1
|
Robert A, Paloque L, Augereau JM, Nardella F, Nguyen M, Meunier B, Benoit-Vical F. Hybrid Molecules as Efficient Drugs against Multidrug-Resistant Malaria Parasites. ChemMedChem 2025:e2500086. [PMID: 40227011 DOI: 10.1002/cmdc.202500086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 03/08/2025] [Indexed: 04/15/2025]
Abstract
This review is focused on hybrid molecules defined as chemical entities with two or more structural domains, as antimalarial drug-candidates, over the past 25 years. Due to their different pharmacophores, such hybrids can interact with a single biological target by different and complementary mechanisms; they can also act simultaneously on several targets having complementary biological functions (dual mode of action), and can theoretically reduce the selection of parasite drug-resistance. This review is not an exhaustive report of all hybrid drugs tested on malaria parasites but a selection of hybrids with pharmacologically relevant antiplasmodial properties and original chemical structures. The choice of pharmacophore synthons and junction arms is obviously decisive. Among the large varieties of hybrid drugs published, emoquine-1 appears at the moment as a promising antimalarial drug candidate, considering 1) its high activities on several multidrug-resistant Plasmodium lab strains and field isolates, 2) its capacity to eliminate the quiescent forms of the artemisinin-resistant parasites, and 3) its curative properties in a malaria mouse model. Such molecules confirm the synergistic effect of hybrid compounds compared to the combination of the pharmacophores leading to novel chemical structures that meet the critical parameters for new antimalarial drugs.
Collapse
Affiliation(s)
- Anne Robert
- Laboratoire de chimie de coordination du CNRS LCC-CNRS, Inserm ERL 1289 MAAP, Université de Toulouse, 205 route de Narbonne, 31077, Toulouse cedex, France
| | - Lucie Paloque
- Laboratoire de chimie de coordination du CNRS LCC-CNRS, Inserm ERL 1289 MAAP, Université de Toulouse, 205 route de Narbonne, 31077, Toulouse cedex, France
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III - Paul Sabatier (UPS), 205 route de Narbonne, 31077, Toulouse cedex, France
| | - Jean-Michel Augereau
- Laboratoire de chimie de coordination du CNRS LCC-CNRS, Inserm ERL 1289 MAAP, Université de Toulouse, 205 route de Narbonne, 31077, Toulouse cedex, France
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III - Paul Sabatier (UPS), 205 route de Narbonne, 31077, Toulouse cedex, France
| | - Flore Nardella
- Laboratoire de chimie de coordination du CNRS LCC-CNRS, Inserm ERL 1289 MAAP, Université de Toulouse, 205 route de Narbonne, 31077, Toulouse cedex, France
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III - Paul Sabatier (UPS), 205 route de Narbonne, 31077, Toulouse cedex, France
| | - Michel Nguyen
- Laboratoire de chimie de coordination du CNRS LCC-CNRS, Inserm ERL 1289 MAAP, Université de Toulouse, 205 route de Narbonne, 31077, Toulouse cedex, France
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III - Paul Sabatier (UPS), 205 route de Narbonne, 31077, Toulouse cedex, France
| | - Bernard Meunier
- Laboratoire de chimie de coordination du CNRS LCC-CNRS, Inserm ERL 1289 MAAP, Université de Toulouse, 205 route de Narbonne, 31077, Toulouse cedex, France
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Higher Education Mega Center, Guangzhou, 510006, P. R. China
| | - Françoise Benoit-Vical
- Laboratoire de chimie de coordination du CNRS LCC-CNRS, Inserm ERL 1289 MAAP, Université de Toulouse, 205 route de Narbonne, 31077, Toulouse cedex, France
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III - Paul Sabatier (UPS), 205 route de Narbonne, 31077, Toulouse cedex, France
| |
Collapse
|
2
|
Rawat S, Thakur A, Khan SI, Kholiya R, Tekwani BL, Bahuguna A, Rawat DS. Aminoquinoline-Pyrimidine-Based Alkyl-Piperazine Tethered Hybrids: Synthesis, Antiplasmodial Activity, and Mechanistic Studies. ACS OMEGA 2025; 10:11873-11886. [PMID: 40191366 PMCID: PMC11966289 DOI: 10.1021/acsomega.4c08363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 02/04/2025] [Accepted: 02/21/2025] [Indexed: 04/09/2025]
Abstract
Though great progress has been made to eliminate malaria globally, effective and inexpensive strategies to design new antimalarials are still required due to the problem of drug resistance to the currently used antimalarials. Herein, in continuation of our efforts to improve the therapeutic efficacy of 4-aminoquinoline-pyrimidine (4-AQ-Py) based molecular hybrids, a series of 4-AQ-Py hybrids linked through diamine-piperazine (flexible and rigid) linkers was synthesized and assessed for in vitro antiplasmodial activity. In the in vitro assay, these hybrids exhibited excellent potency and selectivity index against both the chloroquine (CQ)-sensitive (D6) and CQ-resistant (W2) strains of Plasmodium falciparum. Compound 7i was found to be the most potent (5-fold more active than CQ) against the D6 strain, while compound 7e displayed the most potency (53-fold more potent than CQ) against the W2 strain. Furthermore, nine compounds (7d, 7f-i, 7l, and 7o-q) showed better antiplasmodial activity than the reference drug artemisinin (ART) against the D6 strain, and compared to ART, seven compounds (7d-e, 7i-k, and 7p-q) demonstrated better activity against the W2 strain. All the synthesized hybrids were found noncytotoxic against the mammalian VERO cell lines. Two potent compounds, 7e and 7i, were evaluated for their in vivo antiplasmodial activity against P. berghei-infected mouse models. Additionally, one of the best active compounds, 7i, was tested for heme binding, and docking studies were conducted with Pf-DHFR to determine the primary mechanism of action of these hybrids.
Collapse
Affiliation(s)
- Srishti Rawat
- Department
of Chemistry, University of Delhi, Delhi 110007, India
| | - Anuj Thakur
- Department
of Chemistry, University of Delhi, Delhi 110007, India
| | - Shabana I. Khan
- National
Centre for Natural Products Research, University
of Mississippi, Oxford, Mississippi 38677, United States
| | - Rohit Kholiya
- Department
of Chemistry, University of Delhi, Delhi 110007, India
- Department
of Chemistry, Deshbandhu College, University
of Delhi, Delhi 110019, India
| | - Babu L. Tekwani
- National
Centre for Natural Products Research, University
of Mississippi, Oxford, Mississippi 38677, United States
| | - Aparna Bahuguna
- Department
of Chemistry, University of Delhi, Delhi 110007, India
| | - Diwan S. Rawat
- Department
of Chemistry, University of Delhi, Delhi 110007, India
- Kumaun
University Nainital, Nainital, Uttarakhand 263001, India
| |
Collapse
|
3
|
Novichikhina NP, Shestakov AS, Medvedeva SM, Lagutina AM, Krysin MY, Podoplelova NA, Panteleev MA, Ilin IS, Sulimov AV, Tashchilova AS, Sulimov VB, Geronikaki A, Shikhaliev KS. New Hybrid Tetrahydropyrrolo[3,2,1- ij]quinolin-1-ylidene-2-thioxothiazolidin-4-ones as New Inhibitors of Factor Xa and Factor XIa: Design, Synthesis, and In Silico and Experimental Evaluation. Molecules 2023; 28:molecules28093851. [PMID: 37175261 PMCID: PMC10179972 DOI: 10.3390/molecules28093851] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/28/2023] [Accepted: 04/28/2023] [Indexed: 05/15/2023] Open
Abstract
Despite extensive research in the field of thrombotic diseases, the prevention of blood clots remains an important area of study. Therefore, the development of new anticoagulant drugs with better therapeutic profiles and fewer side effects to combat thrombus formation is still needed. Herein, we report the synthesis and evaluation of novel pyrroloquinolinedione-based rhodanine derivatives, which were chosen from 24 developed derivatives by docking as potential molecules to inhibit the clotting factors Xa and XIa. For the synthesis of new hybrid derivatives of pyrrolo[3,2,1-ij]quinoline-2-one, we used a convenient structural modification of the tetrahydroquinoline fragment by varying the substituents in positions 2, 4, and 6. In addition, the design of target molecules was achieved by alkylating the amino group of the rhodanine fragment with propargyl bromide or by replacing the rhodanine fragment with 2-thioxoimidazolidin-4-one. The in vitro testing showed that eight derivatives are capable of inhibiting both coagulation factors, two compounds are selective inhibitors of factor Xa, and two compounds are selective inhibitors of factor XIa. Overall, these data indicate the potential anticoagulant activity of these molecules through the inhibition of the coagulation factors Xa and XIa.
Collapse
Affiliation(s)
- Nadezhda P Novichikhina
- Department of Organic Chemistry, Faculty of Chemistry, Voronezh State University, Universitetskaya pl. 1, 394018 Voronezh, Russia
| | - Alexander S Shestakov
- Department of Organic Chemistry, Faculty of Chemistry, Voronezh State University, Universitetskaya pl. 1, 394018 Voronezh, Russia
| | - Svetlana M Medvedeva
- Department of Organic Chemistry, Faculty of Chemistry, Voronezh State University, Universitetskaya pl. 1, 394018 Voronezh, Russia
| | - Anna M Lagutina
- Department of Organic Chemistry, Faculty of Chemistry, Voronezh State University, Universitetskaya pl. 1, 394018 Voronezh, Russia
| | - Mikhail Yu Krysin
- Department of Organic Chemistry, Faculty of Chemistry, Voronezh State University, Universitetskaya pl. 1, 394018 Voronezh, Russia
| | - Nadezhda A Podoplelova
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, 117997 Moscow, Russia
- Center for Theoretical Problems of Physicochemical Pharmakology, 119991 Moscow, Russia
| | - Mikhail A Panteleev
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, 117997 Moscow, Russia
- Center for Theoretical Problems of Physicochemical Pharmakology, 119991 Moscow, Russia
| | - Ivan S Ilin
- Dimonta, Ltd., 117186 Moscow, Russia
- Research Computing Center, Lomonosov Moscow State University, 119992 Moscow, Russia
| | - Alexey V Sulimov
- Dimonta, Ltd., 117186 Moscow, Russia
- Research Computing Center, Lomonosov Moscow State University, 119992 Moscow, Russia
| | - Anna S Tashchilova
- Dimonta, Ltd., 117186 Moscow, Russia
- Research Computing Center, Lomonosov Moscow State University, 119992 Moscow, Russia
| | - Vladimir B Sulimov
- Dimonta, Ltd., 117186 Moscow, Russia
- Research Computing Center, Lomonosov Moscow State University, 119992 Moscow, Russia
| | - Athina Geronikaki
- School of Pharmacy, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Khidmet S Shikhaliev
- Department of Organic Chemistry, Faculty of Chemistry, Voronezh State University, Universitetskaya pl. 1, 394018 Voronezh, Russia
| |
Collapse
|
4
|
Structure- and ligand-based drug design methods for the modeling of antimalarial agents: a review of updates from 2012 onwards. J Biomol Struct Dyn 2022; 40:10481-10506. [PMID: 34129805 DOI: 10.1080/07391102.2021.1932598] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Malaria still persists as one of the deadliest infectious disease having a huge morbidity and mortality affecting the higher population of the world. Structure and ligand-based drug design methods like molecular docking and MD simulations, pharmacophore modeling, QSAR and virtual screening are widely used to perceive the accordant correlation between the antimalarial activity and property of the compounds to design novel dominant and discriminant molecules. These modeling methods will speed-up antimalarial drug discovery, selection of better drug candidates for synthesis and to achieve potent and safer drugs. In this work, we have extensively reviewed the literature pertaining to the use and applications of various ligand and structure-based computational methods for the design of antimalarial agents. Different classes of molecules are discussed along with their target interactions pattern, which is responsible for antimalarial activity. Communicated by Ramaswamy H. Sarma.
