1
|
Benedik NS, Proj M, Steinebach C, Sova M, Sosič I. Targeting TAK1: Evolution of inhibitors, challenges, and future directions. Pharmacol Ther 2025; 267:108810. [PMID: 39909209 DOI: 10.1016/j.pharmthera.2025.108810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 01/07/2025] [Accepted: 01/29/2025] [Indexed: 02/07/2025]
Abstract
The increasing incidence of inflammatory and malignant diseases signifies the need to develop first-in-class drugs with novel mechanisms of action. In this respect, the transforming growth factor (TGF)-β-activated kinase 1 (TAK1), an essential part of several signaling pathways, is considered relevant and promising. This manuscript provides a brief overview of the signal transduction orchestrated by TAK1 within these pathways, followed by an in-depth and thorough analysis of the chemical matter demonstrated to inhibit this kinase. Special attention is given to the selectivity profiling of inhibitors, as well as to the outcomes of their biological characterization. Because published TAK1 inhibitors differ significantly in their kinome selectivity, active-site binding, and biological activity, we hope that this review will allow a judicial estimation of their quality and usefulness for TAK1-addressing assays. Our thoughts on the perspectives and possible developments of the field are also provided to assist scientists who are involved in the design and development of TAK1-targeting modulators.
Collapse
Affiliation(s)
- Nika Strašek Benedik
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, SI-1000 Ljubljana, Slovenia
| | - Matic Proj
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, SI-1000 Ljubljana, Slovenia
| | - Christian Steinebach
- Pharmaceutical Institute, Department of Pharmaceutical & Medicinal Chemistry, University of Bonn, An der Immenburg 4, D-53121 Bonn, Germany
| | - Matej Sova
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, SI-1000 Ljubljana, Slovenia
| | - Izidor Sosič
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, SI-1000 Ljubljana, Slovenia.
| |
Collapse
|
2
|
Langlois JB, Brenneisen S, Rodde S, Vangrevelinghe E, Rose G, Lerch P, Sorge M, Ullrich T, Patora-Komisarska K, Quancard J, Larger P, Gianola L, Textor C, Chenal G, Rubic-Schneider T, Simkova K, Masmanidou O, Scheufler C, Lammens A, Bouzan A, Demirci S, Flotte L, Rivet H, Hartmann L, Guezel D, Flueckiger M, Schilb A, Schuepbach E, Kettle R, Jacobi C, Pearson D, Richards PJ, Minetti GC. Identification of TAK-756, A Potent TAK1 Inhibitor for the Treatment of Osteoarthritis through Intra-Articular Administration. J Med Chem 2024; 67:21163-21185. [PMID: 39576936 DOI: 10.1021/acs.jmedchem.4c01938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2024]
Abstract
Osteoarthritis (OA) is a chronic and degenerative joint disease affecting more than 500 million patients worldwide with no disease-modifying treatment approved to date. Several publications report on the transforming growth factor β-activated kinase 1 (TAK1) as a potential molecular target for OA, with complementary anti-catabolic and anti-inflammatory effects. We report herein on the development of TAK1 inhibitors with physicochemical properties suitable for intra-articular injection, with the aim to achieve high drug concentration at the affected joint, while avoiding severe toxicity associated with systemic inhibition. More specifically, reducing solubility by increasing crystallinity, while maintaining moderate lipophilicity proved to be a good compromise to ensure high and sustained free drug exposures in the joint. Furthermore, structure-based design allowed for an improvement of selectivity versus interleukin-1 receptor-associated kinases 1 and 4 (IRAK1/4). Finally, TAK-756 was discovered as a potent TAK1 inhibitor with good selectivity versus IRAK1/4 as well as excellent intra-articular pharmacokinetic properties.
Collapse
Affiliation(s)
| | - Silke Brenneisen
- Novartis Biomedical Research, Postfach, CH-4002 Basel, Switzerland
| | - Stephane Rodde
- Novartis Biomedical Research, Postfach, CH-4002 Basel, Switzerland
| | | | - Geoffroy Rose
- Novartis Biomedical Research, Postfach, CH-4002 Basel, Switzerland
| | - Patrick Lerch
- Novartis Biomedical Research, Postfach, CH-4002 Basel, Switzerland
| | - Mickael Sorge
- Novartis Biomedical Research, Postfach, CH-4002 Basel, Switzerland
| | - Thomas Ullrich
- Novartis Biomedical Research, Postfach, CH-4002 Basel, Switzerland
| | | | - Jean Quancard
- Novartis Biomedical Research, Postfach, CH-4002 Basel, Switzerland
| | - Patrice Larger
- Novartis Biomedical Research, Postfach, CH-4002 Basel, Switzerland
| | - Lucas Gianola
- Novartis Biomedical Research, Postfach, CH-4002 Basel, Switzerland
| | - Claudia Textor
- Novartis Biomedical Research, Postfach, CH-4002 Basel, Switzerland
| | - Gaelle Chenal
- Novartis Biomedical Research, Postfach, CH-4002 Basel, Switzerland
| | | | - Katerina Simkova
- Novartis Biomedical Research, Postfach, CH-4002 Basel, Switzerland
| | - Olga Masmanidou
- Novartis Biomedical Research, Postfach, CH-4002 Basel, Switzerland
| | | | - Alfred Lammens
- Proteros Biostructures GmbH, Bunsenstrasse 7a, D-82152 Planegg-Martinsried, Germany
| | - Anais Bouzan
- Novartis Biomedical Research, Postfach, CH-4002 Basel, Switzerland
| | - Sabrina Demirci
- Novartis Biomedical Research, Postfach, CH-4002 Basel, Switzerland
| | - Ludivine Flotte
- Novartis Biomedical Research, Postfach, CH-4002 Basel, Switzerland
| | - Helene Rivet
- Novartis Biomedical Research, Postfach, CH-4002 Basel, Switzerland
| | - Lilian Hartmann
- Novartis Biomedical Research, Postfach, CH-4002 Basel, Switzerland
| | - Danyel Guezel
- Novartis Biomedical Research, Postfach, CH-4002 Basel, Switzerland
| | | | - Alain Schilb
- Novartis Biomedical Research, Postfach, CH-4002 Basel, Switzerland
| | - Edi Schuepbach
- Novartis Biomedical Research, Postfach, CH-4002 Basel, Switzerland
| | - Rachel Kettle
- Novartis Biomedical Research, Postfach, CH-4002 Basel, Switzerland
| | - Carsten Jacobi
- Novartis Biomedical Research, Postfach, CH-4002 Basel, Switzerland
| | - David Pearson
