1
|
Chen K, Wang S, Fu S, Kim J, Park P, Liu R, Lei K. 4(3 H)-Quinazolinone: A Natural Scaffold for Drug and Agrochemical Discovery. Int J Mol Sci 2025; 26:2473. [PMID: 40141117 PMCID: PMC11941892 DOI: 10.3390/ijms26062473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Revised: 03/09/2025] [Accepted: 03/10/2025] [Indexed: 03/28/2025] Open
Abstract
4(3H)-quinazolinone is a functional scaffold that exists widely both in natural products and synthetic organic compounds. Its drug-like derivatives have been extensively synthesized with interesting biological features including anticancer, anti-inflammatory, antiviral, antimalarial, antibacterial, antifungal, and herbicidal, etc. In this review, we highlight the medicinal and agrochemical versatility of the 4(3H)-quinazolinone scaffold according to the studies published in the past six years (2019-2024), and comprehensively give a summary of the target recognition, structure-activity relationship, and mechanism of its analogs. The present review is expected to provide valuable guidance for discovering novel lead compounds containing 4(3H)-quinazolinone moiety in both drug and agrochemical research.
Collapse
Affiliation(s)
- Ke Chen
- Department of Biotechnology, The University of Suwon, Hwaseong-si 18323, Gyeonggi-do, Republic of Korea; (K.C.); (J.K.); (P.P.)
| | - Shumin Wang
- School of Pharmaceutical Sciences and Food Engineering, Liaocheng University, Liaocheng 252059, China; (S.W.); (S.F.)
| | - Shuyue Fu
- School of Pharmaceutical Sciences and Food Engineering, Liaocheng University, Liaocheng 252059, China; (S.W.); (S.F.)
| | - Junehyun Kim
- Department of Biotechnology, The University of Suwon, Hwaseong-si 18323, Gyeonggi-do, Republic of Korea; (K.C.); (J.K.); (P.P.)
| | - Phumbum Park
- Department of Biotechnology, The University of Suwon, Hwaseong-si 18323, Gyeonggi-do, Republic of Korea; (K.C.); (J.K.); (P.P.)
| | - Rui Liu
- Department of Biotechnology, The University of Suwon, Hwaseong-si 18323, Gyeonggi-do, Republic of Korea; (K.C.); (J.K.); (P.P.)
| | - Kang Lei
- School of Pharmaceutical Sciences and Food Engineering, Liaocheng University, Liaocheng 252059, China; (S.W.); (S.F.)
| |
Collapse
|
2
|
Lü YX, Wang XQ, Pan YM, Ablajan K. Visible light-driven photocatalytic sulfonative oxidation of benzyl secondary amines. Org Biomol Chem 2024; 22:3904-3909. [PMID: 38656504 DOI: 10.1039/d4ob00348a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
A method for the α-oxidation and sulfonation of benzyl secondary amines was developed utilizing Ir(III) or Eosin Y as the photocatalyst in the presence of O2 as a green oxidant. Using commercial substrates, 37 products from cyclic and acyclic benzylamines were achieved with good functional group compatibility in 48-87% yields. Furthermore, tetrahydroisoquinoline protected by an Ac or a Boc group was oxidized under standard conditions.
Collapse
Affiliation(s)
- Yong-Xiang Lü
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi, 830017, PR China.
| | - Xin-Qian Wang
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi, 830017, PR China.
| | - Ying-Ming Pan
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, Gui Lin, 541004, PR China
| | - Keyume Ablajan
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi, 830017, PR China.
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, Gui Lin, 541004, PR China
| |
Collapse
|
3
|
Li XW, Fang SJ, Li YZ, Qin LQ, Chen NY, Zheng B, Mo DL, Su GF, Su JC, Pan CX. Design and synthesis of luotonin A-derived topoisomerase targeting scaffold with potent antitumor effect and low genotoxicity. Bioorg Chem 2024; 143:107015. [PMID: 38086241 DOI: 10.1016/j.bioorg.2023.107015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 11/27/2023] [Accepted: 11/29/2023] [Indexed: 01/24/2024]
Abstract
Conventional topoisomerase (Topo) inhibitors typically usually exert their cytotoxicity by damaging the DNAs, which exhibit high toxicity and tend to result in secondary carcinogenesis risk. Molecules that have potent topoisomerase inhibitory activity but involve less DNA damage provide more desirable scaffolds for developing novel chemotherapeutic agents. In this work, we broke the rigid pentacyclic system of luotonin A and synthesized thirty-three compounds as potential Topo inhibitors based on the devised molecular motif. Further investigation disclose that two compounds with the highest antiproliferation activity against cancer cells, 5aA and 5dD, had a distinct Topo I inhibitory mechanism different from those of the classic Topo I inhibitors CPT or luteolin, and were able to obviate the obvious cellular DNA damage typically associated with clinically available Topo inhibitors. The animal model experiments demonstrated that even in mice treated with a high dosage of 50 mg/kg 5aA, there were no obvious signs of toxicity or loss of body weight. The tumor growth inhibition (TGI) rate was 54.3 % when 20 mg/kg 5aA was given to the T24 xenograft mouse model, and 5aA targeted the cancer tissue precisely without causing damage to the liver and other major organs.
Collapse
Affiliation(s)
- Xin-Wei Li
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, 15 Yu Cai Road, Guilin 541004, PR China
| | - Shu-Jun Fang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, 15 Yu Cai Road, Guilin 541004, PR China
| | - Ying-Ze Li
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, 15 Yu Cai Road, Guilin 541004, PR China
| | - Li-Qing Qin
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, 15 Yu Cai Road, Guilin 541004, PR China
| | - Nan-Ying Chen
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, 15 Yu Cai Road, Guilin 541004, PR China
| | - Bin Zheng
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, 15 Yu Cai Road, Guilin 541004, PR China
| | - Dong-Liang Mo
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, 15 Yu Cai Road, Guilin 541004, PR China
| | - Gui-Fa Su
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, 15 Yu Cai Road, Guilin 541004, PR China
| | - Jun-Cheng Su
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, 15 Yu Cai Road, Guilin 541004, PR China.
| | - Cheng-Xue Pan
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, 15 Yu Cai Road, Guilin 541004, PR China.
| |
Collapse
|
4
|
Lin TC, Chan CK, Chung YH, Wang CC. Environmentally friendly Nafion-catalyzed synthesis of 3-substituted isoquinoline by using hexamethyldisilazane as a nitrogen source under microwave irradiation. Org Biomol Chem 2023; 21:7316-7326. [PMID: 37531171 DOI: 10.1039/d3ob01032e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/03/2023]
Abstract
This study developed an eco-friendly method to synthesize 3-arylisoquinoline from 2-alkynylbenzaldehydes using Nafion® NR50 as an acidic catalyst and hexamethyldisilazane (HMDS) as a nitrogen source. The reaction proceeded via a 6-exo-dig cyclization under microwave irradiation, giving the corresponding isoquinolines in excellent yields. The advantages of this protocol include: (1) the use of recyclable acid catalysts, (2) transition-metal-free catalysis, and (3) the effective formation of the target product. These features make this methodology a promising approach for the sustainable and efficient synthesis of 3-arylisoquinoline. Some structures were also confirmed by single-crystal X-ray diffraction analysis.
