1
|
Havranek B, Demissie R, Lee H, Lan S, Zhang H, Sarafianos SG, Jean-Luc Ayitou A, Islam SM. Discovery of Nirmatrelvir Resistance Mutations in SARS-CoV-2 3CLpro: A Computational-Experimental Approach. J Chem Inf Model 2023; 63:7180-7188. [PMID: 37947496 PMCID: PMC10976418 DOI: 10.1021/acs.jcim.3c01269] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
The COVID-19 pandemic has emphasized the urgency for effective antiviral therapies against SARS-CoV-2. Targeting the main protease (3CLpro) of the virus has emerged as a promising approach, and nirmatrelvir (PF-07321332), the active component of Pfizer's oral drug Paxlovid, has demonstrated remarkable clinical efficacy. However, the emergence of resistance mutations poses a challenge to its continued success. In this study, we employed alchemical free energy perturbation (FEP) alanine scanning to identify nirmatrelvir-resistance mutations within SARS-CoV-2 3CLpro. FEP identified several mutations, which were validated through in vitro IC50 experiments and found to result in 8- and 72-fold increases in nirmatrelvir IC50 values. Additionally, we constructed SARS-CoV-2 omicron replicons containing these mutations, and one of the mutants (S144A/E166A) displayed a 20-fold increase in EC50, confirming the role of FEP in identifying drug-resistance mutations. Our findings suggest that FEP can be a valuable tool in proactively monitoring the emergence of resistant strains and guiding the design of future inhibitors with reduced susceptibility to drug resistance. As nirmatrelvir is currently widely used for treating COVID-19, this research has important implications for surveillance efforts and antiviral development.
Collapse
Affiliation(s)
- Brandon Havranek
- Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA 19107, USA
- ComputePharma, LLC., Chicago, IL, USA, 60607
| | - Robel Demissie
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60607, USA
- Biophysics Core at Research Resource Center, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Hyun Lee
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60607, USA
- Biophysics Core at Research Resource Center, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Shuiyun Lan
- Center for ViroScience and Cure, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA
- Children’s Healthcare of Atlanta, Atlanta, GA 30322, USA
| | - Huanchun Zhang
- Center for ViroScience and Cure, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA
- Children’s Healthcare of Atlanta, Atlanta, GA 30322, USA
| | - Stefan G. Sarafianos
- Center for ViroScience and Cure, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA
- Children’s Healthcare of Atlanta, Atlanta, GA 30322, USA
| | | | - Shahidul M. Islam
- ComputePharma, LLC., Chicago, IL, USA, 60607
- Department of Chemistry, Delaware State University, Dover, DE, 19901, USA
| |
Collapse
|
2
|
Li X, Song Y. Structure and function of SARS-CoV and SARS-CoV-2 main proteases and their inhibition: A comprehensive review. Eur J Med Chem 2023; 260:115772. [PMID: 37659195 PMCID: PMC10529944 DOI: 10.1016/j.ejmech.2023.115772] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/24/2023] [Accepted: 08/26/2023] [Indexed: 09/04/2023]
Abstract
Severe acute respiratory syndrome-associated coronavirus (SARS-CoV) identified in 2003 infected ∼8000 people in 26 countries with 800 deaths, which was soon contained and eradicated by syndromic surveillance and enhanced quarantine. A closely related coronavirus SARS-CoV-2, the causative agent of COVID-19 identified in 2019, has been dramatically more contagious and catastrophic. It has infected and caused various flu-like symptoms of billions of people in >200 countries, including >6 million people died of or with the virus. Despite the availability of several vaccines and antiviral drugs against SARS-CoV-2, finding new therapeutics is needed because of viral evolution and a possible emerging coronavirus in the future. The main protease (Mpro) of these coronaviruses plays important roles in their life cycle and is essential for the viral replication. This article represents a comprehensive review of the function, structure and inhibition of SARS-CoV and -CoV-2 Mpro, including structure-activity relationships, protein-inhibitor interactions and clinical trial status.
Collapse
Affiliation(s)
- Xin Li
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA; Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA.
| | - Yongcheng Song
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA; Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA.
| |
Collapse
|
3
|
Lee H, Youn I, Demissie R, Vaid TM, Che CT, Azar DT, Han KY. Identification of small molecule inhibitors against MMP-14 via High-Throughput screening. Bioorg Med Chem 2023; 85:117289. [PMID: 37094433 PMCID: PMC10167624 DOI: 10.1016/j.bmc.2023.117289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 03/22/2023] [Accepted: 04/13/2023] [Indexed: 04/26/2023]
Abstract
Matrix metalloproteinases (MMPs) are involved in various cellular events in physiology and pathophysiology through endopeptidases activity. The expression levels and activities of most MMPs remain minimal in the normal conditions, whereas some MMPs are significantly activated in pathological conditions such as cancer and neovascularization. Hence, MMPs are considered as both diagnostic markers and potential targets for therapeutic agents. Twenty-three known human MMPs share a similar active site structure with a zinc-binding motif, resulting in lack of specificity. Therefore, the enhancement of target specificity is a primary goal for the development of specific MMP inhibitors. MMP-14 regulates VEGFA/VEGFR2-system through cleavage of the non-functional VEGFR1 in vascular angiogenesis. In this study, we developed a fluorescence-based enzymatic assay using a specific MMP-14 substrate generated from VEGFR1 cleavage site. This well optimized assay was used as a primary screen method to identify MMP-14 specific inhibitors from 1,200 Prestwick FDA-approved drug library. Of ten initial hits, two compounds showed IC50 values below 30 µM, which were further validated by direct binding analysis using surface plasmon resonance (SPR). Clioquinol and chloroxine, both of which contain a quinoline structure, were identified as MMP-14 inhibitors. Five analogs were tested, four of which were found to be completely devoid of inhibitory activity. Clioquinol exhibited selectivity towards MMP-14, as it showed no inhibitory activity towards four other MMPs.
Collapse
Affiliation(s)
- Hyun Lee
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60607, USA; Biophysics Core at Research Resource Center, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Isoo Youn
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Robel Demissie
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60607, USA; Biophysics Core at Research Resource Center, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Tasneem M Vaid
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Chun-Tao Che
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Dimitri T Azar
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Kyu-Yeon Han
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, University of Illinois at Chicago, Chicago, IL 60612, USA.
| |
Collapse
|
4
|
Brier L, Hassan H, Hanoulle X, Landry V, Moschidi D, Desmarets L, Rouillé Y, Dumont J, Herledan A, Warenghem S, Piveteau C, Carré P, Ikherbane S, Cantrelle FX, Dupré E, Dubuisson J, Belouzard S, Leroux F, Deprez B, Charton J. Novel dithiocarbamates selectively inhibit 3CL protease of SARS-CoV-2 and other coronaviruses. Eur J Med Chem 2023; 250:115186. [PMID: 36796300 PMCID: PMC9901219 DOI: 10.1016/j.ejmech.2023.115186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/27/2023] [Accepted: 02/02/2023] [Indexed: 02/09/2023]
Abstract
Since end of 2019, the global and unprecedented outbreak caused by the coronavirus SARS-CoV-2 led to dramatic numbers of infections and deaths worldwide. SARS-CoV-2 produces two large viral polyproteins which are cleaved by two cysteine proteases encoded by the virus, the 3CL protease (3CLpro) and the papain-like protease, to generate non-structural proteins essential for the virus life cycle. Both proteases are recognized as promising drug targets for the development of anti-coronavirus chemotherapy. Aiming at identifying broad spectrum agents for the treatment of COVID-19 but also to fight emergent coronaviruses, we focused on 3CLpro that is well conserved within this viral family. Here we present a high-throughput screening of more than 89,000 small molecules that led to the identification of a new chemotype, potent inhibitor of the SARS-CoV-2 3CLpro. The mechanism of inhibition, the interaction with the protease using NMR and X-Ray, the specificity against host cysteine proteases and promising antiviral properties in cells are reported.
Collapse
Affiliation(s)
- Lucile Brier
- Univ. Lille, Inserm, Institut Pasteur de Lille, U1177 - Drugs and Molecules for Living Systems, F-59000, Lille, France
| | - Haitham Hassan
- Univ. Lille, Inserm, Institut Pasteur de Lille, U1177 - Drugs and Molecules for Living Systems, F-59000, Lille, France
| | - Xavier Hanoulle
- CNRS, EMR9002 - BSI - Integrative Structural Biology, F-59000, Lille, France; Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167 - RID-AGE - Facteurs de risque et déterminants moléculaires des maladies liées au vieillissement, F-59000, Lille, France
| | - Valerie Landry
- Univ. Lille, Inserm, Institut Pasteur de Lille, U1177 - Drugs and Molecules for Living Systems, F-59000, Lille, France; Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, US 41 - UAR 2014 - PLBS, F-59000, Lille, France
| | - Danai Moschidi
- CNRS, EMR9002 - BSI - Integrative Structural Biology, F-59000, Lille, France; Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167 - RID-AGE - Facteurs de risque et déterminants moléculaires des maladies liées au vieillissement, F-59000, Lille, France
| | - Lowiese Desmarets
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille, F-59000, Lille, France
| | - Yves Rouillé
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille, F-59000, Lille, France
| | - Julie Dumont
- Univ. Lille, Inserm, Institut Pasteur de Lille, U1177 - Drugs and Molecules for Living Systems, F-59000, Lille, France; Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, US 41 - UAR 2014 - PLBS, F-59000, Lille, France
| | - Adrien Herledan
- Univ. Lille, Inserm, Institut Pasteur de Lille, U1177 - Drugs and Molecules for Living Systems, F-59000, Lille, France; Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, US 41 - UAR 2014 - PLBS, F-59000, Lille, France
| | - Sandrine Warenghem
- Univ. Lille, Inserm, Institut Pasteur de Lille, U1177 - Drugs and Molecules for Living Systems, F-59000, Lille, France; Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, US 41 - UAR 2014 - PLBS, F-59000, Lille, France
| | - Catherine Piveteau
- Univ. Lille, Inserm, Institut Pasteur de Lille, U1177 - Drugs and Molecules for Living Systems, F-59000, Lille, France
| | - Paul Carré
- Univ. Lille, Inserm, Institut Pasteur de Lille, U1177 - Drugs and Molecules for Living Systems, F-59000, Lille, France; Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, US 41 - UAR 2014 - PLBS, F-59000, Lille, France
| | - Sarah Ikherbane
- Univ. Lille, Inserm, Institut Pasteur de Lille, U1177 - Drugs and Molecules for Living Systems, F-59000, Lille, France; Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, US 41 - UAR 2014 - PLBS, F-59000, Lille, France
| | - François-Xavier Cantrelle
- CNRS, EMR9002 - BSI - Integrative Structural Biology, F-59000, Lille, France; Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167 - RID-AGE - Facteurs de risque et déterminants moléculaires des maladies liées au vieillissement, F-59000, Lille, France
| | - Elian Dupré
- CNRS, EMR9002 - BSI - Integrative Structural Biology, F-59000, Lille, France; Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167 - RID-AGE - Facteurs de risque et déterminants moléculaires des maladies liées au vieillissement, F-59000, Lille, France
| | - Jean Dubuisson
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille, F-59000, Lille, France
| | - Sandrine Belouzard
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille, F-59000, Lille, France
| | - Florence Leroux
- Univ. Lille, Inserm, Institut Pasteur de Lille, U1177 - Drugs and Molecules for Living Systems, EGID, F-59000, Lille, France; Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, US 41 - UAR 2014 - PLBS, F-59000, Lille, France
| | - Benoit Deprez
- Univ. Lille, Inserm, Institut Pasteur de Lille, U1177 - Drugs and Molecules for Living Systems, EGID, F-59000, Lille, France; Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, US 41 - UAR 2014 - PLBS, F-59000, Lille, France.
| | - Julie Charton
- Univ. Lille, Inserm, Institut Pasteur de Lille, U1177 - Drugs and Molecules for Living Systems, EGID, F-59000, Lille, France
| |
Collapse
|
5
|
Zhang Y, Luo M, Wu P, Wu S, Lee TY, Bai C. Application of Computational Biology and Artificial Intelligence in Drug Design. Int J Mol Sci 2022; 23:13568. [PMID: 36362355 PMCID: PMC9658956 DOI: 10.3390/ijms232113568] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 10/29/2022] [Accepted: 11/03/2022] [Indexed: 08/24/2023] Open
Abstract
Traditional drug design requires a great amount of research time and developmental expense. Booming computational approaches, including computational biology, computer-aided drug design, and artificial intelligence, have the potential to expedite the efficiency of drug discovery by minimizing the time and financial cost. In recent years, computational approaches are being widely used to improve the efficacy and effectiveness of drug discovery and pipeline, leading to the approval of plenty of new drugs for marketing. The present review emphasizes on the applications of these indispensable computational approaches in aiding target identification, lead discovery, and lead optimization. Some challenges of using these approaches for drug design are also discussed. Moreover, we propose a methodology for integrating various computational techniques into new drug discovery and design.