Collapse
|
5
|
Zheng Y, Müller J, Kunz S, Siderius M, Maes L, Caljon G, Müller N, Hemphill A, Sterk GJ, Leurs R. 3-nitroimidazo[1,2-b]pyridazine as a novel scaffold for antiparasitics with sub-nanomolar anti-Giardia lamblia activity. Int J Parasitol Drugs Drug Resist 2022; 19:47-55. [PMID: 35716585 PMCID: PMC9213561 DOI: 10.1016/j.ijpddr.2022.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 05/18/2022] [Accepted: 05/20/2022] [Indexed: 11/26/2022]
Abstract
As there is a continuous need for novel anti-infectives, the present study aimed to fuse two modes of action into a novel 3-nitroimidazo[1,2-b]pyridazine scaffold to improve antiparasitic efficacy. For this purpose, we combined known structural elements of phosphodiesterase inhibitors, a target recently proposed for Trypanosoma brucei and Giardia lamblia, with a nitroimidazole scaffold to generate nitrosative stress. The compounds were evaluated in vitro against a panel of protozoal parasites, namely Giardia lamblia, Trypanosoma brucei, T. cruzi, Leishmania infantum and Plasmodium falciparum and for cytotoxicity on MRC-5 cells. Interestingly, selective sub-nanomolar activity was obtained against G. lamblia, and by testing several analogues with and without the nitro group, it was shown that the presence of a nitro group, but not PDE inhibition, is responsible for the low IC50 values of these novel compounds. Adding the favourable drug-like properties (low molecular weight, cLogP (1.2–4.1) and low polar surface area), the key compounds from the 3-nitroimidazo[1,2-b]pyridazine series can be considered as valuable hits for further anti-giardiasis drug exploration and development. Analogues fusing a nitroimidazole moiety and a PDE inhibitor scaffold were prepared. These compounds were tested in vitro against a panel of protozoal parasites. Against Giardia lamblia, sub-nanomolar IC50 values were determined. PDE inhibition provided no significant contribution to the anti-Giardia potency. High potency with drug-like properties warrants further study of this hit series.
Collapse
|
6
|
Parasite Viability as a Measure of In Vivo Drug Activity in Preclinical and Early Clinical Antimalarial Drug Assessment. Antimicrob Agents Chemother 2022; 66:e0011422. [PMID: 35727057 PMCID: PMC9295577 DOI: 10.1128/aac.00114-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The rate at which parasitemia declines in a host after treatment with an antimalarial drug is a major metric for assessment of antimalarial drug activity in preclinical models and in early clinical trials. However, this metric does not distinguish between viable and nonviable parasites. Thus, enumeration of parasites may result in underestimation of drug activity for some compounds, potentially confounding its use as a metric for assessing antimalarial activity in vivo. Here, we report a study of the effect of artesunate on Plasmodium falciparum viability in humans and in mice. We first measured the drug effect in mice by estimating the decrease in parasite viability after treatment using two independent approaches to estimate viability. We demonstrate that, as previously reported in humans, parasite viability declines much faster after artesunate treatment than does the decline in parasitemia (termed parasite clearance). We also observed that artesunate kills parasites faster at higher concentrations, which is not discernible from the traditional parasite clearance curve and that each subsequent dose of artesunate maintains its killing effect. Furthermore, based on measures of parasite viability, we could accurately predict the in vivo recrudescence of infection. Finally, using pharmacometrics modeling, we show that the apparent differences in the antimalarial activity of artesunate in mice and humans are partly explained by differences in host removal of dead parasites in the two hosts. However, these differences, along with different pharmacokinetic profiles, do not fully account for the differences in activity. (This study has been registered with the Australian New Zealand Clinical Trials Registry under identifier ACTRN12617001394336.)
Collapse
|
7
|
Krivokolysko DS, Dotsenko VV, Bibik EY, Myazina AV, Krivokolysko SG, Vasilin VK, Pankov AA, Aksenov NA., Aksenova IV. Synthesis, Structure, and Analgesic Activity of 4-(5-Cyano-{4-(fur-2-yl)-1,4-dihydropyridin-3-yl}carboxamido)benzoic Acids Ethyl Esters. RUSS J GEN CHEM+ 2022. [DOI: 10.1134/s1070363221120306] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
8
|
Krivokolysko DS, Dotsenko VV, Bibik EY, Samokish AA, Venidiktova YS, Frolov KA, Krivokolysko SG, Vasilin VK, Pankov AA, Aksenov NA, Aksenova IV. New 4-(2-Furyl)-1,4-dihydronicotinonitriles and 1,4,5,6-Tetrahydronicotinonitriles: Synthesis, Structure, and Analgesic Activity. RUSS J GEN CHEM+ 2021. [DOI: 10.1134/s1070363221090073] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
9
|
Marinović M, Poje G, Perković I, Fontinha D, Prudêncio M, Held J, Pessanha de Carvalho L, Tandarić T, Vianello R, Rajić Z. Further investigation of harmicines as novel antiplasmodial agents: Synthesis, structure-activity relationship and insight into the mechanism of action. Eur J Med Chem 2021; 224:113687. [PMID: 34274829 DOI: 10.1016/j.ejmech.2021.113687] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 07/02/2021] [Accepted: 07/03/2021] [Indexed: 01/30/2023]
Abstract
The rise of the resistance of the malaria parasite to the currently approved therapy urges the discovery and development of new efficient agents. Previously we have demonstrated that harmicines, hybrid compounds composed from β-carboline alkaloid harmine and cinnamic acid derivatives, linked via either triazole or amide bond, exert significant antiplasmodial activity. In this paper, we report synthesis, antiplasmodial activity and cytotoxicity of expanded series of novel triazole- and amide-type harmicines. Structure-activity relationship analysis revealed that amide-type harmicines 27, prepared at N-9 of the β-carboline core, exhibit superior potency against both erythrocytic stage of P. falciparum and hepatic stages of P. berghei. Notably, harmicine 27a, m-(trifluoromethyl)cinnamic acid derivative, exhibited the most favourable selectivity index (SI = 1105). Molecular dynamics simulations revealed the ATP binding site of P. falciparum heat shock protein 90 as a druggable binding location, confirmed the usefulness of the harmine's N-9 substitution and identified favourable N-H … π interactions involving Lys45 and the aromatic phenyl unit in the attached cinnamic acid fragment as crucial for the enhanced biological activity. Thus, those compounds were identified as promising and valuable leads for further derivatization in the search of novel, more efficient antiplasmodial agents.
Collapse
Affiliation(s)
- Marina Marinović
- University of Zagreb Faculty of Pharmacy and Biochemistry, A. Kovačića 1, 10000, Zagreb, Croatia
| | - Goran Poje
- University of Zagreb Faculty of Pharmacy and Biochemistry, A. Kovačića 1, 10000, Zagreb, Croatia
| | - Ivana Perković
- University of Zagreb Faculty of Pharmacy and Biochemistry, A. Kovačića 1, 10000, Zagreb, Croatia
| | - Diana Fontinha
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028, Lisboa, Portugal
| | - Miguel Prudêncio
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028, Lisboa, Portugal
| | - Jana Held
- University of Tübingen, Institute of Tropical Medicine, Wilhelmstraße 27, 72074, Tübingen, Germany
| | | | - Tana Tandarić
- Rudjer Bošković Institute, Division of Organic Chemistry and Biochemistry, Bijenička Cesta 54, 10 000, Zagreb, Croatia
| | - Robert Vianello
- Rudjer Bošković Institute, Division of Organic Chemistry and Biochemistry, Bijenička Cesta 54, 10 000, Zagreb, Croatia
| | - Zrinka Rajić
- University of Zagreb Faculty of Pharmacy and Biochemistry, A. Kovačića 1, 10000, Zagreb, Croatia.
| |
Collapse
|
10
|
Jansongsaeng S, Srimongkolpithak N, Pengon J, Kamchonwongpaisan S, Khotavivattana T. 5-Phenoxy Primaquine Analogs and the Tetraoxane Hybrid as Antimalarial Agents. Molecules 2021; 26:molecules26133991. [PMID: 34208832 PMCID: PMC8272044 DOI: 10.3390/molecules26133991] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 06/23/2021] [Accepted: 06/28/2021] [Indexed: 12/04/2022] Open
Abstract
The rapid emergence of drug resistance to the current antimalarial agents has led to the urgent need for the discovery of new and effective compounds. In this work, a series of 5-phenoxy primaquine analogs with 8-aminoquinoline core (7a–7h) was synthesized and investigated for their antimalarial activity against Plasmodium falciparum. Most analogs showed improved blood antimalarial activity compared to the original primaquine. To further explore a drug hybrid strategy, a conjugate compound between tetraoxane and the representative 5-phenoxy-primaquine analog 7a was synthesized. In our work, the hybrid compound 12 exhibited almost a 30-fold increase in the blood antimalarial activity (IC50 = 0.38 ± 0.11 μM) compared to that of primaquine, with relatively low toxicity against mammalian cells (SI = 45.61). Furthermore, we found that these 5-phenoxy primaquine analogs and the hybrid exhibit significant heme polymerization inhibition, an activity similar to that of chloroquine, which could contribute to their improved antimalarial activity. The 5-phenoxy primaquine analogs and the tetraoxane hybrid could serve as promising candidates for the further development of antimalarial agents.
Collapse
Affiliation(s)
- Somruedee Jansongsaeng
- Centre of Excellence in Natural Products Chemistry, Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand;
| | - Nitipol Srimongkolpithak
- National Center for Genetic Engineering and Biotechnology (BIOTEC), Pathum Thani 12120, Thailand; (N.S.); (J.P.); (S.K.)
| | - Jutharat Pengon
- National Center for Genetic Engineering and Biotechnology (BIOTEC), Pathum Thani 12120, Thailand; (N.S.); (J.P.); (S.K.)
| | - Sumalee Kamchonwongpaisan
- National Center for Genetic Engineering and Biotechnology (BIOTEC), Pathum Thani 12120, Thailand; (N.S.); (J.P.); (S.K.)
| | - Tanatorn Khotavivattana
- Centre of Excellence in Natural Products Chemistry, Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand;
- Correspondence: ; Tel.: +66-2-218-7621
| |
Collapse
|
11
|
Aratikatla EK, Kalamuddin M, Rana KC, Datta G, Asad M, Sundararaman S, Malhotra P, Mohmmed A, Bhattacharya AK. Combating multi-drug resistant malaria parasite by inhibiting falcipain-2 and heme-polymerization: Artemisinin-peptidyl vinyl phosphonate hybrid molecules as new antimalarials. Eur J Med Chem 2021; 220:113454. [PMID: 33901900 DOI: 10.1016/j.ejmech.2021.113454] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 03/25/2021] [Accepted: 04/07/2021] [Indexed: 10/21/2022]
Abstract
Artemisinin-based combination therapies (ACTs) have been able to reduce the clinical and pathological malaria cases in endemic areas around the globe. However, recent reports have shown a progressive decline in malaria parasite clearance in South-east Asia after ACT treatment, thus envisaging a need for new artemisinin (ART) derivatives and combinations. To address the emergence of drug resistance to current antimalarials, here we report the synthesis of artemisinin-peptidyl vinyl phosphonate hybrid molecules that show superior efficacy than artemisinin alone against chloroquine-resistant as well as multidrug-resistant Plasmodium falciparum strains with EC50 in pico-molar ranges. Further, the compounds effectively inhibited the survival of ring-stage parasite for laboratory-adapted artemisinin-resistant parasite lines as compared to artemisinin. These hybrid molecules showed complete parasite clearance in vivo using P. berghei mouse malaria model in comparison to artemisinin alone. Studies on the mode of action of hybrid molecules suggested that these artemisinin-peptidyl vinyl phosphonate hybrid molecules possessed dual activities: inhibited falcipain-2 (FP-2) activity, a P. falciparum cysteine protease involved in hemoglobin degradation, and also blocked the hemozoin formation in the food-vacuole, a step earlier shown to be blocked by artemisinin. Since these hybrid molecules blocked multiple steps of a pathway and showed synergistic efficacies, we believe that these lead compounds can be developed as effective antimalarials to prevent the spread of resistance to current antimalarials.
