1
|
Liu XY, Xie W, Zhou HY, Zhang HQ, Jin YS. A comprehensive overview on antiviral effects of baicalein and its glucuronide derivative baicalin. JOURNAL OF INTEGRATIVE MEDICINE 2024; 22:621-636. [PMID: 39368944 DOI: 10.1016/j.joim.2024.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 09/07/2024] [Indexed: 10/07/2024]
Abstract
Natural product-based antiviral candidates have received significant attention. However, there is a lack of sufficient research in the field of antivirals to effectively combat patterns of drug resistance. Baicalein and its glucuronide derivative baicalin are two main components extracted from Scutellaria baicalensis Georgi. They have proven to be effective against a broad range of viruses by directly killing virus particles, protecting infected cells, and targeting viral antigens on their surface, among other mechanisms. As natural products, they both possess the advantage of lower toxicity, enhanced therapeutic efficacy, and even antagonistic effects against drug-resistant viral strains. Baicalein and baicalin exhibit promising potential as potent pharmacophore scaffolds, demonstrating their antiviral properties. However, to date, no review on the antiviral effects of baicalein and baicalin has been published. This review summarizes the recent research progress on antiviral effects of baicalein and baicalin against various types of viruses both in vitro and in vivo with a focus on the dosages and underlying mechanisms. The aim is to provide a basis for the rational development and utilization of baicalein and baicalin, as well as to promote antiviral drug research. Please cite this article as: Liu XY, Xie W, Zhou HY, Zhang HQ, Jin YS. A comprehensive overview on antiviral effects of baicalein and its glucuronide derivative baicalin. J Integr Med. 2024; 22(6): 621-636.
Collapse
Affiliation(s)
- Xin-Yang Liu
- School of Basic Medicine, Naval Medical University, Shanghai 200433, China
| | - Wei Xie
- Faculty of Traditional Chinese Medicine, Naval Medical University, Shanghai 200433, China
| | - He-Yang Zhou
- School of Pharmacy, Naval Medical University, Shanghai 200433, China
| | - Hui-Qing Zhang
- Faculty of Traditional Chinese Medicine, Naval Medical University, Shanghai 200433, China.
| | - Yong-Sheng Jin
- School of Pharmacy, Naval Medical University, Shanghai 200433, China.
| |
Collapse
|
2
|
Ahmed SI, Jamil S, Ismatullah H, Hussain R, Bibi S, Khandaker MU, Naveed A, Idris AM, Emran TB. A comprehensive perspective of traditional Arabic or Islamic medicinal plants as an adjuvant therapy against COVID-19. Saudi J Biol Sci 2023; 30:103561. [PMID: 36684115 PMCID: PMC9838045 DOI: 10.1016/j.sjbs.2023.103561] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 12/09/2022] [Accepted: 01/08/2023] [Indexed: 01/15/2023] Open
Abstract
COVID-19 is a pulmonary disease caused by SARS-CoV-2. More than 200 million individuals are infected by this globally. Pyrexia, coughing, shortness of breath, headaches, diarrhoea, sore throats, and body aches are among the typical symptoms of COVID-19. The virus enters into the host body by interacting with the ACE2 receptor. Despite many SARS-CoV-2 vaccines manufactured by distinct strategies but any evidence-based particular medication to combat COVID-19 is not available yet. However, further research is required to determine the safety and effectiveness profile of the present therapeutic approaches. In this study, we provide a summary of Traditional Arabic or Islamic medicinal (TAIM) plants' historical use and their present role as adjuvant therapy for COVID-19. Herein, six medicinal plants Aloe barbadensis Miller, Olea europaea, Trigonella foenum-graecum, Nigella sativa, Cassia angustifolia, and Ficus carica have been studied based upon their pharmacological activities against viral infections. These plants include phytochemicals that have antiviral, immunomodulatory, antiasthmatic, antipyretic, and antitussive properties. These bioactive substances could be employed to control symptoms and enhance the development of a possible COVID-19 medicinal synthesis. To determine whether or if these TAIMs may be used as adjuvant therapy and are appropriate, a detailed evaluation is advised.
Collapse
Affiliation(s)
- Shabina Ishtiaq Ahmed
- Department of Plant Biotechnology, Atta-Ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), 44000, Islamabad, Pakistan
- The Standard College for Girls, 3/530 Paris Road, Sialkot Pakistan
| | - Sehrish Jamil
- The Standard College for Girls, 3/530 Paris Road, Sialkot Pakistan
| | - Humaira Ismatullah
- School of Interdisciplinary Engineering & Sciences (SINES), National University of Sciences and Technology (NUST), 44000 Islamabad, Pakistan
| | - Rashid Hussain
- Department of Biosciences, Shifa Tameer-e-Millat University, Islamabad, Pakistan
| | - Shabana Bibi
- Department of Biosciences, Shifa Tameer-e-Millat University, Islamabad, Pakistan
- Yunnan Herbal Laboratory, College of Ecology and Environmental Sciences, Yunnan University, Kunming 650091, China
| | - Mayeen Uddin Khandaker
- Center for Applied Physics and Radiation Technologies, School of Engineering and Technology, Sunway University, Bandar Sunway 47500, Selangor, Malaysia
| | - Aisha Naveed
- Caribbean Medical University, Willemastad, Curacao-Caribbean Island, Curaçao
| | - Abubakr M. Idris
- Department of Chemistry, College of Science, King Khalid University, Abha 62529, Saudi Arabia
- Research Center for Advanced Materials Science (RCAMS), King Khalid University, Abha 62529, Saudi Arabia
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong 4381, Bangladesh
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh
| |
Collapse
|
3
|
Furlan V, Bren U. Helichrysum italicum: From Extraction, Distillation, and Encapsulation Techniques to Beneficial Health Effects. Foods 2023; 12:802. [PMID: 36832877 PMCID: PMC9957194 DOI: 10.3390/foods12040802] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/08/2023] [Accepted: 02/11/2023] [Indexed: 02/16/2023] Open
Abstract
Helichrysum italicum (family Asteraceae), due to its various beneficial health effects, represents an important plant in the traditional medicine of Mediterranean countries. Currently, there is a renewed interest in this medicinal plant, especially in investigations involving the isolation and identification of its bioactive compounds from extracts and essential oils, as well as in experimental validation of their pharmacological activities. In this paper, we review the current knowledge on the beneficial health effects of Helichrysum italicum extracts, essential oils, and their major bioactive polyphenolic compounds, ranging from antioxidative, anti-inflammatory, and anticarcinogenic activities to their antiviral, antimicrobial, insecticidal, and antiparasitic effects. This review also provides an overview of the most promising extraction and distillation techniques for obtaining high-quality extracts and essential oils from Helichrysum italicum, as well as methods for determining their antioxidative, antimicrobial, anti-inflammatory, and anticarcinogenic activities. Finally, new ideas for in silico studies of molecular mechanisms of bioactive polyphenols from Helichrysum italicum, together with novel suggestions for their improved bioavailability through diverse encapsulation techniques, are introduced.
Collapse
Affiliation(s)
- Veronika Furlan
- Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova 17, SI-2000 Maribor, Slovenia
| | - Urban Bren
- Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova 17, SI-2000 Maribor, Slovenia
- Faculty of Mathematics, Natural Sciences and Information Technologies, University of Primorska, Glagoljaška 8, SI-6000 Koper, Slovenia
- Institute of Environmental Protection and Sensors, Beloruska Ulica 7, SI-2000 Maribor, Slovenia
| |
Collapse
|
4
|
Patamia V, Floresta G, Zagni C, Pistarà V, Punzo F, Rescifina A. 1,2-Dibenzoylhydrazine as a Multi-Inhibitor Compound: A Morphological and Docking Study. Int J Mol Sci 2023; 24:1425. [PMID: 36674938 PMCID: PMC9864281 DOI: 10.3390/ijms24021425] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 12/24/2022] [Accepted: 01/07/2023] [Indexed: 01/12/2023] Open
Abstract
In the framework of the multitarget inhibitor study, we report an in silico analysis of 1,2-dibenzoylhydrazine (DBH) with respect to three essential receptors such as the ecdysone receptor (EcR), urease, and HIV-integrase. Starting from a crystallographic structural study of accidentally harvested crystals of this compound, we performed docking studies to evaluate the inhibitory capacity of DBH toward three selected targets. A crystal morphology prediction was then performed. The results of our molecular modeling calculations indicate that DBH is an excellent candidate as a ligand to inhibit the activity of EcR receptors and urease. Docking studies also revealed the activity of DBH on the HIV integrase receptor, providing an excellent starting point for developing novel inhibitors using this molecule as a starting lead compound.
Collapse
Affiliation(s)
| | | | | | | | | | - Antonio Rescifina
- Department of Drug and Health Sciences, University of Catania, V.le A. Doria 6, 95125 Catania, Italy
| |
Collapse
|
5
|
Yin ZH, Yan HL, Pan Y, Zhang DW, Yan X. Evaluation of a flavonoid library for inhibition of interaction of HIV-1 integrase with human LEDGF/p75 towards a structure-activity relationship. Ann Med 2022; 54:1590-1600. [PMID: 35658757 PMCID: PMC9176681 DOI: 10.1080/07853890.2022.2081869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 05/04/2022] [Accepted: 05/20/2022] [Indexed: 12/03/2022] Open
Abstract
Background: Proteinśprotein interaction (PPI) between lens epithelium-derived growth factor (LEDGF/p75) and human immunodeficiency virus (HIV) integrase (IN) becomes an attractive target for anti-HIV drug development.Methods: The blockade of this interaction by small molecules could potentially inhibit HIV-1 replication. In this study, a panel of 99 structurally related flavonoids were was tested, concerning their ability to inhibit IN-LEDGF/p75 interaction, using a homogeneous time time-resolved fluorescence (HTRF) assay. Results: From the obtained results, it was possible to observe that the flavonoid with hydroxyl group in C3-, C4-, C5- and C7-position on the A-ring, C4'- and C5'-position of the B-ring, a carbonyl group of the C-ring, was more active against IN-LEDGF/p75 interaction, through competitive inhibition. Moreover, the binding modes of representative compounds, including myricetin, luteolin, dihydrorobinetin, naringenin, epicatechin, genistein and helichrysetin, were analyzedanalysed by molecular docking. Biolayer interferometry assay confirmed that these representative compounds disrupted the PPI by binding to IN with KD values ranging from 1.0 to 3.6 µM.Conclusion: This study presents the first to quantitative comparation of the effect of flavonoids with different structural subclasses on IN-LEDGF/p75 interaction. Our findings provide new insights into the development of inhibitors targeting IN-LEDGF/p75 interaction using flavonoids. Key MessagesHIV-1 integrase (IN)-LEDGF/p75 interaction is an attractive target for antiviral drug development.For the first time, the structure-activity relationship of flavonoids belonging to seven flavonoidic subclasses on IN-LEDGF/p75 interaction was determined.This study comprehends an HTRF-based screening system, biolayer interferometry and an in silico molecular docking analysis.
