1
|
Zhang J, Wang Z, Zhang R, Lei X, Wang G, Zou P. Hemicyanine-Phenothiazine Based Highly Selective Ratiometric Fluorescent Probes for Detecting Hypochlorite Ion in Fruits, Vegetables and Beverages. J Fluoresc 2025; 35:2449-2459. [PMID: 38607530 DOI: 10.1007/s10895-024-03694-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 03/26/2024] [Indexed: 04/13/2024]
Abstract
Hypochloric acid (HClO) is a reactive oxygen species (ROS) that functions as a bacteriostatic and disinfectant in food production. Excessive levels of ClO-, however, have been linked to various health issues, including cardiovascular diseases (Halliwell and Gutteridge in Oxford University press, USA, 2015), arthritis, and neurodegenerative diseases (Heinzelmann and Bauer in Biol Chem. 391(6):675-693, 2010). Therefore, synthesizing highly selective and sensitive probes for rapidly detecting endogenous ClO- in daily foods is currently a popular research topic (Kalyanaraman et al. in Redox Biol. 15:347-362, 2018; Winterbourn in Nat Chem Biol. 4(5):278-286, 2008; Turrens in J Physiol. 552(2):335-344, 2003). Thus, we have developed two highly selective ratiometric fluorescent probes (Probe1 and Probe2) based on indole-phenothiazine to detect ClO- in common vegetables, fruits and beverages qualitatively and quantitatively. Moreover, Both Probe1 and Probe2 have shown good specificity and stability, with high fluorescence intensity and long duration (Feng et al. in Adv Sci. 5:1800397, 2018; Wei et al. in Angew Chem. 131(14):4595-4599, 2019; Baruah et al. in J Mater Chem B, 2022).
Collapse
Affiliation(s)
- Jinyang Zhang
- College of Science, Sichuan Agricultural University, Ya'an, 625014, People's Republic of China
| | - Zhe Wang
- College of Science, Sichuan Agricultural University, Ya'an, 625014, People's Republic of China
| | - Rui Zhang
- College of Science, Sichuan Agricultural University, Ya'an, 625014, People's Republic of China
| | - Xueli Lei
- College of Science, Sichuan Agricultural University, Ya'an, 625014, People's Republic of China
| | - Guangtu Wang
- College of Science, Sichuan Agricultural University, Ya'an, 625014, People's Republic of China.
| | - Ping Zou
- College of Science, Sichuan Agricultural University, Ya'an, 625014, People's Republic of China.
| |
Collapse
|
2
|
Ince-Erguc E, Fatullayev H, Entezari B, Tekiner B, Süzen S, Gurer-Orhan H. In Vitro Evaluation of Endocrine-Related Adverse Effects of 5-Fluoroindole Derived Melatonin Analogues with Antioxidant Activity. Chem Biodivers 2025; 22:e202402050. [PMID: 39529413 DOI: 10.1002/cbdv.202402050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 11/05/2024] [Accepted: 11/06/2024] [Indexed: 11/16/2024]
Abstract
Melatonin (MLT) is a natural indolic hormone with well documented antioxidant properties, but it can also modulate the estrogen signaling pathway by inhibiting the aromatase enzyme and estrogen receptor modulating activity. This dual activity raises concerns about potential endocrine-related adverse effects when using MLT and its analogues as therapeutic agents in the prevention and treatment of oxidative stress related diseases. In this study, 34 novel 5-fluoroindole derivatives of MLT were synthesized and evaluated for their antioxidant, estrogen receptor modulatory, and aromatase inhibitory activities.Three compounds (4c, 5c, and 6c) demonstrated significant antioxidant activity, with compound 4c showing the highest efficacy in reducing intracellular reactive oxygen species (ROS) by 65 % in CHO-K1 cells and displaying DPPH radical scavenging comparable to the standard antioxidant, BHT. However, these same compounds also exhibited antiestrogenic effects in the E-Screen assay, with IC50 values of 3.36×10-5 M, 1.31×10-7 M, and 1.9×10-7 M, respectively, and inhibited aromatase activity by up to 29 % in a direct enzymatic assay. These findings indicate that, while the compounds have potent antioxidant properties, their significant antiestrogenic and aromatase inhibitory activities may pose risks for unintended endocrine related effects. Further studies are needed to better understand the implications of these activities in vivo and to balance the benefits and risks of such compounds in therapeutic applications.