Collapse
Affiliation(s)
- Eswar K Aratikatla
- Division of Organic Chemistry, CSIR-National Chemical Laboratory (CSIR-NCL), Dr. Homi Bhabha Road, Pune, 411 008, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-NCL, Pune, 411 008, India
| | - Md Kalamuddin
- International Centre for Genetic Engineering & Biotechnology (ICGEB), Aruna Asif Ali Marg, New Delhi, 100 067, India
| | - Kalpeshkumar C Rana
- Division of Organic Chemistry, CSIR-National Chemical Laboratory (CSIR-NCL), Dr. Homi Bhabha Road, Pune, 411 008, India
| | - Gaurav Datta
- International Centre for Genetic Engineering & Biotechnology (ICGEB), Aruna Asif Ali Marg, New Delhi, 100 067, India
| | - Mohd Asad
- International Centre for Genetic Engineering & Biotechnology (ICGEB), Aruna Asif Ali Marg, New Delhi, 100 067, India
| | - Srividhya Sundararaman
- International Centre for Genetic Engineering & Biotechnology (ICGEB), Aruna Asif Ali Marg, New Delhi, 100 067, India
| | - Pawan Malhotra
- International Centre for Genetic Engineering & Biotechnology (ICGEB), Aruna Asif Ali Marg, New Delhi, 100 067, India
| | - Asif Mohmmed
- International Centre for Genetic Engineering & Biotechnology (ICGEB), Aruna Asif Ali Marg, New Delhi, 100 067, India.
| | - Asish K Bhattacharya
- Division of Organic Chemistry, CSIR-National Chemical Laboratory (CSIR-NCL), Dr. Homi Bhabha Road, Pune, 411 008, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-NCL, Pune, 411 008, India.
| |
Collapse
|
12
|
Gao M, Qu K, Zhang W, Wang X. Pharmacological Activity of Pyrazole Derivatives as an Anticonvulsant for Benefit against Epilepsy. Neuroimmunomodulation 2021; 28:90-98. [PMID: 33774633 DOI: 10.1159/000513297] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 11/12/2020] [Indexed: 11/19/2022] Open
Abstract
INTRODUCTION Pediatric patients with epilepsy are prone to cognitive impairments during growth and long-term use of most antiepileptic drugs (AED). The affected children do not respond to conventional AED and may require novel drugs to manage the disease. Valproic acid, a first-line drug to treat epilepsy, is associated with serious side effects, which precludes its wider use. Thus, in the present study, we intended to develop novel substituted pyrazoles. METHODS The molecules were tested for anticonvulsive activity in Swiss albino mice via maximal electroshock seizure and subcutaneous pentylenetetrazole assays. The most potent molecule among the class was further assayed for its effect on behavioral and CNS depressant activity. The effect of the most potent compounds was also analyzed on various indices of oxidative stress and inflammation in mice. RESULTS The designed compounds showed significant anticonvulsive activity in mice revealing 7h as the most potent anticonvulsive agent. The most potent anticonvulsant molecule 7h further showed no behavioral alteration and considerable CNS depressant activity. It also reduces the level of oxidative stress and inflammation in the mice. CONCLUSION Our study demonstrated utility of pyrazole derivatives as anticonvulsants against epilepsy.
Collapse
Affiliation(s)
- Meizhe Gao
- Department of Child Healthcare, Shandong Provincial Third Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Keli Qu
- Department of Child Healthcare, Shandong Provincial Third Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Wenzhi Zhang
- Innoscience Research Sdn Bhd, Subang Jaya, Malaysia
| | - Xueying Wang
- Department of Child Healthcare, Shandong Provincial Third Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| |
Collapse
|
13
|
Uddin A, Chawla M, Irfan I, Mahajan S, Singh S, Abid M. Medicinal chemistry updates on quinoline- and endoperoxide-based hybrids with potent antimalarial activity. RSC Med Chem 2021; 12:24-42. [PMID: 34046596 PMCID: PMC8132992 DOI: 10.1039/d0md00244e] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 10/19/2020] [Indexed: 02/01/2023] Open
Abstract
The resistance of conventional antimalarial drugs against the malarial parasite continues to pose a challenge to control the disease. The indiscriminate exploitation of the available antimalarials has resulted in increasing treatment failures, which urges on the search for novel lead molecules. Artemisinin-based combination therapy (ACT) is the current WHO-recommended first-line treatment for the majority of malaria cases. Hybrid molecules offer a newer strategy for the development of next-generation antimalarial drugs. These comprise molecules, each with an individual pharmacological activity, linked together into a single hybrid molecule. This approach has been utilized by several research groups to develop molecules with potent antimalarial activity. In this review, we provide an overview of the pivotal roles of quinoline- and endoperoxide-based hybrids as inhibitors of the life-cycle progression of Plasmodium. Based on the exhaustive literature reports, we have collated the structural and functional analyses of quinoline- and endoperoxide-based hybrid molecules that show potency equal to or greater than those of the individual compounds, offering an effective therapeutics option for clinical use.
Collapse
Affiliation(s)
- Amad Uddin
- Medicinal Chemistry Laboratory, Department of Biosciences, Jamia Millia Islamia Jamia Nagar New Delhi-110025 India +91 8750295095
- Special Centre for Molecular Medicine, Jawaharlal Nehru University New Delhi-110067 India
| | - Meenal Chawla
- Medicinal Chemistry Laboratory, Department of Biosciences, Jamia Millia Islamia Jamia Nagar New Delhi-110025 India +91 8750295095
| | - Iram Irfan
- Medicinal Chemistry Laboratory, Department of Biosciences, Jamia Millia Islamia Jamia Nagar New Delhi-110025 India +91 8750295095
| | - Shubhra Mahajan
- Medicinal Chemistry Laboratory, Department of Biosciences, Jamia Millia Islamia Jamia Nagar New Delhi-110025 India +91 8750295095
| | - Shailja Singh
- Special Centre for Molecular Medicine, Jawaharlal Nehru University New Delhi-110067 India
| | - Mohammad Abid
- Medicinal Chemistry Laboratory, Department of Biosciences, Jamia Millia Islamia Jamia Nagar New Delhi-110025 India +91 8750295095
| |
Collapse
|
14
|
de Souza Pereira C, Costa Quadros H, Magalhaes Moreira DR, Castro W, Santos De Deus Da Silva RI, Botelho Pereira Soares M, Fontinha D, Prudêncio M, Schmitz V, Dos Santos HF, Gendrot M, Fonta I, Mosnier J, Pradines B, Navarro M. A Novel Hybrid of Chloroquine and Primaquine Linked by Gold(I): Multitarget and Multiphase Antiplasmodial Agent. ChemMedChem 2020; 16:662-678. [PMID: 33231370 DOI: 10.1002/cmdc.202000653] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 11/02/2020] [Indexed: 12/23/2022]
Abstract
Plasmodium parasites kill 435 000 people around the world every year due to unavailable vaccines, a limited arsenal of antimalarial drugs, delayed treatment, and the reduced clinical effectiveness of current practices caused by drug resistance. Therefore, there is an urgent need to discover and develop new antiplasmodial candidates. In this work, we present a novel strategy to develop a multitarget metallic hybrid antimalarial agent with possible dual efficacy in both sexual and asexual erythrocytic stages. A hybrid of antimalarial drugs (chloroquine and primaquine) linked by gold(I) was synthesized and characterized by spectroscopic and analytical techniques. The CQPQ-gold(I) hybrid molecule affects essential parasite targets, it inhibits β-hematin formation and interacts moderately with the DNA minor groove. Its interaction with PfTrxR was also examined in computational modeling studies. The CQPQ-gold(I) hybrid displayed an excellent in vitro antimalarial activity against the blood-stage of Plasmodium falciparum and liver-stage of Plasmodium berghei and efficacy in vivo against P. berghei, thereby demonstrating its multiple-stage antiplasmodial activity. This metallic hybrid is a promising chemotherapeutic agent that could act in the treatment, prevention, and transmission of malaria.
