1
|
Merwid-Ląd A, Ziółkowski P, Nowak B, Świątek P, Szczukowski Ł, Kwiatkowska J, Piasecka K, Szeląg A, Szandruk-Bender M. 1,3,4-Oxadiazole Derivatives of Pyrrolo[3,4- d]pyridazinone Alleviate TNBS-Induced Colitis and Exhibit No Significant Testicular Toxicity. Pharmaceuticals (Basel) 2025; 18:546. [PMID: 40283981 PMCID: PMC12030013 DOI: 10.3390/ph18040546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2025] [Revised: 03/26/2025] [Accepted: 04/04/2025] [Indexed: 04/29/2025] Open
Abstract
Background/Objectives: Inflammatory bowel disease significantly impairs the patient's quality of life. In young individuals, both the disease and the drugs used for the treatment may impact fertility. Our study aimed to assess the action of new 1,3,4-oxadiazole derivatives of pyrrolo[3,4-d]pyridazinone on the rat testes in a model of TNBS-induced colitis in rats. Methods: In the current study, testes from eight randomly chosen rats were taken from each of the following groups: the control group (K), the colitis group (C), and the groups receiving compounds 7b, 10b, and 13b in higher doses (20 mg/kg). Results: Colitis did not affect the testicular index (expressed as a percentage of the body weight), but in group 13b, this parameter was significantly higher than in group K. No significant differences between groups were noticed in malondialdehyde, superoxide dismutase, interleukin-1, or metalloproteinase 9 levels. In the colitis group, lactate dehydrogenase activity in the testes was not increased; however, the administration of compound 10b significantly increased this parameter when compared to both groups K and C. Histological evaluation also did not reveal abnormalities, and the morphology of the testicular tissues was comparable in all groups. Conclusions: The results may suggest that the new 1,3,4-oxadiazole derivatives of pyrrolo[3,4-d]pyridazinone did not exert significant testicular toxicity.
Collapse
Affiliation(s)
- Anna Merwid-Ląd
- Department of Pharmacology, Wroclaw Medical University, Mikulicza-Radeckiego 2, 50-345 Wrocław, Poland; (B.N.); (A.S.); (M.S.-B.)
| | - Piotr Ziółkowski
- Department of Clinical and Experimental Pathology, Wroclaw Medical University, Marcinkowskiego 1, 50-368 Wrocław, Poland;
| | - Beata Nowak
- Department of Pharmacology, Wroclaw Medical University, Mikulicza-Radeckiego 2, 50-345 Wrocław, Poland; (B.N.); (A.S.); (M.S.-B.)
| | - Piotr Świątek
- Department of Medicinal Chemistry, Wroclaw Medical University, Borowska 211, 50-556 Wrocław, Poland; (P.Ś.); (Ł.S.)
| | - Łukasz Szczukowski
- Department of Medicinal Chemistry, Wroclaw Medical University, Borowska 211, 50-556 Wrocław, Poland; (P.Ś.); (Ł.S.)
| | - Joanna Kwiatkowska
- Department of Pharmacology, Wroclaw Medical University, Mikulicza-Radeckiego 2, 50-345 Wrocław, Poland; (B.N.); (A.S.); (M.S.-B.)
| | - Katarzyna Piasecka
- Department of Pharmacology, Wroclaw Medical University, Mikulicza-Radeckiego 2, 50-345 Wrocław, Poland; (B.N.); (A.S.); (M.S.-B.)
| | - Adam Szeląg
- Department of Pharmacology, Wroclaw Medical University, Mikulicza-Radeckiego 2, 50-345 Wrocław, Poland; (B.N.); (A.S.); (M.S.-B.)
| | - Marta Szandruk-Bender
- Department of Pharmacology, Wroclaw Medical University, Mikulicza-Radeckiego 2, 50-345 Wrocław, Poland; (B.N.); (A.S.); (M.S.-B.)
| |
Collapse
|
2
|
Bhoomandla S, Chennuri BK, Sirisha S, Ganji S, Trivedi R, Karunasri A, Pandiri S. Design, Synthesis of Flurbiprofen Based 1,3,4-Oxadiazoles and Constrained Anticancer, Antioxidant Agents: In silico Docking Analysis. Chem Biodivers 2025; 22:e202401313. [PMID: 39365710 DOI: 10.1002/cbdv.202401313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 10/03/2024] [Accepted: 10/04/2024] [Indexed: 10/06/2024]
Abstract
Flurbiprofen, a primary component of a nonsteroidal anti-inflammatory drug (NSAID) used to relieve symptoms of arthritis, and is a considerable interest in medicinal chemistry due to its demonstrated potential as an effective agent in various therapeutic applications. In consideration of the 1,3,4-oxadiazole therapeutic potential and anticancer activity, a new series of flurbiprofen scaffolds have been prepared through a straightforward reaction between 5-(1-(2-fluoro-[1,1'-biphenyl]-4-yl)ethyl)-1,3,4-oxadiazole-2-thiol (4) and various organic active 2-chloro-N-phenyl acetamides (5). The synthesized series (6a-6k) was characterized using a combination of spectroscopic techniques, including FT-IR, mass, 1H-NMR, and 13C NMR, followed by physical data. The cytotoxicity of the newly synthesized congeners was investigated against MCF-7 (human breast cancer cell line) and A-549 (human lung carcinoma epithelial) cell lines and anti-inflammatory activity as DPPH and H2O2 radical scavenging ability. In the series, analogues 6c, 6e, 6h, and 6k showed excellent inhibitory activity against MCF-7 cells in the range of IC50 values of 9.10-13.67 μg mL-1 compared to DXN (IC50=9.24 μg mL-1). In this series, analogues 6c, 6f, 6h, and 6j show remarkable H2O2 radical scavenging inhibition IC50 of 48.25±0.21, 47.33±0.15, 51.10±0.25, and 44.40±0.07 μM by using ascorbic acid as a standard, whose IC50 is 49.90±0.27 μM. According to the docking results, the most potent cytotoxic compounds have a stronger binding affinity with the Flurbiprofen complex (PDB: 1R9O) because of their interactions with residues such as Arg416(A), Trp103(A), Phe97(A), Gly279(A), Ile188(A), Glu283(A), Thr287(A), Val462(A), Phe459(A), Leu345(A), Ile417(A), and Cys418(A). Furthermore, in silico drug-likeness prediction analysis suggested that the majority of the synthesized compounds exhibit good oral bioavailability based on their Lipinski's Rule of Five and toxicity using ADME/Tox predictions.
Collapse
Affiliation(s)
- Srinu Bhoomandla
- Department of Chemistry, Geethanjali College of Engineering and Technology, Cheeryal, Keesara, Medchal, Telanagana, 501301, India
- Department of Chemistry, School of Science, GITAM (Deemed to be University), Hyderabad, Telangana, 502329, India
| | - Bharath Kumar Chennuri
- Department of Chemistry, BVRIT Hyderabad College of Engineering for Women, Bachupally, Hyderabad, Telangana, 500090, India
| | - Surapaneni Sirisha
- Department of Chemistry, Gitam School of Science, Gitam University (Deemed to be University), Bengaluru Campus, Karnataka, 561203, India
- Department of Chemistry-H & S, CMRTC, Kandlakoya, Hyderabad, Telangana, 501401, India
| | - Saidulu Ganji
- Department of Chemistry, Chaitanya Bharathi Institute of Technology (A), Hyderabad, Telangana, 500075, India
| | - Rashmi Trivedi
- Department of Chemistry, Nalla Narsimha Reddy Education Society's Group of Institutions, Hyderabad, Telangana, India
| | - Ananthoju Karunasri
- Department of Chemistry, Mallareddy College of Engineering, Maisammaguda, Telangana, 500100, India
| | - Sreedhar Pandiri
- Department of Chemistry, Geethanjali College of Engineering and Technology, Cheeryal, Keesara, Medchal, Telanagana, 501301, India
- Department of Chemistry, Osmania University, Tarnaka, Hyderabad, Telangana, 500007, India
| |
Collapse
|
3
|
Selg C, Gordić V, Krajnović T, Buzharevski A, Laube M, Kazimir A, Lönnecke P, Wolniewicz M, Sárosi MB, Schädlich J, Pietzsch J, Mijatović S, Maksimović-Ivanić D, Hey-Hawkins E. Re-design and evaluation of diclofenac-based carborane-substituted prodrugs and their anti-cancer potential. Sci Rep 2024; 14:30488. [PMID: 39681576 DOI: 10.1038/s41598-024-81414-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 11/26/2024] [Indexed: 12/18/2024] Open
Abstract
In this study, we investigated a novel anti-cancer drug design approach by revisiting diclofenac-based carborane-substituted prodrugs. The redesigned compounds combine the robust carborane scaffold with the oxindole framework, resulting in four carborane-derivatized oxindoles and a unique zwitterionic amidine featuring a nido-cluster. We tested the anti-cancer potential of these prodrugs against murine colon adenocarcinoma (MC38), human colorectal carcinoma (HCT116), and human colorectal adenocarcinoma (HT29). The tests showed that diclofenac and the carborane-substituted oxindoles exhibited no cytotoxicity, the dichlorophenyl-substituted oxindole had moderate anti-cancer activity, while with the amidine this effect was strongly potentiated with activity mapping within low micromolar range. Compound 3 abolished the viability of selected colon cancer cell line MC38 preferentially through strong inhibition of cell division and moderate apoptosis accompanied by ROS/RNS depletion. Our findings suggest that carborane-based prodrugs could be a promising direction for new anti-cancer therapies. Inhibition assays for COX-1 and COX-2 revealed that while diclofenac had strong COX inhibition, the re-engineered carborane compounds demonstrated a varied range of anti-cancer effects, probably owing to both, COX inhibition and COX-independent pathways.
Collapse
Affiliation(s)
- Christoph Selg
- Department of Chemistry and Mineralogy, Institute of Bioanalytical Chemistry, Leipzig University, Deutscher Platz 5, 04103, Leipzig, Germany
| | - Vuk Gordić
- Department of Immunology, Institute for Biological Research "Siniša Stanković" - National Institute of the Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, Belgrade, 11108, Serbia
| | - Tamara Krajnović
- Department of Immunology, Institute for Biological Research "Siniša Stanković" - National Institute of the Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, Belgrade, 11108, Serbia
| | - Antonio Buzharevski
- Department of Chemistry and Mineralogy, Institute of Inorganic Chemistry, Leipzig University, Johannisallee 29, 04103, Leipzig, Germany
| | - Markus Laube
- Department of Radiopharmaceutical and Chemical Biology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstraße 400, 01328, Dresden, Germany
| | - Aleksandr Kazimir
- Institute for Drug Discovery, Leipzig University, Brüderstraße 34, 04103, Leipzig, Germany
| | - Peter Lönnecke
- Department of Chemistry and Mineralogy, Institute of Bioanalytical Chemistry, Leipzig University, Deutscher Platz 5, 04103, Leipzig, Germany
| | - Mara Wolniewicz
- Department of Chemistry and Mineralogy, Institute of Organic Chemistry, Leipzig University, Johannisallee 29, 04103, Leipzig, Germany
| | - Menyhárt B Sárosi
- Department of Chemistry and Mineralogy, Institute of Inorganic Chemistry, Leipzig University, Johannisallee 29, 04103, Leipzig, Germany
| | - Jonas Schädlich
- Department of Radiopharmaceutical and Chemical Biology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstraße 400, 01328, Dresden, Germany
- Faculty of Chemistry and Food Chemistry, School of Science, Technische Universität Dresden, Mommsenstraße 4, 01069, Dresden, Germany
| | - Jens Pietzsch
- Department of Radiopharmaceutical and Chemical Biology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstraße 400, 01328, Dresden, Germany
- Faculty of Chemistry and Food Chemistry, School of Science, Technische Universität Dresden, Mommsenstraße 4, 01069, Dresden, Germany
| | - Sanja Mijatović
- Department of Immunology, Institute for Biological Research "Siniša Stanković" - National Institute of the Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, Belgrade, 11108, Serbia
| | - Danijela Maksimović-Ivanić
- Department of Immunology, Institute for Biological Research "Siniša Stanković" - National Institute of the Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, Belgrade, 11108, Serbia
| | - Evamarie Hey-Hawkins
- Department of Chemistry and Mineralogy, Institute of Bioanalytical Chemistry, Leipzig University, Deutscher Platz 5, 04103, Leipzig, Germany.