Collapse
Affiliation(s)
- Elif Ince-Erguc
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Izmir Katip Celebi University, 35620, Izmir, Turkey
| | - Hanifa Fatullayev
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Erciyes University, 38280, Kayseri, Turkey
| | - Bita Entezari
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Ege University, 35100, Izmir, Turkey
| | - Betül Tekiner
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Ankara University, Ankara, Turkey
| | - Sibel Süzen
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Ankara University, Ankara, Turkey
| | - Hande Gurer-Orhan
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Ege University, 35100, Izmir, Turkey
| |
Collapse
|
3
|
Barbarossa A, Carrieri A, Carocci A. Melatonin and Related Compounds as Antioxidants. Mini Rev Med Chem 2024; 24:546-565. [PMID: 37366352 DOI: 10.2174/1389557523666230627140816] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 05/06/2023] [Accepted: 05/30/2023] [Indexed: 06/28/2023]
Abstract
Oxidative stress has been reported to be involved in the onset and development of several diseases, including neurodegenerative and cardiovascular disorders, some types of cancer, and diabetes. Therefore, finding strategies to detoxify free radicals is an active area of research. One of these strategies is the use of natural or synthetic antioxidants. In this context, melatonin (MLT) has been proven to possess most of the required characteristics of an efficient antioxidant. In addition, its protection against oxidative stress continues after being metabolized, since its metabolites also exhibit antioxidant capacity. Based on the appealing properties of MLT and its metabolites, various synthetic analogues have been developed to obtain compounds with higher activity and lower side effects. This review addresses recent studies with MLT and related compounds as potential antioxidants.
Collapse
Affiliation(s)
- Alexia Barbarossa
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari "Aldo Moro", 70126. Bari, Italy
| | - Antonio Carrieri
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari "Aldo Moro", 70126. Bari, Italy
| | - Alessia Carocci
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari "Aldo Moro", 70126. Bari, Italy
| |
Collapse
|
4
|
Akman E, Sirinzade H, Ozguven SY, Dilek E, Suzen S. Enzyme inhibitory potential of some indole Schiff bases on acetylcholinesterase and human carbonic anhydrase isoforms I and II enzymes: an in vitro and molecular docking study. J Biomol Struct Dyn 2023; 42:12011-12020. [PMID: 37861657 DOI: 10.1080/07391102.2023.2266500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 09/27/2023] [Indexed: 10/21/2023]
Abstract
In this study, the in vitro effects of some indole Schiff bases on acetylcholinesterase and human carbonic anhydrase isoforms I and II were investigated. A series of N-methylindole hydrazide/hydrazone derivatives (1a-1t) were tested on these enzymes. The interactions of the synthesized indole derivatives with target enzymes were studied by molecular docking methodology. The results revealed that indole derivative Schiff base compounds inhibited the enzymes significantly. Ki values for hCAI isoenzyme were determined to be in the range of 36.18 ± 3.07-224.29 ± 5.78 nM; for the hCAII isoenzyme in the range of 31.30 ± 2.63-201.64 ± 7.25 nM; for acetylcholinesterase in the range of 6.82 ± 0.72-110.30 ± 9.26 nM. Compared to the control compound Acetazolamide (AZA), 1k and 1p were found to have the best inhibitory effect for hCAI; 1p was found to be the best inhibitory effect for hCAII. Compared to the control compound Tacrine (TAC), 1s showed the best inhibitory effect for AChE. In vitro results were verified with the results obtained by docking studies and interactions with enzymes were demonstrated.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Ebru Akman
- Department of Pharmaceutical Sciences, Institute of Health Sciences, Erzincan Binali Yıldırım University, Erzincan, Turkey
| | - Hanif Sirinzade
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Selcuk University, Konya, Turkey
| | - Serap Yilmaz Ozguven
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Trakya University, Edirne, Turkey
| | - Esra Dilek
- Department of Biochemistry, Faculty of Pharmacy, Erzincan Binali Yıldırım University, Erzincan, Turkey
| | - Sibel Suzen
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Ankara University, Ankara, Turkey
| |
Collapse
|
5
|