Collapse
Affiliation(s)
- Yue Zhang
- School of Life and Health Sciences, School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China
- Warshel Institute for Computational Biology, Shenzhen 518172, China
| | - Mengqi Luo
- School of Life and Health Sciences, School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China
- South China Hospital, Health Science Center, Shenzhen University, Shenzhen 518116, China
| | - Peng Wu
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen 518055, China
| | - Song Wu
- South China Hospital, Health Science Center, Shenzhen University, Shenzhen 518116, China
| | - Tzong-Yi Lee
- School of Life and Health Sciences, School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China
- Warshel Institute for Computational Biology, Shenzhen 518172, China
| | - Chen Bai
- School of Life and Health Sciences, School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China
- Warshel Institute for Computational Biology, Shenzhen 518172, China
| |
Collapse
|
6
|
Ma L, Li Q, Xie Y, Jianyuan Zhao, Yi D, Guo S, Guo F, Wang J, Yang L, Cen S. Repurposing of HIV/HCV protease inhibitors against SARS-CoV-2 3CL pro. Antiviral Res 2022; 207:105419. [PMID: 36155070 PMCID: PMC9499987 DOI: 10.1016/j.antiviral.2022.105419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 08/18/2022] [Accepted: 09/12/2022] [Indexed: 11/29/2022]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the pathogen that caused the global COVID-19 outbreak. The 3C-like protease (3CLpro) of SARS-CoV-2 plays a key role in virus replication and has become an ideal target for antiviral drug design. In this work, we have employed bioluminescence resonance energy transfer (BRET) technology to establish a cell-based assay for screening inhibitors against SARS-CoV-2 3CLpro, and then applied the assay to screen a collection of known HIV/HCV protease inhibitors. Our results showed that the assay is capable of quantification of the cleavage efficiency of 3CLpro with good reproducibility (Z' factor is 0.59). Using the assay, we found that 9 of 26 protease inhibitors effectively inhibited the activity of SARS-CoV-2 3CLpro in a dose-dependent manner. Among them, four compounds exhibited the ability to bind to 3CLproin vitro. HCV protease inhibitor simeprevir showed the most potency against 3CLpro with an EC50 vale of 2.6 μM, bound to the active site pocket of 3CLpro in a predicted model, and importantly, exhibited a similar activity against the protease containing the mutations P132H in Omicron variants. Taken together, this work demonstrates the feasibility of using the cell-based BRET assay for screening 3CLpro inhibitors and supports the potential of simeprevir for the development of 3CLpro inhibitors.
Collapse
Affiliation(s)
- Ling Ma
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science, Beijing, China
| | - Quanjie Li
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science, Beijing, China
| | - Yongli Xie
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science, Beijing, China
| | - Jianyuan Zhao
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science, Beijing, China
| | - Dongrong Yi
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science, Beijing, China
| | - Saisai Guo
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science, Beijing, China
| | - Fei Guo
- Institute of Pathogen Biology, Chinese Academy of Medical Science, Beijing, China
| | - Jing Wang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science, Beijing, China.
| | - Long Yang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
| | - Shan Cen
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science, Beijing, China.
| |
Collapse
|
7
|
Youn I, Han KY, Gurgul A, Wu Z, Lee H, Che CT. Chemical constituents of Entandrophragma angolense and their anti-inflammatory activity. PHYTOCHEMISTRY 2022; 201:113276. [PMID: 35714737 DOI: 10.1016/j.phytochem.2022.113276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 06/10/2022] [Accepted: 06/11/2022] [Indexed: 06/15/2023]
Abstract
From the stem bark of Entandrophragma angolense, six undescribed compounds were isolated, including seco-tirucallane type triterpenoids, limonoids, and a catechin glucoside, along with nineteen known structures. All structures were determined by interpretation of spectroscopic and HRMS data, and absolute configuration was confirmed with the aid of electronic circular dichroism. The isolated compounds were tested for LPS-induced NO inhibition in RAW 264.7 macrophages and EC50 values for moluccensin O and (-)-catechin were 81 μM and 137 μM, respectively.
Collapse
Affiliation(s)
- Isoo Youn
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL, 60612, United States
| | - Kyu-Yeon Han
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, University of Illinois at Chicago, Chicago, IL, 60612, United States
| | - Aleksandra Gurgul
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL, 60612, United States
| | - Zhenlong Wu
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, Jinan University, Guangzhou, 510632, PR China
| | - Hyun Lee
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL, 60612, United States; Biophysics Core at Research Resource Center, University of Illinois at Chicago, Chicago, IL, 60612, United States
| | - Chun-Tao Che
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL, 60612, United States.
| |
Collapse
|
8
|
Label-free duplex SAMDI-MS screen reveals novel SARS-CoV-2 3CLpro inhibitors. Antiviral Res 2022; 200:105279. [PMID: 35278580 PMCID: PMC8906060 DOI: 10.1016/j.antiviral.2022.105279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 03/01/2022] [Accepted: 03/06/2022] [Indexed: 11/20/2022]
Abstract
The 3-chymotrypsin-like cysteine protease (3CLpro) of severe acute respiratory syndrome conoravirus 2 (SARS-CoV-2) remains a promising therapeutic target to combat COVID-19. Our group recently described a novel duplexed biochemical assay that combines self-assembled monolayers of alkanethiolates on gold with matrix assisted laser desorption ionization (MALDI) time of flight (TOF) mass spectrometry (MS) to simultaneously measure 3CLpro and human rhinovirus 3C protease activities. This study describes applying the assay for the completion of a high-throughput duplexed screen of 300,000 diverse, drug-like small molecules in 3 days. The hits were confirmed and evaluated in dose response analyses against recombinant 3CLpro, HRV3C, and the human Cathepsin L proteases. The 3CLpro specific inhibitors were further assessed for activity in cellular cytotoxicity and anti-viral assays. Structure activity relationship studies informed on structural features required for activity and selectivity to 3CLpro over HRV3C. These results will guide the optimization of 3CLpro selective inhibitors to combat COVID-19 along with antiviral compounds against coronaviruses and rhinoviruses.
Collapse
|
9
|
Abstract
The main protease (Mpro) plays a crucial role in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) replication and is highly conserved, rendering it one of the most attractive therapeutic targets for SARS-CoV-2 inhibition. Currently, although two drug candidates targeting SARS-CoV-2 Mpro designed by Pfizer are under clinical trials, no SARS-CoV-2 medication is approved due to the long period of drug development. Here, we collect a comprehensive list of 817 available SARS-CoV-2 and SARS-CoV Mpro inhibitors from the literature or databases and analyze their molecular mechanisms of action. The structure-activity relationships (SARs) among each series of inhibitors are discussed. Additionally, we broadly examine available antiviral activity, ADMET (absorption, distribution, metabolism, excretion, and toxicity), and animal tests of these inhibitors. We comment on their druggability or drawbacks that prevent them from becoming drugs. This Perspective sheds light on the future development of Mpro inhibitors for SARS-CoV-2 and future coronavirus diseases.
Collapse
Affiliation(s)
- Kaifu Gao
- Department of Mathematics, Michigan State University, East Lansing, Michigan 48824, United States
| | - Rui Wang
- Department of Mathematics, Michigan State University, East Lansing, Michigan 48824, United States
| | - Jiahui Chen
- Department of Mathematics, Michigan State University, East Lansing, Michigan 48824, United States
| | - Jetze J Tepe
- Department of Chemistry and Pharmacology & Toxicology, Michigan State University, East Lansing, Michigan 48824, United States
| | - Faqing Huang
- Department of Chemistry and Biochemistry, University of Southern Mississippi, Hattiesburg, Mississippi 39406, United States
| | - Guo-Wei Wei
- Department of Mathematics, Michigan State University, East Lansing, Michigan 48824, United States
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824, United States
- Department of Electrical and Computer Engineering, Michigan State University, East Lansing, Michigan 48824, United States
| |
Collapse
|
10
|
Ferreira JC, Fadl S, Ilter M, Pekel H, Rezgui R, Sensoy O, Rabeh WM. Dimethyl sulfoxide reduces the stability but enhances catalytic activity of the main SARS-CoV-2 protease 3CLpro. FASEB J 2021; 35:e21774. [PMID: 34324734 PMCID: PMC8441638 DOI: 10.1096/fj.202100994] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 06/16/2021] [Indexed: 12/23/2022]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS‐CoV‐2) is responsible for coronavirus disease 2019 (COVID‐19), one of the most challenging global pandemics of the modern era. Potential treatment strategies against COVID‐19 are yet to be devised. It is crucial that antivirals that interfere with the SARS‐CoV‐2 life cycle be identified and developed. 3‐Chymotrypsin‐like protease (3CLpro) is an attractive antiviral drug target against SARS‐CoV‐2, and coronaviruses in general, because of its role in the processing of viral polyproteins. Inhibitors of 3CLpro activity are screened in enzyme assays before further development of the most promising leads. Dimethyl sulfoxide (DMSO) is a common additive used in such assays and enhances the solubility of assay components. However, it may also potentially affect the stability and efficiency of 3CLpro but, to date, this effect had not been analyzed in detail. Here, we investigated the effect of DMSO on 3CLpro‐catalyzed reaction. While DMSO (5%‐20%) decreased the optimum temperature of catalysis and thermodynamic stability of 3CLpro, it only marginally affected the kinetic stability of the enzyme. Increasing the DMSO concentration up to 20% improved the catalytic efficiency and peptide‐binding affinity of 3CLpro. At such high DMSO concentration, the solubility and stability of peptide substrate were improved because of reduced aggregation. In conclusion, we recommend 20% DMSO as the minimum concentration to be used in screens of 3CLpro inhibitors as lead compounds for the development of antiviral drugs against COVID‐19.
Collapse
Affiliation(s)
- Juliana C Ferreira
- Science Division, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Samar Fadl
- Science Division, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Metehan Ilter
- Graduate School of Engineering and Natural Sciences, Istanbul Medipol University, Istanbul, Turkey
| | - Hanife Pekel
- Department of Pharmacy Services, Vocational School of Health Services, Istanbul Medipol University, Istanbul, Turkey.,Regenerative and Restorative Medicine Research Center (REMER), Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, Istanbul, Turkey
| | - Rachid Rezgui
- Core Technology Platforms, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Ozge Sensoy
- Regenerative and Restorative Medicine Research Center (REMER), Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, Istanbul, Turkey.,Department of Computer Engineering, School of Engineering and Natural Sciences, Istanbul Medipol University, Istanbul, Turkey
| | - Wael M Rabeh
- Science Division, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| |
Collapse
|
11
|
Drayman N, DeMarco JK, Jones KA, Azizi SA, Froggatt HM, Tan K, Maltseva NI, Chen S, Nicolaescu V, Dvorkin S, Furlong K, Kathayat RS, Firpo MR, Mastrodomenico V, Bruce EA, Schmidt MM, Jedrzejczak R, Muñoz-Alía MÁ, Schuster B, Nair V, Han KY, O’Brien A, Tomatsidou A, Meyer B, Vignuzzi M, Missiakas D, Botten JW, Brooke CB, Lee H, Baker SC, Mounce BC, Heaton NS, Severson WE, Palmer KE, Dickinson BC, Joachimiak A, Randall G, Tay S. Masitinib is a broad coronavirus 3CL inhibitor that blocks replication of SARS-CoV-2. Science 2021; 373:931-936. [PMID: 34285133 PMCID: PMC8809056 DOI: 10.1126/science.abg5827] [Citation(s) in RCA: 183] [Impact Index Per Article: 45.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 07/14/2021] [Indexed: 01/16/2023]
Abstract
There is an urgent need for antiviral agents that treat severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. We screened a library of 1900 clinically safe drugs against OC43, a human beta coronavirus that causes the common cold, and evaluated the top hits against SARS-CoV-2. Twenty drugs significantly inhibited replication of both viruses in cultured human cells. Eight of these drugs inhibited the activity of the SARS-CoV-2 main protease, 3CLpro, with the most potent being masitinib, an orally bioavailable tyrosine kinase inhibitor. X-ray crystallography and biochemistry show that masitinib acts as a competitive inhibitor of 3CLpro. Mice infected with SARS-CoV-2 and then treated with masitinib showed >200-fold reduction in viral titers in the lungs and nose, as well as reduced lung inflammation. Masitinib was also effective in vitro against all tested variants of concern (B.1.1.7, B.1.351, and P.1).