Collapse
Affiliation(s)
- Caroline de Souza Pereira
- Departamento de Química, Universidade Federal de Juiz de Fora, Rua José Lourenço Kelmer, s/n - Campus Universitário, Bairro Martelos, CEP 36036-900, Juiz de Fora, Minas Gerais, Brasil
| | - Helenita Costa Quadros
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Av. Waldemar Falcão, 121, Candeal, Salvador, Bahia, Brasil
| | | | - William Castro
- Centro de Química, Instituto Venezolano de Investigaciones Científicas (IVIC), Centro de Química, Carretera Panamericana, Km 11, Altos de Pipe, San Antonio de los Altos Miranda, 1020-A, Caracas, Venezuela
| | | | | | - Diana Fontinha
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa <, Lisboa, Portugal
| | - Miguel Prudêncio
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa <, Lisboa, Portugal
| | - Vinicius Schmitz
- Departamento de Química, Universidade Federal de Juiz de Fora, Rua José Lourenço Kelmer, s/n - Campus Universitário, Bairro Martelos, CEP 36036-900, Juiz de Fora, Minas Gerais, Brasil
| | - Hélio F Dos Santos
- Departamento de Química, Universidade Federal de Juiz de Fora, Rua José Lourenço Kelmer, s/n - Campus Universitário, Bairro Martelos, CEP 36036-900, Juiz de Fora, Minas Gerais, Brasil
| | - Mathieu Gendrot
- Unité Parasitologie et entomologie, Institut de recherche biomédicale des armées, 19-21 Bd Jean Moulin, 13005, Marseille, France.,Aix-Marseille Univ, IRD, SSA, AP-HM, VITROME, 19-21 Bd Jean Moulin, 13005, Marseille, France.,IHU Méditerranée Infection, 19-21 Bd Jean Moulin, 13005, Marseille, France
| | - Isabelle Fonta
- Unité Parasitologie et entomologie, Institut de recherche biomédicale des armées, 19-21 Bd Jean Moulin, 13005, Marseille, France.,Aix-Marseille Univ, IRD, SSA, AP-HM, VITROME, 19-21 Bd Jean Moulin, 13005, Marseille, France.,IHU Méditerranée Infection, 19-21 Bd Jean Moulin, 13005, Marseille, France.,Centre National de Référence du Paludisme, 19-21 Bd Jean Moulin, 13005, Marseille, France
| | - Joel Mosnier
- Unité Parasitologie et entomologie, Institut de recherche biomédicale des armées, 19-21 Bd Jean Moulin, 13005, Marseille, France.,Aix-Marseille Univ, IRD, SSA, AP-HM, VITROME, 19-21 Bd Jean Moulin, 13005, Marseille, France.,IHU Méditerranée Infection, 19-21 Bd Jean Moulin, 13005, Marseille, France.,Centre National de Référence du Paludisme, 19-21 Bd Jean Moulin, 13005, Marseille, France
| | - Bruno Pradines
- Unité Parasitologie et entomologie, Institut de recherche biomédicale des armées, 19-21 Bd Jean Moulin, 13005, Marseille, France.,Aix-Marseille Univ, IRD, SSA, AP-HM, VITROME, 19-21 Bd Jean Moulin, 13005, Marseille, France.,IHU Méditerranée Infection, 19-21 Bd Jean Moulin, 13005, Marseille, France.,Centre National de Référence du Paludisme, 19-21 Bd Jean Moulin, 13005, Marseille, France
| | - Maribel Navarro
- Departamento de Química, Universidade Federal de Juiz de Fora, Rua José Lourenço Kelmer, s/n - Campus Universitário, Bairro Martelos, CEP 36036-900, Juiz de Fora, Minas Gerais, Brasil
| |
Collapse
|
15
|
Aratikatla E, Kalamuddin M, Malhotra P, Mohmmed A, Bhattacharya AK. Enantioselective Synthesis of γ-Phenyl-γ-amino Vinyl Phosphonates and Sulfones and Their Application to the Synthesis of Novel Highly Potent Antimalarials. ACS OMEGA 2020; 5:29025-29037. [PMID: 33225134 PMCID: PMC7675543 DOI: 10.1021/acsomega.0c03470] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 10/16/2020] [Indexed: 06/11/2023]
Abstract
Racemic and enantioselective syntheses of γ-phenyl-γ-amino vinyl phosphonates and sulfones have been achieved using Horner-Wadsworth-Emmons olefination of trityl protected α-phenyl-α-amino aldehydes with tetraethyl methylenediphosphonate and diethyl ((phenylsulfonyl)methyl)phosphonate, respectively, without any racemization. The present strategy has also been successfully applied to the synthesis of peptidyl vinyl phosphonate and peptidyl vinyl sulfone derivatives as potential cysteine protease inhibitors of Chagas disease, K11002, with 100% de. The developed synthetic protocol was further utilized to synthesize hybrid molecules consisting of artemisinin as an inhibitor of major cysteine protease falcipain-2 present in the food vacuole of the malarial parasite. The synthesized artemisinin-dipeptidyl vinyl sulfone hybrid compounds showed effective in vitro inhibition of falcipain-2 and potent parasiticidal efficacies against Plasmodium falciparum in nanomolar ranges. Overall, the developed synthetic protocol could be effectively utilized to design cysteine protease inhibitors not only as novel antimalarial compounds but also to be involved in other life-threatening diseases.
Collapse
Affiliation(s)
- Eswar
K. Aratikatla
- Division
of Organic Chemistry, CSIR-National Chemical
Laboratory (CSIR-NCL), Dr. Homi Bhabha Road, Pune 411 008, India
- Academy
of Scientific and Innovative Research (AcSIR), CSIR-NCL, Pune 411 008, India
| | - Md Kalamuddin
- International
Centre for Genetic Engineering & Biotechnology (ICGEB) Aruna Asif
Ali Marg, New Delhi 100 067, India
| | - Pawan Malhotra
- International
Centre for Genetic Engineering & Biotechnology (ICGEB) Aruna Asif
Ali Marg, New Delhi 100 067, India
| | - Asif Mohmmed
- International
Centre for Genetic Engineering & Biotechnology (ICGEB) Aruna Asif
Ali Marg, New Delhi 100 067, India
| | - Asish K. Bhattacharya
- Division
of Organic Chemistry, CSIR-National Chemical
Laboratory (CSIR-NCL), Dr. Homi Bhabha Road, Pune 411 008, India
- Academy
of Scientific and Innovative Research (AcSIR), CSIR-NCL, Pune 411 008, India
| |
Collapse
|
16
|
Burns AL, Sleebs BE, Siddiqui G, De Paoli AE, Anderson D, Liffner B, Harvey R, Beeson JG, Creek DJ, Goodman CD, McFadden GI, Wilson DW. Retargeting azithromycin analogues to have dual-modality antimalarial activity. BMC Biol 2020; 18:133. [PMID: 32993629 PMCID: PMC7526119 DOI: 10.1186/s12915-020-00859-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 08/28/2020] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Resistance to front-line antimalarials (artemisinin combination therapies) is spreading, and development of new drug treatment strategies to rapidly kill Plasmodium spp. malaria parasites is urgently needed. Azithromycin is a clinically used macrolide antibiotic proposed as a partner drug for combination therapy in malaria, which has also been tested as monotherapy. However, its slow-killing 'delayed-death' activity against the parasite's apicoplast organelle and suboptimal activity as monotherapy limit its application as a potential malaria treatment. Here, we explore a panel of azithromycin analogues and demonstrate that chemical modifications can be used to greatly improve the speed and potency of antimalarial action. RESULTS Investigation of 84 azithromycin analogues revealed nanomolar quick-killing potency directed against the very earliest stage of parasite development within red blood cells. Indeed, the best analogue exhibited 1600-fold higher potency than azithromycin with less than 48 hrs treatment in vitro. Analogues were effective against zoonotic Plasmodium knowlesi malaria parasites and against both multi-drug and artemisinin-resistant Plasmodium falciparum lines. Metabolomic profiles of azithromycin analogue-treated parasites suggested activity in the parasite food vacuole and mitochondria were disrupted. Moreover, unlike the food vacuole-targeting drug chloroquine, azithromycin and analogues were active across blood-stage development, including merozoite invasion, suggesting that these macrolides have a multi-factorial mechanism of quick-killing activity. The positioning of functional groups added to azithromycin and its quick-killing analogues altered their activity against bacterial-like ribosomes but had minimal change on 'quick-killing' activity. Apicoplast minus parasites remained susceptible to both azithromycin and its analogues, further demonstrating that quick-killing is independent of apicoplast-targeting, delayed-death activity. CONCLUSION We show that azithromycin and analogues can rapidly kill malaria parasite asexual blood stages via a fast action mechanism. Development of azithromycin and analogues as antimalarials offers the possibility of targeting parasites through both a quick-killing and delayed-death mechanism of action in a single, multifactorial chemotype.
Collapse
Affiliation(s)
- Amy L Burns
- Research Centre for Infectious Diseases, School of Biological Sciences, The University of Adelaide, Adelaide, 5005, Australia
| | - Brad E Sleebs
- Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, 3050, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, Victoria, 3050, Australia
| | - Ghizal Siddiqui
- Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, Victoria, 3052, Australia
| | - Amanda E De Paoli
- Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, Victoria, 3052, Australia
| | - Dovile Anderson
- Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, Victoria, 3052, Australia
| | - Benjamin Liffner
- Research Centre for Infectious Diseases, School of Biological Sciences, The University of Adelaide, Adelaide, 5005, Australia
| | - Richard Harvey
- Research Centre for Infectious Diseases, School of Biological Sciences, The University of Adelaide, Adelaide, 5005, Australia
| | - James G Beeson
- Burnet Institute, Melbourne, Victoria, 3004, Australia
- Department of Medicine, University of Melbourne, Melbourne, Australia
- Central Clinical School and Department of Microbiology, Monash University, Melbourne, Australia
| | - Darren J Creek
- Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, Victoria, 3052, Australia
| | - Christopher D Goodman
- School of Biosciences, University of Melbourne, Melbourne, Victoria, 3010, Australia
| | - Geoffrey I McFadden
- School of Biosciences, University of Melbourne, Melbourne, Victoria, 3010, Australia
| | - Danny W Wilson
- Research Centre for Infectious Diseases, School of Biological Sciences, The University of Adelaide, Adelaide, 5005, Australia.
- Burnet Institute, Melbourne, Victoria, 3004, Australia.
| |
Collapse
|
17
|
Walunj D, Egarmina K, Tuchinsky H, Shpilberg O, Hershkovitz-Rokah O, Grynszpan F, Gellerman G. Expedient synthesis and anticancer evaluation of dual-action 9-anilinoacridine methyl triazene chimeras. Chem Biol Drug Des 2020; 97:237-252. [PMID: 32772433 DOI: 10.1111/cbdd.13776] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 07/20/2020] [Accepted: 08/01/2020] [Indexed: 12/20/2022]
Abstract
The efficient synthesis of molecular hybrids including a DNA-intercalating 9-anilinoacridine (9-AnA) core and a methyl triazene DNA-methylating moiety is described. Nucleophilic aromatic substitution (SN Ar) and electrophilic aromatic substitution (EAS) reactions using readily accessible starting materials provide a quick entry to novel bifunctional anticancer molecules. The chimeras were evaluated for their anticancer activity. Chimera 7b presented the highest antitumor activity at low micromolar IC50 values in antiproliferative assays performed with various cancer cell lines. In comparison, compound 7b outperformed DNA-intercalating drugs like amsacrine and AHMA. Mechanistic studies of chimera 7b suggest a dual mechanism of action: methylation of the DNA-repairing protein MGMT associated with the triazene structural portion and Topo II inhibition by intercalation of the acridine core.
Collapse
Affiliation(s)
- Dipak Walunj
- Department of Chemical Sciences, Ariel University, Ariel, Israel
| | - Katarina Egarmina
- Institute of Hematology, Assuta Medical Centers, Tel Aviv, Israel.,Translational Research Lab, Assuta Medical Centers, Tel Aviv, Israel.,Department of Molecular Biology, Ariel University, Ariel, Israel
| | - Helena Tuchinsky
- Department of Molecular Biology, Ariel University, Ariel, Israel
| | - Ofer Shpilberg
- Institute of Hematology, Assuta Medical Centers, Tel Aviv, Israel.,Translational Research Lab, Assuta Medical Centers, Tel Aviv, Israel
| | - Oshrat Hershkovitz-Rokah
- Institute of Hematology, Assuta Medical Centers, Tel Aviv, Israel.,Translational Research Lab, Assuta Medical Centers, Tel Aviv, Israel.,Department of Molecular Biology, Ariel University, Ariel, Israel
| | - Flavio Grynszpan
- Department of Chemical Sciences, Ariel University, Ariel, Israel
| | - Gary Gellerman
- Department of Chemical Sciences, Ariel University, Ariel, Israel
| |
Collapse
|
18
|
Baartzes N, Jordaan A, Warner DF, Combrinck J, Taylor D, Chibale K, Smith GS. Antimicrobial evaluation of neutral and cationic iridium(III) and rhodium(III) aminoquinoline-benzimidazole hybrid complexes. Eur J Med Chem 2020; 206:112694. [PMID: 32861176 DOI: 10.1016/j.ejmech.2020.112694] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 07/21/2020] [Accepted: 07/22/2020] [Indexed: 10/23/2022]
Abstract
A series of neutral and cationic Ir(III) and Rh(III) aminoquinoline-benzimidazole hybrid complexes were synthesised and their inhibitory activities evaluated against Plasmodium falciparum and Mycobacterium tuberculosis. In general, the hybrid complexes display good activity against the chloroquine-sensitive NF54 strain of P. falciparum. The neutral Ir(III)- and Rh(III)-Cp∗ complexes were the most active (IC50 = 0.488 μM for IrIII), maintaining activity against the multidrug-resistant K1 strain. Low to no cytotoxicity against the Chinese hamster ovarian cell line was observed for the tested complexes. Selected active hybrid complexes demonstrated significant inhibition of β-haematin formation in a cell-free NP-40 assay, suggesting an effect on the host haemoglobin degradation pathway as a potential contributing mechanism of action. When tested against M. tuberculosis H37Rv, most hybrid complexes displayed moderate to good activity. Again, the neutral complexes outperformed the cationic complexes, with the neutral Ir(III)-Cp∗ complexes proving most active (MIC90 = 0.488-1.490 μM).