| |
Collapse
|
4
|
Naik S, Soumya V, Mamledesai SN, Manickavasagam M, Choudhari P, Rathod S. Discovery of Substituted 2-oxoquinolinylthiazolidin-4-one Analogues as Potential EGFRK Inhibitors in Lung Cancer Treatment. Drug Res (Stuttg) 2024; 74:227-240. [PMID: 38830371 DOI: 10.1055/a-2305-2789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
PURPOSE Cancer is the second leading cause of death globally and is responsible for an estimated 9.6 million deaths in 2018. Globally, about 1 in 6 deaths is due to cancer and the chemotherapeutic drugs available have high toxicity and have reported side effects hence, there is a need for the synthesis of novel drugs in the treatment of cancer. METHODS The current research work dealt with the synthesis of a series of 3-(3-acetyl-2-oxoquinolin-1-(2H)-yl-2-(substitutedphenyl)thiazolidin-4-one (Va-j) derivatives and evaluation of their in-vitro anticancer activity. All the synthesized compounds were satisfactorily characterized by IR and NMR data. Compounds were further evaluated for their in-vitro anticancer activity against A-549 (lung cancer) cell lines. The in-vitro anticancer activity was based upon the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazoliumbromide (MTT) assay method. RESULTS The synthesized compounds exhibited satisfactory anticancer properties against the A-549 cell line. The compound (VH): showed the highest potency amongst the tested derivatives against the A-549 cell line with IC50 values of 100 µg/ml respectively and was also found to be more potent than Imatinib (150 µg/ml) which was used as a standard drug. Molecular docking studies of the titled compounds (Va-j) were carried out using AutoDock Vina/PyRx software. The synthesized compounds exhibited well-conserved hydrogen bonds with one or more amino acid residues in the active pocket of the EGFRK tyrosine kinase domain (PDB 1m17). CONCLUSION Among all the synthesized analogues, the binding affinity of the compound (Vh) was found to be higher than other synthesized derivatives and a molecular dynamics simulation study explored the stability of the docked complex system.
Collapse
Affiliation(s)
- Soniya Naik
- Department of Pharmaceutical Chemistry, Sri Ramachandra Faculty of Pharmacy, Sri Ramachandra Institute of Higher Education and Research, Porur, Chennai, India
- Department of Pharmaceutical Chemistry, P.E.S's Rajaram and Tarabai Bandekar College of Pharmacy, Farmagudi, Ponda, Goa, India
| | - Vasu Soumya
- Department of Pharmaceutical Chemistry, Sri Ramachandra Faculty of Pharmacy, Sri Ramachandra Institute of Higher Education and Research, Porur, Chennai, India
| | - Shivlingrao N Mamledesai
- Department of Pharmaceutical Chemistry, P.E.S's Rajaram and Tarabai Bandekar College of Pharmacy, Farmagudi, Ponda, Goa, India
| | - M Manickavasagam
- Department of Oncology, SRMC & RI, Sri Ramachandra Institute of Higher Education and Research, Porur, Chennai, India
| | - Prafulla Choudhari
- Department of Pharmaceutical Chemistry, Bharati Vidyapeeth College of Pharmacy, Kolhapur, Maharashtra, India
| | - Sanket Rathod
- Department of Pharmaceutical Chemistry, Bharati Vidyapeeth College of Pharmacy, Kolhapur, Maharashtra, India
| |
Collapse
|
5
|
Swar R, Dessai PG, MamleDesai S, Chandavarkar S, Phadte S, Biradar B. Design, Synthesis, Characterisation, and Evaluation of Substituted Quinolin-2-one Derivatives as Possible Anti-lung Cancer Agents. Curr Drug Discov Technol 2024; 21:e261223224851. [PMID: 38151847 DOI: 10.2174/0115701638258479231220051227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 10/10/2023] [Accepted: 10/27/2023] [Indexed: 12/29/2023]
Abstract
BACKGROUND According to 2022, the estimated number of cancer cases in India was found to be 1,461,427. Lung cancers are the leading cause of death among Indian males. Research on cancer has been conducted to develop better treatments that are safe and effective and could be used to diagnose cancer at an early stage. It was found that quinolin-2-one possesses anticancer activity, which led us to synthesize substituted quinolin-2-one derivatives that can provide a longer future to cancer patients and decrease the risk of dying from cancer. OBJECTIVE This study aimed to carry out the design, synthesis, characterisation, and evaluation of novel substituted quinolin-2-one analogues as possible anti-lung cancer agents. METHODS Compound III a/III b on reaction with acids, sodium acetate and ethylchloroacetate, substituted benzaldehyde, phthalic anhydride, and 2N sodium hydroxide yielded compounds IV a/ IV b, V a/ V b, VI a/ VI b, VI c/ VI d, VI e/ VI f, VII a/ VII b, and VIII a/ VIII b, respectively. RESULT Among all the synthesised derivatives, compound VII a was found to be most potent with a MolDock score of -132.78 as compared to standard drug imatinib (-114.37) and active ligand 4- anilinoquinazoline (-126.71). All the synthesized derivatives showed a good ADME profile, but compound VII a showed the best ADME data among all the synthesised derivatives. All the synthesised compounds were tested for their in vitro anticancer activity against the Hop-62 (human lung cancer) cell line, out of which compound VII a was found to be most potent, with a percent control growth of -51.7% at a concentration of 80 μg/ml, which was in comparable to the positive control, Adriamycin (-70.5%) and standard imatinib (-84.0%). CONCLUSION Compound VII a showed the highest MolDock score and was most potent against human lung cancer cell line Hop-62.
Collapse
Affiliation(s)
- Riya Swar
- Department of Pharmaceutical Chemistry, PES's Rajaram and Tarabai Bandekar College of Pharmacy, Ponda, Goa 403 401, India
| | - Prachita Gauns Dessai
- Department of Pharmaceutical Chemistry, PES's Rajaram and Tarabai Bandekar College of Pharmacy, Ponda, Goa 403 401, India
| | - Shivalingrao MamleDesai
- Department of Pharmaceutical Chemistry, PES's Rajaram and Tarabai Bandekar College of Pharmacy, Ponda, Goa 403 401, India
| | - Sachin Chandavarkar
- Department of Pharmacognosy, PES's Rajaram and Tarabai Bandekar College of Pharmacy, Ponda, Goa 403 401, India
| | - Soniya Phadte
- Department of Pharmaceutical Chemistry, PES's Rajaram and Tarabai Bandekar College of Pharmacy, Ponda, Goa 403 401, India
| | - Bheemanagouda Biradar
- Department of Pharmacology, PES's Rajaram and Tarabai Bandekar College of Pharmacy, Ponda, Goa 403 401, India
| |
Collapse
|
6
|
Tendulkar CP, Dessai PG, Mamle Desai S, Kadam A. Docking, Synthesis and Evaluation of 4-hydroxy-1-phenyl-2(1H)-quinolone Derivatives as Anticancer Agents. Curr Drug Discov Technol 2024; 21:e190723218893. [PMID: 37469155 DOI: 10.2174/1570163820666230719110932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 05/01/2023] [Accepted: 05/12/2023] [Indexed: 07/21/2023]
Abstract
BACKGROUND The estimated number of cancer cases in India for the year 2022 was found to be 14,61,427. The development of chemotherapeutic agents has reduced the mortality rate, however, they have high toxicity which is a disadvantage. Many researchers have found out that quinolin-2- one possesses anticancer activity, with this background we thought of synthesizing the quinolin-2-one derivatives. OBJECTIVE This study aimed to carry out docking, synthesis, characterization, and evaluation of 2-(2- (4-Hydroxy-2-oxoquinolin-1(2H)-yl)phenyl/ substituted phenyl)-3-(phenylamino) thiazolidon-4-one derivatives (IVa-g) as an anticancer agent. METHOD Diphenylamine and malonic acid treated with phosphoryl chloride gave compound I, which on formylation afforded compound II, which on reaction with various substituted aromatic phenylhydrazine derivatives gave compounds IIIa-g, which on further reaction with thioglycolic acid and anhydrous zinc chloride yielded the compounds IVa-g. RESULT Among all the synthesized novel derivatives, compounds IV a-d showed 50% lysis in the IC50 range of 25-50μg for the A549 cell line, and compounds IVa, and IVb showed 50% lysis in the IC50 range of 25-50μg for the MDA-MB cell line. The compound, 3-((4-fluorophenyl)amino)-2-(2-(4- hydroxy-2-oxoquinolin-1(2H)-yl)phenyl)thiazolidin-4-one (IVg) was found to be the most active against both the cell line, A549 and MDA-MB with IC50 value of 0.0298μmol and 0.0338μmol respectively. The docking results revealed that the synthesized compounds exhibited well-conserved hydrogen bonding with one or more amino acid residues in the active pocket of EGFR tyrosine kinase domain with 4-anilinoquinazoline inhibitor erlotinib (PDB ID:1M17). Compound IVg showed the highest MolDock score of -137.813 compared to the standard drug Imatinib having a MolDock score of -119.354. CONCLUSION Compound IVg showed the highest MolDock score and was also found to be most potent against both the cell line, A549, and MDA-MB.
Collapse
Affiliation(s)
- Chaitali Prabhu Tendulkar
- Department of Pharmaceutical Chemistry, P.E.S's Rajaram and Tarabai Bandekar College of Pharmacy, Farmagudi, Ponda-Goa, 403401, India
| | - Prachita Gauns Dessai
- Department of Pharmaceutical Chemistry, P.E.S's Rajaram and Tarabai Bandekar College of Pharmacy, Farmagudi, Ponda-Goa, 403401, India
| | - Shivlingrao Mamle Desai
- Department of Pharmaceutical Chemistry, P.E.S's Rajaram and Tarabai Bandekar College of Pharmacy, Farmagudi, Ponda-Goa, 403401, India
| | - Amrita Kadam
- Department of Pharmaceutical Chemistry, P.E.S's Rajaram and Tarabai Bandekar College of Pharmacy, Farmagudi, Ponda-Goa, 403401, India
| |
Collapse
|
7
|
Jadhav A, Shingade SG, Dessai PG, Biradar BS, MamleDesai S. Design, Docking, Characterisation, and Synthesis of Pyrimidine Derivatives for Antidepressant Activity. Curr Drug Discov Technol 2024; 21:64-72. [PMID: 37859311 DOI: 10.2174/0115701638243835230925161546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 08/11/2023] [Accepted: 08/17/2023] [Indexed: 10/21/2023]
Abstract
BACKGROUND According to the report, in 2022, the prevalence rate of depression in India was 4.50%, and the cases stood at 56,675,969. The development of antidepressant agents has reduced the number of depressant and suicidal cases. Many researchers have found that pyrimidine possesses antidepressant activity. With this background, we thought of synthesizing pyrimidine derivatives. OBJECTIVE The objective of this study is to carry out molecular docking, synthesis, characterization, and evaluation of 2-((4,6-diphenylpyrimidin-2-yl)oxy)-N-phenylacetamide derivatives (17-26) as in vivo antidepressant agent. METHOD The designed compounds were checked for their activity using Molegro virtual docker (MVD) and were further synthesized. Benzaldehyde reacted with acetophenone to give compound (3), which gave compound (4) upon reaction with urea. In another reaction, substituted anilines (5) were reacted with chloroacetyl chloride (6) to yield compounds (7-16), which upon further reaction with compound (4) yielded the final derivatives (17-26). The synthesized compounds were characterized by spectral analysis and checked for their antidepressant activity. RESULT The MolDock scores of the derivatives ranged from -147.097 to -182.095, whereas of active ligand IXX_801 was -115.566. All the synthesized pyrimidine derivatives showed better affinity towards the Cryo-EM structure of the wild-type human serotonin transporter complexed with vilazodone, imipramine, and 15B8 Fab protein (PDB ID: 7LWD) as compared to standard drug clomipramine (-101.064). All the synthesized derivatives were screened for antidepressant activity at a 100mg/kg dose level compared to the standard clomipramine HCl at a dose level of 20mg/kg. Among all the synthesized derivatives, compound 24 showed the most potent antidepressant activity, and Compound 20 showed moderate antidepressant activity, which reduced the duration of immobility times to 35.42% and 31.97% at 100mg/kg dose level when compared to the control, respectively. CONCLUSION Compound 24 showed the highest MolDock score as well as found to be the most potent antidepressant agent.