Collapse
Affiliation(s)
- Zhi-Hui Yin
- First Hospital of Shanxi Medical University, Taiyuan, China
| | - Hao-Li Yan
- Center for Food and Drug Evaluation & Inspection of Henan, Zhengzhou, China
| | - Yu Pan
- School of Computer Engineering, Jiangsu University of Technology, Changzhou, China
| | - Da-Wei Zhang
- Institute of Bioinformatics and Medical Engineering, School of Electrical and Information Engineering, Jiangsu University of Technology, Changzhou, China
| | - Xin Yan
- First Hospital of Shanxi Medical University, Taiyuan, China
| |
Collapse
|
6
|
Nittayananta W, Promsong A, Levy C, Hladik F, Chaitaveep N, Ungphaiboon S, Tewtrakul S, Satthakarn S. Microbicide Containing Ellagic Acid Can Inhibit HIV-1 Infection. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27227941. [PMID: 36432041 PMCID: PMC9695535 DOI: 10.3390/molecules27227941] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 11/04/2022] [Accepted: 11/08/2022] [Indexed: 11/18/2022]
Abstract
OBJECTIVES Ellagic acid (EA) has a wide range of biological effects. The purpose of this study was to investigate the in vitro effects of EA on HIV-1 replication, viral enzyme activity and cytokine secretion by infected cells. METHODS The anti-HIV-1 activity of EA in solution was determined in vitro using the infection of TZM-bl cells by the nano luciferase-secreting R5-tropic JRCSF strain of HIV-1, which allows for the quantification of viral growth by measuring nano luciferase in the culture supernatants. The effect of EA on the cytokine secretion of TZM-bl cells was determined by a multiplexed bead array after 48 h of HIV-1 exposure. The antiviral effect of EA in the gel formulation (Ellagel), as would be used for vaginal application, was investigated by the inhibition of infection of UC87.CD4.CCR5 cells with R5-tropic pBaLEnv-recombinant HIV-1. RESULTS EA in solutions of up to 100 µM was not toxic to TZM-bl cells. EA added either 1 h before or 4 h after HIV-1 exposure suppressed the replication of R5-tropic HIV-1 in TZM-bl cells in a dose-dependent manner, with up to 69% inhibition at 50 µM. EA-containing solutions also exhibited a dose-dependent inhibitory effect on HIV-1 replication in U87 cells. When EA was formulated as a gel, Ellagel containing 25 µM and 50 µM EA inhibited HIV-1 replication in U87 cells by 56% and 84%, respectively. In assays of specific HIV-1 enzyme activity, Ellagel inhibited HIV-1 integrase but not protease. EA did not significantly modulate cytokine secretion. CONCLUSIONS We conclude that EA either in solution or in a gel form inhibits HIV infection without adverse effects on target cells. Thus, gel containing EA can be tested as a new microbicide against HIV infection.
Collapse
Affiliation(s)
- Wipawee Nittayananta
- Faculty of Dentistry, Thammasat University, Pathum Thani 12120, Thailand
- Correspondence:
| | - Aornrutai Promsong
- Faculty of Medicine, Princess of Naradhiwas University, Narathiwat 96000, Thailand
| | - Claire Levy
- Department of Obstetrics and Gynecology, University of Washington, Seattle, WA 98195, USA
| | - Florian Hladik
- Department of Obstetrics and Gynecology, University of Washington, Seattle, WA 98195, USA
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98195, USA
| | - Nithinart Chaitaveep
- Research Division, Armed Forces Research Institute of Medical Sciences, Bangkok 10400, Thailand
| | - Suwipa Ungphaiboon
- Department of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Songkhla 90110, Thailand
| | - Supinya Tewtrakul
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Songkhla 90110, Thailand
| | - Surada Satthakarn
- Department of Medical Technology, Faculty of Allied Health Sciences, Burapha University, Chonburi 20131, Thailand
| |
Collapse
|
7
|
Liu B, Chen X, Zhou L, Li J, Wang D, Yang W, Wu H, Yao J, Yang G, Wang C, Feng J, Jiang T. The gut microbiota of bats confers tolerance to influenza virus (H1N1) infection in mice. Transbound Emerg Dis 2022; 69:e1469-e1487. [PMID: 35156318 DOI: 10.1111/tbed.14478] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 01/28/2022] [Accepted: 02/08/2022] [Indexed: 11/28/2022]
Abstract
Pathogens from wild animals cause approximately 60% of emerging infectious diseases (EIDs). Studies on the immune systems of natural hosts are helpful for preventing the spread of EIDs. Bats are natural hosts for many emerging infectious pathogens and have a unique immune system that often coexists with pathogens without infection. Previous studies have shown that some genes and proteins may help bats fight virus infection, but little is known about the function of the bat gut microbiome on immunity. Here, we transplanted gut microbiota from wild bats (Great Himalayan Leaf-nosed bats, Hipposideros armiger) into antibiotic-treated mice, and found that the gut microbiota from bats regulated the immune system faster than mice after antibiotic treatment. Moreover, we infected mice with H1N1, and found that the gut microbiota of bats could effectively protect mice, leading to decreased inflammatory response and increased survival rate. Finally, metabolomics analysis showed that the gut microbiota of bats produced more flavonoid and isoflavones. Our results demonstrate that the quick-start innate immune response endowed by bat gut microbiota and the regulatory and antiviral effects of gut microbiota metabolites successfully ensured mouse survival after viral challenge. To our knowledge, our study was the first to use fecal microbiota transplantation (FMT) to transplant the gut microbiota of bats into mice, and the first to provide evidence that the gut microbiota of bats confers tolerance to viral infections.
Collapse
Affiliation(s)
- Boyu Liu
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China
| | - Xiaolei Chen
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China
- Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, China
| | - Lei Zhou
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China
| | - Junyi Li
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China
- Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, China
| | - Dan Wang
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China
- Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, China
| | - Wentao Yang
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China
- Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, China
| | - Hui Wu
- College of Life Science, Jilin Agricultural University, Changchun, China
| | - Jiyuan Yao
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China
| | - Guilian Yang
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China
- Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, China
| | - Chunfeng Wang
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China
- Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, China
| | - Jiang Feng
- College of Life Science, Jilin Agricultural University, Changchun, China
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, China
| | - Tinglei Jiang
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, China
| |
Collapse
|
8
|
Flavonoids regulate tumor-associated macrophages - From structure-activity relationship to clinical potential (Review). Pharmacol Res 2022; 184:106419. [PMID: 36041653 DOI: 10.1016/j.phrs.2022.106419] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 08/13/2022] [Accepted: 08/25/2022] [Indexed: 11/23/2022]
Abstract
In recent years, the strategy for tumor therapy has changed from focusing on the direct killing effect of different types of therapeutic agents on cancer cells to the new mainstream of multi-mode and -pathway combined interventions in the microenvironment of the developing tumor. Flavonoids, with unique tricyclic structures, have diverse and extensive immunomodulatory and anti-cancer activities in the tumor microenvironment (TME). Tumor-associated macrophages (TAMs) are the most abundant immunosuppressive cells in the TME. The regulation of macrophages to fight cancer is a promising immunotherapeutic strategy. This study covers the most comprehensive cognition of flavonoids in regulating TAMs so far. Far more than a simple list of studies, we try to dig out evidence of crosstalk at the molecular level between flavonoids and TAMs from literature, in order to discuss the most relevant chemical structure and its possible relationship with the multimodal pharmacological activity, as well as systematically build a structure-activity relationship between flavonoids and TAMs. Additionally, we point out the advantages of the macro-control of flavonoids in the TME and discuss the potential clinical implications as well as areas for future research of flavonoids in regulating TAMs. These results will provide hopeful directions for the research of antitumor drugs, while providing new ideas for the pharmaceutical industry to develop more effective forms of flavonoids.
Collapse
|
9
|
Commercially Available Flavonols Are Better SARS-CoV-2 Inhibitors Than Isoflavone and Flavones. Viruses 2022; 14:v14071458. [PMID: 35891437 PMCID: PMC9324382 DOI: 10.3390/v14071458] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 06/28/2022] [Accepted: 06/29/2022] [Indexed: 12/04/2022] Open
Abstract
Despite the fast development of vaccines, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is still circulating and generating variants of concern (VoC) that escape the humoral immune response. In this context, the search for anti-SARS-CoV-2 compounds is still essential. A class of natural polyphenols known as flavonoids, frequently available in fruits and vegetables, is widely explored in the treatment of different diseases and used as a scaffold for the design of novel drugs. Therefore, herein we evaluate seven flavonoids divided into three subclasses, isoflavone (genistein), flavone (apigenin and luteolin) and flavonol (fisetin, kaempferol, myricetin, and quercetin), for COVID-19 treatment using cell-based assays and in silico calculations validated with experimental enzymatic data. The flavonols were better SARS-CoV-2 inhibitors than isoflavone and flavones. The increasing number of hydroxyl groups in ring B of the flavonols kaempferol, quercetin, and myricetin decreased the 50% effective concentration (EC50) value due to their impact on the orientation of the compounds inside the target. Myricetin and fisetin appear to be preferred candidates; they are both anti-inflammatory (decreasing TNF-α levels) and inhibit SARS-CoV-2 mainly by targeting the processability of the main protease (Mpro) in a non-competitive manner, with a potency comparable to the repurposed drug atazanavir. However, fisetin and myricetin might also be considered hits that are amenable to synthetic modification to improve their anti-SARS-CoV-2 profile by inhibiting not only Mpro, but also the 3′–5′ exonuclease (ExoN).