Collapse
Affiliation(s)
- Nadia Baartzes
- Department of Chemistry, University of Cape Town, Rondebosch, 7701, Cape Town, South Africa
| | - Audrey Jordaan
- SAMRC/NHLS/UCT Molecular Mycobacteriology Research Unit, DST/NRF Centre of Excellence for Biomedical TB Research, Department of Clinical Laboratory Sciences, University of Cape Town, Rondebosch, 7701, Cape Town, South Africa
| | - Digby F Warner
- SAMRC/NHLS/UCT Molecular Mycobacteriology Research Unit, DST/NRF Centre of Excellence for Biomedical TB Research, Department of Clinical Laboratory Sciences, University of Cape Town, Rondebosch, 7701, Cape Town, South Africa; Wellcome Centre for Infectious Diseases Research in Africa, University of Cape Town, Rondebosch, 7701, South Africa
| | - Jill Combrinck
- Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, Observatory, 7925, Cape Town, South Africa
| | - Dale Taylor
- Drug Discovery and Development Centre (H3D), Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, Observatory 7925, Cape Town, South Africa
| | - Kelly Chibale
- Department of Chemistry, University of Cape Town, Rondebosch, 7701, Cape Town, South Africa; South African Medical Research Council, Drug Discovery and Development Research Unit, Department of Chemistry and Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Rondebosch 7701, South Africa
| | - Gregory S Smith
- Department of Chemistry, University of Cape Town, Rondebosch, 7701, Cape Town, South Africa.
| |
Collapse
|
19
|
Mahmud AW, Shallangwa GA, Uzairu A. QSAR and molecular docking studies of 1,3-dioxoisoindoline-4-aminoquinolines as potent antiplasmodium hybrid compounds. Heliyon 2020; 6:e03449. [PMID: 32154412 PMCID: PMC7056653 DOI: 10.1016/j.heliyon.2020.e03449] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 02/04/2020] [Accepted: 02/17/2020] [Indexed: 11/29/2022] Open
Abstract
Quantitative structure-activity relationships (QSAR) provides a model that link biological activities of compounds to thier chemical stuctures and molecular docking study reveals the interaction between drug and its target enzyme. These studies were conducted on 1,3-dioxoisoindoline-4-aminoquinolines with the aim of producing a model that could be used to design highly potent antiplasmodium. The compounds were first optimized using Density Functional Theory (DFT) with basis set B3LYP/6-31G∗ then their descriptors calculated. Genetic Function Algorithm (GFA) was used to select descriptors and build the model. One of the four models generated was found to be the best having internal and external squared correlation coefficient (R 2) of 0.9459 and 0.7015 respectively, adjusted squared correlation coefficient (R adj) of 0.9278, leave-one-out (LOO) cross-validation coefficient (Q 2 cv) of 0.8882. The model shows that antiplasmodial activities of 1,3-dioxoisoindoline-4-aminoquinolines depend on ATSC5i, GATS8p, minHBint3, minHBint5, MLFER_A and topoShape descriptors. The model was validated to be predictive, robust and reliable. Hence, it can predict the antiplasmodium activities of new 1,3-dioxoisoindoline-4-aminoquinolines.The docking result indicates strong binding between 1,3-dioxoisoindoline-4-aminoquinolines and Plasmodium falciparum lactate dehydrogenase (pfLDH), and revealed the important of the morpholinyl substituent and amide linker in inhibiting pfLDH. These results could serve as a model for designing novel 1,3-dioxoisoindoline-4-aminoquinolines as inhibitors of PfLDH with higher antiplasmodial activities.
Collapse
Affiliation(s)
| | | | - Adamu Uzairu
- Chemistry Department, Ahmadu Bello University, Zaria, Nigeria
| |
Collapse
|
20
|
Perković I, Raić-Malić S, Fontinha D, Prudêncio M, Pessanha de Carvalho L, Held J, Tandarić T, Vianello R, Zorc B, Rajić Z. Harmicines - harmine and cinnamic acid hybrids as novel antiplasmodial hits. Eur J Med Chem 2019; 187:111927. [PMID: 31812035 DOI: 10.1016/j.ejmech.2019.111927] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Revised: 11/28/2019] [Accepted: 11/28/2019] [Indexed: 12/31/2022]
Abstract
Harmicines constitute novel hybrid compounds that combine two agents with reported antiplasmodial properties, namely β-carboline harmine and a cinnamic acid derivative (CAD). Cu(I) catalyzed azide-alkyne cycloaddition was employed for the preparation of three classes of hybrid molecules: N-harmicines 6a-i, O-harmicines 7a-i and N,O-bis-harmicines 8a-g,i. In vitro antiplasmodial activities of harmicines against the erythrocytic stage of Plasmodium falciparum (chloroquine-sensitive Pf3D7 and chloroquine-resistant PfDd2 strains) and hepatic stage of P. berghei, as well as cytotoxicity against human liver hepatocellular carcinoma cell line (HepG2), were evaluated. Remarkably, most of the compounds exerted significant activities against both stages of the Plasmodium life cycle. The conjugation of various CADs to harmine resulted in the increased antiplasmodial activity relative to harmine. In general, O-harmicines 7 exhibited the highest activity against the erythrocytic stage of both P. falciparum strains, whereas N,O-bis harmicines 8 showed the most pronounced activity against P. berghei hepatic stages. For the latter compound, molecular dynamics simulations confirmed binding within the ATP binding site of PfHsp90, while the weaker binders, namely 6b and harmine, were found to be positioned away from this structural element. In addition, decomposition of the computed binding free energies into contributions from individual residues suggested guidelines for further derivatization of harmine towards more efficient compounds. Cytotoxicity screening revealed N-harmicines 6 as the least, and O-harmicines 7 as the most toxic compounds. Harmicines 6g, 8b and 6d exerted the most selective action towards Plasmodium over human cells, respectively. These results establish harmicines as hits for future optimisation and development of novel antiplasmodial agents.
Collapse
Affiliation(s)
- Ivana Perković
- University of Zagreb Faculty of Pharmacy and Biochemistry, A. Kovačića 1, 10000, Zagreb, Croatia.
| | - Silvana Raić-Malić
- University of Zagreb Faculty of Chemical Engineering and Technology, Marulićev trg 19, 10000, Zagreb, Croatia
| | - Diana Fontinha
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028, Lisboa, Portugal
| | - Miguel Prudêncio
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028, Lisboa, Portugal
| | | | - Jana Held
- University of Tübingen, Institute of Tropical Medicine, Wilhelmstraße 27, 72074, Tübingen, Germany
| | - Tana Tandarić
- Rudjer Bošković Institute, Division of Organic Chemistry and Biochemistry, 10 000, Zagreb, Croatia
| | - Robert Vianello
- Rudjer Bošković Institute, Division of Organic Chemistry and Biochemistry, 10 000, Zagreb, Croatia
| | - Branka Zorc
- University of Zagreb Faculty of Pharmacy and Biochemistry, A. Kovačića 1, 10000, Zagreb, Croatia
| | - Zrinka Rajić
- University of Zagreb Faculty of Pharmacy and Biochemistry, A. Kovačića 1, 10000, Zagreb, Croatia.
| |
Collapse
|
21
|
Feng LS, Xu Z, Chang L, Li C, Yan XF, Gao C, Ding C, Zhao F, Shi F, Wu X. Hybrid molecules with potential in vitro antiplasmodial and in vivo antimalarial activity against drug-resistant Plasmodium falciparum. Med Res Rev 2019; 40:931-971. [PMID: 31692025 DOI: 10.1002/med.21643] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 09/16/2019] [Accepted: 10/08/2019] [Indexed: 12/12/2022]
Abstract
Malaria is a tropical disease, leading to around half a million deaths annually. Antimalarials such as quinolines are crucial to fight against malaria, but malaria control is extremely challenged by the limited pipeline of effective pharmaceuticals against drug-resistant strains of Plasmodium falciparum which are resistant toward almost all currently accessible antimalarials. To tackle the growing resistance, new antimalarial drugs are needed urgently. Hybrid molecules which contain two or more pharmacophores have the potential to overcome the drug resistance, and hybridization of quinoline privileged antimalarial building block with other antimalarial pharmacophores may provide novel molecules with enhanced in vitro and in vivo activity against drug-resistant (including multidrug-resistant) P falciparum. In recent years, numerous of quinoline hybrids were developed, and their activities against a panel of drug-resistant P falciparum strains were screened. Some of quinoline hybrids were found to possess promising in vitro and in vivo potency. This review emphasized quinoline hybrid molecules with potential in vitro antiplasmodial and in vivo antimalarial activity against drug-resistant P falciparum, covering articles published between 2010 and 2019.
Collapse
Affiliation(s)
| | - Zhi Xu
- Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Le Chang
- WuXi AppTec Co, Ltd, Wuhan, China
| | - Chuan Li
- WuXi AppTec Co, Ltd, Wuhan, China
| | | | | | | | | | - Feng Shi
- WuXi AppTec Co, Ltd, Wuhan, China
| | - Xiang Wu
- WuXi AppTec Co, Ltd, Wuhan, China
| |
Collapse
|
22
|
Narula AK, Azad CS, Nainwal LM. New dimensions in the field of antimalarial research against malaria resurgence. Eur J Med Chem 2019; 181:111353. [DOI: 10.1016/j.ejmech.2019.05.043] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 04/16/2019] [Accepted: 05/15/2019] [Indexed: 12/20/2022]
|
23
|
Marella A, Verma G, Shaquiquzzaman M, Khan MF, Akhtar W, Alam MM. Malaria Hybrids: A Chronological Evolution. Mini Rev Med Chem 2019; 19:1144-1177. [PMID: 30887923 DOI: 10.2174/1389557519666190315100027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2017] [Revised: 05/27/2018] [Accepted: 11/03/2018] [Indexed: 01/13/2023]
Abstract
Malaria, an upsetting malaise caused by a diverse class of Plasmodium species affects about 40% of the world's population. The distress associated with it has reached colossal scales owing to the development of resistance to most of the clinically available agents. Hence, the search for newer molecules for malaria treatment and cure is an incessant process. After the era of a single molecule for malaria treatment ended, there was an advent of combination therapy. However, lately there had been reports of the development of resistance to many of these agents as well. Subsequently, at present most of the peer groups working on malaria treatment aim to develop novel molecules, which may act on more than one biological processes of the parasite life cycle, and these scaffolds have been aptly termed as Hybrid Molecules or Double Drugs. These molecules may hold the key to hitherto unknown ways of showing a detrimental effect on the parasite. This review enlists a few of the recent advances made in malaria treatment by these hybrid molecules in a sequential manner.