Collapse
Affiliation(s)
- Tzu-Chun Lin
- Institute of Chemistry, Academia Sinica, Taipei 115, Taiwan.
| | - Chieh-Kai Chan
- Institute of Chemistry, Academia Sinica, Taipei 115, Taiwan.
| | - Yi-Hsiu Chung
- Institute of Chemistry, Academia Sinica, Taipei 115, Taiwan.
| | | |
Collapse
|
5
|
Synthesis, crystal structure and self-assembly of novel ninhydrin-derived isoquinoline compounds. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
6
|
Bjerg EE, Marchán-García J, Buxaderas E, Moglie Y, Radivoy G. Oxidative α-Functionalization of 1,2,3,4-Tetrahydroisoquinolines Catalyzed by a Magnetically Recoverable Copper Nanocatalyst. Application in the Aza-Henry Reaction and the Synthesis of 3,4-Dihydroisoquinolones. J Org Chem 2022; 87:13480-13493. [PMID: 36154121 DOI: 10.1021/acs.joc.2c01782] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The oxidative α-functionalization of 2-aryl-1,2,3,4-tetrahydroisoquinolines (THIQs) promoted by a versatile heterogeneous nanocatalyst consisting of copper nanoparticles immobilized on silica-coated maghemite (CuNPs/MagSilica) has been accomplished. The methodology was successfully applied in the cross-dehydrogenative coupling (CDC) reaction of N-aryl THIQs and other tertiary amines with nitromethane as a pro-nucleophile (aza-Henry reaction) and the α-oxidation of THIQs with O2 as a green oxidant. Phosphite, alkyne, or indole derivatives were also shown to be suitable candidates for their use as pro-nucleophiles in the CDC reaction with THIQs. The catalyst, with very low copper loading (0.4-1.0 mol % Cu), could be easily recovered by means of an external magnet and reused in four cycles without significant loss of activity.
Collapse
Affiliation(s)
- Esteban E Bjerg
- Instituto de Química del Sur, INQUISUR (CONICET-UNS), Departamento de Química, Universidad Nacional del Sur, Avenida Alem 1253, 8000 Bahía Blanca, Argentina
| | - Joaquín Marchán-García
- Instituto de Química del Sur, INQUISUR (CONICET-UNS), Departamento de Química, Universidad Nacional del Sur, Avenida Alem 1253, 8000 Bahía Blanca, Argentina
| | - Eduardo Buxaderas
- Instituto de Química del Sur, INQUISUR (CONICET-UNS), Departamento de Química, Universidad Nacional del Sur, Avenida Alem 1253, 8000 Bahía Blanca, Argentina
| | - Yanina Moglie
- Instituto de Química del Sur, INQUISUR (CONICET-UNS), Departamento de Química, Universidad Nacional del Sur, Avenida Alem 1253, 8000 Bahía Blanca, Argentina
| | - Gabriel Radivoy
- Instituto de Química del Sur, INQUISUR (CONICET-UNS), Departamento de Química, Universidad Nacional del Sur, Avenida Alem 1253, 8000 Bahía Blanca, Argentina
| |
Collapse
|
7
|
Zhang T, Wang Y, Wang B, Jin W, Xia Y, Liu C, Zhang Y. Visible‐Light‐Induced Oxidation of Diazenyl‐Protected Tetrahydroisoquinolines and Isoindolines for the Synthesis of Functionalized Lactams. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202101506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Tao Zhang
- Urumqi Key Laboratory of Green Catalysis and Synthesis Technology Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education & Xinjiang Uygur Autonomous Region State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources College of Chemistry Xinjiang University Urumqi 830046 P. R. China
| | - Yanhong Wang
- Urumqi Key Laboratory of Green Catalysis and Synthesis Technology Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education & Xinjiang Uygur Autonomous Region State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources College of Chemistry Xinjiang University Urumqi 830046 P. R. China
| | - Bin Wang
- Urumqi Key Laboratory of Green Catalysis and Synthesis Technology Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education & Xinjiang Uygur Autonomous Region State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources College of Chemistry Xinjiang University Urumqi 830046 P. R. China
| | - Weiwei Jin
- Urumqi Key Laboratory of Green Catalysis and Synthesis Technology Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education & Xinjiang Uygur Autonomous Region State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources College of Chemistry Xinjiang University Urumqi 830046 P. R. China
| | - Yu Xia
- Urumqi Key Laboratory of Green Catalysis and Synthesis Technology Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education & Xinjiang Uygur Autonomous Region State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources College of Chemistry Xinjiang University Urumqi 830046 P. R. China
| | - Chenjiang Liu
- Urumqi Key Laboratory of Green Catalysis and Synthesis Technology Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education & Xinjiang Uygur Autonomous Region State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources College of Chemistry Xinjiang University Urumqi 830046 P. R. China
- College of Future Technology Xinjiang University Urumqi 830046 P. R. China
| | - Yonghong Zhang
- Urumqi Key Laboratory of Green Catalysis and Synthesis Technology Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education & Xinjiang Uygur Autonomous Region State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources College of Chemistry Xinjiang University Urumqi 830046 P. R. China
| |
Collapse
|
8
|
Lin XL, Yu Y, Zhang L, Leng LJ, Xiao DR, Cai T, Luo QL. Switchable synthesis of 1,4-bridged dihydroisoquinoline-3-ones and isoquinoline-1,3,4-triones through radical oxidation of isoquinolinium salts with phenyliodine( iii) diacetate. Org Chem Front 2022. [DOI: 10.1039/d2qo00887d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A switchable synthesis of 1,4-bridged dihydroisoquinoline-3-ones and isoquinoline-1,3,4-triones is developed via radical oxidation of isoquinolinium salts with PhI(OAc)2.
Collapse
Affiliation(s)
- Xiao-Long Lin
- College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Yan Yu
- College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Liang Zhang
- College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Li-Jing Leng
- College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Dong-Rong Xiao
- College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Tian Cai
- College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
- Key Laboratory of Applied Chemistry of Chongqing Municipality, Southwest University, Chongqing 400715, China
| | - Qun-Li Luo
- College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
- Key Laboratory of Applied Chemistry of Chongqing Municipality, Southwest University, Chongqing 400715, China
| |
Collapse
|
9
|
Wen S, Zhang Y, Tian Q, Chen Y, Cheng G. Ruthenium( ii)-catalyzed synthesis of CF 3-isoquinolinones via C–H activation/annulation of benzoic acids and CF 3-imidoyl sulfoxonium ylides. Org Chem Front 2022. [DOI: 10.1039/d2qo00839d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The synthesis of 3-trifluoromethylisoquinolinones by a ruthenium(ii)-catalyzed C–H activation/annulation reaction of benzoic acids and CF3-imidoyl sulfoxonium ylides has been achieved.
Collapse
Affiliation(s)
- Si Wen
- Xiamen Key Laboratory of Optoelectronic Materials and Advanced Manufacturing, College of Materials Science and Engineering, the Instrumental Analysis Center, Huaqiao University, Xiamen 361021, China
| | - Yuqing Zhang
- Xiamen Key Laboratory of Optoelectronic Materials and Advanced Manufacturing, College of Materials Science and Engineering, the Instrumental Analysis Center, Huaqiao University, Xiamen 361021, China
| | - Qingyu Tian
- Xiamen Key Laboratory of Optoelectronic Materials and Advanced Manufacturing, College of Materials Science and Engineering, the Instrumental Analysis Center, Huaqiao University, Xiamen 361021, China
| | - Yanhui Chen
- Xiamen Key Laboratory of Optoelectronic Materials and Advanced Manufacturing, College of Materials Science and Engineering, the Instrumental Analysis Center, Huaqiao University, Xiamen 361021, China
| | - Guolin Cheng
- Xiamen Key Laboratory of Optoelectronic Materials and Advanced Manufacturing, College of Materials Science and Engineering, the Instrumental Analysis Center, Huaqiao University, Xiamen 361021, China
| |
Collapse
|
10
|
Cushman M. Design and Synthesis of Indenoisoquinolines Targeting Topoisomerase I and Other Biological Macromolecules for Cancer Chemotherapy. J Med Chem 2021; 64:17572-17600. [PMID: 34879200 DOI: 10.1021/acs.jmedchem.1c01491] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The discovery that certain indenoisoquinolines inhibit the religation reaction of DNA in the topoisomerase I-DNA-indenoisoquinoline ternary complex led to a structure-based drug design research program which resulted in three representatives that entered Phase I clinical trials in cancer patients at the National Cancer Institute. This has stimulated a great deal of interest in the design and execution of new synthetic pathways for indenoisoquinoline production. More recently, modulation of the substitution pattern and chemical nature of substituents on the indenoisoquinoline scaffold has resulted in a widening scope of additional biological targets, including RXR, PARP-1, MYC promoter G-quadruplex, topoisomerase II, estrogen receptor, VEGFR-2, HIF-1α, and tyrosyl DNA phosphodiesterases 1 and 2. Furthermore, convincing evidence has been advanced supporting the potential use of indenoisoquinolines for the treatment of diseases other than cancer. The rapidly expanding indenoisoquinoline knowledge base has provided a firm foundation for further advancements in indenoisoquinoline chemistry, pharmacology, and therapeutics.