Collapse
|
10
|
Sun ZG, Li ZN, Zhang JM, Hou XY, Yeh SM, Ming X. Recent Development of Flavonoids with Various Activities. Curr Top Med Chem 2022; 22:305-329. [PMID: 35040404 DOI: 10.2174/1568026622666220117111858] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 12/24/2021] [Accepted: 12/27/2021] [Indexed: 11/22/2022]
Abstract
Flavonoids, a series of compounds with C6-C3-C6 structure, mostly originate from plant metabolism. Flavonoids have shown beneficial effects on many aspects of human physiology and health. Recently, many flavonoids with various activities have been discovered, which has led to more and more studies focusing on their physiological and pharmacodynamic activities. The anti-cancer and anti-viral activities especially have attracted the attention of many researchers. Therefore, the discovery and development of flavonoids as anti-disease drugs has great potential and may make significant contribution to fighting diseases. This review focus on the discovery and development of flavonoids in medicinal chemistry in recent years.
Collapse
Affiliation(s)
- Zhi-Gang Sun
- Central Laboratory, Linyi Central Hospital, No.17 Jiankang Road, Linyi 276400, China
- Departments of Cancer Biology and Biomedical Engineering, Comprehensive Cancer Center, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | - Zhi-Na Li
- Central Laboratory, Linyi Central Hospital, No.17 Jiankang Road, Linyi 276400, China
| | - Jin-Mai Zhang
- Room 205, BIO-X white house, Shanghai Jiao Tong University, No.1954 Huashan Road, Shanghai 200030, P.R. China
| | - Xiao-Yan Hou
- Qilu Pharmaceutical Co., Ltd, 8888 Lvyou Road, High-tech Zone, Jinan, 250104, P.R. China
| | - Stacy Mary Yeh
- Departments of Cancer Biology and Biomedical Engineering, Comprehensive Cancer Center, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | - Xin Ming
- Departments of Cancer Biology and Biomedical Engineering, Comprehensive Cancer Center, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| |
Collapse
|
11
|
Ragunathan V, Chithra K, Shivanika C, Sudharsan MS. Modelling and targeting mitochondrial protein tyrosine phosphatase 1: a computational approach. In Silico Pharmacol 2022; 10:3. [PMID: 35111562 PMCID: PMC8762535 DOI: 10.1007/s40203-022-00119-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 01/03/2022] [Indexed: 01/19/2023] Open
Abstract
The present research scintillates on the homology modelling of rat mitochondrial protein tyrosine phosphatase 1 (PTPMT1) and targeting its activity using flavonoids through a computational docking approach. PTPMT1 is a dual-specificity phosphatase responsible for protein phosphorylation and plays a vital role in the metabolism of cardiolipin biosynthesis, insulin regulation, etc. The inhibition of PTPMT1 has also shown enhanced insulin levels. The three-dimensional structure of the protein is not yet known. The homology modelling was performed using SWISS-MODEL and Geno3D webservers to compare the efficiencies. The PROCHECK for protein modelled using SWISS-MODEL showed 91.6% of amino acids in the most favoured region, 0.7% residues in the disallowed region that was found to be significant compared to the model built using Geno3D. 210 common flavonoids were docked in the modelled protein using the AutoDock 4.2.6 along with a control drug alexidine dihydrochloride. Our results show promising candidates that bind protein tyrosine phosphatase 1, including, prunin (- 8.66 kcal/mol); oroxindin (- 8.56 kcal/mol); luteolin 7-rutinoside (- 8.47 kcal/mol); 3(2H)-isoflavenes (- 8.36 kcal/mol); nicotiflorin (- 8.29 kcal/mol), ranked top in the docking experiments. We predicted the pharmacokinetic and Lipinski properties of the top ten compounds with the lowest binding energies. To further validate the stability of the modelled protein and docked complexes molecular dynamics simulations were performed using Desmond, Schrodinger for 150 ns in conjunction with MM-GBSA. Thus, flavonoids could act as potential inhibitors of PTPMT1, and further, in-vitro and in-vivo studies are essential to complete the drug development process.
Collapse
Affiliation(s)
- Venkataraghavan Ragunathan
- grid.252262.30000 0001 0613 6919Nanomaterials and Environmental Research Laboratory, Department of Chemical Engineering, Alagappa College of Technology, Anna University, Chennai, 600025 India
| | - K. Chithra
- grid.252262.30000 0001 0613 6919Nanomaterials and Environmental Research Laboratory, Department of Chemical Engineering, Alagappa College of Technology, Anna University, Chennai, 600025 India
| | - C. Shivanika
- grid.412813.d0000 0001 0687 4946Department of Biotechnology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore Campus, Vellore, Tamil Nadu 632014 India
| | - Meenambiga Setti Sudharsan
- grid.412815.b0000 0004 1760 6324Department of Bioengineering, School of Engineering, Vels Institute of Science Technology and Advanced Studies, Pallavaram, Chennai, 600117 India
| |
Collapse
|
12
|
Mayer S, Nagy N, Keglevich P, Szigetvári Á, Dékány M, Szántay Junior C, Hazai L. Synthesis of Novel Vindoline-Chrysin Hybrids. Chem Biodivers 2021; 19:e202100725. [PMID: 34874114 DOI: 10.1002/cbdv.202100725] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 11/15/2021] [Indexed: 11/05/2022]
Abstract
Vinca alkaloids are well-known microtubule targeting agents, which are used against some types of cancer. Vindoline is one of the monomeric Vinca alkaloids which does not have anti-tumor effect, although its derivatives have serious impact on the field of these indole alkaloids. Chrysin is a secondary plant metabolite, which has broad-spectrum biological activity, among others anticancer activity. Chrysin had shown synergic effect with several antiproliferative compounds (e. g., doxorubicin, cisplatin and ciglitazone), therefore, we attempted the synthesis of a novel vindoline-chrysin hybrid molecule. However, in the first case a diphenylamine structure was isolated. The mechanism of the unexpected reaction was studied, and then the originally targeted hybrid was synthesized by a reverse route coupling. A further hybrid was produced using a different site of the molecule. The antitumor activities were determined against 60 human tumor cell lines (NCI60), where the aimed hybrid showed low micromolar GI50 values on most of the cell lines.
Collapse
Affiliation(s)
- Szabolcs Mayer
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, H-1111, Budapest, Gellért tér 4., Hungary
| | - Nóra Nagy
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, H-1111, Budapest, Gellért tér 4., Hungary
| | - Péter Keglevich
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, H-1111, Budapest, Gellért tér 4., Hungary
| | - Áron Szigetvári
- Spectroscopic Research Department, Gedeon Richter Plc., H-1475, Budapest 10, P.O. Box 27, Hungary
| | - Miklós Dékány
- Spectroscopic Research Department, Gedeon Richter Plc., H-1475, Budapest 10, P.O. Box 27, Hungary
| | - Csaba Szántay Junior
- Spectroscopic Research Department, Gedeon Richter Plc., H-1475, Budapest 10, P.O. Box 27, Hungary
| | - László Hazai
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, H-1111, Budapest, Gellért tér 4., Hungary
| |
Collapse
|
13
|
Facile synthesis and biological evaluation of chrysin derivatives. JOURNAL OF CHEMICAL RESEARCH 2021. [DOI: 10.1177/17475198211057467] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
In this paper, novel synthetic methods, including microwave O-alkylation, were used to produce several chrysin derivatives. These compounds were purified, characterised and tested on different cell lines and bacterial strains. From this family, 7-(2,4-dinitrophenoxy)-5-hydroxy-3-phenyl-4H-chromen-4-one (C3) was shown to be extremely active on bacterial strains methicillin-resistant Staphylococcus aureus, Pseudomonas aeruginosa and Klebsiella pneumoniae as well as having anticancer activity on a range of cancer cell lines with IC50 values less than 30 µM. Chrysin has been known for their anticancer and antimicrobial properties, and this study not only corroborates this but also shows that it is possible to synthesise new improved derivatives with therapeutic possibilities.
Collapse
|
14
|
Sanna C, Marengo A, Acquadro S, Caredda A, Lai R, Corona A, Tramontano E, Rubiolo P, Esposito F. In Vitro Anti-HIV-1 Reverse Transcriptase and Integrase Properties of Punica granatum L. Leaves, Bark, and Peel Extracts and Their Main Compounds. PLANTS (BASEL, SWITZERLAND) 2021; 10:2124. [PMID: 34685933 PMCID: PMC8539310 DOI: 10.3390/plants10102124] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 09/30/2021] [Accepted: 10/02/2021] [Indexed: 12/25/2022]
Abstract
In a search for natural compounds with anti-HIV-1 activity, we studied the effect of the ethanolic extract obtained from leaves, bark, and peels of Punica granatum L. for the inhibition of the HIV-1 reverse transcriptase (RT)-associated ribonuclease H (RNase H) and integrase (IN) LEDGF-dependent activities. The chemical analyses led to the detection of compounds belonging mainly to the phenolic and flavonoid chemical classes. Ellagic acid, flavones, and triterpenoid molecules were identified in leaves. The bark and peels were characterized by the presence of hydrolyzable tannins, such as punicalins and punicalagins, together with ellagic acid. Among the isolated compounds, the hydrolyzable tannins and ellagic acid showed a very high inhibition (IC50 values ranging from 0.12 to 1.4 µM and 0.065 to 0.09 µM of the RNase H and IN activities, respectively). Of the flavonoids, luteolin and apigenin were found to be able to inhibit RNase H and IN functions (IC50 values in the 3.7-22 μM range), whereas luteolin 7-O-glucoside showed selective activity for HIV-1 IN. In contrast, betulinic acid, ursolic acid, and oleanolic acid were selective for the HIV-1 RNase H activity. Our results strongly support the potential of non-edible P. granatum organs as a valuable source of anti-HIV-1 compounds.