Collapse
Affiliation(s)
- Ashwini Jadhav
- Department of Pharmaceutical Chemistry, PES's Rajaram and Tarabai Bandekar College of Pharmacy, Ponda, Goa, 403 401, India
| | - Sunil G Shingade
- Department of Pharmaceutical Chemistry, PES's Rajaram and Tarabai Bandekar College of Pharmacy, Ponda, Goa, 403 401, India
| | - Prachita G Dessai
- Department of Pharmaceutical Chemistry, PES's Rajaram and Tarabai Bandekar College of Pharmacy, Ponda, Goa, 403 401, India
| | - Bheemanagouda S Biradar
- Department of Pharmacology, PES's Rajaram and Tarabai Bandekar College of Pharmacy, Ponda, Goa, 403 401, India
| | - Shivalingrao MamleDesai
- Department of Pharmaceutical Chemistry, PES's Rajaram and Tarabai Bandekar College of Pharmacy, Ponda, Goa, 403 401, India
| |
Collapse
|
8
|
Chahal S, Rani P, Kiran, Sindhu J, Joshi G, Ganesan A, Kalyaanamoorthy S, Mayank, Kumar P, Singh R, Negi A. Design and Development of COX-II Inhibitors: Current Scenario and Future Perspective. ACS OMEGA 2023; 8:17446-17498. [PMID: 37251190 PMCID: PMC10210234 DOI: 10.1021/acsomega.3c00692] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 04/21/2023] [Indexed: 09/29/2023]
Abstract
Innate inflammation beyond a threshold is a significant problem involved in cardiovascular diseases, cancer, and many other chronic conditions. Cyclooxygenase (COX) enzymes are key inflammatory markers as they catalyze prostaglandins production and are crucial for inflammation processes. While COX-I is constitutively expressed and is generally involved in "housekeeping" roles, the expression of the COX-II isoform is induced by the stimulation of different inflammatory cytokines and also promotes the further generation of pro-inflammatory cytokines and chemokines, which affect the prognosis of various diseases. Hence, COX-II is considered an important therapeutic target for drug development against inflammation-related illnesses. Several selective COX-II inhibitors with safe gastric safety profiles features that do not cause gastrointestinal complications associated with classic anti-inflammatory drugs have been developed. Nevertheless, there is mounting evidence of cardiovascular side effects from COX-II inhibitors that resulted in the withdrawal of market-approved anti-COX-II drugs. This necessitates the development of COX-II inhibitors that not only exhibit inhibit potency but also are free of side effects. Probing the scaffold diversity of known inhibitors is vital to achieving this goal. A systematic review and discussion on the scaffold diversity of COX inhibitors are still limited. To address this gap, herein we present an overview of chemical structures and inhibitory activity of different scaffolds of known COX-II inhibitors. The insights from this article could be helpful in seeding the development of next-generation COX-II inhibitors.
Collapse
Affiliation(s)
- Sandhya Chahal
- Department
of Chemistry, COBS&H, CCS Haryana Agricultural
University, Hisar 125004, India
| | - Payal Rani
- Department
of Chemistry, COBS&H, CCS Haryana Agricultural
University, Hisar 125004, India
| | - Kiran
- Department
of Chemistry, COBS&H, CCS Haryana Agricultural
University, Hisar 125004, India
| | - Jayant Sindhu
- Department
of Chemistry, COBS&H, CCS Haryana Agricultural
University, Hisar 125004, India
| | - Gaurav Joshi
- Department
of Pharmaceutical Sciences, Hemvati Nandan
Bahuguna Garhwal (A Central) University, Chauras Campus, Tehri Garhwal, Uttarakhand 249161, India
- Adjunct
Faculty at Department of Biotechnology, Graphic Era (Deemed to be) University, 566/6, Bell Road, Clement Town, Dehradun, Uttarakhand 248002, India
| | - Aravindhan Ganesan
- ArGan’sLab,
School of Pharmacy, University of Waterloo, Waterloo, Ontario N2G 1C5, Canada
| | | | - Mayank
- University
College of Pharmacy, Guru Kashi University, Talwandi Sabo, Punjab 151302, India
| | - Parvin Kumar
- Department
of Chemistry, Kurukshetra University, Kurukshetra 136119, India
| | - Rajvir Singh
- Department
of Chemistry, COBS&H, CCS Haryana Agricultural
University, Hisar 125004, India
| | - Arvind Negi
- Department
of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, Espoo 02150, Finland
| |
Collapse
|
9
|
Tiwari P, Phadte S, Chandavarkar S, Biradar B, Mamle Desai S. Design, synthesis and characterization of a series of 6-substituted-4-hydroxy-1-(2-substitutedthiazol-4-yl)quinolin-2(1H)-one derivatives and evaluation of their in vitro anticancer and antibacterial activity. J INDIAN CHEM SOC 2023. [DOI: 10.1016/j.jics.2023.100951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2023]
|
10
|
Abbas AM, Aboelmagd A, Kishk SM, Nasrallah HH, Boyd WC, Kalil H, Orabi AS. A Novel Ibuprofen Derivative and Its Complexes: Physicochemical Characterization, DFT Modeling, Docking, In Vitro Anti-Inflammatory Studies, and DNA Interaction. Molecules 2022; 27:molecules27217540. [PMID: 36364366 PMCID: PMC9653649 DOI: 10.3390/molecules27217540] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 10/19/2022] [Accepted: 10/21/2022] [Indexed: 11/06/2022] Open
Abstract
A novel derivative of ibuprofen and salicylaldehyde N′-(4-hydroxybenzylidene)-2-(4-isobutylphenyl) propane hydrazide (HL) was synthesized, followed by its complexation with Cu, Ni, Co, Gd, and Sm. The compounds obtained were characterized by 1HNMR, mass spectrometry, UV-Vis spectroscopy, FT-IR spectroscopy, thermal analysis (DTA and TGA), conductivity measurements, and magnetic susceptibility measurements. The results indicate that the complexes formed were [Cu(L)(H2O)]Cl·2H2O, [Ni(L)2], [Co(L)2]·H2O, [Gd(L)2(H2O)2](NO3)·2H2O and [Sm(L)2(H2O)2](NO3)·2H2O. The surface characteristics of the produced compounds were evaluated by DFT calculations using the MOE environment. The docking was performed against the COX2 targeting protein (PDB code: 5IKT Homo sapiens). The binding energies were −7.52, −9.41, −9.51, −8.09, −10.04, and −8.05 kcal/mol for HL and the Co, Ni, Cu, Sm, and Gd complexes, respectively, which suggests the enhancement of anti-inflammatory behaviors compared with the binding energy of ibuprofen (−5.38 kcal/mol). The anti-inflammatory properties of the new compounds were assessed in vitro using the western blot analysis method and the enzyme-linked immunosorbent assay (ELISA), consistent with the outcomes obtained from docking. The half-maximal inhibitory concentration (IC50) values are 4.9, 1.7, 3.7, 5.6, 2.9, and 2.3 µM for HL and the Co, Ni, Cu, Sm, and Gd complexes, respectively, showing that they are more effective inhibitors of COX2 than ibuprofen (IC50 = 31.4 µM). The brain or intestinal estimated permeation method (BOILED-Egg) showed that HL and its Co complex have high gastrointestinal absorption, while only the free ligand has high brain penetration. The binding constants of Co, Cu, and Gd complexes with DNA were recorded as 2.20 × 104, 2.27 × 106, and 4.46 × 103 M−1, respectively, indicating the intercalator behavior of interaction. The newly synthesized ibuprofen derivative and its metal complexes showed greater anti-inflammatory activity than ibuprofen.
Collapse
Affiliation(s)
- Abbas M. Abbas
- Chemistry Department, Faculty of Science, Suez Canal University, Ismailia 41522, Egypt
- Correspondence: (A.M.A.); (H.K.); (A.S.O.)
| | - Ahmed Aboelmagd
- Chemistry Department, Faculty of Science, Suez Canal University, Ismailia 41522, Egypt
| | - Safaa M. Kishk
- Medicinal Chemistry Department, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt
| | - Hossam H. Nasrallah
- Chemistry Department, Faculty of Science, Suez Canal University, Ismailia 41522, Egypt
- Chemistry Department, Faculty of Dentistry, Sinai University, Kantara 41612, Egypt
| | | | - Haitham Kalil
- Chemistry Department, Faculty of Science, Suez Canal University, Ismailia 41522, Egypt
- Chemistry Department, Cleveland State University, Cleveland, OH 44115, USA
- Correspondence: (A.M.A.); (H.K.); (A.S.O.)
| | - Adel S. Orabi
- Chemistry Department, Faculty of Science, Suez Canal University, Ismailia 41522, Egypt
- Correspondence: (A.M.A.); (H.K.); (A.S.O.)
| |
Collapse
|
11
|
Naik SP, Sachin C, Soniya P, Harishchandra N, Venkatesh S, Shilpa T, Shivlingarao MD. Synthesis, Characterisation and Docking Studies of Thioxoquinoline Derivatives as Potential Anti-Alzheimer Agents. Curr Drug Discov Technol 2022; 19:e130522204744. [PMID: 35570516 DOI: 10.2174/1570163819666220513115542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 02/08/2022] [Accepted: 03/18/2022] [Indexed: 01/27/2023]
Abstract
BACKGROUND Alzheimer's Disease (AD) is related to the total loss of presynaptic neurotransmitters of the cholinergic system in regions of the brain related to memory. Approximately 15% of the population beyond the age of 65 years are suffering from dementia due to AD and the rate is rising exponentially with age. OBJECTIVE The objective of this research was the synthesis of a series of 1-(4-substituted-2- thioxoquinolin-1(2H)-yl)-2-substituted ethanoneV (a-c(1-4)) by undergoing acetylation at the nitrogen of 4-hydroxyquinolin-2-(1H)-one and replacing its oxygen atom with sulphur moiety via the process of thionation. To carry out-docking studies of the title compounds were carried out using Molegro Virtual Docker (MVD-2013, 6.0) software and in-vitro screening of anti-alzheimer's activity by Ellman assay method. METHODS The synthesis of the title compounds was carried out via the sequential reaction from the initial dianilide to ring closure to the substituted quinoline-2-ones using polyphosphoric acid as a cyclising agent. These substituted quinoline-2-ones on thionation by phosphorous pentasulphide in aluminium trioxide gave quinoline-2-thiones and on further condensation with chloroacetyl chloride, they resulted in compounds with a leaving group. Nucleophilic substitution reaction of chloroacetylquinoline- 2-thiones with secondary amines resulted in the title compounds 1-(4-substituted-2- thioxoquinolin-1(2H)-yl)-2-substituted ethanone V(a-c(1-4)). The pharmacophore mapping of synthesized compounds was performed by using Molegro Virtual Docker (MVD-2013,6.0). The title compounds were tested for their in vitro anti-Alzheimer's activity using the Ellman assay method. RESULTS All the synthesized compounds were characterized by IR, 1H NMR, 13C NMR, and Mass spectral data. Docking studies of all the synthesized compounds were carried out using a structural mechanism for the inhibition of CDK5-p25 by roscovitine, aloisine, and indirubin (PDB ID: 1UNG), showed favourable results, with compound (Vb3) showing a MolDock score of -85.9788 that was comparable to that of the active ligand (ALH_1288 [B]) with MolDock score of - 87.7609. CONCLUSION The synthesized derivatives possessed the potential to bind with some of the amino acid residues of the active site. Compound 2-(6-chloro-4-hydroxy-2-thioxoquinolin-1(2H)-yl-1-piperazin- 1-ethanone (Vb3) was found to be the most active among the synthesized derivatives, with IC50 values of 32 ± 0.1681. All the synthesized compounds showed potent to moderate activity in comparison to the reference standard donepezil.