- Novartis Biomedical Research, Postfach, CH-4002 Basel, Switzerland
| | - Peter J Richards
- Novartis Biomedical Research, Postfach, CH-4002 Basel, Switzerland
| | - Giulia C Minetti
- Novartis Biomedical Research, Postfach, CH-4002 Basel, Switzerland
| |
Collapse
|
3
|
Wang J, Lu H, Fang W, Lin M, Feng Y, Qi X, Gao C, Liu Y, Wang X, Luo X. Antiproliferative effects of resorcylic acid lactones from the Beibu Gulf coral-derived fungus Curvularia lunata GXIMD 02512 on prostate cancer cells. RSC Adv 2024; 14:38697-38705. [PMID: 39654917 PMCID: PMC11626384 DOI: 10.1039/d4ra06292b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Accepted: 11/24/2024] [Indexed: 12/12/2024] Open
Abstract
Four novel resorcylic acid lactones (RALs), curvulomycins A-D (1-4), and six known congeners were isolated from the Beibu Gulf coral-derived fungus Curvularia lunata GXIMD 02512. Their structures including absolute configurations were established by extensive spectroscopic analyses along with experimental and calculated ECD spectra. Structurally, compound 3 harbors a unique γ-pyrone moiety rarely found in the natural RAL family. Notably, curvulomycin D (4) represents the first reported compound of the rare 8-membered RAL derivatives. Compounds 1 and 5 exhibited significant antiproliferative potency against two prostate cancer cell lines, with IC50 values of 9.70 ± 0.77 μM and 7.64 ± 0.46 μM for PC-3 cells and 5.96 ± 0.43 μM and 3.15 ± 0.27 μM for 22Rv1 cells, respectively. Moreover, compound 1 inhibited clonal cell colonies in a dose-dependent manner, blocked the S and G2 phases in the PC-3 cell cycle and the G1 phase in the 22Rv1 cell cycle, which further induced apoptosis in both PC-3 and 22Rv1 cells, indicating its potential as a promising lead compound for anti-prostate cancer therapy.
Collapse
Affiliation(s)
- Jiaxi Wang
- Guangxi Key Laboratory of Marine Drugs, University Engineering Research Center of High-efficient Utilization of Marine Traditional Chinese Medicine Resources, Guangxi Institute of Marine Drugs, Guangxi University of Chinese Medicine Nanning 530200 China
| | - Humu Lu
- Guangxi Key Laboratory of Marine Drugs, University Engineering Research Center of High-efficient Utilization of Marine Traditional Chinese Medicine Resources, Guangxi Institute of Marine Drugs, Guangxi University of Chinese Medicine Nanning 530200 China
| | - Wenxuan Fang
- Guangxi Key Laboratory of Marine Drugs, University Engineering Research Center of High-efficient Utilization of Marine Traditional Chinese Medicine Resources, Guangxi Institute of Marine Drugs, Guangxi University of Chinese Medicine Nanning 530200 China
- Guangxi Zhuang Yao Medicine Center of Engineering and Technology, Guangxi University of Chinese Medicine Nanning 530200 China
| | - Miaoping Lin
- Guangxi Key Laboratory of Marine Drugs, University Engineering Research Center of High-efficient Utilization of Marine Traditional Chinese Medicine Resources, Guangxi Institute of Marine Drugs, Guangxi University of Chinese Medicine Nanning 530200 China
| | - Yuyao Feng
- Guangxi Key Laboratory of Marine Drugs, University Engineering Research Center of High-efficient Utilization of Marine Traditional Chinese Medicine Resources, Guangxi Institute of Marine Drugs, Guangxi University of Chinese Medicine Nanning 530200 China
| | - Xin Qi
- Guangxi Key Laboratory of Marine Drugs, University Engineering Research Center of High-efficient Utilization of Marine Traditional Chinese Medicine Resources, Guangxi Institute of Marine Drugs, Guangxi University of Chinese Medicine Nanning 530200 China
| | - Chenghai Gao
- Guangxi Key Laboratory of Marine Drugs, University Engineering Research Center of High-efficient Utilization of Marine Traditional Chinese Medicine Resources, Guangxi Institute of Marine Drugs, Guangxi University of Chinese Medicine Nanning 530200 China
| | - Yonghong Liu
- Guangxi Key Laboratory of Marine Drugs, University Engineering Research Center of High-efficient Utilization of Marine Traditional Chinese Medicine Resources, Guangxi Institute of Marine Drugs, Guangxi University of Chinese Medicine Nanning 530200 China
| | - Xueni Wang
- Guangxi Zhuang Yao Medicine Center of Engineering and Technology, Guangxi University of Chinese Medicine Nanning 530200 China
| | - Xiaowei Luo
- Guangxi Key Laboratory of Marine Drugs, University Engineering Research Center of High-efficient Utilization of Marine Traditional Chinese Medicine Resources, Guangxi Institute of Marine Drugs, Guangxi University of Chinese Medicine Nanning 530200 China
| |
Collapse
|
4
|
Al Subeh ZY, Pierre HC, Bockbrader RH, Tokarski RJ, Maldonado AC, Haughan MA, Rangel-Grimaldo ME, Pearce CJ, Burdette JE, Fuchs JR, Oberlies NH. Semisynthetic derivatives of the fungal metabolite eupenifeldin via targeting the tropolone hydroxy groups. Bioorg Med Chem Lett 2024; 110:129875. [PMID: 38964520 PMCID: PMC11369961 DOI: 10.1016/j.bmcl.2024.129875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 06/18/2024] [Accepted: 07/01/2024] [Indexed: 07/06/2024]
Abstract
Eupenifeldin (1) is a fungal secondary metabolite possessing bis-tropolone moieties that demonstrates nanomolar cytotoxic activity against a number of cancer cell types. As a potential anticancer lead, this meroterpenoid was used to access 29 semisynthetic analogues via functionalization of the reactive hydroxy groups of the bis-tropolones. A series of ester (2-6), carbonate (7-8), sulfonate (9-16), carbamate (17-20), and ether (21-30) analogues of 1 were generated via 22 reactions. Most of these compounds were disubstituted, produced via functionalization of both of the tropolonic hydroxy moieties, although three mono-functionalized analogues (6, 8, and 24) and one tri-functionalized analogue (3) were also obtained. The cytotoxic activities of 1-30 were evaluated against human melanoma and ovarian cancer cell lines (i.e., MDA-MB-435 and OVCAR3, respectively). Ester and carbonate analogues of 1 (i.e., 2-8) maintained cytotoxicity at the nanomolar level, and the greatest improvement in aqueous solubility came from the monosuccinate analogue (6), which was acylated on the secondary hydroxy at the 11 position.