Tivari SR, Kokate SV, Delgado-Alvarado E, Gayke MS, Kotmale A, Patel H, Ahmad I, Sobhia EM, Kumar SG, Lara BG, Jain VD, Jadeja Y. A novel series of dipeptide derivatives containing indole-3-carboxylic acid conjugates as potential antimicrobial agents: the design, solid phase peptide synthesis, in vitro biological evaluation, and molecular docking study. RSC Adv 2023; 13:24250-24263. [PMID: 37583660 PMCID: PMC10423974 DOI: 10.1039/d3ra04100j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Accepted: 07/23/2023] [Indexed: 08/17/2023] Open
Abstract
A new library of peptide-heterocycle hybrids consisting of an indole-3-carboxylic acid constituent conjugated with short dipeptide motifs was designed and synthesized by using the solid phase peptide synthesis methodology. All the synthesized compounds were characterized by spectroscopic techniques. Additionally, the synthesized compounds were subjected to in vitro antimicrobial activities. Two Gram-negative bacteria (Escherichia coli and Pseudomonas aeruginosa) and two Gram-positive (Streptococcus pyogenes and Staphylococcus aureus) were used for the evaluation of the antibacterial activity of the targeted dipeptide derivatives. Good antibacterial activity was observed for the screened analogues by comparing their activities with that of ciprofloxacin, the standard drug. Also, two fungi (Aspergillus niger and Candida albicans) were employed for the evaluation of the antifungal activity of the synthesized compounds. When compared to the standard drug Fluconazole, it was observed that the screened analogues exhibited good antifungal activity. In continuation, all the synthesized derivatives were subjected to integrated molecular docking studies and molecular dynamics simulations to investigate binding affinities, intermolecular interaction networks, and conformational flexibilities with deoxyribonucleic acid (DNA) gyrase and lanosterol-14-alpha demethylase. The molecular docking studies revealed that indole-3-carboxylic acid conjugates exhibited encouraging binding interaction networks and binding affinity with DNA gyrase and lanosterol-14 alpha demethylase to show antibacterial and antifungal activity, respectively. Such synthesis, biological activity, molecular dynamics simulations, and molecular docking studies of short peptides with an indole conjugate unlock the door for the near future advancement of novel medicines containing peptide-heterocycle hybrids with the ability to be effective as antimicrobial agents.
Collapse
Affiliation(s)
- Sunil R Tivari
- Department of Chemistry, Marwadi University Rajkot-360003 Gujarat India
| | - Siddhant V Kokate
- Departamento de Química, Universidad de Guanajuato Noria Alta S/N, Guanajuato-36050 Guanajuato Mexico
| | - Enrique Delgado-Alvarado
- Micro and Nanotechnology Research Center, Universidad Veracruzana Blvd. Av. Ruiz Cortines No. 455 Fracc. Costa Verde Boca del Río 94294 Mexico
- Facultad de Ciencias Quimicas, Universidad Veracruzana Blvd. Av. Ruiz Cortines No. 455 Fracc. Costa Verde Boca del Río 94294 Mexico
| | - Manoj S Gayke
- Indrashil University Rajpur, Kadi Mehsana 382740 Gujarat India
| | - Amol Kotmale
- Department of Chemistry, Savitribai Phule Pune University Pune 411007 Maharashtra India
| | - Harun Patel
- Department of Pharmaceutical Chemistry, R C. Patel Institute of Pharmaceutical Education and Research Shirpur District Dhule 425405 Maharashtra India
| | - Iqrar Ahmad
- Department of Pharmaceutical Chemistry, R C. Patel Institute of Pharmaceutical Education and Research Shirpur District Dhule 425405 Maharashtra India
| | | | - Siva G Kumar
- Department of Medicinal Chemistry, Sri Venkateswara College of Pharmacy Chittoor 517127 Andhra Pradesh India
| | - Bianey García Lara
- Departamento de Química, Universidad de Guanajuato Noria Alta S/N, Guanajuato-36050 Guanajuato Mexico
| | - Vicky D Jain
- Department of Chemistry, Marwadi University Rajkot-360003 Gujarat India
| | | |
Collapse
|
6
|
Kornicka A, Gzella K, Garbacz K, Jarosiewicz M, Gdaniec M, Fedorowicz J, Balewski Ł, Kokoszka J, Ordyszewska A. Indole-Acrylonitrile Derivatives as Potential Antitumor and Antimicrobial Agents-Synthesis, In Vitro and In Silico Studies. Pharmaceuticals (Basel) 2023; 16:918. [PMID: 37513830 PMCID: PMC10386429 DOI: 10.3390/ph16070918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/16/2023] [Accepted: 06/20/2023] [Indexed: 07/30/2023] Open
Abstract