Collapse
Affiliation(s)
- Shalaka P Naik
- Department of Pharmaceutical Chemistry, P.E. S's Rajaram, and Tarabai Bandekar, College of Pharmacy, Farmagudi, Ponda, Goa, 403 401, India
| | - Chandavarkar Sachin
- Department of Pharmacognosy, ASPM College of Pharmacy, Sangulwadi, Tal. Vaibhavwadi, Dist. Sindhudurg, Maharashtra, 416810, India
| | - Phadte Soniya
- Department of Pharmaceutical Chemistry, P.E. S's Rajaram, and Tarabai Bandekar, College of Pharmacy, Farmagudi, Ponda, Goa, 403 401, India
| | - Naik Harishchandra
- Department of Pharmaceutical Chemistry, P.E. S's Rajaram, and Tarabai Bandekar, College of Pharmacy, Farmagudi, Ponda, Goa, 403 401, India
| | - Sinari Venkatesh
- Department of Pharmaceutical Chemistry, P.E. S's Rajaram, and Tarabai Bandekar, College of Pharmacy, Farmagudi, Ponda, Goa, 403 401, India
| | - Tawde Shilpa
- Department of Pharmaceutical Chemistry, P.E. S's Rajaram, and Tarabai Bandekar, College of Pharmacy, Farmagudi, Ponda, Goa, 403 401, India
| | - Mamle Desai Shivlingarao
- Department of Pharmaceutical Chemistry, P.E. S's Rajaram, and Tarabai Bandekar, College of Pharmacy, Farmagudi, Ponda, Goa, 403 401, India
| |
Collapse
|
12
|
Synthesis, Anticancer Activity and Molecular Docking Studies of Novel N-Mannich Bases of 1,3,4-Oxadiazole Based on 4,6-Dimethylpyridine Scaffold. Int J Mol Sci 2022; 23:ijms231911173. [PMID: 36232475 PMCID: PMC9570134 DOI: 10.3390/ijms231911173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/19/2022] [Accepted: 09/20/2022] [Indexed: 11/17/2022] Open
Abstract
Cancer is one of the greatest challenges in modern medicine today. Difficult and long-term treatment, the many side effects of the drugs used and the growing resistance to treatment of neoplastic cells necessitate new approaches to therapy. A very promising targeted therapy is based on direct impact only on cancer cells. As a continuation of our research on new biologically active molecules, we report herein the design, synthesis and anticancer evaluation of a new series of N-Mannich-base-type hybrid compounds containing morfoline or different substituted piperazines moieties, a 1,3,4-oxadiazole ring and a 4,6-dimethylpyridine core. All compounds were tested for their potential cytotoxicity against five human cancer cell lines, A375, C32, SNB-19, MCF-7/WT and MCF-7/DX. Two of the active N-Mannich bases (compounds 5 and 6) were further evaluated for growth inhibition effects in melanoma (A375 and C32), and normal (HaCaT) cell lines using clonogenic assay and a population doubling time test. The apoptosis was determined with the neutral version of comet assay. The confocal microscopy method enabled the visualization of F-actin reorganization. The obtained results demonstrated that compounds 5 and 6 have cytotoxic and proapoptotic effects on melanoma cells and are capable of inducing F-actin depolarization in a dose-dependent manner. Moreover, computational chemistry approaches, molecular docking and electrostatic potential were employed to study non-covalent interactions of the investigated compounds with four receptors. It was found that all the examined molecules exhibit a similar binding affinity with respect to the chosen reference drugs.
Collapse
|
13
|
Tolba MS, Hamed MM, Sayed M, Kamal El-Dean AM, Abdel-Mohsen SA, Ibrahim OA, Elgaher WA, Hirsch AKH, Saddik AA. Design, Synthesis, Antimicrobial Activity, and Molecular Docking of Some New Diclofenac Derivatives. Polycycl Aromat Compd 2022. [DOI: 10.1080/10406638.2022.2102661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Affiliation(s)
- Mahmoud S. Tolba
- Chemistry Department, Faculty of Science, New Valley University, El-Kharja, Egypt
| | - Mahmoud M. Hamed
- Chemistry Department, Faculty of Science, Assiut University, Assiut, Egypt
| | - Mostafa Sayed
- Chemistry Department, Faculty of Science, New Valley University, El-Kharja, Egypt
- Department of Chemistry, University of Science and Technology of China, Hefei, China
| | | | | | - Omneya A. Ibrahim
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Assiut University, Assiut, Egypt
| | - Walid A.M. Elgaher
- Helmholtz Institute for Pharmaceutical Research Saarland, Helmholtz Centre for Infection Research, Saarbrucken, Germany
- Department of Pharmacy, Saarland University, Saarbrucken, Germany
| | - Anna K. H. Hirsch
- Helmholtz Institute for Pharmaceutical Research Saarland, Helmholtz Centre for Infection Research, Saarbrucken, Germany
- Department of Pharmacy, Saarland University, Saarbrucken, Germany
| | - Abdelreheem Abdelfatah Saddik
- Materials Science and Engineering Laboratory, Department of Chemistry, Faculty of Science, Assiut University, Assiut, Egypt
| |
Collapse
|
14
|
Bhatia R, Vyas A, El‐Bahy SM, Hessien MM, Mersal GAM, Ibrahim MM, Dogra R, Kumar B. Rationale Design, Synthesis, Pharmacological and
In‐silico
Investigation of Indole‐Functionalized Isoxazoles as Anti‐inflammatory Agents. ChemistrySelect 2022. [DOI: 10.1002/slct.202200800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Rohit Bhatia
- Department of Pharmaceutical Chemistry ISF College of Pharmacy Ghal Kalan Ferozpur G.T. Road MOGA 142001 Punjab
| | - Akshun Vyas
- Department of Pharmaceutical Chemistry ISF College of Pharmacy Ghal Kalan Ferozpur G.T. Road MOGA 142001 Punjab
| | - Salah M. El‐Bahy
- Department of Chemistry Turabah University College, Taif University P.O.Box 11099 Taif 21944 Saudi Arabia
| | - Mahmoud M. Hessien
- Department of Chemistry, College of Science Taif University P.O. Box 11099 Taif 21944 Saudi Arabia
| | - Gaber A. M. Mersal
- Department of Chemistry, College of Science Taif University P.O. Box 11099 Taif 21944 Saudi Arabia
| | - Mohamed M. Ibrahim
- Department of Chemistry, College of Science Taif University P.O. Box 11099 Taif 21944 Saudi Arabia
| | - Raghav Dogra
- Department of Chemical Sciences University of Padova Via Marzolo 1 35131 Padova Italy
| | - Bhupinder Kumar
- Department of Pharmaceutical Chemistry ISF College of Pharmacy Ghal Kalan Ferozpur G.T. Road MOGA 142001 Punjab
| |
Collapse
|
15
|
Desai SR, Desai VG, Pissurlenkar RR. Design, synthesis and molecular docking studies of new azomethine derivatives as promising anti-inflammatory agents. Bioorg Chem 2022; 120:105595. [DOI: 10.1016/j.bioorg.2021.105595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 12/10/2021] [Accepted: 12/30/2021] [Indexed: 11/02/2022]
|
16
|
Szandruk-Bender M, Merwid-Ląd A, Wiatrak B, Danielewski M, Dzimira S, Szkudlarek D, Szczukowski Ł, Świątek P, Szeląg A. Novel 1,3,4-Oxadiazole Derivatives of Pyrrolo[3,4- d]Pyridazinone Exert Anti-Inflammatory Activity without Acute Gastrotoxicity in the Carrageenan-Induced Rat Paw Edema Test. J Inflamm Res 2021; 14:5739-5756. [PMID: 34754217 PMCID: PMC8572108 DOI: 10.2147/jir.s330614] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 09/29/2021] [Indexed: 12/12/2022] Open
Abstract
Background and Purpose Due to the risk of gastrointestinal damage and various tissue toxicity associated with non-steroidal anti-inflammatory drugs (NSAIDs) use, investigating new anti-inflammatory agents with efficacy comparable to that of NSAIDs but reduced toxicity is still a major challenge and a clinical need. Based on our previous study, new 1,3,4-oxadiazole derivatives of pyrrolo[3,4-d]pyridazinone, especially 6-butyl-3,5,7-trimethyl-1-[[4-[[4-(4-nitrophenyl)piperazin-1-yl]methyl]-5-thioxo-1,3,4-oxadiazol-2-yl]methoxy]pyrrolo[3,4-d]pyridazin-4-one and 6-butyl-1-[[4-[[4-(4-chlorophenyl)-4-hydroxy-1-piperidyl]methyl]-2-thioxo-1,3,4-oxadiazol-5-yl]methoxy]-3,5,7-trimethyl-pyrrolo[3,4-d]pyridazin-4-one (hereafter referred to as the compounds 10b and 13b, respectively) seem to be promising anti-inflammatory agents. This study aimed to elucidate the effects of these two new derivatives on the course of experimental rat inflammation, liver and kidney function, and gastric mucosa. Methods The anti-inflammatory effect of compounds 10b and 13b was evaluated using the carrageenan-induced paw edema test in rats. The increase in paw volume (paw edema), prostaglandin E2 (PGE2), tumor necrosis factor-α (TNF-α) and myeloperoxidase (MPO) levels, histological alterations, and inflammatory cell infiltration in paw tissue were determined. Serum alanine transaminase (ALT) and aspartate transaminase (AST) activities, serum urea and creatinine levels, as well as changes in gastric mucosa, were measured as indicators of hepatic, renal, and gastric toxicity. Results Pretreatment with both novel derivatives at 10 mg/kg and 20 mg/kg doses reduced paw edema, counteracted the increased PGE2 and TNF-α levels, reduced the influx of inflammatory cells, and decreased histopathological alterations in paw tissue. Compound 13b at a dose of 20 mg/kg was more effective than indomethacin in reversing the increased TNF-α levels and reducing the influx of inflammatory cells. Only compound 13b at all studied doses (5, 10, or 20 mg/kg) counteracted the increased MPO level in paw tissue. Both compounds neither caused alterations in ALT, AST, urea, creatinine parameters nor gastric mucosal lesions. Conclusion New compounds exert an anti-inflammatory effect, presumably via inhibiting inflammatory mediators release and inflammatory cell infiltration. Moreover, both possess a more favorable benefit–risk profile than indomethacin, especially compound 13b.
Collapse
Affiliation(s)
| | - Anna Merwid-Ląd
- Department of Pharmacology, Wroclaw Medical University, Wrocław, Poland
| | - Benita Wiatrak
- Department of Pharmacology, Wroclaw Medical University, Wrocław, Poland
| | | | - Stanisław Dzimira
- Department of Pathology, Wroclaw University of Environmental and Life Sciences, Wrocław, Poland
| | - Danuta Szkudlarek
- Foundation of the Wroclaw Medical University, Wroclaw Medical University, Wrocław, Poland
| | - Łukasz Szczukowski
- Department of Chemistry of Drugs, Wroclaw Medical University, Wrocław, Poland
| | - Piotr Świątek
- Department of Chemistry of Drugs, Wroclaw Medical University, Wrocław, Poland
| | - Adam Szeląg
- Department of Pharmacology, Wroclaw Medical University, Wrocław, Poland
| |
Collapse
|
17
|
New N-Substituted-1,2,4-triazole Derivatives of Pyrrolo[3,4- d]pyridazinone with Significant Anti-Inflammatory Activity-Design, Synthesis and Complementary In Vitro, Computational and Spectroscopic Studies. Int J Mol Sci 2021; 22:ijms222011235. [PMID: 34681894 PMCID: PMC8540742 DOI: 10.3390/ijms222011235] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 10/14/2021] [Accepted: 10/14/2021] [Indexed: 01/05/2023] Open
Abstract
Regarding that the chronic use of commonly available non-steroidal and anti-inflammatory drugs (NSAIDs) is often restricted by their adverse effects, there is still a current need to search for and develop new, safe and effective anti-inflammatory agents. As a continuation of our previous work, we designed and synthesized a series of 18 novel N-substituted-1,2,4-triazole-based derivatives of pyrrolo[3,4-d]pyridazinone 4a-c-9a-c. The target compounds were afforded via a convenient way of synthesis, with good yields. The executed cell viability assay revealed that molecules 4a-7a, 9a, 4b-7b, 4c-7c do not exert a cytotoxic effect and were qualified for further investigations. According to the performed in vitro test, compounds 4a-7a, 9a, 4b, 7b, 4c show significant cyclooxygenase-2 (COX-2) inhibitory activity and a promising COX-2/COX-1 selectivity ratio. These findings are supported by a molecular docking study which demonstrates that new derivatives take position in the active site of COX-2 very similar to Meloxicam. Moreover, in the carried out in vitro evaluation within cells, the title molecules increase the viability of cells pre-incubated with the pro-inflammatory lipopolysaccharide and reduce the level of reactive oxygen and nitrogen species (RONS) in induced oxidative stress. The spectroscopic and molecular modeling study discloses that new compounds bind favorably to site II(m) of bovine serum albumin. Finally, we have also performed some in silico pharmacokinetic and drug-likeness predictions. Taking all of the results into consideration, the molecules belonging to series a (4a-7a, 9a) show the most promising biological profile.