Collapse
Affiliation(s)
- Zeinab Y Al Subeh
- Department of Medicinal Chemistry and Pharmacognosy, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid 22110, Jordan; Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, P.O. Box 26170, Greensboro, NC 27402, United States
| | - Herma C Pierre
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, P.O. Box 26170, Greensboro, NC 27402, United States
| | - Ross H Bockbrader
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, Ohio State University, 500 W. 12(th) Ave., Columbus, OH 43210, United States
| | - Robert J Tokarski
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, Ohio State University, 500 W. 12(th) Ave., Columbus, OH 43210, United States
| | - Amanda C Maldonado
- Department of Pharmaceutical Sciences, University of Illinois at Chicago, 900 S. Ashland Ave (M/C 870), Chicago, IL 60607, United States
| | - Monica A Haughan
- Department of Pharmaceutical Sciences, University of Illinois at Chicago, 900 S. Ashland Ave (M/C 870), Chicago, IL 60607, United States
| | - Manuel E Rangel-Grimaldo
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, P.O. Box 26170, Greensboro, NC 27402, United States
| | | | - Joanna E Burdette
- Department of Pharmaceutical Sciences, University of Illinois at Chicago, 900 S. Ashland Ave (M/C 870), Chicago, IL 60607, United States
| | - James R Fuchs
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, Ohio State University, 500 W. 12(th) Ave., Columbus, OH 43210, United States.
| | - Nicholas H Oberlies
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, P.O. Box 26170, Greensboro, NC 27402, United States.
| |
Collapse
|
5
|
Pourhadi H, El-Elimat T, Rangel-Grimaldo M, Graf TN, Falkinham JO, Khin M, Burdette JE, Mirtallo Ezzone N, Jeyaraj J, de Blanco EC, Pearce CJ, Oberlies NH. Semisynthesis, Characterization, and Biological Evaluation of Fluorinated Analogues of the Spirobisnaphthalene, Diepoxin-η. Tetrahedron Lett 2024; 134:154857. [PMID: 38328000 PMCID: PMC10846677 DOI: 10.1016/j.tetlet.2023.154857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Diepoxin-η (1) is a cytotoxic fungal metabolite belonging to the spirobisnaphthalene structural class. In this study, four mono fluorinated analogues (2-5) of diepoxin-η (1) were semisynthesized in a single-step by selectively fluorinating the naphthalene moiety with Selectfluor. The structures of 2-5 were elucidated using a set of spectroscopic and spectrometric techniques and were further confirmed by means of TDDFT-ECD and isotropic shielding tensors calculations. Compounds 2-5 showed equipotent cytotoxic activity to 1 when tested against OVCAR3 (ovarian) and MDA-MB-435 (melanoma) cancer cell lines with IC50 values that range from 5.7-8.2 μM.
Collapse
Affiliation(s)
- Hadi Pourhadi
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, NC 27402, United States
| | - Tamam El-Elimat
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, NC 27402, United States
- Department of Medicinal Chemistry and Pharmacognosy, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid 22110, Jordan
| | - Manuel Rangel-Grimaldo
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, NC 27402, United States
| | - Tyler N. Graf
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, NC 27402, United States
| | - Joseph O. Falkinham
- Department of Biological Sciences, Virginia Polytechnic and State University, Blacksburg, VA 24061, United States
| | - Manead Khin
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60612, United States
| | - Joanna E. Burdette
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60612, United States
| | - Nathan Mirtallo Ezzone
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, Ohio State University, Columbus, Ohio 43210, United States
| | - Jonathan Jeyaraj
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, Ohio State University, Columbus, Ohio 43210, United States
| | - Esperanza Carcache de Blanco
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, Ohio State University, Columbus, Ohio 43210, United States
| | | | - Nicholas H. Oberlies
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, NC 27402, United States
| |
Collapse
|
6
|
Al Subeh ZY, Li T, Ustoyev A, Obike JC, West PM, Khin M, Burdette JE, Pearce CJ, Oberlies NH, Croatt MP. Semisynthesis of Hypothemycin Analogues Targeting the C8-C9 Diol. JOURNAL OF NATURAL PRODUCTS 2022; 85:2018-2025. [PMID: 35834411 PMCID: PMC9677340 DOI: 10.1021/acs.jnatprod.2c00434] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Hypothemycin, an epoxide derivative of (5Z)-7-oxozeaenol, was used in the semisynthesis of a series of C8-C9 diol derivatives, with many inhibiting TAK1 at submicromolar concentrations. A step-economical approach was chosen, whereby nonselective reactions functionalized the diol to generate multiple analogues in a single reaction. Using this approach, 35 analogues were synthesized using 12 reactions, providing a wealth of information about the role that the C8-C9 diol plays in TAK1 inhibition and cytotoxicity in ovarian and breast cancer cell lines. Monofunctionalized analogues exhibited strong inhibition of TAK1, showing potential for modification of this section of the molecule to assist with solubility, formulation, and other desirable properties. Most analogues were cytotoxic, and three compounds had similar or slightly increased potency with >100-fold improvement in solubility profiles.