Collapse
Affiliation(s)
- Mark Cushman
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
11
|
Matouš P, Májek M, Kysilka O, Kuneš J, Maříková J, Růžička A, Pour M, Kočovský P. Reaction Outcome Critically Dependent on the Method of Workup: An Example from the Synthesis of 1-Isoquinolones. J Org Chem 2021; 86:8078-8088. [PMID: 34032448 DOI: 10.1021/acs.joc.1c00561] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
A striking dependence on the method of workup has been found for annulation of benzonitriles ArC≡N to N-methyl 2-toluamide (1), facilitated by n-BuLi (2 equiv): quenching the reaction by a slow addition of water produced the expected 1-isoquinolones 2; by contrast, slow pouring of the reaction mixture into water afforded the cyclic aminals 5 (retaining the NMe group of the original toluamide). The mechanism of the two processes is discussed in terms of the actual H+ concentration in the workup. Both 2 and 5 were then converted into the corresponding 1-chloroisoquinolines 3, coupling of which, mediated by (Ph3P)2NiCl2/Zn, afforded bis-isoquinolines 4.
Collapse
Affiliation(s)
- Petr Matouš
- Department of Bioorganic and Organic Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Heyrovského 1203, 500 05 Hradec Králové, Czech Republic
| | - Michal Májek
- Department of Organic Chemistry, Faculty of Natural Sciences, Comenius University, Ilkovičova 6, Mlynská dolina, 842 15 Bratislava 4, Slovakia
| | - Ondřej Kysilka
- Trelleborg Bohemia, Akademika Bedrny 531/8a, Věkoše, 500 03 Hradec Králové Czech Republic
| | - Jiří Kuneš
- Department of Bioorganic and Organic Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Heyrovského 1203, 500 05 Hradec Králové, Czech Republic
| | - Jana Maříková
- Department of Bioorganic and Organic Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Heyrovského 1203, 500 05 Hradec Králové, Czech Republic
| | - Aleš Růžička
- Department of General and Inorganic Chemistry, Faculty of Chemical Technology, University of Pardubice, Studentská 95, 532 10 Pardubice 2, Czech Republic
| | - Milan Pour
- Department of Bioorganic and Organic Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Heyrovského 1203, 500 05 Hradec Králové, Czech Republic
| | - Pavel Kočovský
- Department of Bioorganic and Organic Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Heyrovského 1203, 500 05 Hradec Králové, Czech Republic.,Department of Organic Chemistry, Faculty of Science, Charles University, Hlavova 8, 128 43 Prague 2, Czech Republic.,Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo 2, 166 10 Prague 6, Czech Republic
| |
Collapse
|
12
|
Bansode AH, Suryavanshi G. Visible‐Light‐Induced Controlled Oxidation of
N
‐Substituted 1,2,3,4‐Tetrahydroisoquinolines for the Synthesis of 3,4‐Dihydroisoquinolin‐1(2
H
)‐ones and Isoquinolin‐1(2
H
)‐ones. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202001266] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Ajay H. Bansode
- Chemical Engineering & Process Development Division CSIR-National Chemical Laboratory Dr. Homi Bhabha Road Pune 411008 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201 002 India
| | - Gurunath Suryavanshi
- Chemical Engineering & Process Development Division CSIR-National Chemical Laboratory Dr. Homi Bhabha Road Pune 411008 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201 002 India
| |
Collapse
|
13
|
Abstract
An N-heterocyclic carbene (NHC)-catalyzed strategy has been developed to address the issue of using toxic transitional metals in the field of C-C bond activation. The novel reaction mode enables an efficient docking between the cyanoalkyl from the cycloketone oxime derivative and the acyl group from the aldehyde, affording ketonitrile in moderate to good yields, which is one kind of useful building block for synthesizing nitrogen-containing pharmacophores.
Collapse
Affiliation(s)
- Hai-Bin Yang
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Dan-Hong Wan
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| |
Collapse
|
14
|
Khan I, Ibrar A, Zaib S. Alkynoates as Versatile and Powerful Chemical Tools for the Rapid Assembly of Diverse Heterocycles under Transition-Metal Catalysis: Recent Developments and Challenges. Top Curr Chem (Cham) 2021; 379:3. [PMID: 33398642 DOI: 10.1007/s41061-020-00316-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Accepted: 11/16/2020] [Indexed: 12/15/2022]
Abstract
Heterocycles, heteroaromatics and spirocyclic entities are ubiquitous components of a wide plethora of synthetic drugs, biologically active natural products, marketed pharmaceuticals and agrochemical targets. Recognizing their high proportion in drugs and rich pharmacological potential, these invaluable structural motifs have garnered significant interest, thus enabling the development of efficient catalytic methodologies providing access to architecturally complex and diverse molecules with high atom-economy and low cost. These chemical processes not only allow the formation of diverse heterocycles but also utilize a range of flexible and easily accessible building units in a single operation to discover diversity-oriented synthetic approaches. Alkynoates are significantly important, diverse and powerful building blocks in organic chemistry due to their unique and inherent properties such as the electronic bias on carbon-carbon triple bonds posed by electron-withdrawing groups or the metallic coordination site provided by carbonyl groups. The present review highlights the comprehensive picture of the utility of alkynoates (2007-2019) for the synthesis of various heterocycles (> 50 types) using transition-metal catalysts (Ru, Rh, Pd, Ir, Ag, Au, Pt, Cu, Mn, Fe) in various forms. The valuable function of versatile alkynoates (bearing multifunctional groups) as simple and useful starting materials is explored, thus cyclizing with an array of coupling partners to deliver a broad range of oxygen-, nitrogen-, sulfur-containing heterocycles alongside fused-, and spiro-heterocyclic compounds. In addition, these examples will also focus the scope and reaction limitations, as well as mechanistic investigations into the synthesis of these heterocycles. The biological significance will also be discussed, citing relevant examples of drug molecules highlighting each class of heterocycles. This review summarizes the recent developments in the synthetic methods for the synthesis of various heterocycles using alkynoates as readily available starting materials under transition-metal catalysis.
Collapse
Affiliation(s)
- Imtiaz Khan
- Department of Chemistry, School of Natural Sciences, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK.
- Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK.
