29:1382-406. [PMID: 22991131 DOI: 10.1039/c2np20071f] [Citation(s) in RCA: 121] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The chemistry and biology of organic natural guanidines are reviewed, including the isolation, structure determination, synthesis, biosynthesis and biological activities of alkaloids, non-ribosomal peptides, guanidine-bearing terpenes, polyketides and shikimic acid derivatives from natural sources.
Collapse
Affiliation(s)
- Roberto G S Berlinck
- Instituto de Química de São Carlos, Universidade de São Paulo, CP 780, CEP 13560-970, São Carlos, SP, Brasil.
| | | | | |
Collapse
|
21
|
Near-infrared fluorescent divalent RGD ligand for integrin αvβ₃-targeted optical imaging. Bioorg Med Chem Lett 2012; 22:5405-9. [PMID: 22871580 DOI: 10.1016/j.bmcl.2012.07.044] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2012] [Revised: 07/10/2012] [Accepted: 07/12/2012] [Indexed: 11/20/2022]
Abstract
A new near-infrared fluorescent compound containing two cyclic RGD motifs, cypate-[c(RGDfK)](2) (1), was synthesized based on a carbocyanine fluorophore bearing two carboxylic acid groups (cypate) for integrin α(v)β(3)-targeting. Compared with its monovalent counterpart cypate-c(RGDfK) (2), 1 exhibited remarkable improvements in integrin α(v)β(3) binding affinity and tumor uptake in nude mice of A549. The results suggest that cypate-linked divalent ligands can serve as an important molecular platform for exploring receptor-targeted optical imaging and treatment of various diseases.
Collapse
|
22
|
Keller M, Bernhardt G, Buschauer A. [3H]UR-MK136: A Highly Potent and Selective Radioligand for Neuropeptide Y Y1 Receptors. ChemMedChem 2011; 6:1566-71. [DOI: 10.1002/cmdc.201100197] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2011] [Indexed: 11/11/2022]
|
23
|
Pluym N, Brennauer A, Keller M, Ziemek R, Pop N, Bernhardt G, Buschauer A. Application of the Guanidine-Acylguanidine Bioisosteric Approach to Argininamide-Type NPY Y2 Receptor Antagonists. ChemMedChem 2011; 6:1727-38. [DOI: 10.1002/cmdc.201100241] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2011] [Indexed: 11/06/2022]
|
24
|
Weiss S, Bernhardt G, Buschauer A, König B. Synthesis and characterization of DMAP-modified NPY Y1 receptor antagonists as acyl-transfer catalysts. ACTA ACUST UNITED AC 2011. [DOI: 10.1135/cccc2011036] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Starting from the working hypothesis that specific chemical labelling may be an attractive approach to detect and study G protein-coupled receptors (GPCRs) we synthesized catalytically active antagonists of the neuropeptide Y1 receptor (Y1R). An argininamide-type Y1R antagonist scaffold was combined with a DMAP moiety via spacers of different length and chemical nature. These hybrid compounds have Y1R affinities in the two-digit nanomolar range and are capable of catalysing acyl-transfer reaction to surrogates of bionucleophiles, as demonstrated in the absence of cells by using esters of fluorescent dyes as substrates in buffer. By contrast, selective staining of Y1Rs on living MCF-7 cells was not achieved due to significant non-catalysed (Y1R ligand independent) reaction with biomolecules and the limited density of Y1R on the cell surface. Although this may also depend on insufficient selectivity of the staining reagents, the results of this study suggest that the general applicability of catalytic staining to GPCRs has to be reconsidered, as this approach is hampered by a very low portion of receptor of interest compared to the total amount of membrane proteins.
Collapse
|
25
|
Red-fluorescent argininamide-type NPY Y1 receptor antagonists as pharmacological tools. Bioorg Med Chem 2011; 19:2859-78. [DOI: 10.1016/j.bmc.2011.03.045] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2010] [Revised: 03/09/2011] [Accepted: 03/18/2011] [Indexed: 11/21/2022]
|