Collapse
Affiliation(s)
- Zeinab Y Al Subeh
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, North Carolina 27402, United States
- Department of Medicinal Chemistry and Pharmacognosy, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, 22110, Jordan
| | - Tian Li
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, North Carolina 27402, United States
| | - Abraham Ustoyev
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, North Carolina 27402, United States
| | - Jennifer C Obike
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, North Carolina 27402, United States
| | - Philip M West
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, North Carolina 27402, United States
| | - Manead Khin
- Department of Pharmaceutical Sciences, University of Illinois at Chicago, Chicago, Illinois 60612, United States
| | - Joanna E Burdette
- Department of Pharmaceutical Sciences, University of Illinois at Chicago, Chicago, Illinois 60612, United States
| | - Cedric J Pearce
- Mycosynthetix, Inc., Hillsborough, North Carolina 27278, United States
| | - Nicholas H Oberlies
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, North Carolina 27402, United States
| | - Mitchell P Croatt
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, North Carolina 27402, United States
| |
Collapse
|
7
|
Aldrich LN, Burdette JE, de Blanco EC, Coss CC, Eustaquio AS, Fuchs JR, Kinghorn AD, MacFarlane A, Mize B, Oberlies NH, Orjala J, Pearce CJ, Phelps MA, Rakotondraibe LH, Ren Y, Soejarto DD, Stockwell BR, Yalowich JC, Zhang X. Discovery of Anticancer Agents of Diverse Natural Origin. JOURNAL OF NATURAL PRODUCTS 2022; 85:702-719. [PMID: 35213158 PMCID: PMC9034850 DOI: 10.1021/acs.jnatprod.2c00036] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Research progress from mainly over the last five years is described for a multidisciplinary collaborative program project directed toward the discovery of potential anticancer agents from a broad range of taxonomically defined organisms. Selected lead compounds with potential as new antitumor agents that are representative of considerable structural diversity have continued to be obtained from each of tropical plants, terrestrial and aquatic cyanobacteria, and filamentous fungi. Recently, a new focus has been on the investigation of the constituents of U.S. lichens and their fungal mycobionts. A medicinal chemistry and pharmacokinetics component of the project has optimized structurally selected lead natural products, leading to enhanced cytotoxic potencies against selected cancer cell lines. Biological testing has shown several compounds to have in vivo activity, and relevant preliminary structure-activity relationship and mechanism of action studies have been performed. Several promising lead compounds worthy of further investigation have been identified from the most recent collaborative work performed.
Collapse
Affiliation(s)
- Leslie N. Aldrich
- Department of Chemistry, University of Illinois at Chicago, Chicago, Illinois 60607, United States
| | - Joanna E. Burdette
- College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois 60612, United States
| | | | - Christopher C. Coss
- College of Pharmacy, The Ohio State University, Columbus, Ohio 43210, United States
| | - Alessandra S. Eustaquio
- College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois 60612, United States
| | - James R. Fuchs
- College of Pharmacy, The Ohio State University, Columbus, Ohio 43210, United States
| | - A. Douglas Kinghorn
- College of Pharmacy, The Ohio State University, Columbus, Ohio 43210, United States
| | - Amanda MacFarlane
- Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio 43210, United States
| | - Brittney Mize
- College of Pharmacy, The Ohio State University, Columbus, Ohio 43210, United States
| | - Nicholas H. Oberlies
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, North Carolina 24702, United States
| | - Jimmy Orjala
- College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois 60612, United States
| | - Cedric J. Pearce
- Mycosynthetix, Inc., Hillsborough, North Carolina 27278, United States
| | - Mitch A. Phelps
- College of Pharmacy, The Ohio State University, Columbus, Ohio 43210, United States
| | | | - Yulin Ren
- College of Pharmacy, The Ohio State University, Columbus, Ohio 43210, United States
| | - Djaja Doel Soejarto
- College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois 60612, United States
- Field Museum of Natural History, Chicago, Illinois 60605, United States
| | - Brent R. Stockwell
- Department of Biological Sciences, Columbia University, New York, New York 10027, United States
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Jack C. Yalowich
- College of Pharmacy, The Ohio State University, Columbus, Ohio 43210, United States
| | - Xiaoli Zhang
- College of Medicine, The Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
8
|
Flores-Bocanegra L, Al Subeh ZY, Egan JM, El-Elimat T, Raja HA, Burdette JE, Pearce CJ, Linington RG, Oberlies NH. Dereplication of Fungal Metabolites by NMR-Based Compound Networking Using MADByTE. JOURNAL OF NATURAL PRODUCTS 2022; 85:614-624. [PMID: 35020372 PMCID: PMC8957573 DOI: 10.1021/acs.jnatprod.1c00841] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Indexed: 05/07/2023]
Abstract
Strategies for natural product dereplication are continually evolving, essentially in lock step with advances in MS and NMR techniques. MADByTE is a new platform designed to identify common structural features between samples in complex extract libraries using two-dimensional NMR spectra. This study evaluated the performance of MADByTE for compound dereplication by examining two classes of fungal metabolites, the resorcylic acid lactones (RALs) and spirobisnaphthalenes. First, a pure compound database was created using the HSQC and TOCSY data from 19 RALs and 10 spirobisnaphthalenes. Second, this database was used to assess the accuracy of compound class clustering through the generation of a spin system feature network. Seven fungal extracts were dereplicated using this approach, leading to the correct prediction of members of both families from the extract set. Finally, NMR-guided isolation led to the discovery of three new palmarumycins (20-22). Together these results demonstrate that MADByTE is effective for the detection of specific compound classes in complex mixtures and that this detection is possible for both known and new natural products.