Collapse
Affiliation(s)
- Cinzia Sanna
- Laboratory of Pharmaceutical Botany, Department of Life and Environmental Sciences, University of Cagliari, Via S. Ignazio da Laconi 13, 09123 Cagliari, Italy;
| | - Arianna Marengo
- Department of Drug Science and Technology, University of Turin, Via Pietro Giuria 9, 10125 Turin, Italy; (A.M.); (S.A.); (P.R.)
| | - Stefano Acquadro
- Department of Drug Science and Technology, University of Turin, Via Pietro Giuria 9, 10125 Turin, Italy; (A.M.); (S.A.); (P.R.)
| | - Alessia Caredda
- Laboratory of Molecular Virology, Department of Life and Environmental Sciences, University of Cagliari, Cittadella Universitaria di Monserrato, ss554, km 4500, Monserrato, 09042 Cagliari, Italy; (A.C.); (A.C.); (E.T.); (F.E.)
| | - Roberta Lai
- Laboratory of Pharmaceutical Botany, Department of Life and Environmental Sciences, University of Cagliari, Via S. Ignazio da Laconi 13, 09123 Cagliari, Italy;
| | - Angela Corona
- Laboratory of Molecular Virology, Department of Life and Environmental Sciences, University of Cagliari, Cittadella Universitaria di Monserrato, ss554, km 4500, Monserrato, 09042 Cagliari, Italy; (A.C.); (A.C.); (E.T.); (F.E.)
| | - Enzo Tramontano
- Laboratory of Molecular Virology, Department of Life and Environmental Sciences, University of Cagliari, Cittadella Universitaria di Monserrato, ss554, km 4500, Monserrato, 09042 Cagliari, Italy; (A.C.); (A.C.); (E.T.); (F.E.)
| | - Patrizia Rubiolo
- Department of Drug Science and Technology, University of Turin, Via Pietro Giuria 9, 10125 Turin, Italy; (A.M.); (S.A.); (P.R.)
| | - Francesca Esposito
- Laboratory of Molecular Virology, Department of Life and Environmental Sciences, University of Cagliari, Cittadella Universitaria di Monserrato, ss554, km 4500, Monserrato, 09042 Cagliari, Italy; (A.C.); (A.C.); (E.T.); (F.E.)
| |
Collapse
|
15
|
Martin‐Benlloch X, Lanfranchi DA, Haid S, Pietschmann T, Davioud‐Charvet E, Elhabiri M. Magnesium Complexes of Ladanein: A Beneficial Strategy for Stabilizing Polyphenolic Antivirals. Eur J Inorg Chem 2021. [DOI: 10.1002/ejic.202100341] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Xavier Martin‐Benlloch
- Laboratoire d'Innovation Moléculaire et Applications (LIMA) CNRS-Unistra-UHA European School of Chemistry Polymers and Materials (ECPM) 25, rue Becquerel F-67087 Strasbourg France
| | - Don Antoine Lanfranchi
- Laboratoire d'Innovation Moléculaire et Applications (LIMA) CNRS-Unistra-UHA European School of Chemistry Polymers and Materials (ECPM) 25, rue Becquerel F-67087 Strasbourg France
| | - Sibylle Haid
- Institute of Experimental Virology TWINCORE Centre for Experimental and Clinical Infection research a joint venture of the Hannover Medical School (MHH) and the Helmholtz Centre for Infection Research (HZI) Feodor-Lynen-Str. 7 30625 Hannover Germany
| | - Thomas Pietschmann
- Institute of Experimental Virology TWINCORE Centre for Experimental and Clinical Infection research a joint venture of the Hannover Medical School (MHH) and the Helmholtz Centre for Infection Research (HZI) Feodor-Lynen-Str. 7 30625 Hannover Germany
| | - Elisabeth Davioud‐Charvet
- Laboratoire d'Innovation Moléculaire et Applications (LIMA) CNRS-Unistra-UHA European School of Chemistry Polymers and Materials (ECPM) 25, rue Becquerel F-67087 Strasbourg France
| | - Mourad Elhabiri
- Laboratoire d'Innovation Moléculaire et Applications (LIMA) CNRS-Unistra-UHA European School of Chemistry Polymers and Materials (ECPM) 25, rue Becquerel F-67087 Strasbourg France
| |
Collapse
|
16
|
Safakish M, Hajimahdi Z, Aghasadeghi MR, Vahabpour R, Zarghi A. Design, Synthesis, Molecular Modeling and Anti-HIV Assay of Novel Quinazolinone Incorporated Coumarin Derivatives. Curr HIV Res 2021; 18:41-51. [PMID: 31820700 DOI: 10.2174/1570162x17666191210105809] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Revised: 11/25/2019] [Accepted: 11/26/2019] [Indexed: 01/29/2023]
Abstract
BACKGROUND The emergence of drug-resistant viral strains has created the need for the development of novel anti-HIV agents with a diverse structure that targets key enzymes in the HIV lifecycle. OBJECTIVE Considering the pharmacophore of integrase inhibitors, one of the validated targets for anti-HIV therapy, we designed a quinazolinone incorporated coumarin scaffold to affect HIV. METHODS Coumarin is a beta enol ester and also a well-known drug scaffold. Designed structures were prepared using a one-pot three-component reaction from 3-amino-4-hydroxycoumarin, isatoic anhydride and benzaldehyde derivatives. RESULTS In vitro anti-HIV and cytotoxicity assay indicated that more than half of the compounds had EC50 values lower than 50 µM. Unsubstituted phenyl derivative showed the highest activity and selectivity with an EC50 value of 5 µM and a therapeutic index of 7. Compounds were docked into the integrase active site to investigate the probable mechanism of action. Accordingly, the hydroxyl moiety of coumarin along with the carbonyl of the quinazolinone ring could function as the metal chelating group. Quinazolinone and phenyl groups interact with side chains of IN residues, as well. CONCLUSION Here, a novel anti-HIV scaffold is represented for further modification and in-vivo studies.
Collapse
Affiliation(s)
- Mahdieh Safakish
- Department of Medicinal Chemistry, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zahra Hajimahdi
- Department of Medicinal Chemistry, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Rouhollah Vahabpour
- Medical Lab Technology Department, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Afshin Zarghi
- Department of Medicinal Chemistry, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
17
|
Olaleye O, Titilope O, Moses O. Possible health benefits of polyphenols in neurological disorders associated with COVID-19. ACTA FACULTATIS MEDICAE NAISSENSIS 2021. [DOI: 10.5937/afmnai38-30190] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Novel Coronavirus disease 2019 (COVID-19) represents an emergent global health burden that has challenged the health systems worldwide. Since its sudden upsurge in 2019, many COVID-19 patients have exhibited neurological symptoms and complications. Till now, there is no known effective established drug against the highly contagious COVID-19 infection despite the frightening associated mortality rate. This article aims to present the mechanism of action of coronavirus-2 (SARS-CoV-2), the clinical neurological manifestations displayed by COVID-19 patients, and present polyphenols with neuroprotective ability that can offer beneficial effects against COVID-19-mediated neuropathology. Reports from COVID-19 clinical studies, case reports, and other related literature were evaluated for this review. Neurological complications of COVID-19 include anosmia, acute cerebrovascular disease, acute disseminated post-infectious encephalomyelitis, encephalitis, etc. Also, SARS-CoV-2 sould be a neurotropic vіruѕ due to its iѕolatіon from serebroѕrіnal fluіd. Multіrle neurologіsal damages displayed by COVID-19 patients might be due to hyperinflammation associated with SARS-CoV-2 infections. Resveratrol, kolaviron, quercetin and apigenin are polyphenols with proven anti-inflammatory and therapeutic properties that can extenuate the adverse effects of COVID-19. These polyphenols have been documented to suppress c-Jun N-terminal kinase (JNK), phosphoinositide-3-kinase (PI3-K), extrasellularѕіgnal-regulated kinase (ERK), nuclear factor kappa-light-chain-enhancer of activated B-cells (NF-kB) and mіtogen-astіvated protein kіnaѕe (MAPK) pathways which are essential in the pathogenesis of COVID-19. They also showed significant inhibitory activities against SARS-CoV-2 proteins. Taken together, these polyphenols may offer neuroprotective benefits against COVID-19 mediated neuropathology via modulation of the pathogenic pathways.
Collapse
|
18
|
Li Y, Tian Y, Xi Y, Qin Z, Yan A. Quantitative Structure-Activity Relationship Study for HIV-1 LEDGF/p75 Inhibitors. Curr Comput Aided Drug Des 2020; 16:654-666. [DOI: 10.2174/1573409915666190919153959] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 05/08/2019] [Accepted: 08/26/2019] [Indexed: 12/28/2022]
Abstract
Background:
HIV-1 Integrase (IN) is an important target for the development of the
new anti-AIDS drugs. HIV-1 LEDGF/p75 inhibitors, which block the integrase and LEDGF/p75
interaction, have been validated for reduction in HIV-1 viral replicative capacity.
Methods:
In this work, computational Quantitative Structure-Activity Relationship (QSAR) models
were developed for predicting the bioactivity of HIV-1 integrase LEDGF/p75 inhibitors. We collected
190 inhibitors and their bioactivities in this study and divided the inhibitors into nine scaffolds
by the method of T-distributed Stochastic Neighbor Embedding (TSNE). These 190 inhibitors
were split into a training set and a test set according to the result of a Kohonen’s self-organizing
map (SOM) or randomly. Multiple Linear Regression (MLR) models, support vector machine
(SVM) models and two consensus models were built based on the training sets by 20 selected
CORINA Symphony descriptors.
Results:
All the models showed a good prediction of pIC50. The correlation coefficients of all the
models were more than 0.7 on the test set. For the training set of consensus Model C1, which performed
better than other models, the correlation coefficient(r) achieved 0.909 on the training set,
and 0.804 on the test set.
Conclusion:
The selected molecular descriptors show that hydrogen bond acceptor, atom charges
and electronegativities (especially π atom) were important in predicting the activity of HIV-1 integrase
LEDGF/p75-IN inhibitors.