Collapse
Affiliation(s)
- Nir Drayman
- Pritzker School for Molecular Engineering, The University of Chicago, Chicago, IL, USA.,Corresponding author. (S.T.); (N.D.)
| | - Jennifer K. DeMarco
- Center for Predictive Medicine for Biodefense and Emerging Infectious Diseases, University of Louisville, Louisville, KY, USA
| | - Krysten A. Jones
- Department of Chemistry, The University of Chicago, Chicago, IL, USA.,Department of Microbiology, Ricketts Laboratory, University of Chicago, Chicago, IL, USA
| | - Saara-Anne Azizi
- Department of Chemistry, The University of Chicago, Chicago, IL, USA.,Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Heather M. Froggatt
- Department of Molecular Genetics and Microbiology, Duke University, Durham, NC, USA.,Institut Pasteur, Viral Populations and Pathogenesis Unit, Centre National de la Recherche Scientifique UMR 3569, Paris, France
| | - Kemin Tan
- Department of Molecular Genetics and Microbiology, Duke University, Durham, NC, USA.,Center for Structural Genomics of Infectious Diseases, Consortium for Advanced Science and Engineering, University of Chicago, Chicago, IL, USA.,Structural Biology Center, X-ray Science Division, Argonne National Laboratory, Argonne, IL, USA.,Department of Medicine, Division of Immunobiology, Larner College of Medicine, University of Vermont, Burlington, VT, USA
| | - Natalia Ivanovna Maltseva
- Department of Molecular Genetics and Microbiology, Duke University, Durham, NC, USA.,Center for Structural Genomics of Infectious Diseases, Consortium for Advanced Science and Engineering, University of Chicago, Chicago, IL, USA.,Structural Biology Center, X-ray Science Division, Argonne National Laboratory, Argonne, IL, USA.,Department of Microbiology, Ricketts Laboratory, University of Chicago, Chicago, IL, USA
| | - Siquan Chen
- Cellular Screening Center, The University of Chicago, Chicago, IL, USA.,Department of Microbiology, Ricketts Laboratory, University of Chicago, Chicago, IL, USA
| | - Vlad Nicolaescu
- Department of Microbiology, Ricketts Laboratory, University of Chicago, Chicago, IL, USA
| | - Steve Dvorkin
- Department of Microbiology, Ricketts Laboratory, University of Chicago, Chicago, IL, USA
| | - Kevin Furlong
- Department of Microbiology, Ricketts Laboratory, University of Chicago, Chicago, IL, USA
| | - Rahul S. Kathayat
- Department of Chemistry, The University of Chicago, Chicago, IL, USA.,Department of Microbiology, Ricketts Laboratory, University of Chicago, Chicago, IL, USA
| | - Mason R. Firpo
- Pritzker School for Molecular Engineering, The University of Chicago, Chicago, IL, USA.,Department of Microbiology and Immunology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL, USA
| | - Vincent Mastrodomenico
- Department of Microbiology and Immunology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL, USA
| | - Emily A. Bruce
- Cellular Screening Center, The University of Chicago, Chicago, IL, USA.,Department of Medicine, Division of Immunobiology, Larner College of Medicine, University of Vermont, Burlington, VT, USA.,Department of Microbiology and Molecular Genetics, Larner College of Medicine, University of Vermont, Burlington, VT, USA
| | - Madaline M. Schmidt
- Department of Medicine, Division of Immunobiology, Larner College of Medicine, University of Vermont, Burlington, VT, USA.,Department of Microbiology and Molecular Genetics, Larner College of Medicine, University of Vermont, Burlington, VT, USA
| | - Robert Jedrzejczak
- Department of Molecular Genetics and Microbiology, Duke University, Durham, NC, USA.,Center for Structural Genomics of Infectious Diseases, Consortium for Advanced Science and Engineering, University of Chicago, Chicago, IL, USA.,Structural Biology Center, X-ray Science Division, Argonne National Laboratory, Argonne, IL, USA
| | | | - Brooke Schuster
- Pritzker School for Molecular Engineering, The University of Chicago, Chicago, IL, USA.,Department of Microbiology, Ricketts Laboratory, University of Chicago, Chicago, IL, USA
| | - Vishnu Nair
- Pritzker School for Molecular Engineering, The University of Chicago, Chicago, IL, USA.,Department of Microbiology, Ricketts Laboratory, University of Chicago, Chicago, IL, USA
| | - Kyu-yeon Han
- Center for Predictive Medicine for Biodefense and Emerging Infectious Diseases, University of Louisville, Louisville, KY, USA.,Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Amornrat O’Brien
- Department of Microbiology and Immunology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL, USA.,Department of Pharmaceutical Sciences, College of Pharmacy, Biophysics Core at Research Resources Center, University of Illinois at Chicago, Chicago, IL, USA
| | - Anastasia Tomatsidou
- Department of Microbiology, Ricketts Laboratory, University of Chicago, Chicago, IL, USA.,Department of Medicine, Division of Immunobiology, Larner College of Medicine, University of Vermont, Burlington, VT, USA
| | - Bjoern Meyer
- Institut Pasteur, Viral Populations and Pathogenesis Unit, Centre National de la Recherche Scientifique UMR 3569, Paris, France
| | - Marco Vignuzzi
- Structural Biology Center, X-ray Science Division, Argonne National Laboratory, Argonne, IL, USA.,Institut Pasteur, Viral Populations and Pathogenesis Unit, Centre National de la Recherche Scientifique UMR 3569, Paris, France
| | - Dominique Missiakas
- Department of Microbiology, Ricketts Laboratory, University of Chicago, Chicago, IL, USA
| | - Jason W. Botten
- Cellular Screening Center, The University of Chicago, Chicago, IL, USA.,Department of Medicine, Division of Immunobiology, Larner College of Medicine, University of Vermont, Burlington, VT, USA.,Department of Microbiology and Molecular Genetics, Larner College of Medicine, University of Vermont, Burlington, VT, USA.,Vaccine Testing Center, Larner College of Medicine, University of Vermont, Burlington, VT, USA
| | - Christopher B. Brooke
- Department of Microbiology and Molecular Genetics, Larner College of Medicine, University of Vermont, Burlington, VT, USA.,Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, IL, USA.,Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Hyun Lee
- Vaccine Testing Center, Larner College of Medicine, University of Vermont, Burlington, VT, USA.,Department of Pharmaceutical Sciences, College of Pharmacy, Biophysics Core at Research Resources Center, University of Illinois at Chicago, Chicago, IL, USA
| | - Susan C. Baker
- Pritzker School for Molecular Engineering, The University of Chicago, Chicago, IL, USA.,Department of Microbiology and Immunology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL, USA.,Institut Pasteur, Viral Populations and Pathogenesis Unit, Centre National de la Recherche Scientifique UMR 3569, Paris, France
| | - Bryan C. Mounce
- Department of Microbiology and Immunology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL, USA.,Institut Pasteur, Viral Populations and Pathogenesis Unit, Centre National de la Recherche Scientifique UMR 3569, Paris, France.,Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL, USA
| | - Nicholas S. Heaton
- Department of Molecular Genetics and Microbiology, Duke University, Durham, NC, USA.,Institut Pasteur, Viral Populations and Pathogenesis Unit, Centre National de la Recherche Scientifique UMR 3569, Paris, France
| | - William E. Severson
- Center for Predictive Medicine for Biodefense and Emerging Infectious Diseases, University of Louisville, Louisville, KY, USA.,Department of Chemistry, The University of Chicago, Chicago, IL, USA
| | - Kenneth E. Palmer
- Center for Predictive Medicine for Biodefense and Emerging Infectious Diseases, University of Louisville, Louisville, KY, USA.,Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Bryan C. Dickinson
- Department of Chemistry, The University of Chicago, Chicago, IL, USA.,Department of Microbiology, Ricketts Laboratory, University of Chicago, Chicago, IL, USA
| | - Andrzej Joachimiak
- Department of Molecular Genetics and Microbiology, Duke University, Durham, NC, USA.,Center for Structural Genomics of Infectious Diseases, Consortium for Advanced Science and Engineering, University of Chicago, Chicago, IL, USA.,Structural Biology Center, X-ray Science Division, Argonne National Laboratory, Argonne, IL, USA.,Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA.,Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL, USA
| | - Glenn Randall
- Department of Microbiology, Ricketts Laboratory, University of Chicago, Chicago, IL, USA.,Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Savaş Tay
- Pritzker School for Molecular Engineering, The University of Chicago, Chicago, IL, USA.,Department of Microbiology, Ricketts Laboratory, University of Chicago, Chicago, IL, USA.,Corresponding author. (S.T.); (N.D.)
| |
Collapse
|
12
|
Chowdhury T, Roymahapatra G, Mandal SM. In Silico Identification of a Potent Arsenic Based Approved Drug Darinaparsin against SARS-CoV-2: Inhibitor of RNA Dependent RNA polymerase (RdRp) and Essential Proteases. Infect Disord Drug Targets 2021; 21:608-618. [PMID: 32718300 DOI: 10.2174/1871526520666200727153643] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 06/14/2020] [Accepted: 06/16/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND COVID-19 is a life-threatening novel corona viral infection to our civilization and spreading rapidly. Tremendousefforts have been made by the researchers to search for a drug to control SARS-CoV-2. METHODS Here, a series of arsenical derivatives were optimized and analyzed with in silico study to search the inhibitor of RNA dependent RNA polymerase (RdRp), the major replication factor of SARS-CoV-2. All the optimized derivatives were blindly docked with RdRp of SARS-CoV-2 using iGEMDOCK v2.1. RESULTS Based on the lower idock score in the catalytic pocket of RdRp, darinaparsin (-82.52 kcal/- mol) was revealed to be the most effective among them. Darinaparsin strongly binds with both Nsp9 replicase protein (-8.77 kcal/mol) and Nsp15 endoribonuclease (-8.3 kcal/mol) of SARS-- CoV-2 as confirmed from the AutoDock analysis. During infection, the ssRNA of SARS-CoV-2 is translated into large polyproteins forming viral replication complex by specific proteases like 3CL protease and papain protease. This is also another target to control the virus infection where darinaparsin also performs the inhibitory role to proteases of 3CL protease (-7.69 kcal/mol) and papain protease (-8.43 kcal/mol). CONCLUSION In the host cell, the furin protease serves as a gateway to the viral entry and darinaparsin docked with furin protease, which revealed a strong binding affinity. Thus, screening of potential arsenic drugs would help in providing the fast in-vitro to in-vivo analysis towards the development of therapeutics against SARS-CoV-2.
Collapse
Affiliation(s)
- Trinath Chowdhury
- Central Research Facility, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | | | - Santi M Mandal
- Central Research Facility, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| |
Collapse
|
13
|
Kadioglu O, Saeed M, Greten HJ, Efferth T. Identification of novel compounds against three targets of SARS CoV-2 coronavirus by combined virtual screening and supervised machine learning. Comput Biol Med 2021; 133:104359. [PMID: 33845270 DOI: 10.2471/blt.20.255943] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 03/24/2021] [Accepted: 03/24/2021] [Indexed: 05/22/2023]
Abstract
Coronavirus disease 2019 (COVID-19) is a major threat worldwide due to its fast spreading. As yet, there are no established drugs available. Speeding up drug discovery is urgently required. We applied a workflow of combined in silico methods (virtual drug screening, molecular docking and supervised machine learning algorithms) to identify novel drug candidates against COVID-19. We constructed chemical libraries consisting of FDA-approved drugs for drug repositioning and of natural compound datasets from literature mining and the ZINC database to select compounds interacting with SARS-CoV-2 target proteins (spike protein, nucleocapsid protein, and 2'-o-ribose methyltransferase). Supported by the supercomputer MOGON, candidate compounds were predicted as presumable SARS-CoV-2 inhibitors. Interestingly, several approved drugs against hepatitis C virus (HCV), another enveloped (-) ssRNA virus (paritaprevir, simeprevir and velpatasvir) as well as drugs against transmissible diseases, against cancer, or other diseases were identified as candidates against SARS-CoV-2. This result is supported by reports that anti-HCV compounds are also active against Middle East Respiratory Virus Syndrome (MERS) coronavirus. The candidate compounds identified by us may help to speed up the drug development against SARS-CoV-2.
Collapse
Affiliation(s)
- Onat Kadioglu
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Mainz, Germany
| | - Mohamed Saeed
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Mainz, Germany
| | | | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Mainz, Germany.
| |
Collapse
|
14
|
Alamri MA, Tahir Ul Qamar M, Afzal O, Alabbas AB, Riadi Y, Alqahtani SM. Discovery of anti-MERS-CoV small covalent inhibitors through pharmacophore modeling, covalent docking and molecular dynamics simulation. J Mol Liq 2021; 330:115699. [PMID: 33867606 PMCID: PMC8040153 DOI: 10.1016/j.molliq.2021.115699] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 02/13/2021] [Accepted: 02/16/2021] [Indexed: 02/07/2023]
Abstract
Middle east respiratory syndrome coronavirus (MERS-CoV) is a fatal pathogen that poses a serious health risk worldwide and especially in the middle east countries. Targeting the MERS-CoV 3-chymotrypsin-like cysteine protease (3CLpro) with small covalent inhibitors is a significant approach to inhibit replication of the virus. The present work includes generating a pharmacophore model based on the X-ray crystal structures of MERS-CoV 3CLpro in complex with two covalently bound inhibitors. In silico screening of covalent chemical database having 31,642 compounds led to the identification of 378 compounds that fulfils the pharmacophore queries. Lipinski rules of five were then applied to select only compounds with the best physiochemical properties for orally bioavailable drugs. 260 compounds were obtained and subjected to covalent docking-based virtual screening to determine their binding energy scores. The top three candidate compounds, which were shown to adapt similar binding modes as the reported covalent ligands were selected. The mechanism and stability of binding of these compounds were confirmed by 100 ns molecular dynamic simulation followed by MM/PBSA binding free energy calculation. The identified compounds can facilitate the rational design of novel covalent inhibitors of MERS-CoV 3CLpro enzyme as anti-MERS CoV drugs.