Collapse
|
18
|
Nguyen HT, Vu TY, Vijay Kumar A, Hoang VNH, My PTN, Mandal PS, Tatipamula VB. N-Aryl iminochromenes inhibit cyclooxygenase enzymes via π-π stacking interactions and present a novel class of anti-inflammatory drugs. RSC Adv 2021; 11:29385-29393. [PMID: 35479538 PMCID: PMC9040635 DOI: 10.1039/d1ra04407a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 08/15/2021] [Indexed: 11/30/2022] Open
Abstract
Cyclooxygenase enzymes (COX1/2) have been widely studied and noted for their role in the biosynthesis of inflammation-induced proteins, prostaglandins and thromboxane. Multiple anti-inflammatory drugs have been developed to target these two enzymes, but most of them appeared to have notable adverse effects, especially on the cardiovascular system and lower gastrointestinal tract, suggesting an urgent need for new potent anti-inflammatory drugs. In this study, we screened twenty-two previously synthesized N-aryl iminochromenes (NAIs) for their anti-inflammatory activity by performing COX-1/2 inhibitory assays. Five compounds (1, 10, 14, 15, and 20) that gave the best in vitro anti-inflammatory results were subjected to an in vivo anti-inflammatory assay using the formalin-induced hind rat paw oedema method, followed by in silico studies using indomethacin and celecoxib as standard drugs. Among them, compound 10 stood out as the best candidate, and the percentage reduction in paw oedema at the dose of 20 mg kg-1 body weight was found to be substantially higher with compound 10 than that with indomethacin. This is mostly due to the excellent suitability of the chromene-phenyl scaffold with a highly concentrated area of aromatic residues, which produced good π-π stacking interactions. Taken together, this study strongly suggests compound 10 as a potential candidate for anti-inflammatory drug research.
Collapse
Affiliation(s)
- Ha Thi Nguyen
- Institute of Research and Development, Duy Tan University Da Nang 550000 Vietnam
- Faculty of Medicine, Duy Tan University Da Nang 550000 Vietnam
| | - Thien-Y Vu
- Faculty of Pharmacy, Ton Duc Thang University Ho Chi Minh City 700000 Vietnam
| | - A Vijay Kumar
- Department of Chemistry, Institute of Chemical Technology Mumbai 400019 India
| | - Vo Nguyen Huy Hoang
- Faculty of Pharmacy, Ton Duc Thang University Ho Chi Minh City 700000 Vietnam
| | - Pham Thi Ngoc My
- Faculty of Pharmacy, Ton Duc Thang University Ho Chi Minh City 700000 Vietnam
| | - Prashant S Mandal
- Department of Chemistry, Institute of Chemical Technology Mumbai 400019 India
| | - Vinay Bharadwaj Tatipamula
- Institute of Research and Development, Duy Tan University Da Nang 550000 Vietnam
- Faculty of Medicine, Duy Tan University Da Nang 550000 Vietnam
| |
Collapse
|
19
|
Peregrym K, Szczukowski Ł, Wiatrak B, Potyrak K, Czyżnikowska Ż, Świątek P. In Vitro and In Silico Evaluation of New 1,3,4-Oxadiazole Derivatives of Pyrrolo[3,4- d]pyridazinone as Promising Cyclooxygenase Inhibitors. Int J Mol Sci 2021; 22:ijms22179130. [PMID: 34502040 PMCID: PMC8431030 DOI: 10.3390/ijms22179130] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/20/2021] [Accepted: 08/21/2021] [Indexed: 12/24/2022] Open
Abstract
Since long-term use of classic NSAIDs can cause severe side effects related mainly to the gastroduodenal tract, discovery of novel cyclooxygenase inhibitors with a safe gastric profile still remains a crucial challenge. Based on the most recent literature data and previous own studies, we decided to modify the structure of already reported 1,3,4-oxadiazole based derivatives of pyrrolo[3,4-d]pyridazinone in order to obtain effective COX inhibitors. Herein we present the synthesis, biological evaluation and molecular docking studies of 12 novel compounds with disubstituted arylpiperazine pharmacophore linked in a different way with 1,3,4-oxadiazole ring. None of the obtained molecules show cytotoxicity on NHDF and THP-1 cell lines and, therefore, all were qualified for further investigation. In vitro cyclooxygenase inhibition assay revealed almost equal activity of new derivatives towards both COX-1 and COX-2 isoenzymes. Moreover, all compounds inhibit COX-2 isoform better than Meloxicam which was used as reference. Anti-inflammatory activity was confirmed in biological assays according to which title molecules are able to reduce induced inflammation within cells. Molecular docking studies were performed to describe the binding mode of new structures to cyclooxygenase. Investigated derivatives take place in the active site of COX, very similar to Meloxicam. For some compounds, promising druglikeness was calculated using in silico predictions.
Collapse
Affiliation(s)
- Krzysztof Peregrym
- Department of Medicinal Chemistry, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211, 50-556 Wroclaw, Poland;
| | - Łukasz Szczukowski
- Department of Medicinal Chemistry, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211, 50-556 Wroclaw, Poland;
- Correspondence: (Ł.S.); (P.Ś.); Tel.: +48-71-784-03-91 (P.Ś.)
| | - Benita Wiatrak
- Department of Pharmacology, Faculty of Medicine, Wroclaw Medical University, Mikulicza-Radeckiego 2, 50-345 Wroclaw, Poland; (B.W.); (K.P.)
| | - Katarzyna Potyrak
- Department of Pharmacology, Faculty of Medicine, Wroclaw Medical University, Mikulicza-Radeckiego 2, 50-345 Wroclaw, Poland; (B.W.); (K.P.)
| | - Żaneta Czyżnikowska
- Department of Inorganic Chemistry, Wroclaw Medical University, Borowska 211, 50-556 Wroclaw, Poland;
| | - Piotr Świątek
- Department of Medicinal Chemistry, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211, 50-556 Wroclaw, Poland;
- Correspondence: (Ł.S.); (P.Ś.); Tel.: +48-71-784-03-91 (P.Ś.)
| |
Collapse
|
20
|
Priolkar RNS, Shingade S, Palkar M, Desai SM. Design, Synthesis, and Characterization of Novel Linomide Analogues and their Evaluation for Anticancer Activity. Curr Drug Discov Technol 2021; 17:203-212. [PMID: 30306874 DOI: 10.2174/1570163815666181008151037] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 08/29/2018] [Accepted: 09/27/2018] [Indexed: 11/22/2022]
Abstract
BACKGROUND According to WHO, in 2017, about 90.5 million people suffered from cancer and about 8.8 million deaths occurred due to disease. Although the chemotherapeutic agents have decreased the mortality among the cancer patients but high toxicity and non-specific targets are still major drawbacks. Many researchers have identified linomide, a 4-hydroxy-2-quinolone derivative, as a lead molecule for the development of anticancer agents. With this background, we thought of the following objective. OBJECTIVE The objective of this research work involves the synthesis of a series of N-(2-(4- hydroxy-2-oxo-1-phenyl-1,2-dihydroquinolin-3-yl)-2-oxoethyl)-N-alkyl substituted benzene sulfonamides IVa-d (1-3) by replacing the anilide moiety at the third position of linomide with sulfamoylacyl and also N-methyl by N-phenyl functionality. To perform in silico anticancer activity by using Molegro Virtual Docker (MVD-2013, 6.0) software and in vitro anticancer activity by MTT assay. METHODS The starting material 4-hydroxy-1-phenylquinolin-2(1H)-one was treated with N-bromosuccinamide to yield compound II. Condensation of compound II with primary amines resulted in compounds IIIa-d, which, on coupling with substituted aromatic sulfonyl chlorides yield the title compounds IVa-d (1-3). RESULTS All the synthesized compounds were satisfactorily characterized by spectral data. The results of docking revealed that the synthesized compounds exhibited well-conserved hydrogen bonds with one or more amino acid residues in the active pocket of EGFRK tyrosine kinase domain (PDB ID: 1m17). The MolDock Score of compound IVd-1 (-115.503) was the highest amongst those tested. The in vitro anticancer activity results showed that compound IVc-1 (R= - (CH2) 2-CH3 ; R'= -H) and IV d-1 (R= -CH2-C6H5; R'= -H) were found to be most potent against K562 cell line with an IC50 of 0.451 μM/ml and 0.455 μM/ml respectively. Compound IVd-1 also showed better potency against A549 cell line with IC50 value of 0.704 μM/ml. CONCLUSION The results of in silico and in vitro anticancer activity are in agreement with each other. Compound IV d-1 was found to be most active of the series.
Collapse
Affiliation(s)
- Rudrax N S Priolkar
- Department of Pharmaceutical Chemistry, PES's Rajaram and Tarabai Bandekar College of Pharmacy, Farmagudi, Goa 403401, India
| | - Sunil Shingade
- Department of Pharmaceutical Chemistry, PES's Rajaram and Tarabai Bandekar College of Pharmacy, Farmagudi, Goa 403401, India
| | - Mahesh Palkar
- Department of Pharmaceutical Chemistry, KLEU's College of Pharmacy, Hubli, Karnataka 580031, India
| | - Shivalingrao M Desai
- Department of Pharmaceutical Chemistry, PES's Rajaram and Tarabai Bandekar College of Pharmacy, Farmagudi, Goa 403401, India
| |
Collapse
|
21
|
Investigation of indole functionalized pyrazoles and oxadiazoles as anti-inflammatory agents: Synthesis, in-vivo, in-vitro and in-silico analysis. Bioorg Chem 2021; 114:105068. [PMID: 34130110 DOI: 10.1016/j.bioorg.2021.105068] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 06/01/2021] [Accepted: 06/05/2021] [Indexed: 12/30/2022]
Abstract
There are several potential side and adverse effects are found to be associated with the anti-inflammatory drugs in clinical practice. The long-term use of these clinical agents highly unsafe. It encouraged the development of novel heterocyclic compounds with potential anti-inflammatory activity and low to no toxicity. In present investigation, a total of 12 indole functionalized pyrazole and oxadiazole derivatives were designed, synthesized and evaluated for the in-vivo anti-inflammatory and analgesic potential. These compounds displayed comparable anti-inflammatory and analgesic potential to the reference drugs. Finally, molecular docking analysis was performed considering different anti-inflammatory targets to determine the mechanistic target of the designed molecules. Detailed analysis suggested that the molecules inhibit COX-2, preferably over other anti-inflammatory targets. The results suggested that two compounds (15c and 15f) were found promising candidates for the development of novel anti-inflammatory agents.
Collapse
|
22
|
Galisteo A, Jannus F, García-García A, Aheget H, Rojas S, Lupiañez JA, Rodríguez-Diéguez A, Reyes-Zurita FJ, Quílez del Moral JF. Diclofenac N-Derivatives as Therapeutic Agents with Anti-Inflammatory and Anti-Cancer Effect. Int J Mol Sci 2021; 22:ijms22105067. [PMID: 34064702 PMCID: PMC8151993 DOI: 10.3390/ijms22105067] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 05/07/2021] [Accepted: 05/08/2021] [Indexed: 12/20/2022] Open
Abstract
A series of diclofenac N-derivatives (2, 4, 6, 8c, 9c, 10a-c) were synthesized in order to test their anti-cancer and anti-inflammatory effects. The anticarcinogen activity has been assayed against three cancer cell lines: HT29, human colon cancer cells; Hep-G2, human hepatic cells; and B16-F10, murine melanoma cells. First, we determined the cytotoxicity of the different compounds, finding that the most effective compound was compound 8c against all cell lines and both compounds 4 and 6 in human Hep-G2 and HT29 cell lines. Compounds 4 and 8c were selected for the percentage of apoptosis determination, cell cycle distribution, and mitochondrial membrane potential measure because these products presented the lowest IC50 values in two of the three cancer cell lines assayed (B16-F10 and HepG2), and were two of the three products with lowest IC50 in HT29 cell line. Moreover, the percentages of apoptosis induction were determined for compounds 4 and 8c, showing that the highest values were between 30 to 60%. Next, the effects of these two compounds were observed on the cellular cycle, resulting in an increase in the cell population in G2/M cell cycle phase after treatment with product 8c, whereas compound 4 increased the cells in phase G0/G1, by possible differentiation process induction. Finally, to determine the possible apoptosis mechanism triggered by these compounds, mitochondrial potential was evaluated, indicating the possible activation of extrinsic apoptotic mechanism. On the other hand, we studied the anti-inflammatory effects of these diclofenac (DCF) derivatives on lipopolysaccharide (LPS) activated RAW 264.7 macrophages-monocytes murine cells by inhibition of nitric oxide (NO) production. As a first step, we determined the cytotoxicity of the synthesized compounds, as well as DCF, against these cells. Then, sub-cytotoxic concentrations were used to determine NO release at different incubation times. The greatest anti-inflammatory effect was observed for products 2, 4, 8c, 10a, 10b, and 9c at 20 µg·mL-1 concentration after 48 h of treatment, with inhibition of produced NO between 60 to 75%, and a concentration that reduces to the 50% the production of NO (IC50 NO) between 2.5 to 25 times lower than that of DCF. In this work, we synthesized and determined for the first time the anti-cancer and anti-inflammatory potential of eight diclofenac N-derivatives. In agreement with the recent evidences suggesting that inflammation may contribute to all states of tumorigenesis, the development of these new derivatives capable of inducing apoptosis and anti-inflammatory effects at very low concentrations represent new effective therapeutic strategies against these diseases.