A series of 2-(1H-indol-2-yl)-3-acrylonitrile derivatives, 2a-x, 3, 4a-b, 5a-d, 6a-b, and 7, were synthesized as potential antitumor and antimicrobial agents. The structures of the prepared compounds were evaluated based on elemental analysis, IR, 1H- and 13NMR, as well as MS spectra. X-ray crystal analysis of the representative 2-(1H-indol-2-yl)-3-acrylonitrile 2l showed that the acrylonitrile double bond was Z-configured. All compounds were screened at the National Cancer Institute (USA) for their activities against a panel of approximately 60 human tumor cell lines and the relationship between structure and in vitro antitumor activity is discussed. Compounds of interest 2l and 5a-d showed significant growth inhibition potency against various tumor cell lines with the mean midpoint GI50 values of all tests in the range of 0.38-7.91 μM. The prominent compound with remarkable activity (GI50 = 0.0244-5.06 μM) and high potency (TGI = 0.0866-0.938 μM) against some cell lines of leukemia (HL-60(TB)), non-small cell lung cancer (NCI-H522), colon cancer (COLO 205), CNS cancer (SF-539, SNB-75), ovarian cancer ((OVCAR-3), renal cancer (A498, RXF 393), and breast cancer (MDA-MB-468) was 3-[4-(dimethylamino)phenyl]-2-(1-methyl-1H-indol-2-yl)acrylonitrile (5c). Moreover, the selected 2-(1H-indol-2-yl)-3-acrylonitriles 2a-c and 2e-x were evaluated for their antibacterial and antifungal activities against Gram-positive and Gram-negative pathogens as well as Candida albicans. Among them, 2-(1H-indol-2-yl)-3-(1H-pyrrol-2-yl)acrylonitrile (2x) showed the most potent antimicrobial activity and therefore it can be considered as a lead structure for further development of antimicrobial agents. Finally, molecular docking studies as well as drug-likeness and ADME profile prediction were carried out.
Collapse
Affiliation(s)
- Anita Kornicka
- Department of Chemical Technology of Drugs, Faculty of Pharmacy, Medical University of Gdansk, 80-416 Gdansk, Poland
| | - Karol Gzella
- Department of Chemical Technology of Drugs, Faculty of Pharmacy, Medical University of Gdansk, 80-416 Gdansk, Poland
| | - Katarzyna Garbacz
- Department of Oral Microbiology, Medical Faculty, Medical University of Gdansk, 80-204 Gdansk, Poland
| | - Małgorzata Jarosiewicz
- Department of Oral Microbiology, Medical Faculty, Medical University of Gdansk, 80-204 Gdansk, Poland
| | - Maria Gdaniec
- Faculty of Chemistry, Adam Mickiewicz University, 61-614 Poznań, Poland
| | - Joanna Fedorowicz
- Department of Chemical Technology of Drugs, Faculty of Pharmacy, Medical University of Gdansk, 80-416 Gdansk, Poland
| | - Łukasz Balewski
- Department of Chemical Technology of Drugs, Faculty of Pharmacy, Medical University of Gdansk, 80-416 Gdansk, Poland
| | - Jakub Kokoszka
- Department of Chemical Technology of Drugs, Faculty of Pharmacy, Medical University of Gdansk, 80-416 Gdansk, Poland
| | - Anna Ordyszewska
- Department of Inorganic Chemistry, Faculty of Chemistry and Advanced Materials Centers, Gdańsk University of Technology, Narutowicza 11/12, 80-233 Gdansk, Poland
| |
Collapse
|
7
|
Suzen S, Saso L. Melatonin as mitochondria-targeted drug. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2023; 136:249-276. [PMID: 37437980 DOI: 10.1016/bs.apcsb.2023.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/14/2023]
Abstract
Oxidative damage is associated to numerous diseases as well as aging development. Mitochondria found in most eukaryotic organisms to create the energy of the cell, generate free radicals during its action and they are chief targets of the oxidants. Mitochondrial activities outspread outside the borders of the cell and effect human physiology by modulating interactions among cells and tissues. Therefore, it has been implicated in several human disorders and conditions. Melatonin (MLT) is an endogenously created indole derivative that modifies several tasks, involving mitochondria-associated activities. These possessions make MLT a powerful defender against a selection of free radical-linked disorders. MLT lessens mitochondrial anomalies causing from extreme oxidative stress and may improve mitochondrial physiology. It is a potent and inducible antioxidant for mitochondria. MLT is produced in mitochondria of conceivably of all cells and it also appears to be a mitochondria directed antioxidant which has related defensive properties as the synthesized antioxidant molecules. This chapter summarizes the suggestion that MLT is produced in mitochondria as well as disorders of mitochondrial MLT production that may associate to a number of mitochondria-linked diseases. MLT as a mitochondria-targeted drug is also discussed.