Collapse
Affiliation(s)
- Mubarak A Alamri
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | | | - Obaid Afzal
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Alhumaidi B Alabbas
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Yassine Riadi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Safar M Alqahtani
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| |
Collapse
|
15
|
Anirudhan V, Lee H, Cheng H, Cooper L, Rong L. Targeting SARS-CoV-2 viral proteases as a therapeutic strategy to treat COVID-19. J Med Virol 2021; 93:2722-2734. [PMID: 33475167 PMCID: PMC8014870 DOI: 10.1002/jmv.26814] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 01/15/2021] [Accepted: 01/18/2021] [Indexed: 12/14/2022]
Abstract
The 21st century has witnessed three outbreaks of coronavirus (CoVs) infections caused by severe acute respiratory syndrome (SARS)-CoV, Middle East respiratory syndrome (MERS)-CoV, and SARS-CoV-2. Coronavirus disease 2019 (COVID-19), caused by SARS-CoV-2, spreads rapidly and since the discovery of the first COVID-19 infection in December 2019, has caused 1.2 million deaths worldwide and 226,777 deaths in the United States alone. The high amino acid similarity between SARS-CoV and SARS-CoV-2 viral proteins supports testing therapeutic molecules that were designed to treat SARS infections during the 2003 epidemic. In this review, we provide information on possible COVID-19 treatment strategies that act via inhibition of the two essential proteins of the virus, 3C-like protease (3CLpro ) or papain-like protease (PLpro ).
Collapse
Affiliation(s)
- Varada Anirudhan
- Department of Microbiology and ImmunologyUniversity of Illinois at ChicagoChicagoIllinoisUSA
| | - Hyun Lee
- Department of Pharmaceutical Sciences, Center for Biomolecular Sciences, College of Pharmacy, Biophysics Core at Research Resources CenterUniversity of Illinois at ChicagoChicagoIllinoisUSA
| | - Han Cheng
- Department of Microbiology and ImmunologyUniversity of Illinois at ChicagoChicagoIllinoisUSA
| | - Laura Cooper
- Department of Microbiology and ImmunologyUniversity of Illinois at ChicagoChicagoIllinoisUSA
| | - Lijun Rong
- Department of Microbiology and ImmunologyUniversity of Illinois at ChicagoChicagoIllinoisUSA
| |
Collapse
|
16
|
Shiryaev VA, Klimochkin YN. Main Chemotypes of SARS-CoV-2 Reproduction Inhibitors. RUSSIAN JOURNAL OF ORGANIC CHEMISTRY 2021. [PMCID: PMC8188765 DOI: 10.1134/s107042802105002x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The COVID-19 pandemic has forced scientists all over the world to focus their effort on searching for targeted drugs for coronavirus chemotherapy. The present review is an attempt to systematize low-molecular-weight compounds, including well-known pharmaceuticals and natural substances that have exhibited high anti-coronavirus activity, not in terms of action on their targets, but in terms of their structural type.
Collapse
Affiliation(s)
- V. A. Shiryaev
- Samara State Technical University, 443100 Samara, Russia
| | | |
Collapse
|
17
|
Sulimov VB, Kutov DC, Taschilova AS, Ilin IS, Tyrtyshnikov EE, Sulimov AV. Docking Paradigm in Drug Design. Curr Top Med Chem 2021; 21:507-546. [PMID: 33292135 DOI: 10.2174/1568026620666201207095626] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 09/28/2020] [Accepted: 10/16/2020] [Indexed: 11/22/2022]
Abstract
Docking is in demand for the rational computer aided structure based drug design. A review of docking methods and programs is presented. Different types of docking programs are described. They include docking of non-covalent small ligands, protein-protein docking, supercomputer docking, quantum docking, the new generation of docking programs and the application of docking for covalent inhibitors discovery. Taking into account the threat of COVID-19, we present here a short review of docking applications to the discovery of inhibitors of SARS-CoV and SARS-CoV-2 target proteins, including our own result of the search for inhibitors of SARS-CoV-2 main protease using docking and quantum chemical post-processing. The conclusion is made that docking is extremely important in the fight against COVID-19 during the process of development of antivirus drugs having a direct action on SARS-CoV-2 target proteins.
Collapse
Affiliation(s)
- Vladimir B Sulimov
- Research Computer Center of Lomonosov Moscow State University, Moscow, Russian Federation
| | - Danil C Kutov
- Research Computer Center of Lomonosov Moscow State University, Moscow, Russian Federation
| | - Anna S Taschilova
- Research Computer Center of Lomonosov Moscow State University, Moscow, Russian Federation
| | - Ivan S Ilin
- Research Computer Center of Lomonosov Moscow State University, Moscow, Russian Federation
| | - Eugene E Tyrtyshnikov
- Institute of Numerical Mathematics of Russian Academy of Sciences, Moscow, Russian Federation
| | - Alexey V Sulimov
- Research Computer Center of Lomonosov Moscow State University, Moscow, Russian Federation
| |
Collapse
|
18
|
Amin SA, Banerjee S, Gayen S, Jha T. Protease targeted COVID-19 drug discovery: What we have learned from the past SARS-CoV inhibitors? Eur J Med Chem 2021; 215:113294. [PMID: 33618158 PMCID: PMC7880840 DOI: 10.1016/j.ejmech.2021.113294] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 02/06/2021] [Accepted: 02/08/2021] [Indexed: 12/25/2022]
Abstract
The fascinating similarity between the SARS-CoV and SARS-CoV-2, inspires scientific community to investigate deeper into the SARS-CoV proteases such as main protease (Mpro) and papain-like protease (PLpro) and their inhibitors for the discovery of SARS-CoV-2 protease inhibitors. Because of the similarity in the proteases of these two corona viruses, there is a greater chance for the previous SARS-CoV Mpro and PLpro inhibitors to provide effective results against SARS-CoV-2. In this context, the molecular fragments from the SARS-CoV protease inhibitors through the fragment-based drug design and discovery technique can be useful guidance for COVID-19 drug discovery. Here, we have focused on the structure-activity relationship studies of previous SARS-CoV protease inhibitors and discussed about crucial fragments generated from previous SARS-CoV protease inhibitors important for the lead optimization of SARS-CoV-2 protease inhibitors. This study surely offers different strategic options of lead optimization to the medicinal chemists to discover effective anti-viral agent against the devastating disease, COVID-19.
Collapse
Affiliation(s)
- Sk Abdul Amin
- Natural Science Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, P. O. Box 17020, Jadavpur University, Kolkata, 700032, India
| | - Suvankar Banerjee
- Natural Science Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, P. O. Box 17020, Jadavpur University, Kolkata, 700032, India
| | - Shovanlal Gayen
- Laboratory of Drug Design and Discovery, Department of Pharmaceutical Sciences, Dr. Harisingh Gour University, Sagar, MP, India.
| | - Tarun Jha
- Natural Science Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, P. O. Box 17020, Jadavpur University, Kolkata, 700032, India.
| |
Collapse
|
19
|
Rizzuti B, Grande F, Conforti F, Jimenez-Alesanco A, Ceballos-Laita L, Ortega-Alarcon D, Vega S, Reyburn HT, Abian O, Velazquez-Campoy A. Rutin Is a Low Micromolar Inhibitor of SARS-CoV-2 Main Protease 3CLpro: Implications for Drug Design of Quercetin Analogs. Biomedicines 2021; 9:biomedicines9040375. [PMID: 33918402 PMCID: PMC8066963 DOI: 10.3390/biomedicines9040375] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 03/25/2021] [Accepted: 03/30/2021] [Indexed: 12/12/2022] Open
Abstract
The pandemic, due to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has stimulated the search for antivirals to tackle COVID-19 infection. Molecules with known pharmacokinetics and already approved for human use have been demonstrated or predicted to be suitable to be used either directly or as a base for a scaffold-based drug design. Among these substances, quercetin is known to be a potent in vitro inhibitor of 3CLpro, the SARS-CoV-2 main protease. However, its low in vivo bioavailability calls for modifications to its molecular structure. In this work, this issue is addressed by using rutin, a natural flavonoid that is the most common glycosylated conjugate of quercetin, as a model. Combining experimental (spectroscopy and calorimetry) and simulation techniques (docking and molecular dynamics simulations), we demonstrate that the sugar adduct does not hamper rutin binding to 3CLpro, and the conjugated compound preserves a high potency (inhibition constant in the low micromolar range, Ki = 11 μM). Although showing a disruption of the pseudo-symmetry in the chemical structure, a larger steric volume and molecular weight, and a higher solubility compared to quercetin, rutin is able to associate in the active site of 3CLpro, interacting with the catalytic dyad (His41/Cys145). The overall results have implications in the drug-design of quercetin analogs, and possibly other antivirals, to target the catalytic site of the SARS-CoV-2 3CLpro.
Collapse
Affiliation(s)
- Bruno Rizzuti
- CNR-NANOTEC, Licryl-UOS Cosenza and CEMIF.Cal, Department of Physics, University of Calabria, 87036 Rende, Italy
- Institute for Biocomputation and Physics of Complex Systems (BIFI), Joint Units IQFR-CSIC-BIFI, and GBsC-CSIC-BIFI, University of Zaragoza, 50018 Zaragoza, Spain; (A.J.-A.); (L.C.-L.); (D.O.-A.); (S.V.)
- Correspondence: (B.R.); (O.A.); (A.V.-C.)
| | - Fedora Grande
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy; (F.G.); (F.C.)
| | - Filomena Conforti
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy; (F.G.); (F.C.)
| | - Ana Jimenez-Alesanco
- Institute for Biocomputation and Physics of Complex Systems (BIFI), Joint Units IQFR-CSIC-BIFI, and GBsC-CSIC-BIFI, University of Zaragoza, 50018 Zaragoza, Spain; (A.J.-A.); (L.C.-L.); (D.O.-A.); (S.V.)
- Departament of Biochemistry and Molecular and Cell Biology, University of Zaragoza, 50009 Zaragoza, Spain
| | - Laura Ceballos-Laita
- Institute for Biocomputation and Physics of Complex Systems (BIFI), Joint Units IQFR-CSIC-BIFI, and GBsC-CSIC-BIFI, University of Zaragoza, 50018 Zaragoza, Spain; (A.J.-A.); (L.C.-L.); (D.O.-A.); (S.V.)
- Institute for Health Research Aragón (IIS Aragon), 50009 Zaragoza, Spain
| | - David Ortega-Alarcon
- Institute for Biocomputation and Physics of Complex Systems (BIFI), Joint Units IQFR-CSIC-BIFI, and GBsC-CSIC-BIFI, University of Zaragoza, 50018 Zaragoza, Spain; (A.J.-A.); (L.C.-L.); (D.O.-A.); (S.V.)
- Departament of Biochemistry and Molecular and Cell Biology, University of Zaragoza, 50009 Zaragoza, Spain
| | - Sonia Vega
- Institute for Biocomputation and Physics of Complex Systems (BIFI), Joint Units IQFR-CSIC-BIFI, and GBsC-CSIC-BIFI, University of Zaragoza, 50018 Zaragoza, Spain; (A.J.-A.); (L.C.-L.); (D.O.-A.); (S.V.)
| | - Hugh T. Reyburn
- Department of Immunology and Oncology, National Centre for Biotechnology (CNB), CSIC, 28049 Madrid, Spain;
| | - Olga Abian
- Institute for Biocomputation and Physics of Complex Systems (BIFI), Joint Units IQFR-CSIC-BIFI, and GBsC-CSIC-BIFI, University of Zaragoza, 50018 Zaragoza, Spain; (A.J.-A.); (L.C.-L.); (D.O.-A.); (S.V.)
- Departament of Biochemistry and Molecular and Cell Biology, University of Zaragoza, 50009 Zaragoza, Spain
- Institute for Health Research Aragón (IIS Aragon), 50009 Zaragoza, Spain
- Aragon Health Sciences Institute (IACS), 50009 Zaragoza, Spain
- Biomedical Research Network Center in Hepatic and Digestive Diseases (CIBERehd), 28029 Madrid, Spain
- Correspondence: (B.R.); (O.A.); (A.V.-C.)
| | - Adrian Velazquez-Campoy
- Institute for Biocomputation and Physics of Complex Systems (BIFI), Joint Units IQFR-CSIC-BIFI, and GBsC-CSIC-BIFI, University of Zaragoza, 50018 Zaragoza, Spain; (A.J.-A.); (L.C.-L.); (D.O.-A.); (S.V.)
- Departament of Biochemistry and Molecular and Cell Biology, University of Zaragoza, 50009 Zaragoza, Spain
- Institute for Health Research Aragón (IIS Aragon), 50009 Zaragoza, Spain
- Biomedical Research Network Center in Hepatic and Digestive Diseases (CIBERehd), 28029 Madrid, Spain
- ARAID Foundation, Government of Aragon, 50018 Zaragoza, Spain
- Correspondence: (B.R.); (O.A.); (A.V.-C.)
| |
Collapse
|
20
|
Identification of novel compounds against three targets of SARS CoV-2 coronavirus by combined virtual screening and supervised machine learning. Comput Biol Med 2021; 133:104359. [PMID: 33845270 PMCID: PMC8008812 DOI: 10.1016/j.compbiomed.2021.104359] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 03/24/2021] [Accepted: 03/24/2021] [Indexed: 12/20/2022]
Abstract
Coronavirus disease 2019 (COVID-19) is a major threat worldwide due to its fast spreading. As yet, there are no established drugs available. Speeding up drug discovery is urgently required. We applied a workflow of combined in silico methods (virtual drug screening, molecular docking and supervised machine learning algorithms) to identify novel drug candidates against COVID-19. We constructed chemical libraries consisting of FDA-approved drugs for drug repositioning and of natural compound datasets from literature mining and the ZINC database to select compounds interacting with SARS-CoV-2 target proteins (spike protein, nucleocapsid protein, and 2′-o-ribose methyltransferase). Supported by the supercomputer MOGON, candidate compounds were predicted as presumable SARS-CoV-2 inhibitors. Interestingly, several approved drugs against hepatitis C virus (HCV), another enveloped (−) ssRNA virus (paritaprevir, simeprevir and velpatasvir) as well as drugs against transmissible diseases, against cancer, or other diseases were identified as candidates against SARS-CoV-2. This result is supported by reports that anti-HCV compounds are also active against Middle East Respiratory Virus Syndrome (MERS) coronavirus. The candidate compounds identified by us may help to speed up the drug development against SARS-CoV-2.