Collapse
Affiliation(s)
- Yang Li
- Institute of Science and Technology, Shandong University of Traditional Chinese Medicine, Ji'nan, Shandong, 250355, China
| | - Yujia Tian
- State Key Laboratory of Chemical Resource Engineering, Department of Pharmaceutical Engineering, P.O. Box 53, Beijing University of Chemical Technology, 15 BeiSanHuan East Road, Beijing 100029, China
| | - Yao Xi
- State Key Laboratory of Chemical Resource Engineering, Department of Pharmaceutical Engineering, P.O. Box 53, Beijing University of Chemical Technology, 15 BeiSanHuan East Road, Beijing 100029, China
| | - Zijian Qin
- State Key Laboratory of Chemical Resource Engineering, Department of Pharmaceutical Engineering, P.O. Box 53, Beijing University of Chemical Technology, 15 BeiSanHuan East Road, Beijing 100029, China
| | - Aixia Yan
- State Key Laboratory of Chemical Resource Engineering, Department of Pharmaceutical Engineering, P.O. Box 53, Beijing University of Chemical Technology, 15 BeiSanHuan East Road, Beijing 100029, China
| |
Collapse
|
19
|
Xie Y, Xie L, Chen A, Wu S, Mo Y, Guo X, Zeng C, Huang X, He J. Anti-HIV/SIV activity of icariin and its metabolite anhydroicaritin mainly involve reverse transcriptase. Eur J Pharmacol 2020; 884:173327. [PMID: 32726656 DOI: 10.1016/j.ejphar.2020.173327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 06/25/2020] [Accepted: 06/26/2020] [Indexed: 11/26/2022]
Abstract
AIDS, a serious fatal disease caused by the human immunodeficiency virus (HIV), is an epidemic disease for which no effective vaccine has been established. The current therapeutic interventions for AIDS have limited efficacy because they are unable to clear HIV infections and the continuous occurrence of resistant HIV strains. Therefore, the exploitation of new drugs to prevent the spread of AIDS remains a high priority. In this study, the effects of icariin and its metabolite anhydroicaritin on SIV/HIV replication were investigated. In CEM × 174 cells and PBMC cells, both icariin and anhydroicaritin can significantly inhibit HIV-1 or SIVmac251 replication. Furthermore, molecular docking studies revealed that icariin and anhydroicaritin can act on both HIV reverse transcriptase and protease but could not bind to integrase. Reverse transcriptase and protease inhibition biological assays showed that both icariin and anhydroicaritin could significantly inhibit only HIV reverse transcriptase. In summary, the two compounds can significantly inhibit HIV/SIV in vitro and their targets may be mainly involved with HIV reverse transcriptase.
Collapse
Affiliation(s)
- Yanzheng Xie
- Science and Technology Innovation Centre, Guangzhou University of Chinese Medicine, Guangzhou, China; Lingnan Medical Research Centre, Guangzhou University of Chinese Medicine, Guangzhou, China; The Second Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Lei Xie
- Science and Technology Innovation Centre, Guangzhou University of Chinese Medicine, Guangzhou, China; Lingnan Medical Research Centre, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Ailan Chen
- Guangzhou Women and Children' Medical Centre, Guangzhou, China
| | - Shengnan Wu
- Science and Technology Innovation Centre, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yuxiao Mo
- Science and Technology Innovation Centre, Guangzhou University of Chinese Medicine, Guangzhou, China; Lingnan Medical Research Centre, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiaoqiang Guo
- Science and Technology Innovation Centre, Guangzhou University of Chinese Medicine, Guangzhou, China; Lingnan Medical Research Centre, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Changchun Zeng
- School of Biomedical Technology, Guilin Medical University, Guilin, China
| | - Xinan Huang
- Science and Technology Innovation Centre, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jinyang He
- Science and Technology Innovation Centre, Guangzhou University of Chinese Medicine, Guangzhou, China; Lingnan Medical Research Centre, Guangzhou University of Chinese Medicine, Guangzhou, China.
| |
Collapse
|
20
|
Results in Chemistry of Natural Organic Compounds. Synthesis of New Anticancer Vinca Alkaloids and Flavone Alkaloids. CHEMISTRY 2020. [DOI: 10.3390/chemistry2030046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The antitumor indole–indoline alkaloids of the evergreen Catharanthus roseus—namely vinblastine and vincristine—are widely used in chemotherapy of cancer. Many efforts were made to synthesize more efficient derivatives with less side-effect. The 14,15-cyclopropane derivative of vinblastine was synthesized successfully by a five-step procedure starting from vindoline. Vincristine, vinorelbine and several derivatives condensed with a cyclopropane ring were synthesized. Various hybrid molecules were prepared by the coupling reaction of vindoline and methyl ester of tryptophan, which were conjugated by carrier peptides of octaarginine. Studying the halogenation reactions of vindoline and catharanthine some fluorine derivatives were obtained which showed promising antitumor activity on various tumor types. The synthesis of the Aspidospermane alkaloid bannucine and 5′-epibannucine were carried out using N-acyliminium intermediates. The same intermediate was also applied in the first synthesis of sessiline. The research group have synthesized of flavonoid alkaloids: dracocephins A and B. Further three flavonoid alkaloids, namely 8-(2”-pyrrolidinon-5′′-yl)quercetin, 6-(2′′-pyrrolidinon-5′′-yl)-(−)- and 8-(2′′-pyrrolidinon-5′′-yl)-(−)-epicatechin were prepared by acid-catalyzed regioselective Mannich reaction starting from the corresponding flavonoid precursor. Vindoline was also coupled to synthetic pharmacophores, such as triphenylphosphine and various N-heterocycles. Some of these hybrid molecules showed significant antitumor activity. Furthermore, 7-OH and 7-NH modified flavonoid derivatives were synthesized by a regioselective alkylation followed by Smiles rearrangement and hydrolysis.
Collapse
|
21
|
Sharma B, Xie L, Yang F, Wang W, Zhou Q, Xiang M, Zhou S, Lv W, Jia Y, Pokhrel L, Shen J, Xiao Q, Gao L, Deng W. Recent advance on PTP1B inhibitors and their biomedical applications. Eur J Med Chem 2020; 199:112376. [PMID: 32416458 DOI: 10.1016/j.ejmech.2020.112376] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 04/22/2020] [Accepted: 04/22/2020] [Indexed: 12/17/2022]
Abstract
Protein Tyrosine Phosphatase 1B (PTP1B), as one of the most important members in PTP superfamily, plays a vital role in conducting various cellular functions. So far, PTP1B has been reported to be involved in the development of many diseases including obesity, diabetes, cancers and cardiovascular diseases. Development of potent and specific PTP1B inhibitors and studies on the structure-activity relationship (SAR) between their chemical structures and their biological activity have drawn increasing attention as they could not only modulate the PTP1B functions inside the cells but also provide useful lead compounds for the treatment of various PTP1B-associated diseases. To this end, we herein summarized the recent developments of PTP1B inhibitors, and different kinds of high-throughput screening strategies for the identification of potential PTP1B inhibitors as well as their potential biomedical applications, and we also provided some perspectives in the concluding remarks in this work.
Collapse
Affiliation(s)
- Bigyan Sharma
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-Sen University, Shenzhen, PR China
| | - Liuxing Xie
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-Sen University, Shenzhen, PR China
| | - Fen Yang
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-Sen University, Shenzhen, PR China
| | - Wei Wang
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-Sen University, Shenzhen, PR China
| | - Quanming Zhou
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-Sen University, Shenzhen, PR China
| | - Menghua Xiang
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-Sen University, Shenzhen, PR China
| | - Shizhe Zhou
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-Sen University, Shenzhen, PR China
| | - Wanting Lv
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-Sen University, Shenzhen, PR China
| | - Yan Jia
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-Sen University, Shenzhen, PR China
| | - Laxman Pokhrel
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, PR China
| | - Jun Shen
- Department of Radiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, PR China
| | - Qicai Xiao
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-Sen University, Shenzhen, PR China.
| | - Liqian Gao
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-Sen University, Shenzhen, PR China.
| | - Wenbin Deng
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-Sen University, Shenzhen, PR China.
| |
Collapse
|
22
|
Colunga Biancatelli RML, Berrill M, Catravas JD, Marik PE. Quercetin and Vitamin C: An Experimental, Synergistic Therapy for the Prevention and Treatment of SARS-CoV-2 Related Disease (COVID-19). Front Immunol 2020; 11:1451. [PMID: 32636851 PMCID: PMC7318306 DOI: 10.3389/fimmu.2020.01451] [Citation(s) in RCA: 295] [Impact Index Per Article: 59.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 06/04/2020] [Indexed: 12/25/2022] Open
Abstract
Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) represents an emergent global threat which is straining worldwide healthcare capacity. As of May 27th, the disease caused by SARS-CoV-2 (COVID-19) has resulted in more than 340,000 deaths worldwide, with 100,000 deaths in the US alone. It is imperative to study and develop pharmacological treatments suitable for the prevention and treatment of COVID-19. Ascorbic acid is a crucial vitamin necessary for the correct functioning of the immune system. It plays a role in stress response and has shown promising results when administered to the critically ill. Quercetin is a well-known flavonoid whose antiviral properties have been investigated in numerous studies. There is evidence that vitamin C and quercetin co-administration exerts a synergistic antiviral action due to overlapping antiviral and immunomodulatory properties and the capacity of ascorbate to recycle quercetin, increasing its efficacy. Safe, cheap interventions which have a sound biological rationale should be prioritized for experimental use in the current context of a global health pandemic. We present the current evidence for the use of vitamin C and quercetin both for prophylaxis in high-risk populations and for the treatment of COVID-19 patients as an adjunct to promising pharmacological agents such as Remdesivir or convalescent plasma.
Collapse
Affiliation(s)
- Ruben Manuel Luciano Colunga Biancatelli
- Division of Pulmonary and Critical Care Medicine, Eastern Virginia Medical School, Norfolk, VA, United States
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, VA, United States
- Policlinico Umberto I, La Sapienza University of Rome, Rome, Italy
| | - Max Berrill
- Department of Respiratory Medicine, St. Peter's Hospital, Surrey, United Kingdom
| | - John D. Catravas
- Division of Pulmonary and Critical Care Medicine, Eastern Virginia Medical School, Norfolk, VA, United States
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, VA, United States
- School of Medical Diagnostic & Translational Sciences, College of Health Sciences, Old Dominion University, Norfolk, VA, United States
| | - Paul E. Marik
- Division of Pulmonary and Critical Care Medicine, Eastern Virginia Medical School, Norfolk, VA, United States
| |
Collapse
|
23
|
Naik B, Gupta N, Ojha R, Singh S, Prajapati VK, Prusty D. High throughput virtual screening reveals SARS-CoV-2 multi-target binding natural compounds to lead instant therapy for COVID-19 treatment. Int J Biol Macromol 2020; 160:1-17. [PMID: 32470577 PMCID: PMC7250083 DOI: 10.1016/j.ijbiomac.2020.05.184] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 05/21/2020] [Accepted: 05/22/2020] [Indexed: 12/21/2022]
Abstract
The present-day world is severely suffering from the recently emerged SARS-CoV-2. The lack of prescribed drugs for the deadly virus has stressed the likely need to identify novel inhibitors to alleviate and stop the pandemic. In the present high throughput virtual screening study, we used in silico techniques like receptor-ligand docking, Molecular dynamic (MD), and ADME properties to screen natural compounds. It has been documented that many natural compounds display antiviral activities, including anti–SARS-CoV effect. The present study deals with compounds of Natural Product Activity and Species Source (NPASS) database with known biological activity that probably impedes the activity of six essential enzymes of the virus. Promising drug-like compounds were identified, demonstrating better docking score and binding energy for each druggable targets. After an extensive screening analysis, three novel multi-target natural compounds were predicted to subdue the activity of three/more major drug targets simultaneously. Concerning the utility of natural compounds in the formulation of many therapies, we propose these compounds as excellent lead candidates for the development of therapeutic drugs against SARS-CoV-2.