Collapse
Affiliation(s)
- Sibel Suzen
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Ankara University, Tandogan, Ankara, Turkey.
| | - Luciano Saso
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University of Rome, Rome, Italy
| |
Collapse
|
8
|
Suliphuldevara Mathada B, Gunavanthrao Yernale N, Basha JN. The Multi‐Pharmacological Targeted Role of Indole and its Derivatives: A review. ChemistrySelect 2023. [DOI: 10.1002/slct.202204181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
| | | | - Jeelan N. Basha
- Department of Chemistry Indian Academy Degree College-Autonomous Bengaluru- 560043 Karnataka India
| |
Collapse
|
9
|
Kumari A, Singh RK. Synthesis, Drug-Likeness Evaluation of Some Heterocyclic Moieties Fused Indole Derivatives as Potential Antioxidants. Comb Chem High Throughput Screen 2023; 26:2077-2084. [PMID: 36593539 DOI: 10.2174/1386207326666230102111810] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/11/2022] [Accepted: 10/17/2022] [Indexed: 01/04/2023]
Abstract
BACKGROUND Indole and its derivatives have a wide range of pharmacological effects, including analgesic, antimicrobial, antidepressant, anti-diabetic, anti-convulsant, anti-helminthic, and anti-inflammatory properties. They are crucial structural components of many of today's powerful antioxidant medications. OBJECTIVE Using the Schotten-Baumann reaction, the indole ring was linked to other key heterocyclic moieties such as morpholine, imidazole, piperidine, and piperazine at the active 3rd position and then tested for antioxidant activity. METHODS Synthesis of derivatives was accomplished under appropriate conditions and characterized by IR, NMR (1H and 13C), and mass spectrum. Using the Swiss ADME online application, ADME properties were also determined. The in vitro antioxidant activity was measured using DPPH and Reducing power method. RESULTS In the DPPH assay, compounds 5a (IC50=1.01±0.22 μg/mL), 5k (IC50=1.21 ± 0.07 μg/mL), whereas compounds 5a (EC50=23 ± 1.00 μg/mL), 5h (EC50=26±2.42 μg/mL) in the reducing power assay were most potent as compared with standard Ascorbic acid. Compounds 5a, 5h, and 5k demonstrated maximal potency equivalent to standard. Lipinski's rule was followed in ADME outcomes. CONCLUSION The synthesis and evaluation of indole derivatives to investigate their antioxidant action has received a lot of attention. These discoveries could lead to more effective antioxidant candidates being designed and developed.