Collapse
|
21
|
Chen Z, Cui Q, Cooper L, Zhang P, Lee H, Chen Z, Wang Y, Liu X, Rong L, Du R. Ginkgolic acid and anacardic acid are specific covalent inhibitors of SARS-CoV-2 cysteine proteases. Cell Biosci 2021; 11:45. [PMID: 33640032 PMCID: PMC7914117 DOI: 10.1186/s13578-021-00564-x] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 02/21/2021] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND In the urgent campaign to develop therapeutics against SARS-CoV-2, natural products have been an important source of new lead compounds. RESULTS We herein identified two natural products, ginkgolic acid and anacardic acid, as inhibitors using a high-throughput screen targeting the SARS-CoV-2 papain-like protease (PLpro). Moreover, our study demonstrated that the two hit compounds are dual inhibitors targeting the SARS-CoV-2 3-chymotrypsin-like protease (3CLpro) in addition to PLpro. A mechanism of action study using enzyme kinetics further characterized the two compounds as irreversible inhibitors against both 3CLpro and PLpro. Significantly, both identified compounds inhibit SARS-CoV-2 replication in vitro at nontoxic concentrations. CONCLUSIONS Our finding provides two novel natural products as promising SARS-CoV-2 antivirals.
Collapse
Affiliation(s)
- Zinuo Chen
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Qinghua Cui
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
- Qingdao Academy of Chinese Medicinal Sciences, Shandong University of Traditional Chinese Medicine, Qingdao, 266122, China
| | - Laura Cooper
- Department of Microbiology and Immunology, College of Medicine, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Pin Zhang
- Chicago BioSolutions Inc, 2242 W Harrison Street, Chicago, Illinois, 60612, United States
| | - Hyun Lee
- Department of Pharmaceutical Sciences, Center for Biomolecular Sciences, College of Pharmacy, Biophysics Core at Research Resources Center, University of Illinois at Chicago, Chicago, IL, 60607, USA
| | - Zhaoyu Chen
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Yanyan Wang
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Xiaoyun Liu
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Lijun Rong
- Department of Microbiology and Immunology, College of Medicine, University of Illinois at Chicago, Chicago, IL, 60612, USA.
| | - Ruikun Du
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China.
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China.
- Qingdao Academy of Chinese Medicinal Sciences, Shandong University of Traditional Chinese Medicine, Qingdao, 266122, China.
| |
Collapse
|
22
|
Chen CC, Yu X, Kuo CJ, Min J, Chen S, Ma L, Liu K, Guo RT. Overview of antiviral drug candidates targeting coronaviral 3C-like main proteases. FEBS J 2021; 288:5089-5121. [PMID: 33400393 DOI: 10.1111/febs.15696] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 12/15/2020] [Accepted: 01/04/2021] [Indexed: 01/18/2023]
Abstract
Coronaviruses (CoVs) are positive single-stranded RNA viruses that cause severe respiratory syndromes in humans, including severe acute respiratory syndrome (SARS) and Middle East respiratory syndrome (MERS). Coronavirus disease 2019 (COVID-19) caused by a novel severe acute respiratory syndrome CoV (SARS-CoV-2) at the end of 2019 became a global pandemic. The 3C-like cysteine protease (3CLpro) processes viral polyproteins to yield mature non-structural proteins, thus playing an important role in the CoV life cycle, and therefore is considered as a prominent target for antiviral drugs. To date, many 3CLpro inhibitors have been reported, and their molecular mechanisms have been illustrated. Here, we briefly introduce the structural features of 3CLpro of the human-related SARS-CoV, MERS-CoV and SARS-CoV-2, and explore the potency and mechanism of their cognate inhibitors. This information will shed light on the development and optimization of CoV 3CLpro inhibitors, which may benefit the further designation of therapeutic strategies for treating CoV diseases.
Collapse
Affiliation(s)
- Chun-Chi Chen
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, China
| | - Xuejing Yu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, China
| | - Chih-Jung Kuo
- Department of Veterinary Medicine, National Chung Hsing University, Taichung, Taiwan
| | - Jian Min
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, China
| | - Sizhuo Chen
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, China
| | - Lixin Ma
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, China
| | - Ke Liu
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, China
| | - Rey-Ting Guo
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, China
| |
Collapse
|
23
|
Konwar M, Sarma D. Advances in developing small molecule SARS 3CL pro inhibitors as potential remedy for corona virus infection. Tetrahedron 2021; 77:131761. [PMID: 33230349 PMCID: PMC7674993 DOI: 10.1016/j.tet.2020.131761] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 10/06/2020] [Accepted: 11/09/2020] [Indexed: 01/08/2023]
Abstract
Originated in China, coronavirus disease 2019 (COVID-19)- the highly contagious and fatal respiratory disease caused by SARS-CoV-2 has already infected more than 29 million people worldwide with a mortality rate of 3.15% (according to World Health Organization's (WHO's) report, September 2020) and the number is exponentially increasing with no remedy whatsoever discovered till date. But it is not the first time this infectious viral disease has appeared, in 2002 SARS-CoV infected more than 8000 individuals of which 9.6% patients died and in 2012 approximately 35% of MERS-CoV infected patients have died. Literature reports indicate that a chymotripsin-like cystein protease (3CLpro) is responsible for the replication of the virus inside the host cell. Therefore, design and synthesis of 3CLpro inhibitor molecules play a great impact in drug development against this COVID-19 pandemic. In this review, we are discussing the anti-SARS effect of some small molecule 3CLpro inhibitors with their various binding modes of interactions to the target protein.
Collapse
Affiliation(s)
- Manashjyoti Konwar
- Department of Chemistry, Dibrugarh University, Dibrugarh, 786004, Assam, India
- Department of Chemistry, Dibru College, Dibrugarh, 786003, Assam, India
| | - Diganta Sarma
- Department of Chemistry, Dibrugarh University, Dibrugarh, 786004, Assam, India
| |
Collapse
|
24
|
Abian O, Ortega-Alarcon D, Jimenez-Alesanco A, Ceballos-Laita L, Vega S, Reyburn HT, Rizzuti B, Velazquez-Campoy A. Structural stability of SARS-CoV-2 3CLpro and identification of quercetin as an inhibitor by experimental screening. Int J Biol Macromol 2020; 164:1693-1703. [PMID: 32745548 PMCID: PMC7395220 DOI: 10.1016/j.ijbiomac.2020.07.235] [Citation(s) in RCA: 172] [Impact Index Per Article: 34.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 07/17/2020] [Accepted: 07/22/2020] [Indexed: 12/19/2022]
Abstract
The global health emergency generated by coronavirus disease 2019 (COVID-19) has prompted the search for preventive and therapeutic treatments for its pathogen, the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). There are many potential targets for drug discovery and development to tackle this disease. One of these targets is the main protease, Mpro or 3CLpro, which is highly conserved among coronaviruses. 3CLpro is an essential player in the viral replication cycle, processing the large viral polyproteins and rendering the individual proteins functional. We report a biophysical characterization of the structural stability and the catalytic activity of 3CLpro from SARS-CoV-2, from which a suitable experimental in vitro molecular screening procedure has been designed. By screening of a small chemical library consisting of about 150 compounds, the natural product quercetin was identified as reasonably potent inhibitor of SARS-CoV-2 3CLpro (Ki ~ 7 μM). Quercetin could be shown to interact with 3CLpro using biophysical techniques and bind to the active site in molecular simulations. Quercetin, with well-known pharmacokinetic and ADMET properties, can be considered as a good candidate for further optimization and development, or repositioned for COVID-19 therapeutic treatment.
Collapse
Affiliation(s)
- Olga Abian
- Instituto Aragonés de Ciencias de la Salud (IACS), 50009 Zaragoza, Spain; Instituto de Investigación Sanitaria de Aragón (IIS Aragon), 50009 Zaragoza, Spain; Centro de Investigación Biomédica en Red en el Área Temática de Enfermedades Hepáticas y Digestivas (CIBERehd), 28029 Madrid, Spain; Institute for Biocomputation and Physics of Complex Systems (BIFI), Joint Units IQFR-CSIC-BIFI, and GBsC-CSIC-BIFI, Universidad de Zaragoza, 50009 Zaragoza, Spain; Departamento de Bioquímica y Biología Molecular y Celular, Universidad de Zaragoza, 50009 Zaragoza, Spain.
| | - David Ortega-Alarcon
- Institute for Biocomputation and Physics of Complex Systems (BIFI), Joint Units IQFR-CSIC-BIFI, and GBsC-CSIC-BIFI, Universidad de Zaragoza, 50009 Zaragoza, Spain; Departamento de Bioquímica y Biología Molecular y Celular, Universidad de Zaragoza, 50009 Zaragoza, Spain
| | - Ana Jimenez-Alesanco
- Institute for Biocomputation and Physics of Complex Systems (BIFI), Joint Units IQFR-CSIC-BIFI, and GBsC-CSIC-BIFI, Universidad de Zaragoza, 50009 Zaragoza, Spain; Departamento de Bioquímica y Biología Molecular y Celular, Universidad de Zaragoza, 50009 Zaragoza, Spain
| | - Laura Ceballos-Laita
- Instituto de Investigación Sanitaria de Aragón (IIS Aragon), 50009 Zaragoza, Spain; Institute for Biocomputation and Physics of Complex Systems (BIFI), Joint Units IQFR-CSIC-BIFI, and GBsC-CSIC-BIFI, Universidad de Zaragoza, 50009 Zaragoza, Spain
| | - Sonia Vega
- Institute for Biocomputation and Physics of Complex Systems (BIFI), Joint Units IQFR-CSIC-BIFI, and GBsC-CSIC-BIFI, Universidad de Zaragoza, 50009 Zaragoza, Spain
| | - Hugh T Reyburn
- Department of Immunology and Oncology, National Centre for Biotechnology (CNB), CSIC, 28049 Madrid, Spain
| | - Bruno Rizzuti
- CNR-NANOTEC, Licryl-UOS Cosenza and CEMIF.Cal, Department of Physics, University of Calabria, 87036 Rende, Italy
| | - Adrian Velazquez-Campoy
- Instituto de Investigación Sanitaria de Aragón (IIS Aragon), 50009 Zaragoza, Spain; Centro de Investigación Biomédica en Red en el Área Temática de Enfermedades Hepáticas y Digestivas (CIBERehd), 28029 Madrid, Spain; Institute for Biocomputation and Physics of Complex Systems (BIFI), Joint Units IQFR-CSIC-BIFI, and GBsC-CSIC-BIFI, Universidad de Zaragoza, 50009 Zaragoza, Spain; Departamento de Bioquímica y Biología Molecular y Celular, Universidad de Zaragoza, 50009 Zaragoza, Spain; Fundación ARAID, Gobierno de Aragón, 50018 Zaragoza, Spain.
| |
Collapse
|
25
|
Silva LR, da Silva Santos-Júnior PF, de Andrade Brandão J, Anderson L, Bassi ÊJ, Xavier de Araújo-Júnior J, Cardoso SH, da Silva-Júnior EF. Druggable targets from coronaviruses for designing new antiviral drugs. Bioorg Med Chem 2020; 28:115745. [PMID: 33007557 PMCID: PMC7836322 DOI: 10.1016/j.bmc.2020.115745] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 08/26/2020] [Accepted: 08/29/2020] [Indexed: 01/18/2023]
Abstract
Severe respiratory infections were highlighted in the SARS-CoV outbreak in 2002, as well as MERS-CoV, in 2012. Recently, the novel CoV (COVID-19) has led to severe respiratory damage to humans and deaths in Asia, Europe, and Americas, which allowed the WHO to declare the pandemic state. Notwithstanding all impacts caused by Coronaviruses, it is evident that the development of new antiviral agents is an unmet need. In this review, we provide a complete compilation of all potential antiviral agents targeting macromolecular structures from these Coronaviruses (Coronaviridae), providing a medicinal chemistry viewpoint that could be useful for designing new therapeutic agents.