Collapse
Affiliation(s)
- Biswajit Naik
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, NH-8, Bandarsindri, Kishangarh, 305817 Ajmer, Rajasthan, India
| | - Nidhi Gupta
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, NH-8, Bandarsindri, Kishangarh, 305817 Ajmer, Rajasthan, India
| | - Rupal Ojha
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, NH-8, Bandarsindri, Kishangarh, 305817 Ajmer, Rajasthan, India
| | - Satyendra Singh
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, NH-8, Bandarsindri, Kishangarh, 305817 Ajmer, Rajasthan, India
| | - Vijay Kumar Prajapati
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, NH-8, Bandarsindri, Kishangarh, 305817 Ajmer, Rajasthan, India
| | - Dhaneswar Prusty
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, NH-8, Bandarsindri, Kishangarh, 305817 Ajmer, Rajasthan, India.
| |
Collapse
|
24
|
Mayer S, Keglevich P, Ábrányi-Balogh P, Szigetvári Á, Dékány M, Szántay C, Hazai L. Synthesis and In Vitro Anticancer Evaluation of Novel Chrysin and 7-Aminochrysin Derivatives. Molecules 2020; 25:molecules25040888. [PMID: 32079315 PMCID: PMC7070641 DOI: 10.3390/molecules25040888] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 02/13/2020] [Accepted: 02/13/2020] [Indexed: 01/24/2023] Open
Abstract
Chrysin is a naturally occurring flavonoid with mild anticancer activity. In this paper we report the synthesis of new chrysin derivatives alkylated with N-phenylchloroacetamides in position 7. A novel method was developed for the preparation of 7-aminochrysin derivatives via the Smiles rearrangement, resulting in diphenylamine-type compounds. In silico studies of the Smiles rearrangement were performed. We also present the in vitro antiproliferative activity of the synthesized compounds against 60 human tumor cell lines (NCI60). The most potent derivative exhibited nanomolar antitumor activity on the MCF7 cell line of breast cancer (GI50 = 30 nM) and on the HCT-15 cell line of colon cancer (GI50 = 60 nM).
Collapse
Affiliation(s)
- Szabolcs Mayer
- Department of Organic Chemistry and Technology, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Gellért tér 4, H-1111 Budapest, Hungary; (S.M.); (L.H.)
| | - Péter Keglevich
- Department of Organic Chemistry and Technology, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Gellért tér 4, H-1111 Budapest, Hungary; (S.M.); (L.H.)
- Correspondence: (P.K.); (P.Á.-B.)
| | - Péter Ábrányi-Balogh
- Medicinal Chemistry Research Group, Institute of Organic Chemistry, Research Centre for Natural Sciences, Magyar tudósok krt. 2, H-1117 Budapest, Hungary
- Correspondence: (P.K.); (P.Á.-B.)
| | - Áron Szigetvári
- Spectroscopic Research Department, Gedeon Richter Plc., P.O. Box 27, H-1475 Budapest, Hungary; (Á.S.); (M.D.)
| | - Miklós Dékány
- Spectroscopic Research Department, Gedeon Richter Plc., P.O. Box 27, H-1475 Budapest, Hungary; (Á.S.); (M.D.)
| | - Csaba Szántay
- Spectroscopic Research Department, Gedeon Richter Plc., P.O. Box 27, H-1475 Budapest, Hungary; (Á.S.); (M.D.)
| | - László Hazai
- Department of Organic Chemistry and Technology, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Gellért tér 4, H-1111 Budapest, Hungary; (S.M.); (L.H.)
| |
Collapse
|
25
|
Zhang X, Niu W, Tang T, Hou C, Guo Y, Kong R. A Strategy to Find Novel Candidate DKAs Inhibitors Using Modified QSAR Model with Favorable Druggability Properties. Chem Res Chin Univ 2019. [DOI: 10.1007/s40242-019-9183-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
26
|
Han RY, Ge Y, Zhang L, Wang QM. Design and Biological Evaluation of Novel Imidazolyl Flavonoids as Potent and Selective Protein Tyrosine Phosphatase Inhibitors. Med Chem 2019; 16:563-574. [PMID: 31208312 DOI: 10.2174/1573406415666190430125547] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 04/12/2019] [Accepted: 04/15/2019] [Indexed: 12/20/2022]
Abstract
BACKGROUND Protein tyrosine phosphatases 1B are considered to be a desirable validated target for therapeutic development of type II diabetes and obesity. METHODS A new series of imidazolyl flavonoids as potential protein tyrosine phosphatase inhibitors were synthesized and evaluated. RESULTS Bioactive results indicated that some synthesized compounds exhibited potent protein phosphatase 1B (PTP1B) inhibitory activities at the micromolar range. Especially, compound 8b showed the best inhibitory activity (IC50=1.0 µM) with 15-fold selectivity for PTP1B over the closely related T-cell protein tyrosine phosphatase (TCPTP). Cell viability assays indicated that 8b is cell permeable with lower cytotoxicity. Molecular modeling and dynamics studies revealed the reason for selectivity of PTP1B over TCPTP. Quantum chemical studies were carried out on these compounds to understand the structural features essential for activity. CONCLUSION Compound 8b should be a potential selective PTP1B inhibitor.
Collapse
Affiliation(s)
- Rong Y Han
- School of Pharmacy, Yancheng Teacher's University, Yancheng, Jiangsu 224051, China
| | - Yu Ge
- School of Pharmacy, Yancheng Teacher's University, Yancheng, Jiangsu 224051, China
| | - Ling Zhang
- School of Pharmacy, Yancheng Teacher's University, Yancheng, Jiangsu 224051, China
| | - Qing M Wang
- School of Pharmacy, Yancheng Teacher's University, Yancheng, Jiangsu 224051, China
| |
Collapse
|
27
|
Cutinho PF, Roy J, Anand A, Cheluvaraj R, Murahari M, Chimatapu HSV. Design of metronidazole derivatives and flavonoids as potential non-nucleoside reverse transcriptase inhibitors using combined ligand- and structure-based approaches. J Biomol Struct Dyn 2019; 38:1626-1648. [DOI: 10.1080/07391102.2019.1614094] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Pretisha Flora Cutinho
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, M.S. Ramaiah University of Applied Sciences, Bangalore, India
| | - Jaydeep Roy
- Department of Pharmacology, Faculty of Pharmacy, M.S. Ramaiah University of Applied Sciences, Bangalore, India
| | - Avinash Anand
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, M.S. Ramaiah University of Applied Sciences, Bangalore, India
| | - Ravishankar Cheluvaraj
- Department of Pharmacology, Faculty of Pharmacy, M.S. Ramaiah University of Applied Sciences, Bangalore, India
| | - Manikanta Murahari
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, M.S. Ramaiah University of Applied Sciences, Bangalore, India
- Pharmacological Modelling & Simulation Centre, M.S. Ramaiah University of Applied Sciences, Bangalore, India
| | - H. S. Venkataramana Chimatapu
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, M.S. Ramaiah University of Applied Sciences, Bangalore, India
| |
Collapse
|
28
|
Kumar D, Singh P, Jayaraj A, Kumar V, Kumari K, Patel R. A Theoretical Model to Study the Interaction of Erythro‐Noscapines with nsP3 protease of Chikungunya Virus. ChemistrySelect 2019. [DOI: 10.1002/slct.201803360] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Durgesh Kumar
- Department of ChemistryA.R.S.D. College, University of Delhi New Delhi India
- Department of ChemistryUniversity of Delhi Delhi India
| | - Prashant Singh
- Department of ChemistryA.R.S.D. College, University of Delhi New Delhi India
| | | | - Vinod Kumar
- Department of ChemistryKirori Mal CollegeUniversity of Delhi Delhi India
| | - Kamlesh Kumari
- Department of ZoologyDDU CollegeUniversity of Delhi Delhi India
| | | |
Collapse
|
29
|
Identification of novel imidazole flavonoids as potent and selective inhibitors of protein tyrosine phosphatase. Bioorg Chem 2019; 88:102900. [PMID: 30991192 DOI: 10.1016/j.bioorg.2019.03.074] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 03/18/2019] [Accepted: 03/30/2019] [Indexed: 01/12/2023]
Abstract
A series of imidazole flavonoids as new type of protein tyrosine phosphatase inhibitors were synthesized and characterized. Most of them gave potent protein phosphatase 1B (PTP1B) inhibitory activities. Especially, compound 11a could effectively inhibit PTP1B with an IC50 value of 0.63 μM accompanied with high selectivity ratio (9.5-fold) over T-cell protein tyrosine phosphatase (TCPTP). This compound is cell permeable with relatively low cytotoxicity. The high binding affinity and selectivity was disclosed by molecular modeling and dynamics studies. The structural features essential for activity were confirmed by quantum chemical studies.
Collapse
|
30
|
Izquierdo J, Jain AD, Abdulkadir SA, Schiltz GE. Palladium-catalyzed coupling reactions on functionalized 2-trifluoromethyl-4-chromenone scaffolds. Synthesis of highly functionalized trifluoromethyl-heterocycles. SYNTHESIS-STUTTGART 2019; 51:1342-1352. [PMID: 31274934 PMCID: PMC6605783 DOI: 10.1055/s-0037-1610669] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The chromenone core is a ubiquitous group in biologically-active natural products and has been extensively used in organic synthesis. Fluorine derived compounds, including those with a trifluoromethyl group (-CF3), have shown enhanced biological activities in numerous pharmaceuticals compared with their non-fluorinated analogs. We have found that 2-trifluoromethyl chromenones can be readily functionalized in the 8- and 7-positions, providing chromenones cores of high structural complexity which are excellent precursors for numerous trifluoromethyl-heterocycles.