Collapse
Affiliation(s)
- Alberto Galisteo
- Department of Organic Chemistry, Institute of Biotechnology, University of Granada, 18071 Granada, Spain;
| | - Fatin Jannus
- Department of Biochemistry and Molecular Biology, University of Granada, C/Severo Ochoa s/n, 18071 Granada, Spain; (F.J.); (J.A.L.)
| | - Amalia García-García
- Department of Inorganic Chemistry, University of Granada, C/Severo Ochoa s/n, 18071 Granada, Spain; (A.G.-G.); (S.R.); (A.R.-D.)
| | - Houssam Aheget
- Centre for Genomics and Oncological Research, GENYO, C/Health Sciences Technology Park, Av. de la Illustration 114, 18016 Granada, Spain;
| | - Sara Rojas
- Department of Inorganic Chemistry, University of Granada, C/Severo Ochoa s/n, 18071 Granada, Spain; (A.G.-G.); (S.R.); (A.R.-D.)
| | - José A. Lupiañez
- Department of Biochemistry and Molecular Biology, University of Granada, C/Severo Ochoa s/n, 18071 Granada, Spain; (F.J.); (J.A.L.)
| | - Antonio Rodríguez-Diéguez
- Department of Inorganic Chemistry, University of Granada, C/Severo Ochoa s/n, 18071 Granada, Spain; (A.G.-G.); (S.R.); (A.R.-D.)
| | - Fernando J. Reyes-Zurita
- Department of Biochemistry and Molecular Biology, University of Granada, C/Severo Ochoa s/n, 18071 Granada, Spain; (F.J.); (J.A.L.)
- Correspondence: (F.J.R.-Z.); (J.F.Q.d.M.); Tel.: +34-958243252 (F.J.R.-Z.); +34-958243185 (J.F.Q.d.M.)
| | - José F. Quílez del Moral
- Department of Organic Chemistry, Institute of Biotechnology, University of Granada, 18071 Granada, Spain;
- Correspondence: (F.J.R.-Z.); (J.F.Q.d.M.); Tel.: +34-958243252 (F.J.R.-Z.); +34-958243185 (J.F.Q.d.M.)
| |
Collapse
|
23
|
Mahmoud M. Hamed, El-Dean AMK, Abdel-Mohsen SA, Tolba MS. New Diclofenac Derivatives as Anti-Microbial, Anti-Inflammatory Agents: Design, Synthesis, Biological Screening, and Molecular Docking Study. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2021. [DOI: 10.1134/s1068162021010088] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
24
|
Bolakatti G, Palkar M, Katagi M, Hampannavar G, Karpoormath RV, Ninganagouda S, Badiger A. Novel series of benzo[d]thiazolyl substituted-2-quinolone hybrids: Design, synthesis, biological evaluation and in-silico insights. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2020.129413] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
25
|
Novel 1,3,4-Oxadiazole Derivatives of Pyrrolo[3,4- d]pyridazinone Exert Antinociceptive Activity in the Tail-Flick and Formalin Test in Rodents and Reveal Reduced Gastrotoxicity. Int J Mol Sci 2020; 21:ijms21249685. [PMID: 33353118 PMCID: PMC7766312 DOI: 10.3390/ijms21249685] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 12/13/2020] [Accepted: 12/16/2020] [Indexed: 12/12/2022] Open
Abstract
Despite the availability of the current drug arsenal for pain management, there is still a clinical need to identify new, more effective, and safer analgesics. Based on our earlier study, newly synthesized 1,3,4-oxadiazole derivatives of pyrrolo[3,4-d]pyridazinone, especially 10b and 13b, seem to be promising as potential analgesics. The current study was designed to investigate whether novel derivatives attenuate nociceptive response in animals subjected to thermal or chemical noxious stimulus, and to compare this effect to reference drugs. The antinociceptive effect of novel compounds was studied using the tail-flick and formalin test. Pretreatment with novel compounds at all studied doses increased the latency time in the tail-flick test and decreased the licking time during the early phase of the formalin test. New derivatives given at the medium and high doses also reduced the late phase of the formalin test. The achieved results indicate that new derivatives dose-dependently attenuate nociceptive response in both models of pain and exert a lack of gastrotoxicity. Both studied compounds act more efficiently than indomethacin, but not morphine. Compound 13b at the high dose exerts the greatest antinociceptive effect. It may be due to the reduction of nociceptor sensitization via prostaglandin E2 and myeloperoxidase levels decrease.
Collapse
|
26
|
Szczukowski Ł, Krzyżak E, Zborowska A, Zając P, Potyrak K, Peregrym K, Wiatrak B, Marciniak A, Świątek P. Design, Synthesis and Comprehensive Investigations of Pyrrolo[3,4- d]pyridazinone-Based 1,3,4-Oxadiazole as New Class of Selective COX-2 Inhibitors. Int J Mol Sci 2020; 21:E9623. [PMID: 33348757 PMCID: PMC7766220 DOI: 10.3390/ijms21249623] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 12/09/2020] [Accepted: 12/11/2020] [Indexed: 12/13/2022] Open
Abstract
The long-term use of Non-Steroidal Anti-Inflammatory Drugs (NSAIDs) in treatment of different chronic inflammatory disorders is strongly restricted by their serious gastrointestinal adverse effects. Therefore, there is still an urgent need to search for new, safe, and efficient anti-inflammatory agents. Previously, we have reported the Mannich base-type derivatives of pyrrolo[3,4-d]pyridazinone which strongly inhibit cyclooxygenase, have better affinity to COX-2 isoenzyme and exert promising anti-oxidant activity. These findings encouraged us to perform further optimization of that structure. Herein, we present the design, synthesis, molecular docking, spectroscopic, and biological studies of novel pyrrolo[3,4-d]pyridazinone derivatives bearing 4-aryl-1-(1-oxoethyl)piperazine pharmacophore 5a,b-6a,b. The new compounds were obtained via convenient, efficient, one-pot synthesis. According to in vitro evaluations, novel molecules exert no cytotoxicity and act as selective COX-2 inhibitors. These findings stay in good correlation with molecular modeling results, which additionally showed that investigated compounds take a position in the active site of COX-2 very similar to Meloxicam. Moreover, all derivatives reduce the increased level of reactive oxygen and nitrogen species and prevent DNA strand breaks caused by oxidative stress. Finally, performed spectroscopic and molecular docking studies demonstrated that new compound interactions with bovine serum albumin (BSA) are moderate, formation of complexes is in one-to-one ratio, and binding site II (subdomain IIIA) is favorable.
Collapse
Affiliation(s)
- Łukasz Szczukowski
- Department of Medicinal Chemistry, Wroclaw Medical University, Borowska 211, 50-556 Wroclaw, Poland;
| | - Edward Krzyżak
- Department of Inorganic Chemistry, Wroclaw Medical University, Borowska 211a, 50-556 Wroclaw, Poland; (E.K.); (A.M.)
| | - Adrianna Zborowska
- Student Scientific Club of Medicinal Chemistry, Wroclaw Medical University, Borowska 211, 50-556 Wroclaw, Poland; (A.Z.); (P.Z.); (K.P.); (K.P.)
| | - Patrycja Zając
- Student Scientific Club of Medicinal Chemistry, Wroclaw Medical University, Borowska 211, 50-556 Wroclaw, Poland; (A.Z.); (P.Z.); (K.P.); (K.P.)
| | - Katarzyna Potyrak
- Student Scientific Club of Medicinal Chemistry, Wroclaw Medical University, Borowska 211, 50-556 Wroclaw, Poland; (A.Z.); (P.Z.); (K.P.); (K.P.)
| | - Krzysztof Peregrym
- Student Scientific Club of Medicinal Chemistry, Wroclaw Medical University, Borowska 211, 50-556 Wroclaw, Poland; (A.Z.); (P.Z.); (K.P.); (K.P.)
| | - Benita Wiatrak
- Department of Basic Medical Sciences, Wroclaw Medical University, Borowska 211, 50-556 Wroclaw, Poland;
- Department of Pharmacology, Wroclaw Medical University, Mikulicza-Radeckiego 2, 50-345 Wroclaw, Poland
| | - Aleksandra Marciniak
- Department of Inorganic Chemistry, Wroclaw Medical University, Borowska 211a, 50-556 Wroclaw, Poland; (E.K.); (A.M.)
| | - Piotr Świątek
- Department of Medicinal Chemistry, Wroclaw Medical University, Borowska 211, 50-556 Wroclaw, Poland;
| |
Collapse
|
27
|
Synthesis of Novel Diclofenac Hydrazones: Molecular Docking, Anti-Inflammatory, Analgesic, and Ulcerogenic Activity. J CHEM-NY 2020. [DOI: 10.1155/2020/4916726] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
This study was aimed to design novel diclofenac hydrazones having anti-inflammatory and analgesic activity with gastric sparing effect. A new series of 2-[2-(2,6-dichloroanilino)phenyl]-N’-[(substituted phenyl) methylidene] acetohydrazide derivatives (1−14) were synthesized and evaluated for their anti-inflammatory, analgesic, and ulcerogenic activity. The compounds were identified and confirmed by elemental analysis and spectral data. During anti-inflammatory activity by carrageenan-induced paw edema method, compounds (2, 3, 7, 8, 11, and 13) were found to be most promising. Compounds 3, 8, and 13 have been found to have significant analgesic activity compared to the reference drug diclofenac in analgesic activity by both the hot plate method and acetic acid-induced writhing method. The compounds which presented highly significant anti-inflammatory and analgesic activity were further tested for their ulcerogenic activity. Compounds 3 and 8 showed maximum ulcerogenic reduction activities. Compound 8 was found to have LD50 of 168 mg/kg. Compound 8 with 3,5-dimethoxy-4-hydroxyphenyl substitution was found to be the most promising anti-inflammatory and analgesic agent with gastric sparing activity. Molecular docking of compounds was performed for COX−1/COX−2 binding site. Lead compound 8 showed better binding affinities of −9.4 kJ/mol with both COX-1 and COX-2 as compared to the standard drug, diclofenac with binding affinities of −6.6 kJ/mol and −8.1 kJ/mol for COX−1 and COX−2, respectively.
Collapse
|
28
|
New 1,3,4-Oxadiazole Derivatives of Pyridothiazine-1,1-Dioxide with Anti-Inflammatory Activity. Int J Mol Sci 2020; 21:ijms21239122. [PMID: 33266208 PMCID: PMC7729791 DOI: 10.3390/ijms21239122] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 11/25/2020] [Accepted: 11/26/2020] [Indexed: 12/20/2022] Open
Abstract
Numerous studies have confirmed the coexistence of oxidative stress and inflammatory processes. Long-term inflammation and oxidative stress may significantly affect the initiation of the neoplastic transformation process. Here, we describe the synthesis of a new series of Mannich base-type hybrid compounds containing an arylpiperazine residue, 1,3,4-oxadiazole ring, and pyridothiazine-1,1-dioxide core. The synthesis was carried out with the hope that the hybridization of different pharmacophoric molecules would result in a synergistic effect on their anti-inflammatory activity, especially the ability to inhibit cyclooxygenase. The obtained compounds were investigated in terms of their potencies to inhibit cyclooxygenase COX-1 and COX-2 enzymes with the use of the colorimetric inhibitor screening assay. Their antioxidant and cytotoxic effect on normal human dermal fibroblasts (NHDF) was also studied. Strong COX-2 inhibitory activity was observed after the use of TG6 and, especially, TG4. The TG11 compound, as well as reference meloxicam, turned out to be a preferential COX-2 inhibitor. TG12 was, in turn, a non-selective COX inhibitor. A molecular docking study was performed to understand the binding interaction of compounds at the active site of cyclooxygenases.