Collapse
Affiliation(s)
- Leandro Rocha Silva
- Chemistry and Biotechnology Institute, Federal University of Alagoas, Campus A.C. Simões, Lourival Melo Mota Avenue, Maceió 57072-970, Brazil; Laboratory of Organic and Medicinal Synthesis, Federal University of Alagoas, Campus Arapiraca, Manoel Severino Barbosa Avenue, Arapiraca 57309-005, Brazil
| | | | - Júlia de Andrade Brandão
- IMUNOREG - Immunoregulation Research Group, Laboratory of Research in Virology and Immunology, Institute of Biological Sciences and Health, Federal University of Alagoas, Campus AC. Simões, Lourival Melo Mota Avenue, Maceió 57072-970, Brazil
| | - Letícia Anderson
- IMUNOREG - Immunoregulation Research Group, Laboratory of Research in Virology and Immunology, Institute of Biological Sciences and Health, Federal University of Alagoas, Campus AC. Simões, Lourival Melo Mota Avenue, Maceió 57072-970, Brazil; CESMAC University Center, Cônego Machado Street, Maceió 57051-160, Brazil
| | - Ênio José Bassi
- IMUNOREG - Immunoregulation Research Group, Laboratory of Research in Virology and Immunology, Institute of Biological Sciences and Health, Federal University of Alagoas, Campus AC. Simões, Lourival Melo Mota Avenue, Maceió 57072-970, Brazil
| | - João Xavier de Araújo-Júnior
- Chemistry and Biotechnology Institute, Federal University of Alagoas, Campus A.C. Simões, Lourival Melo Mota Avenue, Maceió 57072-970, Brazil; Laboratory of Medicinal Chemistry, Pharmaceutical Sciences Institute, Federal University of Alagoas, Campus A.C. Simões, Lourival Melo Mota Avenue, Maceió 57072-970, Brazil
| | - Sílvia Helena Cardoso
- Laboratory of Organic and Medicinal Synthesis, Federal University of Alagoas, Campus Arapiraca, Manoel Severino Barbosa Avenue, Arapiraca 57309-005, Brazil
| | - Edeildo Ferreira da Silva-Júnior
- Chemistry and Biotechnology Institute, Federal University of Alagoas, Campus A.C. Simões, Lourival Melo Mota Avenue, Maceió 57072-970, Brazil; Laboratory of Medicinal Chemistry, Pharmaceutical Sciences Institute, Federal University of Alagoas, Campus A.C. Simões, Lourival Melo Mota Avenue, Maceió 57072-970, Brazil.
| |
Collapse
|
26
|
Akaji K, Konno H. Design and Evaluation of Anti-SARS-Coronavirus Agents Based on Molecular Interactions with the Viral Protease. Molecules 2020; 25:molecules25173920. [PMID: 32867349 PMCID: PMC7504761 DOI: 10.3390/molecules25173920] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 08/14/2020] [Accepted: 08/21/2020] [Indexed: 11/16/2022] Open
Abstract
Three types of new coronaviruses (CoVs) have been identified recently as the causative viruses for the severe pneumonia-like respiratory illnesses, severe acute respiratory syndrome (SARS), Middle East respiratory syndrome (MERS), and corona-virus disease 2019 (COVID-19). Neither therapeutic agents nor vaccines have been developed to date, which is a major drawback in controlling the present global pandemic of COVID-19 caused by SARS coronavirus 2 (SARS-CoV-2) and has resulted in more than 20,439,814 cases and 744,385 deaths. Each of the 3C-like (3CL) proteases of the three CoVs is essential for the proliferation of the CoVs, and an inhibitor of the 3CL protease (3CLpro) is thought to be an ideal therapeutic agent against SARS, MERS, or COVID-19. Among these, SARS-CoV is the first corona-virus isolated and has been studied in detail since the first pandemic in 2003. This article briefly reviews a series of studies on SARS-CoV, focusing on the development of inhibitors for the SARS-CoV 3CLpro based on molecular interactions with the 3CL protease. Our recent approach, based on the structure-based rational design of a novel scaffold for SARS-CoV 3CLpro inhibitor, is also included. The achievements summarized in this short review would be useful for the design of a variety of novel inhibitors for corona-viruses, including SARS-CoV-2.
Collapse
Affiliation(s)
- Kenichi Akaji
- Department of Medicinal Chemistry, Kyoto Pharmaceutical University, Yamashina, Kyoto 607-8414, Japan
- Hamari Chemicals, Ltd., Suminoe-ku, Osaka 559-0034, Japan
- Correspondence:
| | - Hiroyuki Konno
- Chemical Engineering and Biochemical Engineering, Yamagata University, Yonezawa, Yamagata 992-8510, Japan;
| |
Collapse
|
27
|
Ton A, Gentile F, Hsing M, Ban F, Cherkasov A. Rapid Identification of Potential Inhibitors of SARS-CoV-2 Main Protease by Deep Docking of 1.3 Billion Compounds. Mol Inform 2020; 39:e2000028. [PMID: 32162456 PMCID: PMC7228259 DOI: 10.1002/minf.202000028] [Citation(s) in RCA: 341] [Impact Index Per Article: 68.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Accepted: 03/11/2020] [Indexed: 12/03/2022]
Abstract
The recently emerged 2019 Novel Coronavirus (SARS-CoV-2) and associated COVID-19 disease cause serious or even fatal respiratory tract infection and yet no approved therapeutics or effective treatment is currently available to effectively combat the outbreak. This urgent situation is pressing the world to respond with the development of novel vaccine or a small molecule therapeutics for SARS-CoV-2. Along these efforts, the structure of SARS-CoV-2 main protease (Mpro) has been rapidly resolved and made publicly available to facilitate global efforts to develop novel drug candidates. Recently, our group has developed a novel deep learning platform - Deep Docking (DD) which provides fast prediction of docking scores of Glide (or any other docking program) and, hence, enables structure-based virtual screening of billions of purchasable molecules in a short time. In the current study we applied DD to all 1.3 billion compounds from ZINC15 library to identify top 1,000 potential ligands for SARS-CoV-2 Mpro protein. The compounds are made publicly available for further characterization and development by scientific community.
Collapse
Affiliation(s)
- Anh‐Tien Ton
- Vancouver Prostate CentreUniversity of British Columbia2660 Oak StreetVancouver, BCV6H 3Z6Canada
| | - Francesco Gentile
- Vancouver Prostate CentreUniversity of British Columbia2660 Oak StreetVancouver, BCV6H 3Z6Canada
| | - Michael Hsing
- Vancouver Prostate CentreUniversity of British Columbia2660 Oak StreetVancouver, BCV6H 3Z6Canada
| | - Fuqiang Ban
- Vancouver Prostate CentreUniversity of British Columbia2660 Oak StreetVancouver, BCV6H 3Z6Canada
| | - Artem Cherkasov
- Vancouver Prostate CentreUniversity of British Columbia2660 Oak StreetVancouver, BCV6H 3Z6Canada
| |
Collapse
|
28
|
Hosseini-Zare MS, Thilagavathi R, Selvam C. Targeting severe acute respiratory syndrome-coronavirus (SARS-CoV-1) with structurally diverse inhibitors: a comprehensive review. RSC Adv 2020; 10:28287-28299. [PMID: 35519094 PMCID: PMC9055768 DOI: 10.1039/d0ra04395h] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Accepted: 07/13/2020] [Indexed: 12/13/2022] Open
Abstract
Coronaviruses, which were discovered in 1968, can lead to some human viral disorders, like severe acute respiratory syndrome (SARS), Middle East respiratory syndrome-related (MERS), and, recently, coronavirus disease 2019 (COVID-19). The coronavirus that leads to COVID-19 is rapidly spreading all over the world and is the reason for the deaths of thousands of people. Recent research has revealed that there is about 80% sequence homology between the coronaviruses that cause SARS and COVID-19. Considering this fact, we decided to collect the maximum available information on targets, structures, and inhibitors reported so far for SARS-CoV-1 that could be useful for researchers who work on closely related COVID-19. There are vital proteases, like papain-like protease 2 (PL2pro) and 3C-like protease (3CLpro), or main protease (Mpro), that are involved in and are essential for the replication of SARS coronavirus and so are valuable targets for the treatment of patients affected by this type of virus. SARS-CoV-1 NTPase/helicase plays an important role in the release of several non-structural proteins (nsps), so it is another essential target relating to the viral life cycle. In this paper, we provide extensive information about diverse molecules with anti-SARS activity. In addition to traditional medicinal chemistry outcomes, HTS, virtual screening efforts, and structural insights for better understanding inhibitors and SARS-CoV-1 target complexes are also discussed. This study covers a wide range of anti-SARS agents, particularly SARS-CoV-1 inhibitors, and provides new insights into drug design for the deadly SARS-CoV-2 virus.
Collapse
Affiliation(s)
- Maryam S Hosseini-Zare
- Department of Pharmaceutical and Environmental Health Sciences, College of Pharmacy and Health Sciences, Texas Southern University Houston TX-77004 USA +1-713-313-7552
| | - Ramasamy Thilagavathi
- Department of Biotechnology, Faculty of Engineering, Karpagam Academy of Higher Education Coimbatore India
| | - Chelliah Selvam
- Department of Pharmaceutical and Environmental Health Sciences, College of Pharmacy and Health Sciences, Texas Southern University Houston TX-77004 USA +1-713-313-7552
| |
Collapse
|
29
|
Wang Y, Anirudhan V, Du R, Cui Q, Rong L. RNA-dependent RNA polymerase of SARS-CoV-2 as a therapeutic target. J Med Virol 2020; 93:300-310. [PMID: 32633831 DOI: 10.1002/jmv.26264] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 06/30/2020] [Accepted: 07/02/2020] [Indexed: 12/23/2022]
Abstract
The global pandemic caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), named coronavirus disease 2019, has infected more than 8.9 million people worldwide. This calls for urgent effective therapeutic measures. RNA-dependent RNA polymerase (RdRp) activity in viral transcription and replication has been recognized as an attractive target to design novel antiviral strategies. Although SARS-CoV-2 shares less genetic similarity with SARS-CoV (~79%) and Middle East respiratory syndrome coronavirus (~50%), the respective RdRps of the three coronaviruses are highly conserved, suggesting that RdRp is a good broad-spectrum antiviral target for coronaviruses. In this review, we discuss the antiviral potential of RdRp inhibitors (mainly nucleoside analogs) with an aim to provide a comprehensive account of drug discovery on SARS-CoV-2.
Collapse
Affiliation(s)
- Yanyan Wang
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Varada Anirudhan
- Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago, Illinois
| | - Ruikun Du
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China.,Shandong Provincial Collaborative Innovation Center for Antiviral Traditional Chinese Medicine, Jinan, China.,Qingdao Academy of Chinese Medicinal Sciences, Shandong University of Traditional Chinese Medicine, Qingdao, China
| | - Qinghua Cui
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China.,Shandong Provincial Collaborative Innovation Center for Antiviral Traditional Chinese Medicine, Jinan, China.,Qingdao Academy of Chinese Medicinal Sciences, Shandong University of Traditional Chinese Medicine, Qingdao, China
| | - Lijun Rong
- Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago, Illinois
| |
Collapse
|
30
|
Santibáñez-Morán MG, López-López E, Prieto-Martínez FD, Sánchez-Cruz N, Medina-Franco JL. Consensus virtual screening of dark chemical matter and food chemicals uncover potential inhibitors of SARS-CoV-2 main protease. RSC Adv 2020; 10:25089-25099. [PMID: 35517466 PMCID: PMC9055157 DOI: 10.1039/d0ra04922k] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 06/23/2020] [Indexed: 12/15/2022] Open
Abstract
The pandemic caused by SARS-CoV-2 (COVID-19 disease) has claimed more than 500 000 lives worldwide, and more than nine million people are infected. Unfortunately, an effective drug or vaccine for its treatment is yet to be found. The increasing information available on critical molecular targets of SARS-CoV-2 and active compounds against related coronaviruses facilitates the proposal (or repurposing) of drug candidates for the treatment of COVID-19, with the aid of in silico methods. As part of a global effort to fight the COVID-19 pandemic, herein we report a consensus virtual screening of extensive collections of food chemicals and compounds known as dark chemical matter. The rationale is to contribute to global efforts with a description of currently underexplored chemical space regions. The consensus approach included combining similarity searching with various queries and fingerprints, molecular docking with two docking protocols, and ADMETox profiling. We propose compounds commercially available for experimental testing. The full list of virtual screening hits is disclosed.