Collapse
Affiliation(s)
- Archana Kumari
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, 144402, Punjab, India
- I.K. Gujral Punjab Technical University, Jalandhar, Punjab, India
| | - Rajesh Kumar Singh
- Department of Pharmaceutical Chemistry, Shivalik College of Pharmacy, Nangal, Dist. Rupnagar, 140126, Punjab, India
| |
Collapse
|
10
|
Branković J, Milivojević N, Milovanović V, Simijonović D, Petrović ZD, Marković Z, Šeklić DS, Živanović MN, Vukić MD, Petrović VP. Evaluation of antioxidant and cytotoxic properties of phenolic N-acylhydrazones: structure-activity relationship. ROYAL SOCIETY OPEN SCIENCE 2022; 9:211853. [PMID: 35706666 PMCID: PMC9174720 DOI: 10.1098/rsos.211853] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 05/06/2022] [Indexed: 05/03/2023]
Abstract
Cancer is still a relentless public health issue. Particularly, colorectal cancer is the third most prevalent cancer in men and the second in women. Moreover, cancer development and growth are associated with various cell disorders, such as oxidative stress and inflammation. The quest for efficient therapeutics is a challenging task, especially when it comes to achieving both cytotoxicity and selectivity. Herein, five series of phenolic N-acylhydrazones were synthesized and evaluated for their antioxidant potency, as well as their influence on HCT-116 and MRC-5 cells viability. Among 40 examined analogues, 20 of them expressed antioxidant activity against the DPPH radical. Furthermore, density functional theory was employed to estimate the antioxidant potency of the selected analogues from the thermodynamical aspect, as well as the preferable free-radical scavenging pathway. Cytotoxicity assay exposed enhanced selectivity of a number of analogues toward cancer cells. The structure-activity analysis revealed the impact of the type and position of the functional groups on both cell viability and selectivity toward cancer cells.
Collapse
Affiliation(s)
- Jovica Branković
- University of Kragujevac, Faculty of Science, Department of Chemistry, R. Domanovića 12, 34000 Kragujevac, Serbia
| | - Nevena Milivojević
- University of Kragujevac, Institute for Information Technologies, Kragujevac, Department of Science, Jovana Cvijića bb, 34000 Kragujevac, Serbia
| | - Vesna Milovanović
- University of Kragujevac, Faculty of Agronomy in Čačak, Ljubićska 30, Čačak, Serbia
| | - Dušica Simijonović
- University of Kragujevac, Institute for Information Technologies, Kragujevac, Department of Science, Jovana Cvijića bb, 34000 Kragujevac, Serbia
| | - Zorica D. Petrović
- University of Kragujevac, Faculty of Science, Department of Chemistry, R. Domanovića 12, 34000 Kragujevac, Serbia
| | - Zoran Marković
- University of Kragujevac, Institute for Information Technologies, Kragujevac, Department of Science, Jovana Cvijića bb, 34000 Kragujevac, Serbia
| | - Dragana S. Šeklić
- University of Kragujevac, Institute for Information Technologies, Kragujevac, Department of Science, Jovana Cvijića bb, 34000 Kragujevac, Serbia
| | - Marko N. Živanović
- University of Kragujevac, Institute for Information Technologies, Kragujevac, Department of Science, Jovana Cvijića bb, 34000 Kragujevac, Serbia
| | - Milena D. Vukić
- University of Kragujevac, Faculty of Science, Department of Chemistry, R. Domanovića 12, 34000 Kragujevac, Serbia
| | - Vladimir P. Petrović
- University of Kragujevac, Faculty of Science, Department of Chemistry, R. Domanovića 12, 34000 Kragujevac, Serbia
| |
Collapse
|
11
|
Anastassova N, Aluani D, Hristova-Avakumova N, Tzankova V, Kondeva-Burdina M, Rangelov M, Todorova N, Yancheva D. Study on the Neuroprotective, Radical-Scavenging and MAO-B Inhibiting Properties of New Benzimidazole Arylhydrazones as Potential Multi-Target Drugs for the Treatment of Parkinson's Disease. Antioxidants (Basel) 2022; 11:884. [PMID: 35624746 PMCID: PMC9138090 DOI: 10.3390/antiox11050884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/18/2022] [Accepted: 04/26/2022] [Indexed: 11/16/2022] Open
Abstract
Oxidative stress is a key contributing factor in the complex degenerating cascade in Parkinson's disease. The inhibition of MAO-B affords higher dopamine bioavailability and stops ROS formation. The incorporation of hydroxy and methoxy groups in the arylhydrazone moiety of a new series of 1,3-disubstituted benzimidazole-2-thiones could increase the neuroprotective activity. In vitro safety evaluation on SH-SY5Y cells and rat brain synaptosomes showed a strong safety profile. Antioxidant and neuroprotective effects were evaluated in H2O2-induced oxidative stress on SH-SY5Y cells and in a model of 6-OHDA-induced neurotoxicity in rat brain synaptosomes, where the dihydroxy compounds 3h and 3i demonstrated the most robust neuroprotective and antioxidant activity, more pronounced than the reference melatonin and rasagiline. Statistically significant MAO-B inhibitory effects were exerted by some of the compounds where again the catecholic compound 3h was the most potent inhibitor similar to selegiline and rasagiline. The most potent antioxidant effect in the ferrous iron induced lipid peroxidation assay was observed for the three catechols-3h and 3j, 3q. The catecholic compound 3h showed scavenging capability against superoxide radicals and antioxidant effect in the iron/deoxyribose system. The study outlines a perspective multifunctional compound with the best safety profile, neuroprotective, antioxidant and MAO-B inhibiting properties.