| | - Aliya Ibrar
- Department of Chemistry, Faculty of Natural Sciences, The University of Haripur, Haripur, KPK-22620, Pakistan
| | - Sumera Zaib
- Department of Biochemistry, Faculty of Life Sciences, University of Central Punjab, Lahore, 54590, Pakistan
| |
Collapse
|
15
|
Zhou M, Yu K, Liu J, Shi W, Pan Y, Tang H, Peng X, Liu Q, Wang H. Light-driven selective aerobic oxidation of (iso)quinoliniums and related heterocycles. RSC Adv 2021; 11:16246-16251. [PMID: 35479138 PMCID: PMC9031974 DOI: 10.1039/d1ra01226f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 03/23/2021] [Indexed: 11/21/2022] Open
Abstract
Selective C1–H/C4–H carbonylation of N-methylene iminium salts, catalyzed by visible-light photoredox and oxygen in the air, has been reported. A ruthenium complex acts as a chemical switch to conduct two different reaction pathways and to afford two different kinds of products. In the absence of the ruthenium complex, the Csp2–H bonds adjacent to the nitrogen atoms are oxidized to α-lactams by the N-methyleneiminium substrates themselves as photosensitizers. In the presence of the ruthenium complex, the oxidation reaction site of quinoliniums is switched to the C4 region, resulting in the formation of 4-quinolones. The use of two transformations directly introduces oxygen into the nitrogen heterocyclic skeletons under an air atmosphere. The selective C1–H/C4–H carbonylation of N-methyleneiminium salts catalyzed by visible-light photoredox reactions and oxygen in the air has been reported.![]()
Collapse
Affiliation(s)
- Meimei Zhou
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources
- School of Chemistry and Pharmaceutical Sciences of Guangxi Normal University
- Guilin 541004
- People's Republic of China
| | - Keyang Yu
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education
- Gannan Medical University
- Ganzhou 341000
- People's Republic of China
| | - Jianxin Liu
- School of Pharmaceutical Science
- Gannan Medical University
- Ganzhou
- P. R. China
| | - Weimei Shi
- School of Pharmaceutical Science
- Gannan Medical University
- Ganzhou
- P. R. China
| | - Yingming Pan
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources
- School of Chemistry and Pharmaceutical Sciences of Guangxi Normal University
- Guilin 541004
- People's Republic of China
| | - Haitao Tang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources
- School of Chemistry and Pharmaceutical Sciences of Guangxi Normal University
- Guilin 541004
- People's Republic of China
| | - Xiangjun Peng
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education
- Gannan Medical University
- Ganzhou 341000
- People's Republic of China
| | - Qian Liu
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education
- Gannan Medical University
- Ganzhou 341000
- People's Republic of China
| | - Hengshan Wang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources
- School of Chemistry and Pharmaceutical Sciences of Guangxi Normal University
- Guilin 541004
- People's Republic of China
| |
Collapse
|
16
|
Huang WY, Zhang XR, Lyu L, Wang SQ, Zhang XT. Pyridazino[1,6-b]quinazolinones as new anticancer scaffold: Synthesis, DNA intercalation, topoisomerase I inhibition and antitumor evaluation in vitro and in vivo. Bioorg Chem 2020; 99:103814. [PMID: 32278208 DOI: 10.1016/j.bioorg.2020.103814] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 02/26/2020] [Accepted: 03/31/2020] [Indexed: 12/21/2022]
Abstract
A new anticancer N-containing heterocyclic scaffold was designed and 30 pyridazino[1,6-b]quinazolinone derivatives were synthesized and characterized. Antiproliferation evaluation in vitro against four human cancer cell lines including SK-OV-3(ovarian cell), CNE-2(nasopharyngeal cell), MGC-803(gastric cell) and NCI-H460(lung cell) indicated that most of them exhibited potent anticancer activity and the IC50 value of the most potent compound lowered to sub-μM. DNA interaction assay indicated that compounds 4e, 4g, 6o, 6p, 8o can intercalate into DNA. Compounds 6 and 8 also demonstrated potent topoisomerase I (topo I) activity. Annexin V- FITC/propidium iodide dual staining assay and cell cycle analysis indicated that 2-(4-bromophenyl)-4-((3-(diethylamino)propyl)amino) -10H-pyridazino [1,6-b]quinazolin- 10-one (8p) could induce arrest cell cycle at G2 phase and apoptosis in MGC-803 cells in a dose-dependent manner. The in vivo antitumor efficiency of compound 8p was also evaluated on MGC-803 xenograft nude mice, and the relative tumor growth inhibition was up to 55.9% at a dose of 20 mg/kg per two days. The results suggested that pyridazino[1,6-b]-quinazolinones might serve as a promising novel scaffold for the development of new antitumor agents.
Collapse
Affiliation(s)
- Wan-Yun Huang
- Department of Pharmaceutical Chemistry, College of Pharmacy, Guilin Medical University, Guilin 541004, China.
| | - Xiao-Rong Zhang
- Department of Pharmaceutical Chemistry, College of Pharmacy, Guilin Medical University, Guilin 541004, China
| | - Liang Lyu
- Department of Pharmacology, College of Pharmacy, Guilin Medical University, Guilin 541004, China.
| | - Shu-Qin Wang
- Department of Pharmaceutical Chemistry, College of Pharmacy, Guilin Medical University, Guilin 541004, China
| | - Xiao-Ting Zhang
- Department of Pharmaceutical Chemistry, College of Pharmacy, Guilin Medical University, Guilin 541004, China
| |
Collapse
|
17
|
Catalyst and additive free 6-endo-dig cyclization of ortho-alkynylarylaldimines in water: An environmentally friendly access to isoquinolines. Tetrahedron Lett 2020. [DOI: 10.1016/j.tetlet.2019.151454] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
18
|
Zhou Y, Liu W, Xing Z, Guan J, Song Z, Peng Y. External-photocatalyst-free visible-light-mediated aerobic oxidation and 1,4-bisfunctionalization of N-alkyl isoquinolinium salts. Org Chem Front 2020. [DOI: 10.1039/d0qo00663g] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Visible-light-induced aerobic alternate transformations of N-alkyl isoquinolinium/quinolinium salts in the absence of any external photocatalyst have been developed.
Collapse
Affiliation(s)
- Youkang Zhou
- Key Laboratory of Functional Small Organic Molecules
- Ministry of Education
- College of Chemistry and Chemical Engineering
- Jiangxi Normal University
- Nanchang 330022
| | - Wei Liu
- Key Laboratory of Functional Small Organic Molecules
- Ministry of Education
- College of Chemistry and Chemical Engineering
- Jiangxi Normal University
- Nanchang 330022
| | - Zhiming Xing
- Key Laboratory of Functional Small Organic Molecules
- Ministry of Education
- College of Chemistry and Chemical Engineering
- Jiangxi Normal University
- Nanchang 330022
| | - Jiali Guan
- Key Laboratory of Functional Small Organic Molecules
- Ministry of Education
- College of Chemistry and Chemical Engineering
- Jiangxi Normal University
- Nanchang 330022
| | - Zhibin Song
- Key Laboratory of Functional Small Organic Molecules
- Ministry of Education
- College of Chemistry and Chemical Engineering
- Jiangxi Normal University
- Nanchang 330022
| | - Yiyuan Peng
- Key Laboratory of Functional Small Organic Molecules
- Ministry of Education
- College of Chemistry and Chemical Engineering
- Jiangxi Normal University
- Nanchang 330022
| |
Collapse
|
19
|
Luo WK, Xu CL, Yang L. I2/TBHP mediated multiple C H bonds functionalization of azaarenes with methylarenes to synthesize iodoisoquinolinones via iodination/N-benzylation/amidation sequence. Tetrahedron Lett 2019. [DOI: 10.1016/j.tetlet.2019.151328] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
20
|
Shantharjun B, Rajeswari R, Vani D, Unnava R, Sridhar B, Reddy KR. Metal‐Free, One‐Pot Oxidative Triple Functionalization of Azaarenes with Methyl Arenes Mediated by Molecular Iodine/TBHP: Synthesis of N‐Benzylated Iodo(iso)quinolinones. ASIAN J ORG CHEM 2019. [DOI: 10.1002/ajoc.201900588] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Bangarigalla Shantharjun
- Catalysis and Fine Chemicals DivisionCSIR- Indian Institute of Chemical Technology Tarnaka Hyderabad- 500007 India
- Academy of Scientific and Innovative Research New Delhi- 110025 India
| | - Radhakrishnan Rajeswari
- Catalysis and Fine Chemicals DivisionCSIR- Indian Institute of Chemical Technology Tarnaka Hyderabad- 500007 India
| | - Damera Vani
- Catalysis and Fine Chemicals DivisionCSIR- Indian Institute of Chemical Technology Tarnaka Hyderabad- 500007 India
- Academy of Scientific and Innovative Research New Delhi- 110025 India
| | - Ramanjaneyulu Unnava
- Catalysis and Fine Chemicals DivisionCSIR- Indian Institute of Chemical Technology Tarnaka Hyderabad- 500007 India
| | - Balasubramanian Sridhar
- X-ray Crystallography DivisionCSIR-Indian Institute of Chemical Technology Tarnaka, Hyderabad- 500007 India
| | - Kallu Rajender Reddy
- Catalysis and Fine Chemicals DivisionCSIR- Indian Institute of Chemical Technology Tarnaka Hyderabad- 500007 India
- Academy of Scientific and Innovative Research New Delhi- 110025 India
| |
Collapse
|
21
|
MHY440, a Novel Topoisomerase Ι Inhibitor, Induces Cell Cycle Arrest and Apoptosis via a ROS-Dependent DNA Damage Signaling Pathway in AGS Human Gastric Cancer Cells. Molecules 2018; 24:molecules24010096. [PMID: 30597845 PMCID: PMC6337620 DOI: 10.3390/molecules24010096] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 12/23/2018] [Accepted: 12/24/2018] [Indexed: 12/31/2022] Open
Abstract
We investigated the antitumor activity and action mechanism of MHY440 in AGS human gastric cancer cells. MHY440 inhibited topoisomerase (Topo) Ι activity and was associated with a DNA damage response signaling pathway. It exhibited a stronger anti-proliferative effect on AGS cells relative to Hs27 human foreskin fibroblast cells, and this effect was both time- and concentration-dependent. MHY440 also increased cell arrest in the G2/M phase by decreasing cyclin B1, Cdc2, and Cdc25c, and upregulating p53 and p73. MHY440 induced AGS cell apoptosis through the upregulation of Fas-L, Fas, and Bax as well as the proteolysis of BH3 interacting-domain death agonist and poly(ADP-ribose) polymerase. It also contributed to the loss of mitochondrial membrane potential. The apoptotic cell death induced by MHY440 was inhibited by pretreatment with Z-VAD-FMK, a pan-caspase inhibitor, indicating that apoptosis was caspase-dependent. Moreover, the apoptotic effect of MHY440 was reactive oxygen species (ROS)-dependent, as evidenced by the inhibition of MHY440-induced PARP cleavage and ROS generation via N-acetylcysteine-induced ROS scavenging. Taken together, MHY440 showed anticancer effects by inhibiting Topo I, regulating the cell cycle, inducing apoptosis through caspase activation, and generating ROS, suggesting that MHY440 has considerable potential as a therapeutic agent for human gastric cancer.