Collapse
|
29
|
Nguyen TT, Nallapaty S, Rao GSNK, Koneru ST, Annam SSP, Tatipamula VB. Evaluating the In Vitro Activity of Depsidones from Usnea subfloridana Stirton as Key Enzymes Involved in Inflammation and Gout. PHARMACEUTICAL SCIENCES 2020. [DOI: 10.34172/ps.2020.73] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Background: Traditionally, Usnea genus has significant uses in the treatment of swelling and tumors in Africa and Asia. The aim of the present study was to investigate the chemical constituents present in the acetone extract (AE) of Usnea subfloridana Stirton and also to evaluate their anti-inflammatory and anti-gout effects. Methods: Isolation and characterization of secondary metabolites from AE were evaluated by chromatography and spectral studies. Anti-inflammatory activities were assessed through cyclooxygenase (COX1 and COX2) and 5-lipooxygenase (5-LOX) enzyme inhibition assays, while anti-gout effects were evaluated by xanthine oxidase (XO) inhibition assay. Results: The existence of five known depsidones, identified as galbinic acid (1), conprotocetraricacid (2), constictic acid (3), salazinic acid (4), and lobaric acid (5), were exposed by chemical investigation of AE and confirmed by spectral data. Using in vitro enzyme inhibition assays, it was noticed that all the isolates showed dose-dependent activity against all the tested enzymes. Mainly, compounds 2 and 5 showed better inhibition efficiency on COX2 enzyme with the IC50of 7.17±1.07 and 7.01±0.94 nM, respectively, than the reference drug indomethacin (7.3±0.65nM). Furthermore, all isolates exhibited potent inhibition effects on the XO enzyme. Conclusion: The results indicated that U. subfloridana can be a favorable natural source for thetreatment of inflammation and gout. Compounds 2 and 5 were responsible for these biologicalactions by regulating pro-inflammatory enzymes, namely COXs, 5-LOX, and XO.
Collapse
Affiliation(s)
- Thanh-Trung Nguyen
- Institute of Research and Development, Duy Tan University, Da Nang 550000, Vietnam
- Faculty of Pharmacy, Duy Tan University, Da Nang 550000, Vietnam
| | - Srilakshmi Nallapaty
- Pharmaceutical Sciences Department, K L College of Pharmacy, Koneru Lakshmaiah Education Foundation, Vaddeswaram – 522 502, Guntur, Andhra Pradesh, India
| | - G S N Koteswara Rao
- Pharmaceutical Sciences Department, K L College of Pharmacy, Koneru Lakshmaiah Education Foundation, Vaddeswaram – 522 502, Guntur, Andhra Pradesh, India
| | - Sree Teja Koneru
- Pharmaceutical Sciences Department, K L College of Pharmacy, Koneru Lakshmaiah Education Foundation, Vaddeswaram – 522 502, Guntur, Andhra Pradesh, India
| | - Satya Sowbhagya Priya Annam
- Pharmaceutical Sciences Department, University College of Pharmaceutical Sciences, Andhra University, Visakhapatnam 530003, Andhra Pradesh, India
| | - Vinay Bharadwaj Tatipamula
- Institute of Research and Development, Duy Tan University, Da Nang 550000, Vietnam
- Faculty of Pharmacy, Duy Tan University, Da Nang 550000, Vietnam
| |
Collapse
|
30
|
Design, synthesis, biological evaluation and in silico studies of novel pyrrolo[3,4-d]pyridazinone derivatives with promising anti-inflammatory and antioxidant activity. Bioorg Chem 2020; 102:104035. [DOI: 10.1016/j.bioorg.2020.104035] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 06/05/2020] [Accepted: 06/15/2020] [Indexed: 01/08/2023]
|
31
|
Ahmed S, Moni DA, Sonawane KD, Paek KY, Shohael AM. A comprehensive in silico exploration of pharmacological properties, bioactivities and COX-2 inhibitory potential of eleutheroside B from Eleutherococcus senticosus (Rupr. & Maxim.) Maxim. J Biomol Struct Dyn 2020; 39:6553-6566. [DOI: 10.1080/07391102.2020.1803135] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Sium Ahmed
- Cell Genetics and Plant Biotechnology Laboratory, Department of Biotechnology and Genetic Engineering, Jahangirnagar University, Savar, Bangladesh
| | - Dil Afroj Moni
- Cell Genetics and Plant Biotechnology Laboratory, Department of Biotechnology and Genetic Engineering, Jahangirnagar University, Savar, Bangladesh
| | - Kailas Dashrath Sonawane
- Department of Microbiology, Shivaji University, Kolhapur, Maharashtra, India
- Structural Bioinformatics Unit, Department of Biochemistry, Shivaji University, Kolhapur, Maharashtra, India
| | - Kee Yoeup Paek
- Research Center for the Development of Advanced Horticultural Technology, Chungbuk National University, Cheongju, Republic of Korea
| | - Abdullah Mohammad Shohael
- Cell Genetics and Plant Biotechnology Laboratory, Department of Biotechnology and Genetic Engineering, Jahangirnagar University, Savar, Bangladesh
| |
Collapse
|
32
|
Shepeta Y, Lozynskyi A, Sulyma M, Nektegayev I, Grellier P, Lesyk R. Synthesis and biological activity evaluation of new thiazolidinone-diclofenac hybrid molecules. PHOSPHORUS SULFUR 2020. [DOI: 10.1080/10426507.2020.1759060] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Yulia Shepeta
- Department of Pharmaceutical Сhemistry, National Pirogov Memorial Medical University, Vinnytsya, Ukraine
| | - Andrii Lozynskyi
- Department of Pharmaceutical, Organic and Bioorganic Chemistry, Danylo Halytsky Lviv National Medical University, Lviv, Ukraine
| | - Marta Sulyma
- Department of General, Inorganic and Bioinorganic Chemistry, Danylo Halytsky Lviv National Medical University, Lviv, Ukraine
| | - Ihor Nektegayev
- Department of Pharmaceutical, Organic and Bioorganic Chemistry, Danylo Halytsky Lviv National Medical University, Lviv, Ukraine
| | - Philippe Grellier
- National Museum of Natural History, UMR 7245 CNRS-MNHN, Team BAMEE, Paris, France
| | - Roman Lesyk
- Department of Pharmaceutical, Organic and Bioorganic Chemistry, Danylo Halytsky Lviv National Medical University, Lviv, Ukraine
| |
Collapse
|
33
|
Mamatha SV, Belagali SL, Bhat M. Synthesis, characterisation and evaluation of oxadiazole as promising anticancer agent. SN APPLIED SCIENCES 2020. [DOI: 10.1007/s42452-020-2511-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
|
34
|
de Jesus ACSPS, Costa FM, das Neves PAPFG, Melo FPA, Silva AS, Silva OPP, Santos CBR, Borges RS. The role of regioselective hydroxylation on toxicity of diclofenac and related derivatives. MOLECULAR SIMULATION 2019. [DOI: 10.1080/08927022.2019.1655560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Ana C. S. P. S. de Jesus
- Núcleo de Estudos e Seleção de Moléculas Bioativas, Instituto de Ciências da Saúde, Universidade Federal do Pará, Belém, Brazil
| | - Fernanda M. Costa
- Núcleo de Estudos e Seleção de Moléculas Bioativas, Instituto de Ciências da Saúde, Universidade Federal do Pará, Belém, Brazil
| | - Paulo A. P. F. G. das Neves
- Núcleo de Estudos e Seleção de Moléculas Bioativas, Instituto de Ciências da Saúde, Universidade Federal do Pará, Belém, Brazil
| | - Fernanda P. A. Melo
- Núcleo de Estudos e Seleção de Moléculas Bioativas, Instituto de Ciências da Saúde, Universidade Federal do Pará, Belém, Brazil
| | - Antonio S. Silva
- Núcleo de Estudos e Seleção de Moléculas Bioativas, Instituto de Ciências da Saúde, Universidade Federal do Pará, Belém, Brazil
| | - Osmarina P. P. Silva
- Núcleo de Estudos e Seleção de Moléculas Bioativas, Instituto de Ciências da Saúde, Universidade Federal do Pará, Belém, Brazil
| | - Cleydson B. R. Santos
- Laboratório de Modelagem e Química Computacional, Departamento de Ciências Biológicas e Ciências da Saúde, Universidade Federal do Amapá, Macapá, Brazil
| | - Rosivaldo S. Borges
- Núcleo de Estudos e Seleção de Moléculas Bioativas, Instituto de Ciências da Saúde, Universidade Federal do Pará, Belém, Brazil
| |
Collapse
|
35
|
Verma G, Khan MF, Akhtar W, Alam MM, Akhter M, Shaquiquzzaman M. A Review Exploring Therapeutic Worth of 1,3,4-Oxadiazole Tailored Compounds. Mini Rev Med Chem 2019; 19:477-509. [PMID: 30324877 DOI: 10.2174/1389557518666181015152433] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 12/27/2017] [Accepted: 09/30/2018] [Indexed: 02/01/2023]
Abstract
1,3,4-Oxadiazole, a five-membered aromatic ring can be seen in a number of synthetic molecules. The peculiar structural feature of 1,3,4-oxadiazole ring with pyridine type of nitrogen atom is beneficial for 1,3,4-oxadiazole derivatives to have effective binding with different enzymes and receptors in biological systems through numerous weak interactions, thereby eliciting an array of bioactivities. Research in the area of development of 1,3,4-oxadiazole-based derivatives has become an interesting topic for the scientists. A number of 1,3,4-oxadiazole based compounds with high therapeutic potency are being extensively used for the treatment of different ailments, contributing to enormous development value. This work provides a systematic and comprehensive review highlighting current developments of 1,3,4-oxadiazole based compounds in the entire range of medicinal chemistry such as anticancer, antifungal, antibacterial, antitubercular, anti-inflammatory, antineuropathic, antihypertensive, antihistaminic, antiparasitic, antiobesity, antiviral, and other medicinal agents. It is believed that this review will be of great help for new thoughts in the pursuit for rational designs for the development of more active and less toxic 1,3,4-oxadiazole based medicinal agents.
Collapse
Affiliation(s)
- Garima Verma
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi-110062, India
| | - Mohemmed F Khan
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi-110062, India
| | - Wasim Akhtar
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi-110062, India
| | - Mohammad Mumtaz Alam
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi-110062, India
| | - Mymoona Akhter
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi-110062, India
| | - Mohammad Shaquiquzzaman
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi-110062, India
| |
Collapse
|
36
|
Synthesis of a New Series of Furopyranone‐ and Furocoumarin‐Chromone Conjugates Followed by
In–Vitro
Cytotoxicity Activity Evaluation, and Molecular Docking Study. ChemistrySelect 2019. [DOI: 10.1002/slct.201900009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
37
|
Biological Evaluation and Molecular Docking Studies of Dimethylpyridine Derivatives. Molecules 2019; 24:molecules24061093. [PMID: 30897717 PMCID: PMC6471528 DOI: 10.3390/molecules24061093] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 03/16/2019] [Accepted: 03/18/2019] [Indexed: 11/16/2022] Open
Abstract
Cyclooxygenase inhibitors as anti-inflammatory agents can be used in chemoprevention. Many in vitro and in vivo studies on human and animal models have explained the mechanisms of the chemopreventive effect of COX inhibitors such as: induction of apoptosis, inhibition of neoplasia, angiogenesis suppression, induction of cell cycle inhibition and inhibition of the expression of peroxisome proliferator-activated receptors. Here, biological evaluation of twelve different Schiff base derivatives of N-(2-hydrazine-2-oxoethyl)-4,6-dimethyl-2-sulfanylpyridine- 3-carboxamide are presented. Their in vitro anti-COX-1/COX-2, antioxidant and anticancer activities were studied. The molecular docking study was performed in order to understand the binding interaction of compounds in the active site of cyclooxygenases. Compounds PS18 and PS33 showed a significant inhibitory activity on COX-1 at lower concentrations compared to meloxicam and piroxicam. The IC50 of COX-1 of these compounds was 57.3 µM for PS18 and 51.8 µM for PS33. Out of the tested compounds, the highest therapeutic index was demonstrated by PS18, PS19, PS33, PS40 and PS41. Lower molar concentrations of these compounds inhibit the growth of cancer cells while not inhibiting the healthy cells. Compounds PS18, PS19 and PS33 simultaneously demonstrated a statistically-significant inhibition of COX-1 or COX-2. This opens up the possibility of applying these compounds in the chemoprevention of cancer.