Collapse
Affiliation(s)
- Neda Anastassova
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Building 9, 1113 Sofia, Bulgaria; (M.R.); (D.Y.)
| | - Denitsa Aluani
- Laboratory of Drug Metabolism and Drug Toxicity, Department of Pharmacology, Pharmacotherapy and Toxicology, Faculty of Pharmacy, Medical University-Sofia, 2 Dunav Str., 1000 Sofia, Bulgaria; (D.A.); (V.T.); (M.K.-B.)
| | - Nadya Hristova-Avakumova
- Department of Medical Physics and Biophysics, Faculty of Medicine, Medical University of Sofia, 2 Zdrave Str., 1431 Sofia, Bulgaria;
| | - Virginia Tzankova
- Laboratory of Drug Metabolism and Drug Toxicity, Department of Pharmacology, Pharmacotherapy and Toxicology, Faculty of Pharmacy, Medical University-Sofia, 2 Dunav Str., 1000 Sofia, Bulgaria; (D.A.); (V.T.); (M.K.-B.)
| | - Magdalena Kondeva-Burdina
- Laboratory of Drug Metabolism and Drug Toxicity, Department of Pharmacology, Pharmacotherapy and Toxicology, Faculty of Pharmacy, Medical University-Sofia, 2 Dunav Str., 1000 Sofia, Bulgaria; (D.A.); (V.T.); (M.K.-B.)
| | - Miroslav Rangelov
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Building 9, 1113 Sofia, Bulgaria; (M.R.); (D.Y.)
| | - Nadezhda Todorova
- Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, 2 Gagarin Str., 1113 Sofia, Bulgaria;
| | - Denitsa Yancheva
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Building 9, 1113 Sofia, Bulgaria; (M.R.); (D.Y.)
| |
Collapse
|
12
|
Roy J, Wong KY, Aquili L, Uddin MS, Heng BC, Tipoe GL, Wong KH, Fung ML, Lim LW. Role of melatonin in Alzheimer's disease: From preclinical studies to novel melatonin-based therapies. Front Neuroendocrinol 2022; 65:100986. [PMID: 35167824 DOI: 10.1016/j.yfrne.2022.100986] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 01/21/2022] [Accepted: 02/07/2022] [Indexed: 12/11/2022]
Abstract
Melatonin and novel melatonin-based therapies such as melatonin-containing hybrid molecules, melatonin analogues, and melatonin derivatives have been investigated as potential therapeutics against Alzheimer's disease (AD) pathogenesis. In this review, we examine the developmental trends of melatonin therapies for AD from 1997 to 2021. We then highlight the neuroprotective mechanisms of melatonin therapy derived from preclinical studies. These mechanisms include the alleviation of amyloid-related burden, neurofibrillary tangle accumulation, oxidative stress, neuroinflammation, apoptosis, mitochondrial dysfunction, and impaired neuroplasticity and neurotransmission. We further illustrate the beneficial effects of melatonin on behavior in animal models of AD. Next, we discuss the clinical effects of melatonin on sleep, cognition, behavior, psychiatric symptoms, electroencephalography findings, and molecular biomarkers in patients with mild cognitive impairment and AD. We then explore the effectiveness of novel melatonin-based therapies. Lastly, we discuss the limitations of current melatonin therapies for AD and suggest two emerging research themes for future study.