Collapse
|
22
|
Cinelli MA. Topoisomerase 1B poisons: Over a half-century of drug leads, clinical candidates, and serendipitous discoveries. Med Res Rev 2018; 39:1294-1337. [PMID: 30456874 DOI: 10.1002/med.21546] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2018] [Revised: 10/08/2018] [Accepted: 10/09/2018] [Indexed: 12/17/2022]
Abstract
Topoisomerases are DNA processing enzymes that relieve supercoiling (torsional strain) in DNA, are necessary for normal cellular division, and act by nicking (and then religating) DNA strands. Type 1B topoisomerase (Top1) is overexpressed in certain tumors, and the enzyme has been extensively investigated as a target for cancer chemotherapy. Various chemical agents can act as "poisons" of the enzyme's religation step, leading to Top1-DNA lesions, DNA breakage, and eventual cellular death. In this review, agents that poison Top1 (and have thus been investigated for their anticancer properties) are surveyed, including natural products (such as camptothecins and indolocarbazoles), semisynthetic camptothecin and luotonin derivatives, and synthetic compounds (such as benzonaphthyridines, aromathecins, and indenoisoquinolines), as well as targeted therapies and conjugates. Top1 has also been investigated as a therapeutic target in certain viral and parasitic infections, as well as autoimmune, inflammatory, and neurological disorders, and a summary of literature describing alternative indications is also provided. This review should provide both a reference for the medicinal chemist and potentially offer clues to aid in the development of new Top1 poisons.
Collapse
Affiliation(s)
- Maris A Cinelli
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan
| |
Collapse
|
23
|
Wu X, Ding G, Yang L, Lu W, Li W, Zhang Z, Xie X. Alkoxide-Catalyzed Hydrosilylation of Cyclic Imides to Isoquinolines via Tandem Reduction and Rearrangement. Org Lett 2018; 20:5610-5613. [DOI: 10.1021/acs.orglett.8b02287] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Xiaoyu Wu
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Guangni Ding
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Liqun Yang
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Wenkui Lu
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Wanfang Li
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Zhaoguo Zhang
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Xiaomin Xie
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| |
Collapse
|
24
|
Yao Q, Zhou X, Zhang X, Wang C, Wang P, Li M. Convenient synthesis of 6-alkyl phenanthridines and 1-alkyl isoquinolines via silver-catalyzed oxidative radical decarboxylation. Org Biomol Chem 2018; 15:957-971. [PMID: 28059413 DOI: 10.1039/c6ob02331b] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
A convenient and efficient protocol for the synthesis of 6-alkyl phenanthridines and 1-alkyl isoquinolines has been developed. The reaction relies on the coupling of 2-isocyanobiphenyls and vinyl isonitriles with alkyl radicals formed by the silver-catalyzed decarboxylation of stoichiometric aliphatic carboxylic acids, and affords diverse phenanthridine and isoquinoline derivatives under mild reaction conditions. The experiment of β-scission of cyclobutylcarbinyl radicals is used to shed light on the reaction mechanism.
Collapse
Affiliation(s)
- Qian Yao
- Key Laboratory of Marine Medicine, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao, 266003, P.R. China.
| | - Xin Zhou
- Key Laboratory of Marine Medicine, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao, 266003, P.R. China.
| | - Xiuli Zhang
- Key Laboratory of Marine Medicine, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao, 266003, P.R. China.
| | - Cong Wang
- Key Laboratory of Marine Medicine, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao, 266003, P.R. China.
| | - Peng Wang
- Key Laboratory of Marine Medicine, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao, 266003, P.R. China.
| | - Ming Li
- Key Laboratory of Marine Medicine, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao, 266003, P.R. China. and Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, P. R. China
| |
Collapse
|
25
|
Khadka DB, Park S, Jin Y, Han J, Kwon Y, Cho WJ. Design, synthesis, and biological evaluation of 1,3-diarylisoquinolines as novel topoisomerase I catalytic inhibitors. Eur J Med Chem 2017; 143:200-215. [PMID: 29174815 DOI: 10.1016/j.ejmech.2017.11.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 11/03/2017] [Accepted: 11/04/2017] [Indexed: 12/30/2022]
Abstract
With a goal of identifying potent topoisomerase (topo) inhibitor, the C4-aromatic ring of the anticancer agent, 3,4-diarylisoquinolone, was strategically shifted to design 1,3-diarylisoquinoline. Twenty-two target compounds were synthesized in three simple and efficient steps. The 1,3-diarylisoquinolines exhibited potent anti-proliferative effects on cancer cells but few compounds spared non-cancerous cells. Inhibition of topo I/IIα-mediated DNA relaxation by several derivatives was greater than that by camptothecin (CPT)/etoposide even at low concentration (20 μM). In addition, these compounds had little or no effect on polymerization of tubulin. A series of biological evaluations performed with the most potent derivative 4cc revealed that the compound is a non-intercalative topo I catalytic inhibitor interacting with free topo I. Collectively, the potent cytotoxic effect on cancer cells including the drug resistance ones, absence of lethal effect on normal cells, and different mechanism of action than topo I poisons suggest that the 1,3-diarylisoquinolines might be a promising class of anticancer agents worthy of further pursuit.