Collapse
Affiliation(s)
- Javier Izquierdo
- Center for Molecular Innovation and Drug Discovery, Northwestern University, Evanston, Illinois, USA
| | - Atul D Jain
- Center for Molecular Innovation and Drug Discovery, Northwestern University, Evanston, Illinois, USA
| | - Sarki A Abdulkadir
- Department of Urology, Northwestern University, Chicago, Illinois, USA
- Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, United States
| | - Gary E Schiltz
- Center for Molecular Innovation and Drug Discovery, Northwestern University, Evanston, Illinois, USA
- Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, United States
- Department of Pharmacology, Northwestern University, Chicago, Illinois, USA
| |
Collapse
|
31
|
Aug-MIA-QSAR based strategy in bioactivity prediction of a series of flavonoid derivatives as HIV-1 inhibitors. J Theor Biol 2019; 469:18-24. [PMID: 30826336 DOI: 10.1016/j.jtbi.2019.02.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 02/21/2019] [Accepted: 02/27/2019] [Indexed: 12/13/2022]
Abstract
Multivariate image analysis-quantitative structure-activity relationship (MIA-QSAR) is a simple and quite accessible QSAR method for predicting biological activities of compounds based on two-dimensional image analysis. Aug-MIA-QSAR is a modified version of multivariate image analysis, where the atoms in 2D chemical structures were augmented (labelled by assigning specific colours). This study focuses on efficiently constructing such prediction models using a dataset of flavonoid derivatives possessing human immunodeficiency virus - 1 inhibition. The models were constructed by partial least square regression using non-linear iterative partial least square (NIPALS) algorithm and linearized by identifying an optimum number of seven latent variables. A leave-one-out cross validation (LOOCV) helped to verify the actual and predicted data. The two multivariate methods were compared and analysed to identify the most suitable method.
Collapse
|
32
|
Thangsunan P, Wongsaipun S, Kittiwachana S, Suree N. Effective prediction model and determination of binding residues influential for inhibitors targeting HIV-1 integrase-LEDGF/p75 interface by employing solvent accessible surface area energy as key determinant. J Biomol Struct Dyn 2019; 38:460-473. [PMID: 30744499 DOI: 10.1080/07391102.2019.1580219] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Development of a highly accurate prediction model for protein-ligand inhibition has been a major challenge in drug discovery. Herein, we describe a novel predictive model for the inhibition of HIV-1 integrase (IN)-LEDGF/p75 protein-protein interaction. The model was constructed using energy parameters approximated from molecular dynamics (MD) simulations and molecular mechanics Poisson-Boltzmann surface area (MM-PBSA) calculations. Chemometric analysis using partial least squares (PLS) regression revealed that solvent accessible surface area energy (ΔGSASA) is the major determinant parameter contributing greatly to the prediction accuracy. PLS prediction model on the ΔGSASA values collected from 41 complexes yielded a strong correlation between the predicted and the actual inhibitory activities (R2 = 0.9666, RMSEC of pIC50 values = 0.0890). Additionally, for the test set of 14 complexes, the model performed satisfactorily with very low pIC50 errors (Q2 = 0.5168, RMSEP = 0.3325). A strong correlation between the buried surface areas on the IN protein, when bound with IN-LEDGF/p75 inhibitors, and the respective ΔGSASA values was also obtained. Furthermore, the current method could identify 'hot spots'of amino acid residues highly influential to the inhibitory activity prediction. This could present fruitful implications in binding site determination and future inhibitor developments targeting protein-protein interactions.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Patcharapong Thangsunan
- Interdisciplinary Program in Biotechnology, Graduate School, Chiang Mai University, Muang, Chiang Mai, Thailand.,Division of Biochemistry and Biochemical Technology, Department of Chemistry, Faculty of Science, Chiang Mai University, Muang, Chiang Mai, Thailand
| | - Sakunna Wongsaipun
- Department of Chemistry, Faculty of Science, Chiang Mai University, Muang, Chiang Mai, Thailand
| | - Sila Kittiwachana
- Department of Chemistry, Faculty of Science, Chiang Mai University, Muang, Chiang Mai, Thailand
| | - Nuttee Suree
- Division of Biochemistry and Biochemical Technology, Department of Chemistry, Faculty of Science, Chiang Mai University, Muang, Chiang Mai, Thailand.,Department of Chemistry, Faculty of Science, Chiang Mai University, Muang, Chiang Mai, Thailand.,Center of Excellence in Materials Science and Technology, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
33
|
Flavonol 7- O-Glucoside Herbacitrin Inhibits HIV-1 Replication through Simultaneous Integrase and Reverse Transcriptase Inhibition. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 2019:1064793. [PMID: 30853999 PMCID: PMC6378053 DOI: 10.1155/2019/1064793] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 10/31/2018] [Accepted: 01/14/2019] [Indexed: 11/17/2022]
Abstract
Here we report the evaluation of the antiretroviral effect of two flavonoid 7-O-glucosides, herbacitrin (1) and gossypitrin (2), together with quercetin (3), a well-studied flavonol. Antiviral activity of the flavonoids was assessed by analyzing HIV-1 p24 core protein levels in the supernatants of HIV-1 infected MT-4 and MT-2 cell cultures. The compounds showed mild to weak cytotoxic activities on the host cells; herbacitrin was the strongest in this regard (CC50=27.8 and 63.64 μM on MT-4 and MT-2 cells, respectively). In nontoxic concentrations, herbacitrin and quercetin reduced HIV-1 replication, whereas gossypitrin was ineffective. Herbacitrin was found to inhibit reverse transcriptase at 21.5 μM, while it was a more potent integrase inhibitor already active at 2.15 μM. Therefore, our observations suggest that herbacitrin exerts antiretroviral activity through simultaneously acting on these two targets of HIV-1 and that integrase inhibition might play a major role in this activity.
Collapse
|
34
|
Uivarosi V, Munteanu AC, Nițulescu GM. An Overview of Synthetic and Semisynthetic Flavonoid Derivatives and Analogues: Perspectives in Drug Discovery. STUDIES IN NATURAL PRODUCTS CHEMISTRY 2019. [DOI: 10.1016/b978-0-444-64181-6.00002-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
35
|
Zhang L, Ge Y, Song HM, Wang QM, Zhou CH. Design, synthesis of novel azolyl flavonoids and their protein tyrosine Phosphatase-1B inhibitory activities. Bioorg Chem 2018; 80:195-203. [DOI: 10.1016/j.bioorg.2018.06.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 05/30/2018] [Accepted: 06/03/2018] [Indexed: 12/15/2022]
|
36
|
Recent advances in the discovery of small-molecule inhibitors of HIV-1 integrase. Future Sci OA 2018; 4:FSO338. [PMID: 30416746 PMCID: PMC6222271 DOI: 10.4155/fsoa-2018-0060] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 07/25/2018] [Indexed: 12/30/2022] Open
Abstract
AIDS caused by the infection of HIV is a prevalent problem today. Rapid development of drug resistance to existing drug classes has called for the discovery of new targets. Within the three major enzymes (i.e., HIV-1 protease, HIV-1 reverse transcriptase and HIV-1 integrase [IN]) of the viral replication cycle, HIV-1 IN has been of particular interest due to the absence of human cellular homolog. HIV-1 IN catalyzes the integration of viral genetic material with the host genome, a key step in the viral replication process. Several novel classes of HIV IN inhibitors have been explored by targeting different sites on the enzyme. This review strives to provide readers with updates on the recent developments of HIV-1 IN inhibitors. AIDS is an epidemic disease that endangers the lives of millions of people across the world. The AIDS virus, also known as HIV, has developed resistance to the majority of available drugs on the market, thus requiring the need for new drugs. HIV integrase is one of the key viral enzymes required for viral cell proliferation. Since there is no similar enzyme in the human body, major emphasis is being made to develop therapeutics for this novel target. The drugs that are at various stages of development for this target are reviewed here.
Collapse
|
37
|
Promsong A, Chuenchitra T, Saipin K, Tewtrakul S, Panichayupakaranant P, Satthakarn S, Nittayananta W. Ellagic acid inhibits HIV-1 infection in vitro: Potential role as a novel microbicide. Oral Dis 2018; 24:249-252. [PMID: 29480632 DOI: 10.1111/odi.12835] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 01/19/2018] [Accepted: 01/19/2018] [Indexed: 02/05/2023]
Abstract
OBJECTIVE To investigate the in vitro effects of ellagic acid on HIV-1 replication. METHODS Anti-HIV-1 activity of ellagic acid was determined in vitro using X4-tropic HIV-1NPO3 and R5-tropic pBaL Env-recombinant virus. Anti-HIV-1NPO3 activity of ellagic acid was investigated at a multiplicity of infection (MOI) of 0.01. Anti-HIV-1 integrase and protease activities of ellagic acid were tested using in vitro integration and proteolytic cleavage assays. RESULTS Ellagic acid, added either before or after HIV-1NPO3 exposure, suppressed replication of the virus in C8166 cells up to 34%. Ellagic acid showed an anti-integrase IC50 of 8.7 μM. No cytotoxicity of ellagic acid at concentrations ranging from 12.5 to 100 μM was observed. CONCLUSION We conclude that ellagic acid can inhibit HIV-1 infection without cytotoxicity. Thus, it may be a new effective agent that has potential to be developed as a novel microbicide against HIV-1.
Collapse
Affiliation(s)
- A Promsong
- Faculty of Medicine, Princess of Naradhiwas University, Narathiwat, Thailand
| | - T Chuenchitra
- Research Division, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - K Saipin
- Research Division, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - S Tewtrakul
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat Yai, Thailand
- Excellent Research Laboratory, Phytomedicine and Pharmaceutical Biotechnology Excellence Center, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat Yai, Thailand
| | - P Panichayupakaranant
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat Yai, Thailand
- Excellent Research Laboratory, Phytomedicine and Pharmaceutical Biotechnology Excellence Center, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat Yai, Thailand
| | - S Satthakarn
- Department of Medical Technology, School of Allied Health Sciences, University of Phayao, Phayao, Thailand
| | - W Nittayananta
- Faculty of Dentistry, Thammasat University, Pathumthani, Thailand
| |
Collapse
|
38
|
Safakish M, Hajimahdi Z, Zabihollahi R, Aghasadeghi MR, Vahabpour R, Zarghi A. Design, synthesis, and docking studies of new 2-benzoxazolinone derivatives as anti-HIV-1 agents. Med Chem Res 2017. [DOI: 10.1007/s00044-017-1969-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
39
|
Li HX, Wang ZC, Qian YM, Yan XQ, Lu YD, Zhu HL. Design, synthesis, and biological evaluation of chrysin derivatives as potential FabH inhibitors. Chem Biol Drug Des 2016; 89:136-140. [PMID: 27860280 DOI: 10.1111/cbdd.12839] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Revised: 05/27/2016] [Accepted: 06/11/2016] [Indexed: 12/19/2022]
Abstract
New series of chrysin derivatives (4a-4t) were designed and synthesized by introducing different substituted piperazines at C-7 position. Their inhibitory effects on FabH were evaluated using two Gram-negative bacterial strains, Escherichia coli and Pseudomonas aeruginosa, and two Gram-positive bacterial strains, Bacillus subtilis and Staphylococcus aureus. To our delight, most of these compounds exhibited a dramatic increase in inhibitory potency, compared with the control positive drugs. Among them, compound 4s exhibited the most potent inhibitory activity with IC50 values of 5.78 ± 0.24 μm inhibiting E. coli FabH and potent antibacterial activity against S. aureus and E. coli with MIC of 1.25 ± 0.01, 1.15 ± 0.12 μg/mL, respectively, comparing to the control positive drugs penicillin G (7.56 ± 0.30 μm). Docking simulation was performed to position compound 4s into the FabH active site, and the result showed that compound 4s could bind well with the FabH as potent FabH inhibitor.