Collapse
Affiliation(s)
- Laura Flores-Bocanegra
- Department
of Chemistry and Biochemistry, University
of North Carolina at Greensboro, Greensboro, North Carolina 27412, United States
| | - Zeinab Y. Al Subeh
- Department
of Chemistry and Biochemistry, University
of North Carolina at Greensboro, Greensboro, North Carolina 27412, United States
| | - Joseph M. Egan
- Department
of Chemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| | - Tamam El-Elimat
- Department
of Medicinal Chemistry and Pharmacognosy, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid 22110, Jordan
| | - Huzefa A. Raja
- Department
of Chemistry and Biochemistry, University
of North Carolina at Greensboro, Greensboro, North Carolina 27412, United States
| | - Joanna E. Burdette
- Department
of Pharmaceutical Sciences, University of
Illinois at Chicago, Chicago, Illinois 60612, United States
| | - Cedric J. Pearce
- Mycosynthetix,
Inc., Hillsborough, North Carolina 27278, United States
| | - Roger G. Linington
- Department
of Chemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| | - Nicholas H. Oberlies
- Department
of Chemistry and Biochemistry, University
of North Carolina at Greensboro, Greensboro, North Carolina 27412, United States
| |
Collapse
|
9
|
Al Subeh ZY, Raja HA, Obike JC, Pearce CJ, Croatt MP, Oberlies NH. Media and strain studies for the scaled production of cis-enone resorcylic acid lactones as feedstocks for semisynthesis. J Antibiot (Tokyo) 2021; 74:496-507. [PMID: 34155352 PMCID: PMC8313427 DOI: 10.1038/s41429-021-00432-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 06/01/2021] [Accepted: 06/07/2021] [Indexed: 12/18/2022]
Abstract
Resorcylic acid lactones (RALs) with a cis-enone moiety, represented by hypothemycin (1) and (5Z)-7-oxozeaenol (2), are fungal secondary metabolites with irreversible inhibitory activity against protein kinases, with particularly selective activity for inhibition of TAK1 (transforming growth factor beta-activated kinase 1). Gram-scale quantities of these compounds were needed as feedstock for semi-synthesizing RAL-analogues in a step-economical fashion. To do so, this study had three primary goals: identifying fungi that biosynthesized 1 and 2, enhancing their production by optimizing the fermentation conditions on the lab scale, and developing straight forward purification processes. After evaluating 536 fungal extracts via an in-house dereplication protocol, three strains were identified as producing cis-enone RALs (i.e., MSX78495, MSX63935, MSX45109). Screening these fungal strains on three grain-based media revealed enhanced production of 1 by strain MSX78495 on oatmeal medium, while rice medium increased the biosynthesis of 2 by strain MSX63935. Furthermore, the purification processes were improved, moving away from HPLC purification to utilizing two to four cycles of resuspension and centrifugation in small volumes of organic solvents, generating gram-scale quantities of these metabolites readily. In addition, studying the chemistry profiles of strains MSX78495 and MSX63935 resulted in the isolation of ten other RALs (3-12), two radicinin analogues (13-14), and six benzopyranones (15-20), with 19 and 20 being newly described chlorinated benzopyranones.
Collapse
Affiliation(s)
- Zeinab Y Al Subeh
- Department of Chemistry and Biochemistry, The University of North Carolina at Greensboro, Greensboro, NC, USA
| | - Huzefa A Raja
- Department of Chemistry and Biochemistry, The University of North Carolina at Greensboro, Greensboro, NC, USA
| | - Jennifer C Obike
- Department of Chemistry and Biochemistry, The University of North Carolina at Greensboro, Greensboro, NC, USA
| | | | - Mitchell P Croatt
- Department of Chemistry and Biochemistry, The University of North Carolina at Greensboro, Greensboro, NC, USA
| | - Nicholas H Oberlies
- Department of Chemistry and Biochemistry, The University of North Carolina at Greensboro, Greensboro, NC, USA.
| |
Collapse
|
10
|
Amrine CSM, Huntsman AC, Doyle MG, Burdette JE, Pearce CJ, Fuchs JR, Oberlies NH. Semisynthetic Derivatives of the Verticillin Class of Natural Products through Acylation of the C11 Hydroxy Group. ACS Med Chem Lett 2021; 12:625-630. [PMID: 33859802 DOI: 10.1021/acsmedchemlett.1c00024] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 03/15/2021] [Indexed: 02/07/2023] Open
Abstract
The verticillins, a class of epipolythiodioxopiperazine alkaloids (ETPs) first described 50 years ago with the discovery of verticillin A (1), have gained attention due to their potent activity against cancer cells, noted both in vitro and in vivo. In this study, the complex scaffold afforded through optimized fermentation was used as a feedstock for semisynthetic efforts designed to explore the reactivity of the C11 and C11' hydroxy substituents. Functionality introduced at these positions would be expected to impact not only the potency but also the pharmacokinetic properties of the resulting compound. With this in mind, verticillin H (2) was used as a starting material to generate nine semisynthetic analogues (4-12) containing a variety of ester, carbonate, carbamate, and sulfonate moieties. Likewise, verticillin A succinate (13) was synthesized from 1 to demonstrate the successful application of this strategy to other ETPs. The synthesized compounds and their corresponding starting materials (i.e., 1 and 2) were screened for activity against a panel of melanoma, breast, and ovarian cancer cell lines: MDA-MB-435, MDA-MB-231, and OVCAR3. All analogues retained IC50 values in the nanomolar range, comparable to, and in some cases more potent than, the parent compounds.
Collapse
Affiliation(s)
- Chiraz Soumia M. Amrine
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, North Carolina 27402, United States
- Department of Physical Sciences, Arkansas Tech University, Russellville, Arkansas 72801, United States
| | - Andrew C. Huntsman
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, Ohio State University, Columbus, Ohio 43210, United States
| | - Michael G. Doyle
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, North Carolina 27402, United States
| | - Joanna E. Burdette
- Department of Pharmaceutical Sciences, Center for Biomolecular Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois 60607, United States
| | - Cedric J. Pearce
- Mycosynthetix, Inc., 505 Meadowlands Drive, Suite 103, Hillsborough, North Carolina 27278, United States
| | - James R. Fuchs
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, Ohio State University, Columbus, Ohio 43210, United States
| | - Nicholas H. Oberlies
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, North Carolina 27402, United States
| |
Collapse
|
11
|
El-Elimat T, Raja HA, Figueroa M, Al Sharie AH, Bunch RL, Oberlies NH. Freshwater Fungi as a Source of Chemical Diversity: A Review. JOURNAL OF NATURAL PRODUCTS 2021; 84:898-916. [PMID: 33662206 PMCID: PMC8127292 DOI: 10.1021/acs.jnatprod.0c01340] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
As their name indicates, freshwater fungi occur on submerged substrates in fresh water habitats. This review brings together the chemical diversity and biological activity of 199 of the 280 known freshwater fungal metabolites published from 1992 to 2020, representing at least seven structural classes, including polyketides, phenylpropanoids, terpenoids, meroterpenoids, alkaloids, polypeptides, and monosaccharides. In addition to describing what they are, where they are found, and what they do, we also discuss strategies for the collection, isolation, and identification of fungi from freshwater habitats, with the goal of enhancing chemists' knowledge of several mycological principles. We anticipate that this review will provide a springboard for future natural products studies from this fascinating but underexplored group of Ascomycota.