Collapse
Affiliation(s)
- Marisa G Santibáñez-Morán
- DIFACQUIM Research Group, Department of Pharmacy, School of Chemistry, Universidad Nacional Autónoma de México Mexico City Mexico +52 (55) 5622-3899, ext. 44458
| | - Edgar López-López
- Department of Pharmacology, Center of Research and Advanced Studies of the National Polytechnic Institute (CINVESTAV) Mexico City Mexico
| | - Fernando D Prieto-Martínez
- DIFACQUIM Research Group, Department of Pharmacy, School of Chemistry, Universidad Nacional Autónoma de México Mexico City Mexico +52 (55) 5622-3899, ext. 44458
| | - Norberto Sánchez-Cruz
- DIFACQUIM Research Group, Department of Pharmacy, School of Chemistry, Universidad Nacional Autónoma de México Mexico City Mexico +52 (55) 5622-3899, ext. 44458
| | - José L Medina-Franco
- DIFACQUIM Research Group, Department of Pharmacy, School of Chemistry, Universidad Nacional Autónoma de México Mexico City Mexico +52 (55) 5622-3899, ext. 44458
| |
Collapse
|
31
|
Ghosh AK, Brindisi M, Shahabi D, Chapman ME, Mesecar AD. Drug Development and Medicinal Chemistry Efforts toward SARS-Coronavirus and Covid-19 Therapeutics. ChemMedChem 2020; 15:907-932. [PMID: 32324951 PMCID: PMC7264561 DOI: 10.1002/cmdc.202000223] [Citation(s) in RCA: 203] [Impact Index Per Article: 40.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Indexed: 12/13/2022]
Abstract
The COVID-19 pandemic caused by SARS-CoV-2 infection is spreading at an alarming rate and has created an unprecedented health emergency around the globe. There is no effective vaccine or approved drug treatment against COVID-19 and other pathogenic coronaviruses. The development of antiviral agents is an urgent priority. Biochemical events critical to the coronavirus replication cycle provided a number of attractive targets for drug development. These include, spike protein for binding to host cell-surface receptors, proteolytic enzymes that are essential for processing polyproteins into mature viruses, and RNA-dependent RNA polymerase for RNA replication. There has been a lot of ground work for drug discovery and development against these targets. Also, high-throughput screening efforts have led to the identification of diverse lead structures, including natural product-derived molecules. This review highlights past and present drug discovery and medicinal-chemistry approaches against SARS-CoV, MERS-CoV and COVID-19 targets. The review hopes to stimulate further research and will be a useful guide to the development of effective therapies against COVID-19 and other pathogenic coronaviruses.
Collapse
Affiliation(s)
- Arun K. Ghosh
- Department of ChemistryPurdue UniversityWest LafayetteIN 47907USA
- Department of Medicinal Chemistry and Molecular PharmacolgyPurdue UniversityWest LafayetteIN 47907USA
| | - Margherita Brindisi
- Department of ChemistryPurdue UniversityWest LafayetteIN 47907USA
- Department of Excellence of PharmacyUniversity of Naples Federico II80131NaplesItaly
| | - Dana Shahabi
- Department of ChemistryPurdue UniversityWest LafayetteIN 47907USA
| | | | - Andrew D. Mesecar
- Department of ChemistryPurdue UniversityWest LafayetteIN 47907USA
- Department of BiochemistryPurdue UniversityWest LafayetteIN 47907USA
- Department of Biological SciencesPurdue UniversityWest LafayetteIN 47907USA
| |
Collapse
|
32
|
Gasmi A, Noor S, Tippairote T, Dadar M, Menzel A, Bjørklund G. Individual risk management strategy and potential therapeutic options for the COVID-19 pandemic. Clin Immunol 2020; 215:108409. [PMID: 32276137 PMCID: PMC7139252 DOI: 10.1016/j.clim.2020.108409] [Citation(s) in RCA: 163] [Impact Index Per Article: 32.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 04/04/2020] [Accepted: 04/04/2020] [Indexed: 02/07/2023]
Abstract
It is an ugly fact that a significant amount of the world's population will contract SARS-CoV-II infection with the current spreading. While a specific treatment is not yet coming soon, individual risk assessment and management strategies are crucial. The individual preventive and protective measures drive the personal risk of getting the disease. Among the virus-contracted hosts, their different metabolic status, as determined by their diet, nutrition, age, sex, medical conditions, lifestyle, and environmental factors, govern the personal fate toward different clinical severity of COVID-19, from asymptomatic, mild, moderate, to death. The careful individual assessment for the possible dietary, nutritional, medical, lifestyle, and environmental risks, together with the proper relevant risk management strategies, is the sensible way to deal with the pandemic of SARS-CoV-II.
Collapse
Affiliation(s)
- Amin Gasmi
- Société Francophone de Nutrithérapie et de Nutrigénétique Appliquée, Villeurbanne, France
| | - Sadaf Noor
- Institute of Molecular Biology and Biotechnology, Bahauddin Zakariya University Multan, Pakistan
| | - Torsak Tippairote
- Nutritional and Environmental Medicine Department, BBH Hospital, Bangkok, Thailand; Faculty of Medicine, Ramathibodi Hospital and Institute of Nutrition, Mahidol University, Bangkok, Thailand
| | - Maryam Dadar
- Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| | | | - Geir Bjørklund
- Council for Nutritional and Environmental Medicine (CONEM), Mo i Rana, Norway.
| |
Collapse
|
33
|
Rumlová M, Ruml T. In vitro methods for testing antiviral drugs. Biotechnol Adv 2018; 36:557-576. [PMID: 29292156 PMCID: PMC7127693 DOI: 10.1016/j.biotechadv.2017.12.016] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 12/22/2017] [Accepted: 12/27/2017] [Indexed: 12/24/2022]
Abstract
Despite successful vaccination programs and effective treatments for some viral infections, humans are still losing the battle with viruses. Persisting human pandemics, emerging and re-emerging viruses, and evolution of drug-resistant strains impose continuous search for new antiviral drugs. A combination of detailed information about the molecular organization of viruses and progress in molecular biology and computer technologies has enabled rational antivirals design. Initial step in establishing efficacy of new antivirals is based on simple methods assessing inhibition of the intended target. We provide here an overview of biochemical and cell-based assays evaluating the activity of inhibitors of clinically important viruses.
Collapse
Affiliation(s)
- Michaela Rumlová
- Department of Biotechnology, University of Chemistry and Technology, Prague 166 28, Czech Republic.
| | - Tomáš Ruml
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Prague 166 28, Czech Republic.
| |
Collapse
|
34
|
Liu X, Shi D, Zhou S, Liu H, Liu H, Yao X. Molecular dynamics simulations and novel drug discovery. Expert Opin Drug Discov 2017; 13:23-37. [DOI: 10.1080/17460441.2018.1403419] [Citation(s) in RCA: 129] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Xuewei Liu
- State Key Laboratory of Applied Organic Chemistry and Department of Chemistry, Lanzhou University, Lanzhou, China
| | - Danfeng Shi
- State Key Laboratory of Applied Organic Chemistry and Department of Chemistry, Lanzhou University, Lanzhou, China
| | | | - Hongli Liu
- School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Huanxiang Liu
- School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Xiaojun Yao
- State Key Laboratory of Applied Organic Chemistry and Department of Chemistry, Lanzhou University, Lanzhou, China
| |
Collapse
|
35
|
Clasman JR, Báez-Santos YM, Mettelman RC, O’Brien A, Baker SC, Mesecar AD. X-ray Structure and Enzymatic Activity Profile of a Core Papain-like Protease of MERS Coronavirus with utility for structure-based drug design. Sci Rep 2017; 7:40292. [PMID: 28079137 PMCID: PMC5228125 DOI: 10.1038/srep40292] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 12/05/2016] [Indexed: 12/22/2022] Open
Abstract
Ubiquitin-like domain 2 (Ubl2) is immediately adjacent to the N-terminus of the papain-like protease (PLpro) domain in coronavirus polyproteins, and it may play a critical role in protease regulation and stability as well as in viral infection. However, our recent cellular studies reveal that removing the Ubl2 domain from MERS PLpro has no effect on its ability to process the viral polyprotein or act as an interferon antagonist, which involves deubiquitinating and deISGylating cellular proteins. Here, we test the hypothesis that the Ubl2 domain is not required for the catalytic function of MERS PLpro in vitro. The X-ray structure of MERS PLpro-∆Ubl2 was determined to 1.9 Å and compared to PLpro containing the N-terminal Ubl2 domain. While the structures were nearly identical, the PLpro-∆Ubl2 enzyme revealed the intact structure of the substrate-binding loop. Moreover, PLpro-∆Ubl2 catalysis against different substrates and a purported inhibitor revealed no differences in catalytic efficiency, substrate specificity, and inhibition. Further, no changes in thermal stability were observed between enzymes. We conclude that the catalytic core of MERS PLpro, i.e. without the Ubl2 domain, is sufficient for catalysis and stability in vitro with utility to evaluate potential inhibitors as a platform for structure-based drug design.
Collapse
Affiliation(s)
- Jozlyn R. Clasman
- Department of Biological Sciences, Purdue University, West Lafayette, IN, USA
| | | | - Robert C. Mettelman
- Department of Microbiology and Immunology, Loyola University Chicago, Stritch School of Medicine, Maywood, IL, USA
| | - Amornrat O’Brien
- Department of Microbiology and Immunology, Loyola University Chicago, Stritch School of Medicine, Maywood, IL, USA
| | - Susan C. Baker
- Department of Microbiology and Immunology, Loyola University Chicago, Stritch School of Medicine, Maywood, IL, USA
| | - Andrew D. Mesecar
- Department of Biological Sciences, Purdue University, West Lafayette, IN, USA
- Department of Biochemistry, Purdue University, West Lafayette, IN, USA
- Center for Cancer Research, Purdue University, West Lafayette, IN, USA
| |
Collapse
|
36
|
Teruya K, Hattori Y, Shimamoto Y, Kobayashi K, Sanjoh A, Nakagawa A, Yamashita E, Akaji K. Structural basis for the development of SARS 3CL protease inhibitors from a peptide mimic to an aza-decaline scaffold. Biopolymers 2016; 106:391-403. [PMID: 26572934 PMCID: PMC7159131 DOI: 10.1002/bip.22773] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 10/22/2015] [Accepted: 11/02/2015] [Indexed: 02/03/2023]
Abstract
Design of inhibitors against severe acute respiratory syndrome (SARS) chymotrypsin-like protease (3CL(pro) ) is a potentially important approach to fight against SARS. We have developed several synthetic inhibitors by structure-based drug design. In this report, we reveal two crystal structures of SARS 3CL(pro) complexed with two new inhibitors based on our previous work. These structures combined with six crystal structures complexed with a series of related ligands reported by us are collectively analyzed. To these eight complexes, the structural basis for inhibitor binding was analyzed by the COMBINE method, which is a chemometrical analysis optimized for the protein-ligand complex. The analysis revealed that the first two latent variables gave a cumulative contribution ratio of r(2) = 0.971. Interestingly, scores using the second latent variables for each complex were strongly correlated with root mean square deviations (RMSDs) of side-chain heavy atoms of Met(49) from those of the intact crystal structure of SARS-3CL(pro) (r = 0.77) enlarging the S2 pocket. The substantial contribution of this side chain (∼10%) for the explanation of pIC50 s was dependent on stereochemistry and the chemical structure of the ligand adapted to the S2 pocket of the protease. Thus, starting from a substrate mimic inhibitor, a design for a central scaffold for a low molecular weight inhibitor was evaluated to develop a further potent inhibitor. © 2015 Wiley Periodicals, Inc. Biopolymers (Pept Sci) 106: 391-403, 2016.
Collapse
Affiliation(s)
- Kenta Teruya
- Department of NeurochemistryTohoku University Graduate School of MedicineAoba‐Ku Sendai980‐8575Japan
| | - Yasunao Hattori
- Department of Medicinal ChemistryKyoto Pharmaceutical UniversityYamashina‐KuKyoto607‐8412Japan
| | - Yasuhiro Shimamoto
- Department of Medicinal ChemistryKyoto Pharmaceutical UniversityYamashina‐KuKyoto607‐8412Japan
| | - Kazuya Kobayashi
- Department of Medicinal ChemistryKyoto Pharmaceutical UniversityYamashina‐KuKyoto607‐8412Japan
| | | | - Atsushi Nakagawa
- Institute for Protein Research, Osaka UniversitySuitaOsaka565‐0871Japan
| | - Eiki Yamashita
- Institute for Protein Research, Osaka UniversitySuitaOsaka565‐0871Japan
| | - Kenichi Akaji
- Department of Medicinal ChemistryKyoto Pharmaceutical UniversityYamashina‐KuKyoto607‐8412Japan
| |
Collapse
|
37
|
Pillaiyar T, Manickam M, Namasivayam V, Hayashi Y, Jung SH. An Overview of Severe Acute Respiratory Syndrome-Coronavirus (SARS-CoV) 3CL Protease Inhibitors: Peptidomimetics and Small Molecule Chemotherapy. J Med Chem 2016; 59:6595-628. [PMID: 26878082 PMCID: PMC7075650 DOI: 10.1021/acs.jmedchem.5b01461] [Citation(s) in RCA: 539] [Impact Index Per Article: 59.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2015] [Indexed: 01/17/2023]
Abstract
Severe acute respiratory syndrome (SARS) is caused by a newly emerged coronavirus that infected more than 8000 individuals and resulted in more than 800 (10-15%) fatalities in 2003. The causative agent of SARS has been identified as a novel human coronavirus (SARS-CoV), and its viral protease, SARS-CoV 3CL(pro), has been shown to be essential for replication and has hence been recognized as a potent drug target for SARS infection. Currently, there is no effective treatment for this epidemic despite the intensive research that has been undertaken since 2003 (over 3500 publications). This perspective focuses on the status of various efficacious anti-SARS-CoV 3CL(pro) chemotherapies discovered during the last 12 years (2003-2015) from all sources, including laboratory synthetic methods, natural products, and virtual screening. We describe here mainly peptidomimetic and small molecule inhibitors of SARS-CoV 3CL(pro). Attempts have been made to provide a complete description of the structural features and binding modes of these inhibitors under many conditions.