Collapse
Affiliation(s)
- Hong-Xia Li
- School of Life and Food Engineering, Suzhou University, Suzhou Anhui, People's Republic of China.,State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, People's Republic of China
| | - Zhong-Chang Wang
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, People's Republic of China
| | - Yu-Mei Qian
- School of Life and Food Engineering, Suzhou University, Suzhou Anhui, People's Republic of China
| | - Xiao-Qiang Yan
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, People's Republic of China
| | - Ya-Dong Lu
- Neonatal Medical Center, Nanjing Children's Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Hai-Liang Zhu
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, People's Republic of China
| |
Collapse
|
40
|
Gorbunov EB, Rusinov GL, Ulomskii EN, El Tsov OS, Rusinov VL, Kartsev VG, Charushin VN, Khalymbadzha IA, Chupakhin ON. Direct Modification of Quercetin by 6-Nitroazolo[1,5- a]Pyrimidines. Chem Nat Compd 2016; 52:708-710. [PMID: 32214423 PMCID: PMC7088369 DOI: 10.1007/s10600-016-1749-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Indexed: 11/08/2022]
Affiliation(s)
- E B Gorbunov
- 1I. Ya. Postovskii Institute of Organic Synthesis, Ural Branch, Russian Academy of Sciences, 22 Sof'i Kovalevskoi and 20 Akademicheskaya St, Ekaterinburg, 620990 Russia.,2B. N. Yeltsin Ural Federal University, 19 Mira St, Ekaterinburg, 620002 Russia
| | - G L Rusinov
- 1I. Ya. Postovskii Institute of Organic Synthesis, Ural Branch, Russian Academy of Sciences, 22 Sof'i Kovalevskoi and 20 Akademicheskaya St, Ekaterinburg, 620990 Russia.,2B. N. Yeltsin Ural Federal University, 19 Mira St, Ekaterinburg, 620002 Russia
| | - E N Ulomskii
- 1I. Ya. Postovskii Institute of Organic Synthesis, Ural Branch, Russian Academy of Sciences, 22 Sof'i Kovalevskoi and 20 Akademicheskaya St, Ekaterinburg, 620990 Russia.,2B. N. Yeltsin Ural Federal University, 19 Mira St, Ekaterinburg, 620002 Russia
| | - O S El Tsov
- 2B. N. Yeltsin Ural Federal University, 19 Mira St, Ekaterinburg, 620002 Russia
| | - V L Rusinov
- 1I. Ya. Postovskii Institute of Organic Synthesis, Ural Branch, Russian Academy of Sciences, 22 Sof'i Kovalevskoi and 20 Akademicheskaya St, Ekaterinburg, 620990 Russia.,2B. N. Yeltsin Ural Federal University, 19 Mira St, Ekaterinburg, 620002 Russia
| | - V G Kartsev
- 2B. N. Yeltsin Ural Federal University, 19 Mira St, Ekaterinburg, 620002 Russia
| | - V N Charushin
- 1I. Ya. Postovskii Institute of Organic Synthesis, Ural Branch, Russian Academy of Sciences, 22 Sof'i Kovalevskoi and 20 Akademicheskaya St, Ekaterinburg, 620990 Russia.,2B. N. Yeltsin Ural Federal University, 19 Mira St, Ekaterinburg, 620002 Russia
| | - I A Khalymbadzha
- 2B. N. Yeltsin Ural Federal University, 19 Mira St, Ekaterinburg, 620002 Russia
| | - O N Chupakhin
- 1I. Ya. Postovskii Institute of Organic Synthesis, Ural Branch, Russian Academy of Sciences, 22 Sof'i Kovalevskoi and 20 Akademicheskaya St, Ekaterinburg, 620990 Russia.,2B. N. Yeltsin Ural Federal University, 19 Mira St, Ekaterinburg, 620002 Russia
| |
Collapse
|
41
|
Seyedi SS, Shukri M, Hassandarvish P, Oo A, Muthu SE, Abubakar S, Zandi K. Computational Approach Towards Exploring Potential Anti-Chikungunya Activity of Selected Flavonoids. Sci Rep 2016; 6:24027. [PMID: 27071308 PMCID: PMC4829834 DOI: 10.1038/srep24027] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Accepted: 03/18/2016] [Indexed: 12/16/2022] Open
Abstract
Chikungunya virus (CHIKV) is a mosquito-borne alphavirus that causes chikungunya infection in humans. Despite the widespread distribution of CHIKV, no antiviral medication or vaccine is available against this virus. Therefore, it is crucial to find an effective compound to combat CHIKV. We aimed to predict the possible interactions between non-structural protein 3 (nsP) of CHIKV as one of the most important viral elements in CHIKV intracellular replication and 3 potential flavonoids using a computational approach. The 3-dimensional structure of nsP3 was retrieved from the Protein Data Bank, prepared and, using AutoDock Vina, docked with baicalin, naringenin and quercetagetin as ligands. The first-rated ligand with the strongest binding affinity towards the targeted protein was determined based on the minimum binding energy. Further analysis was conducted to identify both the active site of the protein that reacts with the tested ligands and all of the existing intermolecular bonds. Compared to the other ligands, baicalin was identified as the most potential inhibitor of viral activity by showing the best binding affinity (-9.8 kcal/mol). Baicalin can be considered a good candidate for further evaluation as a potentially efficient antiviral against CHIKV.
Collapse
Affiliation(s)
- Seyedeh Somayeh Seyedi
- Tropical Infectious Diseases Research and Education Center, Department of Medical Microbiology, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Munirah Shukri
- Tropical Infectious Diseases Research and Education Center, Department of Medical Microbiology, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Pouya Hassandarvish
- Tropical Infectious Diseases Research and Education Center, Department of Medical Microbiology, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Adrian Oo
- Tropical Infectious Diseases Research and Education Center, Department of Medical Microbiology, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Shankar Esaki Muthu
- Tropical Infectious Diseases Research and Education Center, Department of Medical Microbiology, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Sazaly Abubakar
- Tropical Infectious Diseases Research and Education Center, Department of Medical Microbiology, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Keivan Zandi
- Tropical Infectious Diseases Research and Education Center, Department of Medical Microbiology, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| |
Collapse
|
42
|
Bovine Lactoferrampin, Human Lactoferricin, and Lactoferrin 1-11 Inhibit Nuclear Translocation of HIV Integrase. Appl Biochem Biotechnol 2016; 179:1202-12. [DOI: 10.1007/s12010-016-2059-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 03/18/2016] [Indexed: 12/16/2022]
|
43
|
Moriguchi T, Sakao K, Hou DX, Yoza K. 3,5,7-Triacetoxy-2-(3,4-diacetoxyphenyl)-4 H-1-benzopyran-4-one. IUCRDATA 2016. [DOI: 10.1107/s2414314616000286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
In the title compound, C25H20O12, commonly known as pentaacetylated quercetin, the benzene ring and one of its methoxy substituent groups is disordered (site occupancy ratio 0.523:0.427), with a dihedral angle between the major-disorder component and the benzene ring of the benzopyranone moiety of 10.8 (6)°. In the crystal, C—H...O hydrogen-bonding interactions give chains which extend alongb.
Collapse
|
44
|
Han X, Wu H, Dong C, Tien P, Xie W, Wu S, Zhou HB. Halolactones are potent HIV-1 non-nucleoside reverse transcriptase inhibitors. RSC Adv 2015. [DOI: 10.1039/c4ra11087k] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Halolactones with an isobenzofuran-1(3H)-one core structure have been developed as efficient non-nucleoside reverse transcriptase inhibitors (NNRTIs). The best compound 13a showed excellent potency against WT HIV-1 with a low EC50 value of 0.45 μM.
Collapse
Affiliation(s)
- Xin Han
- State Key Laboratory of Virology
- Wuhan University School of Pharmaceutical Sciences
- Wuhan
- China
| | - Haoming Wu
- College of Life Sciences
- Wuhan University
- Wuhan
- China
| | - Chune Dong
- State Key Laboratory of Virology
- Wuhan University School of Pharmaceutical Sciences
- Wuhan
- China
| | - Po Tien
- College of Life Sciences
- Wuhan University
- Wuhan
- China
| | - Wei Xie
- Key Laboratory of Gene Engineering of the Ministry of Education
- State Key Laboratory for Biocontrol
- School of Life Sciences
- The Sun Yat-Sen University
- Guangzhou 510275
| | - Shuwen Wu
- College of Life Sciences
- Wuhan University
- Wuhan
- China
| | - Hai-Bing Zhou
- State Key Laboratory of Virology
- Wuhan University School of Pharmaceutical Sciences
- Wuhan
- China
| |
Collapse
|
45
|
Kasprzak MM, Erxleben A, Ochocki J. Properties and applications of flavonoid metal complexes. RSC Adv 2015. [DOI: 10.1039/c5ra05069c] [Citation(s) in RCA: 225] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Flavonoid metal complexes have a wide spectrum of activities as well as potential and actual applications.
Collapse
Affiliation(s)
- Maria M. Kasprzak
- Department of Bioinorganic Chemistry
- Medical University of Lodz
- Lodz
- Poland
| | - Andrea Erxleben
- School of Chemistry
- National University of Ireland
- Galway
- Ireland
| | - Justyn Ochocki
- Department of Bioinorganic Chemistry
- Medical University of Lodz
- Lodz
- Poland
| |
Collapse
|