Collapse
Affiliation(s)
| | - Garima Verma
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi - 110062, India
| | - Md Shaquiquzzaman
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi - 110062, India
| | - Md Faraz Khan
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi - 110062, India
| | - Wasim Akhtar
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi - 110062, India
| | - Md Mumtaz Alam
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi - 110062, India
| |
Collapse
|
24
|
Pavić K, Rubinić B, Rajić Z, Fontinha D, Prudêncio M, Uzelac L, Kralj M, Held J, Zorc B. Primaquine homodimers as potential antiplasmodial and anticancer agents. Bioorg Med Chem Lett 2019; 29:126614. [PMID: 31431364 DOI: 10.1016/j.bmcl.2019.08.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 08/08/2019] [Accepted: 08/09/2019] [Indexed: 01/30/2023]
Abstract
Primaquine homodimers, e.g. symmetric PQ-diamides of dicarboxylic acids containing 4 to 8 carbon atoms, were evaluated against Plasmodium berghei hepatic stages and P. falciparum blood stages, as well as against three cancer cell lines. Novel PQ-homodimers exerted much higher activity against hepatic stages, but less pronounced activity against blood stages in comparison to the parent drug. The submicromolar activity of succinic, fumaric and maleic derivatives against P. berghei was determined (IC50 values: 726.2, 198.1 and 358.4 nM, respectively). Our results indicated that the length and type of spacer between two PQ moieties highly modified the antiproliferative activities of PQ-homodimers. The general antiproliferative activity of the adipic and mesaconic derivatives against three cancer cell lines (MCF-7, HCT116, H 460) was observed (GI50 = 1.78-13.7 and 2.36-4.31 µM, respectively), but adipic derivative was less toxic to human embryonic kidney cells (HEK 293). High selectivity of fumaric and suberic derivatives against breast adenocarcinoma cell line MCF-7 was detected. These two compounds have shown no antiproliferative activity against other tumor cells and HEK 293.
Collapse
Affiliation(s)
- Kristina Pavić
- University of Zagreb, Faculty of Pharmacy and Biochemistry, 10000 Zagreb, Croatia
| | - Barbara Rubinić
- University of Zagreb, Faculty of Pharmacy and Biochemistry, 10000 Zagreb, Croatia
| | - Zrinka Rajić
- University of Zagreb, Faculty of Pharmacy and Biochemistry, 10000 Zagreb, Croatia
| | - Diana Fontinha
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Miguel Prudêncio
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Lidija Uzelac
- Laboratory of Experimental Therapy, Division of Molecular Medicine, Rudjer Bošković Institute, 10000 Zagreb, Croatia
| | - Marijeta Kralj
- Laboratory of Experimental Therapy, Division of Molecular Medicine, Rudjer Bošković Institute, 10000 Zagreb, Croatia
| | - Jana Held
- University of Tübingen, Institute of Tropical Medicine, 72074 Tübingen, Germany
| | - Branka Zorc
- University of Zagreb, Faculty of Pharmacy and Biochemistry, 10000 Zagreb, Croatia.
| |
Collapse
|
25
|
Baartzes N, Stringer T, Seldon R, Warner DF, Taylor D, Wittlin S, Chibale K, Smith GS. Bioisosteric ferrocenyl aminoquinoline-benzimidazole hybrids: Antimicrobial evaluation and mechanistic insights. Eur J Med Chem 2019; 180:121-133. [PMID: 31301563 DOI: 10.1016/j.ejmech.2019.06.069] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 06/08/2019] [Accepted: 06/25/2019] [Indexed: 01/29/2023]
Abstract
Phenyl- and bioisosteric ferrocenyl-derived aminoquinoline-benzimidazole hybrid compounds were synthesised and evaluated for their in vitro antiplasmodial activity against the chloroquine-sensitive NF54 and multi-drug resistant K1 strains of the human malaria parasite, Plasmodium falciparum. All compounds were active against the two strains, generally showing enhanced activity in the K1 strain, with resistance indices less than 1. Cytotoxicity studies using Chinese hamster ovarian cells revealed that the hybrids were relatively non-cytotoxic and demonstrated selective killing of the parasite. Based on favourable in vitro antiplasmodial and cytotoxicity data, the most active phenyl (4c) and ferrocenyl (5b) hybrids were tested in vivo against the rodent Plasmodium berghei mouse model. Both compounds caused a reduction in parasitemia relative to the control, with 5c displaying superior activity (92% reduction in parasitemia at 4 × 50 mg/kg oral doses). The most active phenyl and ferrocenyl derivatives showed inhibition of β-haematin formation in a NP-40 detergent-mediated assay, indicating a possible contributing mechanism of antiplasmodial action. The most active ferrocenyl hybrid did not display appreciable reactive oxygen species (ROS) generation in a ROS-induced DNA cleavage gel electrophoresis study. The compounds were also screened for their in vitro activity against Mycobacterium tuberculosis. The hybrids containing a more hydrophobic substituent had enhanced activity (<32.7 μM) compared to those with a less hydrophobic substituent (>62.5 μM).
Collapse
Affiliation(s)
- N Baartzes
- Department of Chemistry, University of Cape Town, Rondebosch, 7701, Cape Town, South Africa
| | - T Stringer
- Department of Chemistry, University of Cape Town, Rondebosch, 7701, Cape Town, South Africa
| | - R Seldon
- Drug Discovery and Development Centre (H3D), Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Rondebosch, 7701, Cape Town, South Africa
| | - D F Warner
- SAMRC/NHLS/UCT Molecular Mycobacteriology Research Unit, DST/NRF Centre of Excellence for Biomedical TB Research, Department of Clinical Laboratory Sciences, University of Cape Town, Rondebosch, 7701, Cape Town, South Africa; Wellcome Centre for Infectious Diseases Research in Africa, University of Cape Town, Rondebosch, 7701, South Africa
| | - D Taylor
- H3D, Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, Observatory, 7925, Cape Town, South Africa
| | - S Wittlin
- Swiss Tropical and Public Health Institute, Socinstrasse 57, 4002, Basel, Switzerland; University of Basel, 4003, Basel, Switzerland
| | - K Chibale
- Department of Chemistry, University of Cape Town, Rondebosch, 7701, Cape Town, South Africa; South African Medical Research Council, Drug Discovery and Development Research Unit, Department of Chemistry and Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Rondebosch, 7701, South Africa
| | - G S Smith
- Department of Chemistry, University of Cape Town, Rondebosch, 7701, Cape Town, South Africa.
| |
Collapse
|
26
|
N-Substituted aminoquinoline-pyrimidine hybrids: Synthesis, in vitro antimalarial activity evaluation and docking studies. Eur J Med Chem 2018; 162:277-289. [PMID: 30448417 DOI: 10.1016/j.ejmech.2018.11.021] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 11/06/2018] [Accepted: 11/08/2018] [Indexed: 12/13/2022]
Abstract
A series of novel molecular hybrids based on 4-aminoquinoline-pyrimidine were synthesized and examined for their antimalarial activity. Most of the compounds were found to have potent in vitro antimalarial activity against both CQ-sensitive D6 and CQ-resistant W2 strains of P. falciparum. The active compounds have no considerable cytotoxicity against the mammalian VERO cell lines. Twenty three compounds displayed better antimalarial activity against CQ-resistant strain W2 with IC50 values in the range 0.0189-0.945 μM, when compared with standard drug chloroquine. The best active compound 7d was studied for heme binding so as to find the primary mode of action of these hybrid molecules. Compound 7d was found to form a stable 1:1 complex with hematin as determined by its Job's plot which suggests that heme may be a probable target of these molecules. Docking studies performed with Pf-DHFR exhibited good binding interactions in the active site. The pharmacokinetic properties of some active compounds were also analysed using ADMET prediction.
Collapse
|
27
|
Beus M, Rajić Z, Maysinger D, Mlinarić Z, Antunović M, Marijanović I, Fontinha D, Prudêncio M, Held J, Olgen S, Zorc B. SAHAquines, Novel Hybrids Based on SAHA and Primaquine Motifs, as Potential Cytostatic and Antiplasmodial Agents. ChemistryOpen 2018; 7:624-638. [PMID: 30151334 PMCID: PMC6104433 DOI: 10.1002/open.201800117] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Indexed: 12/19/2022] Open
Abstract
We report the synthesis of SAHAquines and related primaquine (PQ) derivatives. SAHAquines are novel hybrid compounds that combine moieties of suberoylanilide hydroxamic acid (SAHA), an anticancer agent with weak antiplasmodial activity, and PQ, an antimalarial drug with low antiproliferative activity. The preparation of SAHAquines is simple, cheap, and high yielding. It includes the following steps: coupling reaction between primaquine and a dicarboxylic acid monoester, hydrolysis, a new coupling reaction with O-protected hydroxylamine, and deprotection. SAHAquines 5 a-d showed significant reduction in cell viability. Among the three human cancer cell lines (U2OS, HepG2, and MCF-7), the most responsive were the MCF-7 cells. The antibodies against acetylated histone H3K9/H3K14 in MCF-7 cells revealed a significant enhancement following treatment with N-hydroxy-N'-{4-[(6-methoxyquinolin-8-yl)amino]pentyl}pentanediamide (5 b). Ethyl (2E)-3-({4-[(6-methoxyquinolin-8-yl)amino]pentyl}carbamoyl)prop-2-enoate (2 b) and SAHAquines were the most active compounds against both the hepatic and erythrocytic stages of Plasmodium parasites, some of them at sub-micromolar concentrations. The results of our research suggest that SAHAquines are promising leads for new anticancer and antimalarial agents.