Collapse
Affiliation(s)
- Thanigaimalai Pillaiyar
- Pharmaceutical
Institute, Pharmaceutical Chemistry I, University
of Bonn, An der Immenburg
4, D-53121 Bonn, Germany
| | - Manoj Manickam
- College
of Pharmacy and Institute of Drug Research and Development, Chungnam National University, Daejeon 34134, South Korea
| | - Vigneshwaran Namasivayam
- Pharmaceutical
Institute, Pharmaceutical Chemistry I, University
of Bonn, An der Immenburg
4, D-53121 Bonn, Germany
| | - Yoshio Hayashi
- Department
of Medicinal Chemistry, Tokyo University
of Pharmacy and Life Sciences, Tokyo 192-0392, Japan
| | - Sang-Hun Jung
- College
of Pharmacy and Institute of Drug Research and Development, Chungnam National University, Daejeon 34134, South Korea
| |
Collapse
|
38
|
Abstract
It is now plausible to dock libraries of 10 million molecules against targets over several days or weeks. When the molecules screened are commercially available, they may be rapidly tested to find new leads. Although docking retains important liabilities (it cannot calculate affinities accurately nor even reliably rank order high-scoring molecules), it can often can distinguish likely from unlikely ligands, often with hit rates above 10%. Here we summarize the improvements in libraries, target quality, and methods that have supported these advances, and the open access resources that make docking accessible. Recent docking screens for new ligands are sketched, as are the binding, crystallographic, and in vivo assays that support them. Like any technique, controls are crucial, and key experimental ones are reviewed. With such controls, docking campaigns can find ligands with new chemotypes, often revealing the new biology that may be docking's greatest impact over the next few years.
Collapse
Affiliation(s)
- John J Irwin
- Department of Pharmaceutical Chemistry and QB3 Institute, University of California-San Francisco , San Francisco, California 94158, United States
| | - Brian K Shoichet
- Department of Pharmaceutical Chemistry and QB3 Institute, University of California-San Francisco , San Francisco, California 94158, United States
| |
Collapse
|
39
|
Integrating biophysics with HTS-driven drug discovery projects. Drug Discov Today 2016; 21:491-8. [PMID: 26826422 DOI: 10.1016/j.drudis.2016.01.011] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Revised: 01/04/2016] [Accepted: 01/20/2016] [Indexed: 12/13/2022]
Abstract
Over the past decade biophysics has become an established discipline in HTS hit triaging, owing to its high fidelity in detecting protein-ligand interactions. Many pharma companies are using biophysical techniques to filter HTS output for false positives, as will be discussed in this review. Moreover, I will demonstrate how the earlier application of biophysics, already at the HTS assay development stage, is potentially even more impactful. Two key areas here are early mode-of-action studies and ensuring that the HTS assay and subsequent cascade are fit for purpose. Top-level results from 20 in-house projects are shown to underpin the impact of these studies.
Collapse
|
40
|
Klumpp M. Non-stoichiometric inhibition in integrated lead finding - a literature review. Expert Opin Drug Discov 2015; 11:149-62. [PMID: 26653534 DOI: 10.1517/17460441.2016.1128892] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
INTRODUCTION Non-stoichiometric inhibition summarizes different mechanisms by which low-molecular weight compounds can reproducibly inhibit high-throughput screening (HTS) and other lead finding assays without binding to a structurally defined site on their molecular target. This disqualifies such molecules from optimization by medicinal chemistry, and therefore their rapid elimination from screening hit lists is essential for productive and effective drug discovery. AREAS COVERED This review covers recent literature that either investigates the various mechanisms behind non-stoichiometric inhibition or suggests assays and readouts to identify them. In addition, combination of the various methods to distill promising molecules out of raw primary hit lists step-by-step is considered. Emerging technologies to demonstrate target engagement in cells are also discussed. EXPERT OPINION Over the last few years, awareness of non-stoichiometric inhibitors within screening libraries and HTS hit lists has considerably increased, not only in the pharmaceutical industry but also in the academic drug discovery community. This has resulted in a variety of methods to detect and handle such compounds. These range from in silico approaches to flag suspicious compounds, and counterassays to measure non-stoichiometric inhibition, to biophysical methods that positively demonstrate stoichiometric binding. In addition, novel technologies to verify target engagement within cells are becoming available. While still a time- and resource-consuming nuisance, non-stoichiometric inhibitors therefore do not fundamentally jeopardize the discovery of low molecular weight lead and drug candidates. Rather, they should be viewed as a manageable issue that with appropriate expertise can be overcome through integration of the above-mentioned approaches.
Collapse
Affiliation(s)
- Martin Klumpp
- a Novartis Institute of Biomedical Research Basel, Novartis Pharma AG , Basel , Switzerland
| |
Collapse
|
41
|
Lee H, Lei H, Santarsiero BD, Gatuz JL, Cao S, Rice AJ, Patel K, Szypulinski MZ, Ojeda I, Ghosh AK, Johnson ME. Inhibitor recognition specificity of MERS-CoV papain-like protease may differ from that of SARS-CoV. ACS Chem Biol 2015; 10:1456-65. [PMID: 25746232 PMCID: PMC4845099 DOI: 10.1021/cb500917m] [Citation(s) in RCA: 94] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The Middle East Respiratory Syndrome coronavirus (MERS-CoV) papain-like protease (PLpro) blocking loop 2 (BL2) structure differs significantly from that of SARS-CoV PLpro, where it has been proven to play a crucial role in SARS-CoV PLpro inhibitor binding. Four SARS-CoV PLpro lead inhibitors were tested against MERS-CoV PLpro, none of which were effective against MERS-CoV PLpro. Structure and sequence alignments revealed that two residues, Y269 and Q270, responsible for inhibitor binding to SARS-CoV PLpro, were replaced by T274 and A275 in MERS-CoV PLpro, making critical binding interactions difficult to form for similar types of inhibitors. High-throughput screening (HTS) of 25 000 compounds against both PLpro enzymes identified a small fragment-like noncovalent dual inhibitor. Mode of inhibition studies by enzyme kinetics and competition surface plasmon resonance (SPR) analyses suggested that this compound acts as a competitive inhibitor with an IC50 of 6 μM against MERS-CoV PLpro, indicating that it binds to the active site, whereas it acts as an allosteric inhibitor against SARS-CoV PLpro with an IC50 of 11 μM. These results raised the possibility that inhibitor recognition specificity of MERS-CoV PLpro may differ from that of SARS-CoV PLpro. In addition, inhibitory activity of this compound was selective for SARS-CoV and MERS-CoV PLpro enzymes over two human homologues, the ubiquitin C-terminal hydrolases 1 and 3 (hUCH-L1 and hUCH-L3).
Collapse
Affiliation(s)
- Hyun Lee
- Center for Pharmaceutical Biotechnology and Department of Medicinal Chemistry and Pharmacognosy, University of Illinois at Chicago, 900 S. Ashland, Chicago, Illinois 60607, United States
| | - Hao Lei
- Center for Pharmaceutical Biotechnology and Department of Medicinal Chemistry and Pharmacognosy, University of Illinois at Chicago, 900 S. Ashland, Chicago, Illinois 60607, United States
| | - Bernard D. Santarsiero
- Center for Pharmaceutical Biotechnology and Department of Medicinal Chemistry and Pharmacognosy, University of Illinois at Chicago, 900 S. Ashland, Chicago, Illinois 60607, United States
| | - Joseph L. Gatuz
- Center for Pharmaceutical Biotechnology and Department of Medicinal Chemistry and Pharmacognosy, University of Illinois at Chicago, 900 S. Ashland, Chicago, Illinois 60607, United States
| | - Shuyi Cao
- Center for Pharmaceutical Biotechnology and Department of Medicinal Chemistry and Pharmacognosy, University of Illinois at Chicago, 900 S. Ashland, Chicago, Illinois 60607, United States
| | - Amy J. Rice
- Center for Pharmaceutical Biotechnology and Department of Medicinal Chemistry and Pharmacognosy, University of Illinois at Chicago, 900 S. Ashland, Chicago, Illinois 60607, United States
| | - Kavankumar Patel
- Center for Pharmaceutical Biotechnology and Department of Medicinal Chemistry and Pharmacognosy, University of Illinois at Chicago, 900 S. Ashland, Chicago, Illinois 60607, United States
| | - Michael Z. Szypulinski
- Center for Pharmaceutical Biotechnology and Department of Medicinal Chemistry and Pharmacognosy, University of Illinois at Chicago, 900 S. Ashland, Chicago, Illinois 60607, United States
| | | | - Arun K. Ghosh
- Departments of Chemistry and Medicinal Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907, United States
| | - Michael E. Johnson
- Center for Pharmaceutical Biotechnology and Department of Medicinal Chemistry and Pharmacognosy, University of Illinois at Chicago, 900 S. Ashland, Chicago, Illinois 60607, United States
| |
Collapse
|
42
|
Shimamoto Y, Hattori Y, Kobayashi K, Teruya K, Sanjoh A, Nakagawa A, Yamashita E, Akaji K. Fused-ring structure of decahydroisoquinolin as a novel scaffold for SARS 3CL protease inhibitors. Bioorg Med Chem 2015; 23:876-90. [PMID: 25614110 PMCID: PMC7111320 DOI: 10.1016/j.bmc.2014.12.028] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2014] [Revised: 12/03/2014] [Accepted: 12/05/2014] [Indexed: 01/07/2023]
Abstract
The design and evaluation of a novel decahydroisoquinolin scaffold as an inhibitor for severe acute respiratory syndrome (SARS) chymotrypsin-like protease (3CL(pro)) are described. Focusing on hydrophobic interactions at the S2 site, the decahydroisoquinolin scaffold was designed by connecting the P2 site cyclohexyl group of the substrate-based inhibitor to the main-chain at the α-nitrogen atom of the P2 position via a methylene linker. Starting from a cyclohexene enantiomer obtained by salt resolution, trans-decahydroisoquinolin derivatives were synthesized. All decahydroisoquinolin inhibitors synthesized showed moderate but clear inhibitory activities for SARS 3CL(pro), which confirmed the fused ring structure of the decahydroisoquinolin functions as a novel scaffold for SARS 3CL(pro) inhibitor. X-ray crystallographic analyses of the SARS 3CL(pro) in a complex with the decahydroisoquinolin inhibitor revealed the expected interactions at the S1 and S2 sites, as well as additional interactions at the N-substituent of the inhibitor.
Collapse
Affiliation(s)
- Yasuhiro Shimamoto
- Department of Medicinal Chemistry, Kyoto Pharmaceutical University, Yamashina-ku, Kyoto 607-8412, Japan
| | - Yasunao Hattori
- Department of Medicinal Chemistry, Kyoto Pharmaceutical University, Yamashina-ku, Kyoto 607-8412, Japan
| | - Kazuya Kobayashi
- Department of Medicinal Chemistry, Kyoto Pharmaceutical University, Yamashina-ku, Kyoto 607-8412, Japan
| | - Kenta Teruya
- Department of Chemistry, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Sakyo-ku, Kyoto 606-0823, Japan
| | - Akira Sanjoh
- R&D Center, Protein Wave Co., Nara 631-0006, Japan
| | - Atsushi Nakagawa
- Institute for Protein Research, Osaka University, Suita, Osaka 565-0871, Japan
| | - Eiki Yamashita
- Institute for Protein Research, Osaka University, Suita, Osaka 565-0871, Japan
| | - Kenichi Akaji
- Department of Medicinal Chemistry, Kyoto Pharmaceutical University, Yamashina-ku, Kyoto 607-8412, Japan.
| |
Collapse
|
43
|
Kumar A, Zhang KYJ. Hierarchical virtual screening approaches in small molecule drug discovery. Methods 2015; 71:26-37. [PMID: 25072167 PMCID: PMC7129923 DOI: 10.1016/j.ymeth.2014.07.007] [Citation(s) in RCA: 98] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Revised: 07/16/2014] [Accepted: 07/17/2014] [Indexed: 02/06/2023] Open
Abstract
Virtual screening has played a significant role in the discovery of small molecule inhibitors of therapeutic targets in last two decades. Various ligand and structure-based virtual screening approaches are employed to identify small molecule ligands for proteins of interest. These approaches are often combined in either hierarchical or parallel manner to take advantage of the strength and avoid the limitations associated with individual methods. Hierarchical combination of ligand and structure-based virtual screening approaches has received noteworthy success in numerous drug discovery campaigns. In hierarchical virtual screening, several filters using ligand and structure-based approaches are sequentially applied to reduce a large screening library to a number small enough for experimental testing. In this review, we focus on different hierarchical virtual screening strategies and their application in the discovery of small molecule modulators of important drug targets. Several virtual screening studies are discussed to demonstrate the successful application of hierarchical virtual screening in small molecule drug discovery.
Collapse
Affiliation(s)
- Ashutosh Kumar
- Structural Bioinformatics Team, Center for Life Science Technologies, RIKEN, 1-7-22 Suehiro, Tsurumi, Yokohama, Kanagawa 230-0045, Japan
| | - Kam Y J Zhang
- Structural Bioinformatics Team, Center for Life Science Technologies, RIKEN, 1-7-22 Suehiro, Tsurumi, Yokohama, Kanagawa 230-0045, Japan.
| |
Collapse
|