Collapse
Affiliation(s)
- Daulat Bikram Khadka
- College of Pharmacy, Research Institute of Drug Development, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Seojeong Park
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Yifeng Jin
- College of Pharmacy, Research Institute of Drug Development, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Jinhe Han
- College of Pharmacy, Research Institute of Drug Development, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Youngjoo Kwon
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Republic of Korea.
| | - Won-Jea Cho
- College of Pharmacy, Research Institute of Drug Development, Chonnam National University, Gwangju 61186, Republic of Korea.
| |
Collapse
|
26
|
Hachiya I, Mizota I, Shimizu M. New Synthetic Reactions Using the Iodotitanation Ability of Titanium Tetraiodide. J SYN ORG CHEM JPN 2017. [DOI: 10.5059/yukigoseikyokaishi.75.1226] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
| | | | - Makoto Shimizu
- Department of Chemistry for Materials, Graduate School of Engineering, Mie University
| |
Collapse
|
27
|
Qi L, Hu K, Yu S, Zhu J, Cheng T, Wang X, Chen J, Wu H. Tandem Addition/Cyclization for Access to Isoquinolines and Isoquinolones via Catalytic Carbopalladation of Nitriles. Org Lett 2016; 19:218-221. [DOI: 10.1021/acs.orglett.6b03499] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Linjun Qi
- College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou, Zhejiang 325035, P. R. China
| | - Kun Hu
- College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou, Zhejiang 325035, P. R. China
| | - Shuling Yu
- College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou, Zhejiang 325035, P. R. China
| | - Jianghe Zhu
- College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou, Zhejiang 325035, P. R. China
| | - Tianxing Cheng
- College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou, Zhejiang 325035, P. R. China
| | - Xiaodong Wang
- College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou, Zhejiang 325035, P. R. China
| | - Jiuxi Chen
- College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou, Zhejiang 325035, P. R. China
| | - Huayue Wu
- College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou, Zhejiang 325035, P. R. China
| |
Collapse
|
28
|
Wang D, Zhang R, Deng R, Lin S, Guo S, Yan Z. Copper-Mediated Oxidative Functionalization of C(sp3)–H Bonds with Isoquinolines: Two-Step Synthesis of 5-Oxaprotoberberinones. J Org Chem 2016; 81:11162-11167. [DOI: 10.1021/acs.joc.6b02145] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Dingyi Wang
- College
of Chemistry, Nanchang University, Nanchang, Jiangxi 330031, China
| | - Rongxing Zhang
- College
of Chemistry, Nanchang University, Nanchang, Jiangxi 330031, China
| | - Ruihong Deng
- College
of Chemistry, Nanchang University, Nanchang, Jiangxi 330031, China
| | - Sen Lin
- College
of Chemistry, Nanchang University, Nanchang, Jiangxi 330031, China
| | - Shengmei Guo
- College
of Chemistry, Nanchang University, Nanchang, Jiangxi 330031, China
| | - Zhaohua Yan
- College
of Chemistry, Nanchang University, Nanchang, Jiangxi 330031, China
| |
Collapse
|
29
|
Luo WK, Shi X, Zhou W, Yang L. Iodine-Catalyzed Oxidative Functionalization of Azaarenes with Benzylic C(sp3)–H Bonds via N-Alkylation/Amidation Cascade: Two-Step Synthesis of Isoindolo[2,1-b]isoquinolin-7(5H)-one. Org Lett 2016; 18:2036-9. [DOI: 10.1021/acs.orglett.6b00646] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Wen-Kun Luo
- Key Laboratory for Environmentally
Friendly Chemistry and Application of the Ministry of Education, College
of Chemistry, Xiangtan University, Hunan 411105, China
| | - Xin Shi
- Key Laboratory for Environmentally
Friendly Chemistry and Application of the Ministry of Education, College
of Chemistry, Xiangtan University, Hunan 411105, China
| | - Wang Zhou
- Key Laboratory for Environmentally
Friendly Chemistry and Application of the Ministry of Education, College
of Chemistry, Xiangtan University, Hunan 411105, China
| | - Luo Yang
- Key Laboratory for Environmentally
Friendly Chemistry and Application of the Ministry of Education, College
of Chemistry, Xiangtan University, Hunan 411105, China
| |
Collapse
|
30
|
Role of nucleotide excision repair proteins in response to DNA damage induced by topoisomerase II inhibitors. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2016; 768:68-77. [PMID: 27234564 DOI: 10.1016/j.mrrev.2016.04.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Revised: 03/11/2016] [Accepted: 04/08/2016] [Indexed: 01/26/2023]
Abstract
In cancer treatment, chemotherapy is one of the main strategies used. The knowledge of the cellular and molecular characteristics of tumors allows the use of more specific drugs, making the removal of tumors more efficient. Among the drugs of choice in these treatments, topoisomerase inhibitors are widely used against different types of tumors. Topoisomerases are enzymes responsible for maintaining the structure of DNA, altering its topological state temporarily during the processes of replication and transcription, in order to avoid supercoiling and entanglements at the double helix. The DNA damage formed as a result of topoisomerase inhibition can be repaired by DNA repair mechanisms. Thus, DNA repair pathways can modulate the effectiveness of chemotherapy. Homologous recombination (HR) and non-homologous end joining (NHEJ) are the main pathways involved in the removal of double strand breaks (DSBs); while nucleotide excision repair (NER) is mainly characterized by the removal of lesions that lead to significant structural distortions in the DNA double helix. Evidence has shown that DSBs are the main type of damage resulting from the inhibition of the DNA topoisomerase II enzyme, and therefore the involvement of HR and NHEJ pathways in the repair process is well established. However, some topoisomerase II inhibitors induce other types of lesions, like DNA adducts, interstrand crosslinks and reactive oxygen species, and studies have shown that other DNA repair pathways might be participating in removing injury induced by these drugs. This review aims to correlate the involvement of proteins from different DNA repair pathways in response to these drugs, with an emphasis on NER.
Collapse
|
31
|
Rossi R, Lessi M, Manzini C, Marianetti G, Bellina F. Achievement of regioselectivity in transition metal-catalyzed direct C–H (hetero)arylation reactions of heteroarenes with one heteroatom through the use of removable protecting/blocking substituents or traceless directing groups. Tetrahedron 2016. [DOI: 10.1016/j.tet.2016.02.037] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
32
|
An Unprecedented Straightforward Synthesis of Chiral Pyrrolo[3,4- b]quinolone and Pyrrolo[3,2- b]quinolone Backbones Starting from trans-4-Hydroxy-L-proline. J CHEM-NY 2016. [DOI: 10.1155/2016/1504682] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The straightforward synthesis of pyrrolo[3,4-b]quinolone and pyrrolo[3,2-b]quinolone backbones, which can be found in molecules exhibiting anticancer activities, is presented. The key step of the process is an efficient and unprecedented Friedländer condensation between an oxoproline carbamate, obtained in 3 steps and good yield starting from commercially available and relatively cheaptrans-4-hydroxy-L-proline, and various 2-amino-substituted carbonyl derivatives. It was demonstrated that the formation of the two possible regioisomers was fully triggered by both the R substituent onto the 2-amino-substituted carbonyl compounds and the ester function onto the oxoproline carbamate. Thus, in some cases, a complete regiocontrol for the Friedländer reaction could be attained.
Collapse
|
33
|
Cytotoxicities, telomerase and topoisomerases I inhibitory activities and interactions of terpyridine derivatives with DNAs. Chem Res Chin Univ 2015. [DOI: 10.1007/s40242-015-5256-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
34
|
Suresh R, Muthusubramanian S. Synthesis of Isoquinoline Derivatives from β-Hydroxyarylethanamides. SYNTHETIC COMMUN 2015. [DOI: 10.1080/00397911.2015.1042590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Rajendran Suresh
- Department of Organic Chemistry, School of Chemistry, Madurai Kamaraj University, Madurai, India
- Syngene International Limited, Biocon, Bangalore, India
| | | |
Collapse
|
35
|
Wu CC, Huang KF, Yang TY, Li YL, Wen CL, Hsu SL, Chen TH. The Topoisomerase 1 Inhibitor Austrobailignan-1 Isolated from Koelreuteria henryi Induces a G2/M-Phase Arrest and Cell Death Independently of p53 in Non-Small Cell Lung Cancer Cells. PLoS One 2015; 10:e0132052. [PMID: 26147394 PMCID: PMC4492957 DOI: 10.1371/journal.pone.0132052] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Accepted: 06/09/2015] [Indexed: 11/18/2022] Open
Abstract
Koelreuteria henryi Dummer, an endemic plant of Taiwan, has been used as a folk medicine for the treatment of hepatitis, enteritis, cough, pharyngitis, allergy, hypertension, hyperlipidemia, and cancer. Austrobailignan-1, a natural lignan derivative isolated from Koelreuteria henryi Dummer, has anti-oxidative and anti-cancer properties. However, the effects of austrobailignan-1 on human cancer cells have not been studied yet. Here, we showed that austrobailignan-1 inhibited cell growth of human non-small cell lung cancer A549 and H1299 cell lines in both dose- and time-dependent manners, the IC50 value (48 h) of austrobailignan-1 were 41 and 22 nM, respectively. Data from flow cytometric analysis indicated that treatment with austrobailignan-1 for 24 h retarded the cell cycle at the G2/M phase. The molecular event of austrobailignan-1-mediated G2/M phase arrest was associated with the increase of p21Waf1/Cip1 and p27Kip1 expression, and decrease of Cdc25C expression. Moreover, treatment with 100 nM austrobailignan-1 for 48 h resulted in a pronounced release of cytochrome c followed by the activation of caspase-2, -3, and -9, and consequently induced apoptosis. These events were accompanied by the increase of PUMA and Bax, and the decrease of Mcl-1 and Bcl-2. Furthermore, our study also showed that austrobailignan-1 was a topoisomerase 1 inhibitor, as evidenced by a relaxation assay and induction of a DNA damage response signaling pathway, including ATM, and Chk1, Chk2, γH2AX phosphorylated activation. Overall, our results suggest that austrobailignan-1 is a novel DNA damaging agent and displays a topoisomerase I inhibitory activity, causes DNA strand breaks, and consequently induces DNA damage response signaling for cell cycle G2/M arrest and apoptosis in a p53 independent manner.