Collapse
Affiliation(s)
- Maja Beus
- Faculty of Pharmacy and BiochemistryUniversity of ZagrebA. Kovačića 110 000ZagrebCroatia
| | - Zrinka Rajić
- Faculty of Pharmacy and BiochemistryUniversity of ZagrebA. Kovačića 110 000ZagrebCroatia
| | - Dusica Maysinger
- Department of Pharmacology and TherapeuticsMcGill University23655 Promenade Sir-William-Osler, McIntyre Medical Sciences BuildingMontrealQuebecH3G 1Y6Canada
| | - Zvonimir Mlinarić
- Faculty of Pharmacy and BiochemistryUniversity of ZagrebA. Kovačića 110 000ZagrebCroatia
| | - Maja Antunović
- Faculty of ScienceUniversity of ZagrebHorvatovac 102A10 000ZagrebCroatia
| | - Inga Marijanović
- Faculty of ScienceUniversity of ZagrebHorvatovac 102A10 000ZagrebCroatia
| | - Diana Fontinha
- Instituto de Medicina Molecular, Faculdade de MedicinaUniversidade de LisboaAv. Prof. Egas Moniz1649-028LisboaPortugal
| | - Miguel Prudêncio
- Instituto de Medicina Molecular, Faculdade de MedicinaUniversidade de LisboaAv. Prof. Egas Moniz1649-028LisboaPortugal
| | - Jana Held
- Institute of Tropical MedicineUniversity of TübingenWilhelmstraße 2772074TübingenGermany
| | - Sureyya Olgen
- Faculty of PharmacyBiruni University10th street No: 4534010 TopkapiIstanbulTurkey
| | - Branka Zorc
- Faculty of Pharmacy and BiochemistryUniversity of ZagrebA. Kovačića 110 000ZagrebCroatia
| |
Collapse
|
28
|
Bhatt JD, Patel TS, Chudasama CJ, Patel KD. Microwave-Assisted Synthesis of Novel Pyrazole Clubbed Polyhydroquinolines in an Ionic-Liquid and their Biological Perspective. ChemistrySelect 2018. [DOI: 10.1002/slct.201702285] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Jaimin D. Bhatt
- Chemistry Department, V. P. & R. P. T. P. Science College; Affiliated to Sardar Patel University; Vallabh Vidyanagar - 388120, Gujarat, India
| | - Tarosh S. Patel
- Chemistry Department, V. P. & R. P. T. P. Science College; Affiliated to Sardar Patel University; Vallabh Vidyanagar - 388120, Gujarat, India
| | - Chaitanya J. Chudasama
- Department of Biochemistry, Shree Alpesh N. Patel P. G. Institute; Affiliated to Sardar Patel University; Anand - 388001, Gujarat India
| | - Kanuprasad D. Patel
- Chemistry Department, V. P. & R. P. T. P. Science College; Affiliated to Sardar Patel University; Vallabh Vidyanagar - 388120, Gujarat, India
| |
Collapse
|
29
|
Bosson-Vanga H, Franetich JF, Soulard V, Sossau D, Tefit M, Kane B, Vaillant JC, Borrmann S, Müller O, Dereuddre-Bosquet N, Le Grand R, Silvie O, Mazier D. Differential activity of methylene blue against erythrocytic and hepatic stages of Plasmodium. Malar J 2018; 17:143. [PMID: 29615050 PMCID: PMC5883292 DOI: 10.1186/s12936-018-2300-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 03/26/2018] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND In the context of malaria elimination/eradication, drugs that are effective against the different developmental stages of the parasite are highly desirable. The oldest synthetic anti-malarial drug, the thiazine dye methylene blue (MB), is known for its activity against Plasmodium blood stages, including gametocytes. The aim of the present study was to investigate a possible effect of MB against malaria parasite liver stages. METHODS MB activity was investigated using both in vitro and in vivo models. In vitro assays consisted of testing MB activity on Plasmodium falciparum, Plasmodium cynomolgi and Plasmodium yoelii parasites in human, simian or murine primary hepatocytes, respectively. MB in vivo activity was evaluated using intravital imaging in BALB/c mice infected with a transgenic bioluminescent P. yoelii parasite line. The transmission-blocking activity of MB was also addressed using mosquitoes fed on MB-treated mice. RESULTS MB shows no activity on Plasmodium liver stages, including hypnozoites, in vitro in primary hepatocytes. In BALB/c mice, MB has moderate effect on P. yoelii hepatic development but is highly effective against blood stage growth. MB is active against gametocytes and abrogates parasite transmission from mice to mosquitoes. CONCLUSION While confirming activity of MB against both sexual and asexual blood stages, the results indicate that MB has only little activity on the development of the hepatic stages of malaria parasites.
Collapse
Affiliation(s)
- Henriette Bosson-Vanga
- Sorbonne Université, Inserm, CNRS, Centre d'Immunologie et des Maladies Infectieuses, U1135, ERL8255, CIMI-Paris, F-75013, PARIS, France. .,Département de Parasitologie-Mycologie, UFR des Sciences Pharmaceutiques et Biologiques, Université Félix Houphouët Boigny, Abidjan, Côte d'Ivoire.
| | - Jean-François Franetich
- Sorbonne Université, Inserm, CNRS, Centre d'Immunologie et des Maladies Infectieuses, U1135, ERL8255, CIMI-Paris, F-75013, PARIS, France
| | - Valérie Soulard
- Sorbonne Université, Inserm, CNRS, Centre d'Immunologie et des Maladies Infectieuses, U1135, ERL8255, CIMI-Paris, F-75013, PARIS, France
| | - Daniel Sossau
- Sorbonne Université, Inserm, CNRS, Centre d'Immunologie et des Maladies Infectieuses, U1135, ERL8255, CIMI-Paris, F-75013, PARIS, France.,Department of Dermatology, Eberhard Karls University, Tübingen, Germany
| | - Maurel Tefit
- Sorbonne Université, Inserm, CNRS, Centre d'Immunologie et des Maladies Infectieuses, U1135, ERL8255, CIMI-Paris, F-75013, PARIS, France
| | - Bocar Kane
- UPMC, UMS28, 105 Bd de l'hôpital, 75013, Paris, France
| | - Jean-Christophe Vaillant
- Service de Chirurgie Digestive, Hépato-Bilio-Pancréatique et Transplantation Hépatique, AP-HP, Groupe Hospitalier Pitié-Salpêtrière, 83 Bd de l'hôpital, 75013, Paris, France
| | - Steffen Borrmann
- German Center for Infection Research (DZIF), Tübingen, Germany.,Institute for Tropical Medicine, University of Tübingen, Tübingen, Germany
| | - Olaf Müller
- Institute of Public Health, Medical School, Ruprecht-Karls-University, Heidelberg, Germany
| | - Nathalie Dereuddre-Bosquet
- CEA, INSERM U1184, Immunology of Viral Infections and Autoimmune Diseases, Université Paris Sud 11, Fontenay-aux-Roses, France
| | - Roger Le Grand
- CEA, INSERM U1184, Immunology of Viral Infections and Autoimmune Diseases, Université Paris Sud 11, Fontenay-aux-Roses, France
| | - Olivier Silvie
- Sorbonne Université, Inserm, CNRS, Centre d'Immunologie et des Maladies Infectieuses, U1135, ERL8255, CIMI-Paris, F-75013, PARIS, France
| | - Dominique Mazier
- Sorbonne Université, Inserm, CNRS, Centre d'Immunologie et des Maladies Infectieuses, U1135, ERL8255, CIMI-Paris, F-75013, PARIS, France. .,Service de Parasitologie-Mycologie, Centre National de Référence du Paludisme, AP-HP, Groupe Hospitalier Pitié Salpêtrière, 83 Bd de l'hôpital, 75013, PARIS, France.
| |
Collapse
|
30
|
Chopra R, Chibale K, Singh K. Pyrimidine-chloroquinoline hybrids: Synthesis and antiplasmodial activity. Eur J Med Chem 2018; 148:39-53. [DOI: 10.1016/j.ejmech.2018.02.021] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2017] [Revised: 01/27/2018] [Accepted: 02/06/2018] [Indexed: 10/18/2022]
|
31
|
Capela R, Magalhães J, Miranda D, Machado M, Sanches-Vaz M, Albuquerque IS, Sharma M, Gut J, Rosenthal PJ, Frade R, Perry MJ, Moreira R, Prudêncio M, Lopes F. Endoperoxide-8-aminoquinoline hybrids as dual-stage antimalarial agents with enhanced metabolic stability. Eur J Med Chem 2018; 149:69-78. [PMID: 29499488 DOI: 10.1016/j.ejmech.2018.02.048] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 01/28/2018] [Accepted: 02/14/2018] [Indexed: 11/29/2022]
Abstract
Hybrid compounds may play a critical role in the context of the malaria eradication agenda, which will benefit from therapeutic tools active against the symptomatic erythrocytic stage of Plasmodium infection, and also capable of eliminating liver stage parasites. To address the need for efficient multistage antiplasmodial compounds, a small library of 1,2,4,5-tetraoxane-8- aminoquinoline hybrids, with the metabolically labile C-5 position of the 8-aminoquinoline moiety blocked with aryl groups, was synthesized and screened for antiplasmodial activity and metabolic stability. The hybrid compounds inhibited development of intra-erythrocytic forms of the multidrug-resistant Plasmodium falciparum W2 strain, with EC50 values in the nM range, and with low cytotoxicity against mammalian cells. The compounds also inhibited the development of P. berghei liver stage parasites, with the most potent compounds displaying EC50 values in the low μM range. SAR analysis revealed that unbranched linkers between the endoperoxide and 8-aminoquinoline pharmacophores are most beneficial for dual antiplasmodial activity. Importantly, hybrids were significantly more potent than a 1:1 mixture of 8-aminoquinoline-tetraoxane, highlighting the superiority of the hybrid approach over the combination therapy. Furthermore, aryl substituents at C-5 of the 8-aminoquinoline moiety improve the compounds' metabolic stability when compared with their primaquine (i.e. C-5 unsubstituted) counterparts. Overall, this study reveals that blocking the quinoline C-5 position does not result in loss of dual-stage antimalarial activity, and that tetraoxane-8- aminoquinoline hybrids are an attractive approach to achieve elimination of exo- and intraerythrocytic parasites, thus with the potential to be used in malaria eradication campaigns.
Collapse
Affiliation(s)
- Rita Capela
- Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - Joana Magalhães
- Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - Daniela Miranda
- Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - Marta Machado
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Av. Professor Egas Moniz, 1649-028, Lisboa, Portugal
| | - Margarida Sanches-Vaz
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Av. Professor Egas Moniz, 1649-028, Lisboa, Portugal
| | - Inês S Albuquerque
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Av. Professor Egas Moniz, 1649-028, Lisboa, Portugal
| | - Moni Sharma
- Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - Jiri Gut
- Department of Medicine, San Francisco General Hospital, University of California, San Francisco, Box 0811, CA 94143, USA
| | - Philip J Rosenthal
- Department of Medicine, San Francisco General Hospital, University of California, San Francisco, Box 0811, CA 94143, USA
| | - Raquel Frade
- Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - Maria J Perry
- Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - Rui Moreira
- Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - Miguel Prudêncio
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Av. Professor Egas Moniz, 1649-028, Lisboa, Portugal.
| | - Francisca Lopes
- Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal.
| |
Collapse
|
32
|
Yamansarov EY, Kazakov DV, Medvedeva NI, Khusnutdinova EF, Kazakova OB, Legostaeva YV, Ishmuratov GY, Huong LM, Ha TTH, Huong DT, Suponitsky KY. Synthesis and antimalarial activity of 3'-trifluoromethylated 1,2,4-trioxolanes and 1,2,4,5-tetraoxane based on deoxycholic acid. Steroids 2018; 129:17-23. [PMID: 29180289 DOI: 10.1016/j.steroids.2017.11.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 11/09/2017] [Accepted: 11/15/2017] [Indexed: 10/18/2022]
Abstract
A series of new steroidal peroxides - 3'-trifluoromethylated 1,2,4-trioxolanes and 1,2,4,5-tetraoxanes based on deoxycholic acid were prepared via the reactions of the Griesbaum coozonolysis and peroxycondensation, respectively. 1,2,4-Trioxolanes were synthesized by the interaction of methyl O-methyl-3-oximino-12α-acetoxy-deoxycholate with CF3C(O)CH3 or CF3C(O)Ph and O3 as the mixtures of four possible stereoisomers at ratios of 1:2:2:1 and in yields of 50% and 38%, respectively. The major diastereomer of methyl 12α-acetoxy-5β-cholan-24-oate-3-spiro-5'-(3'-methyl-3'-trifluoromethyl-1',2',4'-trioxolane) was isolated via crystallization of a mixture of stereoisomers from hexane and its (3S,3'R)-configuration was determined using X-ray crystallographic analysis. Peroxycondensation of methyl 3-bishydroperoxy-12α-acetoxy-deoxycholate with CF3C(O)CH3 or acetone led to 1,2,4,5-tetraoxanes in yields of 44% and 37%, respectively. Antimalarial activity of these new steroidal peroxides was evaluated in vitro against the chloroquine-sensitive (CQS) T96 and chloroquine-resistant (CQR) K1 strains of Plasmodium falciparum. Deoxycholic acid 3'-trifluoromethylated 1,2,4,5-tetraoxane demonstrated a good IC50 value against CQR-strain (IC50 (K1) = 7.6 nM) of P. falciparum. Tetraoxane with the acetone subunit demonstrated the best results among all tested peroxides with an IC50 value of 3 nM against the CQ-resistant K1 strain. In general, 1,2,4-trioxolanes of deoxycholic acid are less active than 1,2,4,5-tetraoxanes.