Collapse
Affiliation(s)
- Tamam El-Elimat
- Department of Medicinal Chemistry and Pharmacognosy, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, 22110, Jordan
| | - Huzefa A. Raja
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, North Carolina 27402, United States
| | - Mario Figueroa
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | - Ahmed H. Al Sharie
- Faculty of Medicine, Jordan University of Science and Technology, Irbid 22110, Jordan
| | - Rick L. Bunch
- Department of Geography, Environment, and Sustainability, University of North Carolina at Greensboro, Greensboro, North Carolina 27402, USA
| | - Nicholas H. Oberlies
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, North Carolina 27402, United States
| |
Collapse
|
12
|
Majhi S, Das D. Chemical derivatization of natural products: Semisynthesis and pharmacological aspects- A decade update. Tetrahedron 2021. [DOI: 10.1016/j.tet.2020.131801] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
13
|
Oxidization of TGFβ-activated kinase by MPT53 is required for immunity to Mycobacterium tuberculosis. Nat Microbiol 2019; 4:1378-1388. [PMID: 31110366 DOI: 10.1038/s41564-019-0436-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 03/25/2019] [Indexed: 02/05/2023]
Abstract
Mycobacterium tuberculosis (Mtb)-derived components are usually recognized by pattern recognition receptors to initiate a cascade of innate immune responses. One striking characteristic of Mtb is their utilization of different type VII secretion systems to secrete numerous proteins across their hydrophobic and highly impermeable cell walls, but whether and how these Mtb-secreted proteins are sensed by host immune system remains largely unknown. Here, we report that MPT53 (Rv2878c), a secreted disulfide-bond-forming-like protein of Mtb, directly interacts with TGF-β-activated kinase 1 (TAK1) and activates TAK1 in a TLR2- or MyD88-independent manner. MPT53 induces disulfide bond formation at C210 on TAK1 to facilitate its interaction with TRAFs and TAB1, thus activating TAK1 to induce the expression of pro-inflammatory cytokines. Furthermore, MPT53 and its disulfide oxidoreductase activity is required for Mtb to induce the host inflammatory responses via TAK1. Our findings provide an alternative pathway for host signalling proteins to sense Mtb infection and may favour the improvement of current vaccination strategies.
Collapse
|
14
|
Ellestad GA. (5Z)-7-Oxozeaenol: A novel and potent resorcylic acid lactone kinase inhibitor with a cis-enone Michael acceptor. Chirality 2018; 31:110-117. [PMID: 30565749 DOI: 10.1002/chir.23040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 11/09/2018] [Accepted: 11/13/2018] [Indexed: 11/08/2022]
|
15
|
Al-Huniti MH, Rivera-Chávez J, Colón KL, Stanley JL, Burdette JE, Pearce CJ, Oberlies NH, Croatt MP. Development and Utilization of a Palladium-Catalyzed Dehydration of Primary Amides To Form Nitriles. Org Lett 2018; 20:6046-6050. [PMID: 30221526 PMCID: PMC6179452 DOI: 10.1021/acs.orglett.8b02422] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
![]()
A palladium(II) catalyst,
in the presence of Selectfluor, enables
the efficient and chemoselective transformation of primary amides
into nitriles. The amides can be attached to aromatic rings, heteroaromatic
rings, or aliphatic side chains, and the reactions tolerate steric
bulk and electronic modification. Dehydration of a peptaibol containing
three glutamine groups afforded structure–activity relationships
for each glutamine residue. Thus, this dehydration can act similarly
to an alanine scan for glutamines via synthetic mutation.
Collapse
Affiliation(s)
- Mohammed H Al-Huniti
- Department of Chemistry and Biochemistry , University of North Carolina at Greensboro , 435 Sullivan Science Building , Greensboro , North Carolina 27402 , United States
| | - José Rivera-Chávez
- Institute of Chemistry, Universidad Nacional Autónoma de México , Circuito Exterior s/n , Coyacán , Mexico City 04510 , Mexico
| | - Katsuya L Colón
- Department of Chemistry and Biochemistry , University of North Carolina at Greensboro , 435 Sullivan Science Building , Greensboro , North Carolina 27402 , United States
| | - Jarrod L Stanley
- Department of Chemistry and Biochemistry , University of North Carolina at Greensboro , 435 Sullivan Science Building , Greensboro , North Carolina 27402 , United States
| | - Joanna E Burdette
- Department of Medicinal Chemistry and Pharmacognosy , University of Illinois at Chicago , 900 A. Ashland Avenue , Chicago , Illinois 60607 , United States
| | - Cedric J Pearce
- Mycosynthetix, Inc. , Suite 103, 505 Meadowlands Drive , Hillsborough , North Carolina 27278 , United States
| | - Nicholas H Oberlies
- Department of Chemistry and Biochemistry , University of North Carolina at Greensboro , 435 Sullivan Science Building , Greensboro , North Carolina 27402 , United States
| | - Mitchell P Croatt
- Department of Chemistry and Biochemistry , University of North Carolina at Greensboro , 435 Sullivan Science Building , Greensboro , North Carolina 27402 , United States
| |
Collapse
|
16
|
Ao J, Yuan T, Gao L, Yu X, Zhao X, Tian Y, Ding W, Ma Y, Shen Z. Organic UV filters exposure induces the production of inflammatory cytokines in human macrophages. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 635:926-935. [PMID: 29710614 DOI: 10.1016/j.scitotenv.2018.04.217] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 03/24/2018] [Accepted: 04/16/2018] [Indexed: 06/08/2023]
Abstract
Organic ultraviolet (UV) filters, found in many personal care products, are considered emerging contaminants due to growing concerns about potential long-term deleterious effects. We investigated the immunomodulatory effects of four commonly used organic UV filters (2-hydroxy-4-methoxybenzophenone, BP-3; 4-methylbenzylidene camphor, 4-MBC; 2-ethylhexyl 4-methoxycinnamate, EHMC; and butyl-methoxydibenzoylmethane, BDM) on human macrophages. Our results indicated that exposure to these four UV filters significantly increased the production of various inflammatory cytokines in macrophages, particular tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6). After exposure to the UV filters, a significant 1.1-1.5 fold increase were found in TNF-α and IL-6 mRNA expression. In addition, both the p38 MAPK and the NF-κB signaling pathways were enhanced 2 to 10 times in terms of phosphorylation after exposure to the UV filters, suggesting that these pathways are involved in the release of TNF-α and IL-6. Molecular docking analysis predicted that all four UV filter molecules would efficiently bind transforming growth factor beta-activated kinase 1 (TAK1), which is responsible for the activation of the p38 MAPK and NF-κB pathways. Our results therefore demonstrate that exposure to the four organic UV filters investigated may alter human immune system function. It provides new clue for the development of asthma or allergic diseases in terms of the environmental pollutants.