Collapse
|
38
|
Hafeez F, Zahoor AF, Ahmad S, Ahmad M, Faiz S. Recent progress in the synthesis of diclofenac based NSAIDs analogs/derivatives. SYNTHETIC COMMUN 2019; 49:325-350. [DOI: 10.1080/00397911.2018.1515367] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 08/20/2018] [Indexed: 12/19/2022]
Affiliation(s)
- Freeha Hafeez
- Department of Chemistry, Government College University, Faisalabad, Pakistan
| | - Ameer Fawad Zahoor
- Department of Chemistry, Government College University, Faisalabad, Pakistan
| | - Sajjad Ahmad
- Department of Chemistry, University of Engineering and Technology Lahore, Faisalabad Campus, Faisalabad, Pakistan
| | - Matloob Ahmad
- Department of Chemistry, Government College University, Faisalabad, Pakistan
| | - Sadia Faiz
- Department of Chemistry, Government College University, Faisalabad, Pakistan
| |
Collapse
|
39
|
Gawandi SJ, Desai VG, Shingade SG. Design, synthesis, and biological evaluation of 1,3,5-trisubstituted pyrazoles as tyrosine kinase inhibitors. Med Chem Res 2019. [DOI: 10.1007/s00044-018-2282-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
40
|
Teimouri MB, Yousefi S, Khodkari V. Diastereoselective One-Pot Synthesis of Coumarin-4-carboxamido-3-esters via a Four-Component Isocyanide-Based Reaction and Molecular Docking Study. ChemistrySelect 2018. [DOI: 10.1002/slct.201801396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
| | - Samira Yousefi
- Faculty of Chemistry; Kharazmi University, Mofateh Ave., Tehran; Iran
| | - Vida Khodkari
- Faculty of Chemistry; Kharazmi University, Mofateh Ave., Tehran; Iran
| |
Collapse
|
41
|
Akhtar MJ, Siddiqui AA, Khan AA, Ali Z, Dewangan RP, Pasha S, Yar MS. Design, synthesis, docking and QSAR study of substituted benzimidazole linked oxadiazole as cytotoxic agents, EGFR and erbB2 receptor inhibitors. Eur J Med Chem 2017; 126:853-869. [DOI: 10.1016/j.ejmech.2016.12.014] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Revised: 11/22/2016] [Accepted: 12/06/2016] [Indexed: 01/07/2023]
|
42
|
Świątek P, Strzelecka M, Urniaz R, Gębczak K, Gębarowski T, Gąsiorowski K, Malinka W. Synthesis, COX-1/2 inhibition activities and molecular docking study of isothiazolopyridine derivatives. Bioorg Med Chem 2016; 25:316-326. [PMID: 27842798 DOI: 10.1016/j.bmc.2016.10.036] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 10/25/2016] [Accepted: 10/29/2016] [Indexed: 01/22/2023]
Abstract
One of the main challenges for nowadays medicine is drugs selectivity. In COX-1 and COX-2, the active sites are composed of the same group of amino acids with the exception of the only one residue in position 523, in COX-1 is an isoleucine, while in COX-2 is a valine. Here, we presented a series of isothiazolopyridine/benzisothiazole derivatives substituted differently into an isothiazole ring, which were synthesized and investigated for their potencies to inhibit COX-1 and COX-2 enzymes by colorimetric inhibitor screening assay. All the tested compounds inhibited the activity of COX-1, the effect on COX-2 activity was differential. The mode of binding was characterized by a molecular docking study. Comparing biological activity of the investigated compounds, it was observed that compounds sharing the most similar position to flurbiprofen and meloxicam, representing the two main enzyme subdomains, achieved higher biological activity than others. It is directly related to the fit to the enzyme's active site, which prevents too early dissociation of the compounds.
Collapse
Affiliation(s)
- Piotr Świątek
- Department of Chemistry of Drugs, Wroclaw Medical University, Borowska 211, 50-556 Wroclaw, Poland.
| | - Malgorzata Strzelecka
- Department of Chemistry of Drugs, Wroclaw Medical University, Borowska 211, 50-556 Wroclaw, Poland
| | - Rafal Urniaz
- Department of Medicine, Institute for Medical Research, University of Cambridge, Cambridge Biomedical Campus, Addenbrooke's Hospital, Hills Rd, CB2 0SP Cambridge, UK
| | - Katarzyna Gębczak
- Department of Basic Medical Science, Wroclaw Medical University, Borowska 211, 50-556 Wroclaw, Poland
| | - Tomasz Gębarowski
- Department of Basic Medical Science, Wroclaw Medical University, Borowska 211, 50-556 Wroclaw, Poland
| | - Kazimierz Gąsiorowski
- Department of Basic Medical Science, Wroclaw Medical University, Borowska 211, 50-556 Wroclaw, Poland
| | - Wieslaw Malinka
- Department of Chemistry of Drugs, Wroclaw Medical University, Borowska 211, 50-556 Wroclaw, Poland
| |
Collapse
|
43
|
Yousefi S, Bayat S, Rahman MBA, Ismail IS, Saki E, Leong SW, Abdulmalek E. Synthesis, bioactivity evaluation, and docking study of 5-aminosalicylic acid’s fatty acid derivatives. MONATSHEFTE FUR CHEMIE 2015. [DOI: 10.1007/s00706-015-1538-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
44
|
Jiang X, Wang Y, Zhu H, Wang Y, Zhao M, Zhao S, Wu J, Li S, Peng S. Modifying tetramethyl-nitrophenyl-imidazoline with amino acids: design, synthesis, and 3D-QSAR for improving inflammatory pain therapy. DRUG DESIGN DEVELOPMENT AND THERAPY 2015; 9:2329-42. [PMID: 25960636 PMCID: PMC4410827 DOI: 10.2147/dddt.s76218] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
With the help of pharmacophore analysis and docking investigation, 15 novel 1-(4,4,5,5-tetramethyl-2-(3-nitrophenyl)-4,5-dihydroimidazol-1-yl)-oxyacetyl-L-amino acids (6a-o) were designed, synthesized, and assayed. On tail-flick and xylene-induced ear edema models, 10 μmol/kg 6a-o exhibited excellent oral anti-inflammation and analgesic activity. The dose-dependent assay of their representative 6f indicates that the effective dose should be 3.3 μmol/kg. The correlation of the three-dimensional quantitative structure-activity relationship with the docking analysis provides a basis for the rational design of drugs to treat inflammatory pain.
Collapse
Affiliation(s)
- Xueyun Jiang
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, Beijing Laboratory of Biomedical Materials, College of Pharmaceutical Sciences, Capital Medical University, Beijing, People's Republic of China
| | - Yuji Wang
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, Beijing Laboratory of Biomedical Materials, College of Pharmaceutical Sciences, Capital Medical University, Beijing, People's Republic of China
| | - Haimei Zhu
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, Beijing Laboratory of Biomedical Materials, College of Pharmaceutical Sciences, Capital Medical University, Beijing, People's Republic of China
| | - Yaonan Wang
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, Beijing Laboratory of Biomedical Materials, College of Pharmaceutical Sciences, Capital Medical University, Beijing, People's Republic of China
| | - Ming Zhao
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, Beijing Laboratory of Biomedical Materials, College of Pharmaceutical Sciences, Capital Medical University, Beijing, People's Republic of China ; Faculty of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Shurui Zhao
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, Beijing Laboratory of Biomedical Materials, College of Pharmaceutical Sciences, Capital Medical University, Beijing, People's Republic of China
| | - Jianhui Wu
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, Beijing Laboratory of Biomedical Materials, College of Pharmaceutical Sciences, Capital Medical University, Beijing, People's Republic of China
| | - Shan Li
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, Beijing Laboratory of Biomedical Materials, College of Pharmaceutical Sciences, Capital Medical University, Beijing, People's Republic of China
| | - Shiqi Peng
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, Beijing Laboratory of Biomedical Materials, College of Pharmaceutical Sciences, Capital Medical University, Beijing, People's Republic of China
| |
Collapse
|
45
|
Yousefi S, Bayat S, Abdul Rahman MB, Ismail IS, Saki E, Abdulmalek E. Synthesis and in vitro bioactivity evaluation of new glucose and xylitol ester derivatives of 5-aminosalicylic acid. RSC Adv 2015. [DOI: 10.1039/c5ra19623j] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Synthesis,in vitroanti-bacterial, anti-inflammatory and anti-cancer activity evaluations andin silicostudy of monosaccharide derivatives of mesalazine in comparison with parent drug.
Collapse
Affiliation(s)
- Samira Yousefi
- Department of Chemistry
- Faculty of Science
- Universiti Putra Malaysia
- 43400 UPM Serdang
- Malaysia
| | - Saadi Bayat
- Department of Chemistry
- Faculty of Science
- Universiti Putra Malaysia
- 43400 UPM Serdang
- Malaysia
| | | | - Intan Safinar Ismail
- Department of Chemistry
- Faculty of Science
- Universiti Putra Malaysia
- 43400 UPM Serdang
- Malaysia
| | - Elnaz Saki
- Department of Cell and Molecular Biology
- Faculty of Biotechnology and Biomolecular Sciences
- Universiti Putra Malaysia
- 43400 Serdang
- Malaysia
| | - Emilia Abdulmalek
- Department of Chemistry
- Faculty of Science
- Universiti Putra Malaysia
- 43400 UPM Serdang
- Malaysia
| |
Collapse
|
46
|
Palkar MB, Praveen DM, Ronad PM, Viswanathswamy AHM, Rane RA, Patel HM, Shaikh MS, Hampannavar GA, Jain KS, Karpoormath R. Novel series of phenylalanine analogs endowed with promising anti-inflammatory activity: synthesis, pharmacological evaluation, and computational insights. Med Chem Res 2014. [DOI: 10.1007/s00044-014-1272-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
47
|
Vasincu IM, Apotrosoaei M, Panzariu AT, Buron F, Routier S, Profire L. Synthesis and biological evaluation of new 1,3-thiazolidine-4-one derivatives of 2-(4-isobutylphenyl)propionic acid. Molecules 2014; 19:15005-25. [PMID: 25237755 PMCID: PMC6270714 DOI: 10.3390/molecules190915005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Revised: 08/10/2014] [Accepted: 08/21/2014] [Indexed: 11/16/2022] Open
Abstract
New thiazolidine-4-one derivatives of 2-(4-isobutylphenyl)propionic acid (ibuprofen) have been synthesized as potential anti-inflammatory drugs. The structure of the new compounds was proved using spectral methods (FR-IR, 1H-NMR, 13C-NMR, MS). The in vitro antioxidant potential of the synthesized compounds was evaluated according to the total antioxidant activity, the DPPH and ABTS radical scavenging assays. Reactive oxygen species (ROS) and free radicals are considered to be involved in many pathological events like diabetes mellitus, neurodegenerative diseases, cancer, infections and more recently, in inflammation. It is known that overproduction of free radicals may initiate and amplify the inflammatory process via upregulation of genes involved in the production of proinflammatory cytokines and adhesion molecules. The chemical modulation of acyl hydrazones of ibuprofen 3a–l through cyclization to the corresponding thiazolidine-4-ones 4a–n led to increased antioxidant potential, as all thiazolidine-4-ones were more active than their parent acyl hydrazones and also ibuprofen. The most active compounds are the thiazolidine-4-ones 4e, m, which showed the highest DPPH radical scavenging ability, their activity being comparable with vitamin E.
Collapse
Affiliation(s)
- Ioana Mirela Vasincu
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Medicine and Pharmacy "Grigore T. Popa", 16 University Street, Iasi 700115, Romania.
| | - Maria Apotrosoaei
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Medicine and Pharmacy "Grigore T. Popa", 16 University Street, Iasi 700115, Romania.
| | - Andreea-Teodora Panzariu
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Medicine and Pharmacy "Grigore T. Popa", 16 University Street, Iasi 700115, Romania.
| | - Frédéric Buron
- Institute of Organic and Analytical Chemistry, University of Orléans, Orléans 45076, Cedex 2, France.
| | - Sylvain Routier
- Institute of Organic and Analytical Chemistry, University of Orléans, Orléans 45076, Cedex 2, France.
| | - Lenuta Profire
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Medicine and Pharmacy "Grigore T. Popa", 16 University Street, Iasi 700115, Romania.
| |
Collapse
|