Collapse
Affiliation(s)
- Emil Yu Yamansarov
- Ufa Institute of Chemistry of the Russian Academy of Sciences, 71 prospect Oktyabrya, 450054 Ufa, Russian Federation
| | - Dmitri V Kazakov
- Ufa Institute of Chemistry of the Russian Academy of Sciences, 71 prospect Oktyabrya, 450054 Ufa, Russian Federation; Noncommercial Partnership "Center for Diagnostic of Nanostructures and Nanomaterials", 4 ul. Kosygina, 119991 Moscow, Russian Federation
| | - Natal'ya I Medvedeva
- Ufa Institute of Chemistry of the Russian Academy of Sciences, 71 prospect Oktyabrya, 450054 Ufa, Russian Federation
| | - Elmira F Khusnutdinova
- Ufa Institute of Chemistry of the Russian Academy of Sciences, 71 prospect Oktyabrya, 450054 Ufa, Russian Federation
| | - Oxana B Kazakova
- Ufa Institute of Chemistry of the Russian Academy of Sciences, 71 prospect Oktyabrya, 450054 Ufa, Russian Federation.
| | - Yuliya V Legostaeva
- Ufa Institute of Chemistry of the Russian Academy of Sciences, 71 prospect Oktyabrya, 450054 Ufa, Russian Federation
| | - Gumer Yu Ishmuratov
- Ufa Institute of Chemistry of the Russian Academy of Sciences, 71 prospect Oktyabrya, 450054 Ufa, Russian Federation
| | - Le Mai Huong
- Institute of Natural Products Chemistry, Vietnamese Academy of Science and Technology, 18 Hoang Quoc Viet Street, Cau Giay Dist., Hanoi, Viet Nam
| | - Tran Thi Hong Ha
- Institute of Natural Products Chemistry, Vietnamese Academy of Science and Technology, 18 Hoang Quoc Viet Street, Cau Giay Dist., Hanoi, Viet Nam
| | - Do Thi Huong
- Institute of Natural Products Chemistry, Vietnamese Academy of Science and Technology, 18 Hoang Quoc Viet Street, Cau Giay Dist., Hanoi, Viet Nam
| | - Kyrill Yu Suponitsky
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 ul. Vavilova, 119991 Moscow, Russian Federation
| |
Collapse
|
33
|
Gilad Y, Tuchinsky H, Ben-David G, Minnes R, Gancz A, Senderowitz H, Luboshits G, Firer MA, Gellerman G. Discovery of potent molecular chimera (CM358) to treat human metastatic melanoma. Eur J Med Chem 2017; 138:602-615. [PMID: 28710962 DOI: 10.1016/j.ejmech.2017.06.066] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 06/26/2017] [Accepted: 06/28/2017] [Indexed: 11/18/2022]
Abstract
The resistance of cancer cells to chemotherapeutic agents, whether through intrinsic mechanisms or developed resistance, motivates the search for new chemotherapeutic strategies. In the present report, we demonstrate a facile synthetic strategy towards the discovery of new anti-cancer substances. This strategy is based on simple covalent coupling between known anti-cancer drugs, which results in novel 'chimeric' small molecules. One of these novel compounds, CM358, is the product of an amide bond formation between the known Topoisomerase II (Topo II) inhibitor amonafide (AM) and the known DNA mustard alkylator chlorambucil (CLB). It demonstrates significant enhanced cytotoxicity over an equimolar mixture of AM and CLB in various cancer cell lines and in a xenograft model of human metastatic melanoma. Topo II inhibition as well as in silico docking studies suggest that CM358 is a stronger Topo II binder than AM. This may be attributed, at least partially, to the placement of the CLB moiety in a favorable orientation with respect to DNA cross-linking with nearby guanines. In a human metastatic melanoma (WM 266-4) xenograft model, this compound was profoundly superior to a mixture of AM and CLB in reduction of tumor growth, maintenance of body weight and extension of overall survival.
Collapse
MESH Headings
- Animals
- Antineoplastic Agents/chemical synthesis
- Antineoplastic Agents/chemistry
- Antineoplastic Agents/pharmacology
- Cell Proliferation/drug effects
- DNA Topoisomerases, Type II/metabolism
- Dose-Response Relationship, Drug
- Drug Discovery
- Drug Screening Assays, Antitumor
- Heterocyclic Compounds, 3-Ring/chemical synthesis
- Heterocyclic Compounds, 3-Ring/chemistry
- Heterocyclic Compounds, 3-Ring/pharmacology
- Humans
- Melanoma/drug therapy
- Melanoma/pathology
- Mice
- Mice, Nude
- Models, Molecular
- Molecular Structure
- Neoplasms, Experimental/drug therapy
- Neoplasms, Experimental/pathology
- Pyrimidinones/chemical synthesis
- Pyrimidinones/chemistry
- Pyrimidinones/pharmacology
- Structure-Activity Relationship
- Topoisomerase II Inhibitors/chemical synthesis
- Topoisomerase II Inhibitors/chemistry
- Topoisomerase II Inhibitors/pharmacology
Collapse
Affiliation(s)
- Y Gilad
- Department of Chemical Sciences, Ariel University, Ariel, 40700, Israel
| | - H Tuchinsky
- Department of Molecular Biology, Ariel University, Ariel, 40700, Israel
| | - G Ben-David
- Department of Chemistry, Bar Ilan University, Ramat Gan, 5290002, Israel
| | - R Minnes
- Department of Physics, Ariel University, Ariel, 40700, Israel
| | - A Gancz
- Department of Molecular Biology, Ariel University, Ariel, 40700, Israel
| | - H Senderowitz
- Department of Chemistry, Bar Ilan University, Ramat Gan, 5290002, Israel
| | - G Luboshits
- Department of Chemical Engineering, Ariel University, Ariel, 40700, Israel
| | - M A Firer
- Department of Chemical Engineering, Ariel University, Ariel, 40700, Israel
| | - G Gellerman
- Department of Chemical Sciences, Ariel University, Ariel, 40700, Israel.
| |
Collapse
|
34
|
Chellan P, Sadler PJ, Land KM. Recent developments in drug discovery against the protozoal parasites Cryptosporidium and Toxoplasma. Bioorg Med Chem Lett 2017; 27:1491-1501. [PMID: 28242275 DOI: 10.1016/j.bmcl.2017.01.046] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2016] [Revised: 01/12/2017] [Accepted: 01/13/2017] [Indexed: 11/19/2022]
Abstract
Apicomplexan parasites cause some of the most devastating human diseases, including malaria, toxoplasmosis, and cryptosporidiosis. New drug discovery is imperative in light of increased resistance. In this digest article, we briefly explore some of the recent and promising developments in new drug discovery against two apicomplexan parasites, Cryptosporidium and Toxoplasma.
Collapse
Affiliation(s)
- Prinessa Chellan
- Department of Chemistry, University of Warwick, Coventry, Warwickshire CV4 7AL, UK
| | - Peter J Sadler
- Department of Chemistry, University of Warwick, Coventry, Warwickshire CV4 7AL, UK
| | - Kirkwood M Land
- Department of Biological Sciences, University of the Pacific, Stockton, CA 95211, United States.
| |
Collapse
|
35
|
Bhatt JD, Chudasama CJ, Patel KD. Microwave Assisted Synthesis of Pyrimidines in Ionic Liquid and Their Potency as Non-Classical Malarial Antifolates. Arch Pharm (Weinheim) 2016; 349:791-800. [PMID: 27528517 DOI: 10.1002/ardp.201600148] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 07/21/2016] [Accepted: 07/29/2016] [Indexed: 11/07/2022]
Abstract
Synthesis of pyrazole-linked triazolo-pyrimidine hybrids was achieved by employing Biginelli-type reaction methodology in an ionic liquid (triethylammonium acetate) under microwave irradiation. This method proved to be highly efficient and the ionic liquid employed was found recyclable for up to five consecutive cycles. The synthesized molecules were further screened for their antimalarial efficacy screening out the active scaffolds J15, J18, J21, J24, J27, and J30. The active molecules were evaluated in an enzyme inhibition study against the active Plasmodium falciparum dihydrofolate reductase (Pf-DHFR), computationally as well as in vitro, demonstrating their potency as DHFR inhibitors. The active entities were also investigated for their oral bioavailability by predicting ADME properties in silico, indicating good bioavailability.
Collapse
Affiliation(s)
- Jaimin D Bhatt
- Chemistry Department, V. P. & R. P. T. P. Science College, Sardar Patel University, Vallabh Vidyanagar, Gujarat, India
| | - Chaitanya J Chudasama
- Department of Biochemistry, Shree Alpesh N. Patel P. G. Institute, Sardar Patel University, Anand, Gujarat, India
| | - Kanuprasad D Patel
- Chemistry Department, V. P. & R. P. T. P. Science College, Sardar Patel University, Vallabh Vidyanagar, Gujarat, India.
| |
Collapse
|
36
|
Muangphrom P, Seki H, Fukushima EO, Muranaka T. Artemisinin-based antimalarial research: application of biotechnology to the production of artemisinin, its mode of action, and the mechanism of resistance of Plasmodium parasites. J Nat Med 2016; 70:318-34. [PMID: 27250562 PMCID: PMC4935751 DOI: 10.1007/s11418-016-1008-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 05/03/2016] [Indexed: 12/27/2022]
Abstract
Malaria is a worldwide disease caused by Plasmodium parasites. A sesquiterpene endoperoxide artemisinin isolated from Artemisia annua was discovered and has been accepted for its use in artemisinin-based combinatorial therapies, as the most effective current antimalarial treatment. However, the quantity of this compound produced from the A. annua plant is very low, and the availability of artemisinin is insufficient to treat all infected patients. In addition, the emergence of artemisinin-resistant Plasmodium has been reported recently. Several techniques have been applied to enhance artemisinin availability, and studies related to its mode of action and the mechanism of resistance of malaria-causing parasites are ongoing. In this review, we summarize the application of modern technologies to improve the production of artemisinin, including our ongoing research on artemisinin biosynthetic genes in other Artemisia species. The current understanding of the mode of action of artemisinin as well as the mechanism of resistance against this compound in Plasmodium parasites is also presented. Finally, the current situation of malaria infection and the future direction of antimalarial drug development are discussed.
Collapse
Affiliation(s)
- Paskorn Muangphrom
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Hikaru Seki
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Ery Odette Fukushima
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
- Continuing Professional Development Center, Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Toshiya Muranaka
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan.
| |
Collapse
|
37
|
Ribeiro CJ, Espadinha M, Machado M, Gut J, Gonçalves LM, Rosenthal PJ, Prudêncio M, Moreira R, Santos MM. Novel squaramides with in vitro liver stage antiplasmodial activity. Bioorg Med Chem 2016; 24:1786-92. [DOI: 10.1016/j.bmc.2016.03.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Accepted: 03/02/2016] [Indexed: 12/17/2022]
|