Collapse
Affiliation(s)
- Junjie Ao
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Tao Yuan
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Li Gao
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China; School of Resource and Environment, Ningxia University, Yinchuan 750021, China
| | - Xiaodan Yu
- Department of Developmental and Behavioral Pediatrics, Shanghai Children's Medical Center, Ministry of Education Shanghai Key Laboratory of Children's Environmental Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| | - Xiaodong Zhao
- Shanghai Center for Systems Biomedicine, Bio-ID Center, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Ying Tian
- Shanghai Jiao Tong University School of Medicine, 1665 Kongjiang Road, Shanghai 200092, China
| | - Wenjin Ding
- Department of Gastroenterology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Yuning Ma
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zhemin Shen
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
17
|
Sotriffer C. Docking of Covalent Ligands: Challenges and Approaches. Mol Inform 2018; 37:e1800062. [PMID: 29927068 DOI: 10.1002/minf.201800062] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 06/01/2018] [Indexed: 01/08/2023]
Abstract
Covalent ligands have recently regained considerable attention in drug discovery. The rational design of such ligands, however, is still faced with particular challenges, mostly related to the fact that covalent bond formation is a quantum mechanical phenomenon which cannot adequately be handled by the force fields or empirical approaches typically used for noncovalent protein-ligand interactions. Although the necessity for quantum chemical approaches is clear, they cannot yet routinely be applied on large data sets of ligands or for a broader exploration of binding modes in docking calculations. On the other hand, technical solutions for performing docking calculations with covalent ligands are available, but their scope is normally quite limited. Scoring functions typically neglect the contribution from covalent bond formation completely. In this situation, the question arises how to approach covalent ligands and which methods to choose for their docking and design.
Collapse
Affiliation(s)
- Christoph Sotriffer
- Institute of Pharmacy and Food Chemistry, Julius-Maximilians-Universität Würzburg, Am Hubland, D-, 97074, Würzburg, Germany
| |
Collapse
|
18
|
Guan S, Lu J, Zhao Y, Woodfield SE, Zhang H, Xu X, Yu Y, Zhao J, Bieerkehazhi S, Liang H, Yang J, Zhang F, Sun S. TAK1 inhibitor 5Z-7-oxozeaenol sensitizes cervical cancer to doxorubicin-induced apoptosis. Oncotarget 2018; 8:33666-33675. [PMID: 28430599 PMCID: PMC5464900 DOI: 10.18632/oncotarget.16895] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 03/28/2017] [Indexed: 12/20/2022] Open
Abstract
Aberrant activation of nuclear factor-κB (NF-κB) allows cancer cells to escape chemotherapy-induced cell death and acts as one of the major mechanisms of acquired chemoresistance in cervical cancer. TAK1, a crucial mediator that upregulates NF-κB activation in response to cellular genotoxic stress, is required for tumor cell viability and survival. Herein, we examined whether TAK1 inhibition is a potential therapeutic strategy for treating cervical cancer. We found that TAK1 inhibitor 5Z-7-oxozeaenol significantly augmented the cytotoxic effects of Dox in a panel of cervical cancer cell lines. Treatment with 5Z-7-oxozeaenol hindered Dox-induced NF-κB activation and promoted Dox-induced apoptosis in cervical cancer cells. Moreover, 5Z-7-oxozeaenol showed similar effects in both positive and negative human papillomavirus-infected cervical cancer cells. Taken together, our results provide evidence that TAK1 inhibition significantly sensitizes cervical cancer cells to chemotherapy-induced cell death and supports the use of TAK1 inhibitor with current chemotherapies in the clinic for patients with refractory cervical cancer.
Collapse
Affiliation(s)
- Shan Guan
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, Xinjiang 830046, China.,Texas Children's Cancer Center, Department of Pediatrics, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jiaxiong Lu
- Texas Children's Cancer Center, Department of Pediatrics, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Yanling Zhao
- Texas Children's Cancer Center, Department of Pediatrics, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Sarah E Woodfield
- Division of Pediatric Surgery, Michael E. DeBakey Department of Surgery, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Huiyuan Zhang
- Texas Children's Cancer Center, Department of Pediatrics, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Xin Xu
- Texas Children's Cancer Center, Department of Pediatrics, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Yang Yu
- Texas Children's Cancer Center, Department of Pediatrics, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jing Zhao
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, Xinjiang 830046, China
| | - Shayahati Bieerkehazhi
- Department of Labour Hygiene and Sanitary Science, College of Public Health, Xinjiang Medical University, Urumqi, Xinjiang 830011, China
| | - Haoqian Liang
- Texas Children's Cancer Center, Department of Pediatrics, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA.,School of Pharmacy, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Jianhua Yang
- Texas Children's Cancer Center, Department of Pediatrics, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Fuchun Zhang
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, Xinjiang 830046, China
| | - Surong Sun
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, Xinjiang 830046, China
| |
Collapse
|
19
|
Santoro R, Carbone C, Piro G, Chiao PJ, Melisi D. TAK -ing aim at chemoresistance: The emerging role of MAP3K7 as a target for cancer therapy. Drug Resist Updat 2017; 33-35:36-42. [DOI: 10.1016/j.drup.2017.10.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 10/11/2017] [Accepted: 10/21/2017] [Indexed: 01/08/2023]
|
20
|
Paguigan ND, Al-Huniti MH, Raja HA, Czarnecki A, Burdette JE, González-Medina M, Medina-Franco JL, Polyak SJ, Pearce CJ, Croatt MP, Oberlies NH. Chemoselective fluorination and chemoinformatic analysis of griseofulvin: Natural vs fluorinated fungal metabolites. Bioorg Med Chem 2017; 25:5238-5246. [PMID: 28802670 PMCID: PMC5632135 DOI: 10.1016/j.bmc.2017.07.041] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 07/19/2017] [Accepted: 07/24/2017] [Indexed: 02/07/2023]
Abstract
Griseofulvin is a fungal metabolite and antifungal drug used for the treatment of dermatophytosis in both humans and animals. Recently, griseofulvin and its analogues have attracted renewed attention due to reports of their potential anticancer effects. In this study griseofulvin (1) and related analogues (2-6, with 4 being new to literature) were isolated from Xylaria cubensis. Six fluorinated analogues (7-12) were synthesized, each in a single step using the isolated natural products and Selectflour, so as to examine the effects of fluorine incorporation on the bioactivities of this structural class. The isolated and synthesized compounds were screened for activity against a panel of cancer cell lines (MDA-MB-435, MDA-MB-231, OVCAR3, and Huh7.5.1) and for antifungal activity against Microsporum gypseum. A comparison of the chemical space occupied by the natural and fluorinated analogues was carried out by using principal component analysis, documenting that the isolated and fluorinated analogues occupy complementary regions of chemical space. However, the most active compounds, including two fluorinated derivatives, were centered around the chemical space that was occupied by the parent compound, griseofulvin, suggesting that modifications must preserve certain attributes of griseofulvin to conserve its activity.