Collapse
Affiliation(s)
- Chun-Chi Wu
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan, ROC
- Department of Medical Research, Chung-Shan Medical University Hospital, Taichung, Taiwan, ROC
| | - Keh-Feng Huang
- Department of Applied Chemistry, Providence University, Taichung, Taiwan, ROC
| | - Tsung-Ying Yang
- Division of Chest Medicine, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung, Taiwan, ROC
- Department of Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan, ROC
| | - Ya-Ling Li
- Department of Medical Research, Taichung Veterans General Hospital, Taichung, Taiwan, ROC
| | - Chi-Luan Wen
- Taiwan Seed Improvement and Propagation Station, Council of Agriculture, Propagation Technology Section, Taichung, Taiwan, ROC
| | - Shih-Lan Hsu
- Department of Medical Research, Taichung Veterans General Hospital, Taichung, Taiwan, ROC
| | - Tzu-Hsiu Chen
- Department of Health and Nutrition, Chia Nan University of Pharmacy & Science, Tainan, Taiwan, ROC
- * E-mail:
| |
Collapse
|
36
|
Montmorillonite-KSF-catalyzed synthesis of 4-heteroarylidene-N-arylhomophthalimides by Knoevenagel condensation. RESEARCH ON CHEMICAL INTERMEDIATES 2014. [DOI: 10.1007/s11164-014-1677-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
37
|
|
38
|
Wei NN, Hamza A, Hao C, Xiu Z, Zhan CG. Microscopic Modes and Free Energies for Topoisomerase I-DNA Covalent Complex Binding with Non-campothecin Inhibitors by Molecular Docking and Dynamics Simulations. Theor Chem Acc 2013; 132:10.1007/s00214-013-1379-z. [PMID: 24363608 PMCID: PMC3867144 DOI: 10.1007/s00214-013-1379-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Topoisomerase I (Topo1) has been identified as an attractive target for anticancer drug development due to its central role in facilitating the nuclear process of the DNA. It is essential for rational design of novel Topo1 inhibitors to reliably predict the binding structures of the Topo1 inhibitors interacting with the Topo1-DNA complex. The detailed binding structures and binding free energies for the Topo1-DNA complex interacting with typical non-camptothecin (CPT) Topo1 inhibitors have been examined by performing molecular docking, molecular dynamic (MD) simulations, and binding free energy calculations. The computational results provide valuable insights into the binding modes of the inhibitors binding with the Topo1-DNA complex and the key factors affecting the binding affinity. It has been demonstrated that the - stacking interaction with the DNA base pairs and the hydrogen bonding with Topo1 have the pivotal contributions to the binding structures and binding free energies, although the van der Waals and electrostatic interactions also significantly contribute to the stabilization of the binding structures. The calculated binding free energies are in good agreement with the available experiment activity data. The detailed binding modes and the crucial factors affecting the binding free energies obtained from the present computational studies may provide valuable insights for future rational design of novel, more potent Topo1 inhibitors.
Collapse
Affiliation(s)
- Ning-Ning Wei
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, Kentucky 40536
- State Key Laboratory of Fine Chemicals, School of Life Science and Biotechnology, Dalian University of Technology, Dalian 116024, China
| | - Adel Hamza
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, Kentucky 40536
| | - Ce Hao
- State Key Laboratory of Fine Chemicals, School of Life Science and Biotechnology, Dalian University of Technology, Dalian 116024, China
| | - Zhilong Xiu
- State Key Laboratory of Fine Chemicals, School of Life Science and Biotechnology, Dalian University of Technology, Dalian 116024, China
| | - Chang-Guo Zhan
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, Kentucky 40536
| |
Collapse
|
39
|
Chung KS, Choi HE, Shin JS, Cho YW, Choi JH, Cho WJ, Lee KT. 6,7-Dimethoxy-3-(3-methoxyphenyl)isoquinolin-1-amine induces mitotic arrest and apoptotic cell death through the activation of spindle assembly checkpoint in human cervical cancer cells. Carcinogenesis 2013; 34:1852-60. [DOI: 10.1093/carcin/bgt133] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
|
40
|
Mehra V, Kumar V. Facile, diastereoselective synthesis of functionally enriched hexahydroisoquinolines, hexahydroisoquinolones and hexahydroisochromones via inter-/intramolecular amidolysis of C-3 functionalized 2-azetidinones. Tetrahedron 2013. [DOI: 10.1016/j.tet.2013.03.044] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
41
|
Preparation of (benzo)isoquinolines using in situ generated aryne intermediates. Chem Heterocycl Compd (N Y) 2013. [DOI: 10.1007/s10593-013-1222-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
42
|
Vandekerckhove S, De Moor S, Segers D, de Kock C, Smith PJ, Chibale K, De Kimpe N, D'hooghe M. Synthesis and antiplasmodial evaluation of aziridine–(iso)quinoline hybrids and their ring-opening products. MEDCHEMCOMM 2013. [DOI: 10.1039/c3md20377h] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
43
|
Cinelli MA, Reddy PN, Lv PC, Liang JH, Chen L, Agama K, Pommier Y, van Breemen RB, Cushman M. Identification, synthesis, and biological evaluation of metabolites of the experimental cancer treatment drugs indotecan (LMP400) and indimitecan (LMP776) and investigation of isomerically hydroxylated indenoisoquinoline analogues as topoisomerase I poisons. J Med Chem 2012; 55:10844-62. [PMID: 23215354 PMCID: PMC3542640 DOI: 10.1021/jm300519w] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Hydroxylated analogues of the anticancer topoisomerase I (Top1) inhibitors indotecan (LMP400) and indimitecan (LMP776) have been prepared because (1) a variety of potent Top1 poisons are known that contain strategically placed hydroxyl groups, which provides a clear rationale for incorporating them in the present case, and (2) the hydroxylated compounds could conceivably serve as synthetic standards for the identification of metabolites. Indeed, incubating LMP400 and LMP776 with human liver microsomes resulted in two major metabolites of each drug, which had HPLC retention times and mass fragmentation patterns identical to those of the synthetic standards. The hydroxylated indotecan and indimitecan metabolites and analogues were tested as Top1 poisons and for antiproliferative activity in a variety of human cancer cell cultures and in general were found to be very potent. Differences in activity resulting from the placement of the hydroxyl group are explained by molecular modeling analyses.