Collapse
Affiliation(s)
- Noemi D Paguigan
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, NC 27402, USA
| | - Mohammed H Al-Huniti
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, NC 27402, USA
| | - Huzefa A Raja
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, NC 27402, USA
| | - Austin Czarnecki
- Department of Medicinal Chemistry and Pharmacognosy, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Joanna E Burdette
- Department of Medicinal Chemistry and Pharmacognosy, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Mariana González-Medina
- Department of Pharmacy, School of Chemistry, Universidad Nacional Autónoma de México, Avenida Universidad 3000, Mexico City 04510, Mexico
| | - José L Medina-Franco
- Department of Pharmacy, School of Chemistry, Universidad Nacional Autónoma de México, Avenida Universidad 3000, Mexico City 04510, Mexico
| | - Stephen J Polyak
- Department of Laboratory Medicine, University of Washington, Seattle, WA 98195, USA; Department of Global Health, University of Washington, Seattle, WA 98104, USA; Department of Microbiology, University of Washington, Seattle, WA 98195, USA
| | - Cedric J Pearce
- Mycosynthetix Inc., 505 Meadowlands Drive, Suite 103, Hillsborough, NC 27278, USA
| | - Mitchell P Croatt
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, NC 27402, USA
| | - Nicholas H Oberlies
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, NC 27402, USA.
| |
Collapse
|
21
|
Yang Y, Qiu Y, Tang M, Wu Z, Hu W, Chen C. Expression and function of transforming growth factor‑β‑activated protein kinase 1 in gastric cancer. Mol Med Rep 2017; 16:3103-3110. [PMID: 28714004 PMCID: PMC5548047 DOI: 10.3892/mmr.2017.6998] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 05/02/2017] [Indexed: 12/12/2022] Open
Abstract
The present study aimed to investigate the expression and role of transforming growth factor (TGF) ‑β‑activated protein kinase 1 (TAK1) in human gastric cancer. Immunohistochemistry was performed to investigate the expression of TAK1 in surgical specimens of human gastric cancer tissue and adjacent normal tissue. The association between TAK1 and clinicopathologic factors was analyzed and the association between TAK1 expression and the overall survival rates was evaluated using Kaplan‑Meier curves. In addition, the effect of the TAK1 selective inhibitor 5Z‑7‑oxozeaenol (OZ) on the biological characteristics of MGC803 human gastric cancer cells in vitro were investigated. The role of TAK1 in gastric cancer cell proliferation, apoptosis and invasion were determined by cell proliferation assays, flow cytometry analysis and transwell invasion assays, respectively. The findings of the present study demonstrated that the positive expression rate of TAK1 in gastric cancer and adjacent normal tissues was 70.5 and 25.9%, respectively. Furthermore, TAK1 expression was significantly associated with advanced N stage and pathological stage (P<0.05). Survival analysis of 139 patients with gastric cancer indicated a lower overall survival rate of patients in the TAK1‑positive group compared with the TAK1‑negative group (P<0.05). In addition, treatment with the TAK1 selective inhibitor OZ reduced the proliferation and invasion abilities of MGC803 cells and significantly reduced the expression levels of phosphorylated‑TAK1 (Thr187), nuclear p65, cyclin D1, Bcl‑2 apoptosis regulator and matrix metallopeptidase (MMP)9 (P<0.05). OZ treatment significantly increased the expression levels of cytosolic cytochrome c and cleaved caspase 3 and the apoptosis rate in MGC803 cells (P<0.05). In conclusion, these findings suggest that increased TAK1 expression may be involved in the progression of gastric cancer; therefore, TAK1 may be used as a future therapeutic target for gastric cancer treatment.
Collapse
Affiliation(s)
- Yue Yang
- Department of Surgery, The Third Affiliated Hospital, Nanjing University of Traditional Chinese Medicine, Nanjing, Jiangsu 210001, P.R. China
| | - Yudong Qiu
- Department of Hepatopancreatobiliary Surgery, Drum Tower Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210000, P.R. China
| | - Mubai Tang
- Department of Surgery, The Third Affiliated Hospital, Nanjing University of Traditional Chinese Medicine, Nanjing, Jiangsu 210001, P.R. China
| | - Zhaoshu Wu
- Department of Surgery, The Third Affiliated Hospital, Nanjing University of Traditional Chinese Medicine, Nanjing, Jiangsu 210001, P.R. China
| | - Weidong Hu
- Department of General Surgery, Wuxi Xishan People's Hospital, Wuxi, Jiangsu 214011, P.R. China
| | - Chaobo Chen
- Department of General Surgery, Wuxi Xishan People's Hospital, Wuxi, Jiangsu 214011, P.R. China
| |
Collapse
|
22
|
Abstract
It is now plausible to dock libraries of 10 million molecules against targets over several days or weeks. When the molecules screened are commercially available, they may be rapidly tested to find new leads. Although docking retains important liabilities (it cannot calculate affinities accurately nor even reliably rank order high-scoring molecules), it can often can distinguish likely from unlikely ligands, often with hit rates above 10%. Here we summarize the improvements in libraries, target quality, and methods that have supported these advances, and the open access resources that make docking accessible. Recent docking screens for new ligands are sketched, as are the binding, crystallographic, and in vivo assays that support them. Like any technique, controls are crucial, and key experimental ones are reviewed. With such controls, docking campaigns can find ligands with new chemotypes, often revealing the new biology that may be docking's greatest impact over the next few years.
Collapse
Affiliation(s)
- John J Irwin
- Department of Pharmaceutical Chemistry and QB3 Institute, University of California-San Francisco , San Francisco, California 94158, United States
| | - Brian K Shoichet
- Department of Pharmaceutical Chemistry and QB3 Institute, University of California-San Francisco , San Francisco, California 94158, United States
| |
Collapse
|