Collapse
Affiliation(s)
- Maris A. Cinelli
- Department of Medicinal Chemistry and Molecular Pharmacology, School of Pharmacy, and the Purdue Center for Cancer Research, Purdue University, West Lafayette, IN 47907, United States
| | - P.V. Narasimha Reddy
- Department of Medicinal Chemistry and Molecular Pharmacology, School of Pharmacy, and the Purdue Center for Cancer Research, Purdue University, West Lafayette, IN 47907, United States
| | - Peng-Cheng Lv
- Department of Medicinal Chemistry and Molecular Pharmacology, School of Pharmacy, and the Purdue Center for Cancer Research, Purdue University, West Lafayette, IN 47907, United States
| | - Jian-Hua Liang
- Department of Medicinal Chemistry and Molecular Pharmacology, School of Pharmacy, and the Purdue Center for Cancer Research, Purdue University, West Lafayette, IN 47907, United States
| | - Lian Chen
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The University of Illinois at Chicago, Chicago, IL, 60612, United States
| | - Keli Agama
- Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892-4255, United States
| | - Yves Pommier
- Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892-4255, United States
| | - Richard B. van Breemen
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The University of Illinois at Chicago, Chicago, IL, 60612, United States
| | - Mark Cushman
- Department of Medicinal Chemistry and Molecular Pharmacology, School of Pharmacy, and the Purdue Center for Cancer Research, Purdue University, West Lafayette, IN 47907, United States
| |
Collapse
|
44
|
Thai KM, Bui QH, Tran TD, Huynh TNP. QSAR modeling on benzo[c]phenanthridine analogues as topoisomerase I inhibitors and anti-cancer agents. Molecules 2012; 17:5690-712. [PMID: 22580401 PMCID: PMC6268722 DOI: 10.3390/molecules17055690] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2012] [Revised: 04/25/2012] [Accepted: 05/04/2012] [Indexed: 12/28/2022] Open
Abstract
Benzo[c]phenanthridine (BCP) derivatives were identified as topoisomerase I (TOP-I) targeting agents with pronounced antitumor activity. In this study, hologram-QSAR, 2D-QSAR and 3D-QSAR models were developed for BCPs on topoisomerase I inbibitory activity and cytotoxicity against seven tumor cell lines including RPMI8402, CPT-K5, P388, CPT45, KB3-1, KBV-1and KBH5.0. The hologram, 2D, and 3D-QSAR models were obtained with the square of correlation coefficient R² = 0.58-0.77, the square of the crossvalidation coefficient q² = 0.41-0.60 as well as the external set's square of predictive correlation coefficient r² = 0.5-0.80. Moreover, the assessment method based on reliability test with confidence level of 95% was used to validate the predictive power of QSAR models and to prevent over-fitting phenomenon of classical QSAR models. Our QSAR model could be applied to design new analogues of BCPs with higher antitumor and topoisomerase I inhibitory activity.
Collapse
Affiliation(s)
- Khac-Minh Thai
- Department of Medicinal Chemistry, School of Pharmacy, University of Medicine and Pharmacy, 41 Dinh Tien Hoang St., Dist. 1, Ho Chi Minh City, Vietnam.
| | | | | | | |
Collapse
|
45
|
Thai KM, Nguyen TQ, Ngo TD, Tran TD, Huynh TNP. A support vector machine classification model for benzo[c]phenathridine analogues with toposiomerase-I inhibitory activity. Molecules 2012; 17:4560-82. [PMID: 22510606 PMCID: PMC6268465 DOI: 10.3390/molecules17044560] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2012] [Revised: 04/08/2012] [Accepted: 04/10/2012] [Indexed: 11/18/2022] Open
Abstract
Benzo[c]phenanthridine (BCP) derivatives were identified as topoisomerase I (TOP-I) targeting agents with pronounced antitumor activity. In this study, a support vector machine model was performed on a series of 73 analogues to classify BCP derivatives according to TOP-I inhibitory activity. The best SVM model with total accuracy of 93% for training set was achieved using a set of 7 descriptors identified from a large set via a random forest algorithm. Overall accuracy of up to 87% and a Matthews coefficient correlation (MCC) of 0.71 were obtained after this SVM classifier was validated internally by a test set of 15 compounds. For two external test sets, 89% and 80% BCP compounds, respectively, were correctly predicted. The results indicated that our SVM model could be used as the filter for designing new BCP compounds with higher TOP-I inhibitory activity.
Collapse
Affiliation(s)
- Khac-Minh Thai
- Department of Medicinal Chemistry, School of Pharmacy, University of Medicine and Pharmacy at Ho Chi Minh City, 41 Dinh Tien Hoang St., District 1, Ho Chi Minh City, Vietnam.
| | | | | | | | | |
Collapse
|
46
|
Synthesis of 12-oxobenzo[c]phenanthridinones and 4-substituted 3-arylisoquinolones via Vilsmeier–Haack reaction. Tetrahedron 2012. [DOI: 10.1016/j.tet.2011.10.053] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
47
|
Celia C, Cosco D, Paolino D, Fresta M. Gemcitabine-loaded innovative nanocarriers vs GEMZAR: biodistribution, pharmacokinetic features and in vivo antitumor activity. Expert Opin Drug Deliv 2011; 8:1609-29. [PMID: 22077480 DOI: 10.1517/17425247.2011.632630] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Gemcitabine, an anticancer drug, is a nucleoside analog deoxycytidine antimetabolite, which acts against a wide range of solid tumors. The limitation of gemcitabine is its rapid inactivation by the deoxycytidine deaminase enzyme following its in vivo administration. AREAS COVERED One of the most promising new approaches for improving the biopharmaceutical properties of gemcitabine is the use of innovative drug delivery devices. This review explains the current status of gemcitabine drug delivery, which has been under development over the past 5 years, with particular emphasis on liposomal delivery. In addition, the use of novel supramolecular vesicular aggregates (SVAs), polymeric nanoparticles and squalenoylation were treated as interesting innovative approaches for the administration of the nucleoside analog. EXPERT OPINION Different colloidal systems containing gemcitabine have been realized, with the aim of providing important potential advancements through traditional ways of therapy. A possible future commercialization of modified gemcitabine is desirable, as was true in the case of liposomal doxorubicin (Doxil(®), Caely(®)).
Collapse
Affiliation(s)
- Christian Celia
- The Methodist Hospital Research Institute, Department of Nanomedicine, 6670 Bertner St, Houston, TX 77030, USA
| | | | | | | |
Collapse
|
48
|
Zhang X, Wang R, Zhao L, Lu N, Wang J, You Q, Li Z, Guo Q. Synthesis and biological evaluations of novel indenoisoquinolines as topoisomerase I inhibitors. Bioorg Med Chem Lett 2011; 22:1276-81. [PMID: 22079759 DOI: 10.1016/j.bmcl.2011.10.019] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2011] [Revised: 10/04/2011] [Accepted: 10/07/2011] [Indexed: 01/02/2023]
Abstract
A series of novel indenoisoquinoline derivatives were synthesized. The anticancer activities of these molecules were tested in human cancer cell lines A549, HepG2, and HCT-116. These compounds were also tested for their activity of topoisomerase I (top1) inhibition. Among them, compound 25 was found to be 10-times more potent in cell-killing activity for both cell lines HepG2 and HCT-116 than reported compound 11, with IC(50) of 0.019 and 0.093μM, respectively. Compound 25 was also found to have stronger top1 inhibition activity than 11 in our inhibition assay. Further in vivo evaluations of compound 25 are in progress and will be reported in due course.
Collapse
Affiliation(s)
- Xiaoyun Zhang
- Department of Medicinal Chemistry, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Synthesis of benzo[3,4]azepino[1,2-b]isoquinolin-9-ones from 3-arylisoquinolines via ring closing metathesis and evaluation of topoisomerase I inhibitory activity, cytotoxicity and docking study. Bioorg Med Chem 2011; 19:5311-20. [DOI: 10.1016/j.bmc.2011.08.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2011] [Revised: 08/03/2011] [Accepted: 08/03/2011] [Indexed: 11/21/2022]
|
50
|
Le TN, Yang SH, Khadka DB, Van HTM, Cho SH, Kwon Y, Lee ES, Lee KT, Cho WJ. Design and synthesis of 4-amino-2-phenylquinazolines as novel topoisomerase I inhibitors with molecular modeling. Bioorg Med Chem 2011; 19:4399-404. [DOI: 10.1016/j.bmc.2011.05.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2011] [Revised: 05/06/2011] [Accepted: 05/07/2011] [Indexed: 12/30/2022]
|