Collapse
Affiliation(s)
- Jaydeep Roy
- Neuromodulation Laboratory, School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Kan Yin Wong
- Neuromodulation Laboratory, School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Luca Aquili
- Neuromodulation Laboratory, School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China; College of Science, Health, Engineering and Education, Discipline of Psychology, Murdoch University, Perth, Australia
| | - Md Sahab Uddin
- Neuromodulation Laboratory, School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Boon Chin Heng
- Neuromodulation Laboratory, School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China; Peking University School of Stomatology, Beijing, China
| | - George Lim Tipoe
- Neuromodulation Laboratory, School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Kah Hui Wong
- Neuromodulation Laboratory, School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China; Department of Anatomy, Faculty of Medicine, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Man Lung Fung
- Neuromodulation Laboratory, School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Lee Wei Lim
- Neuromodulation Laboratory, School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China.
| |
Collapse
|
13
|
Elshaier YA, Nemr MTM, Al Refaey M, Fadaly WAA, Barakat A. Chemistry of 2-Vinylindoles: Synthesis and Applications. NEW J CHEM 2022. [DOI: 10.1039/d2nj00460g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
As a class of compounds, 2-vinylindoles have demonstrated a wide range of biological properties. Due to the general interest in these synthons, new divergent protocols of chemical synthesis have been...
Collapse
|
14
|
Ghouse S, Sreenivasulu C, Kishore DR, Satyanarayana G. Recent developments by zinc based reagents/catalysts promoted organic transformations. Tetrahedron 2022. [DOI: 10.1016/j.tet.2021.132580] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
15
|
Pappolla MA, Perry G, Fang X, Zagorski M, Sambamurti K, Poeggeler B. Indoles as essential mediators in the gut-brain axis. Their role in Alzheimer's disease. Neurobiol Dis 2021; 156:105403. [PMID: 34087380 DOI: 10.1016/j.nbd.2021.105403] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 05/05/2021] [Accepted: 05/21/2021] [Indexed: 02/07/2023] Open
Abstract
Sporadic late-onset Alzheimer's disease (AD) is the most frequent cause of dementia associated with aging. Due to the progressive aging of the population, AD is becoming a healthcare burden of unprecedented proportions. Twenty years ago, it was reported that some indole molecules produced by the gut microbiota possess essential biological activities, including neuroprotection and antioxidant properties. Since then, research has cemented additional characteristics of these substances, including anti-inflammatory, immunoregulatory, and amyloid anti-aggregation features. Herein, we summarize the evidence supporting an integrated hypothesis that some of these substances can influence the age of onset and progression of AD and are central to the symbiotic relationship between intestinal microbes and the brain. Studies have shown that some of these substances' activities result from interactions with biologically conserved pathways and with genetic risk factors for AD. By targeting multiple pathologic mechanisms simultaneously, certain indoles may be excellent candidates to ameliorate neurodegeneration. We propose that management of the microbiota to induce a higher production of neuroprotective indoles (e.g., indole propionic acid) will promote brain health during aging. This area of research represents a new therapeutic paradigm that could add functional years of life to individuals who would otherwise develop dementia.
Collapse
Affiliation(s)
- Miguel A Pappolla
- University of Texas Medical Branch, Department of Neurology, Galveston, TX, United States of America.
| | - George Perry
- University of Texas at San Antonio, Department of Biology, San Antonio, TX, United States of America
| | - Xiang Fang
- University of Texas Medical Branch, Department of Neurology, Galveston, TX, United States of America
| | - Michael Zagorski
- Case Western Reserve University, Department of Chemistry, Cleveland, United States of America
| | - Kumar Sambamurti
- Medical University of South Carolina, Department of Neurobiology, Charleston, SC, United States of America
| | | |
Collapse
|
16
|
Kumar S, Ritika. A brief review of the biological potential of indole derivatives. FUTURE JOURNAL OF PHARMACEUTICAL SCIENCES 2020. [DOI: 10.1186/s43094-020-00141-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Abstract
Background
Various bioactive aromatic compounds containing the indole nucleus showed clinical and biological applications. Indole scaffold has been found in many of the important synthetic drug molecules which gave a valuable idea for treatment and binds with high affinity to the multiple receptors helpful in developing new useful derivatives.
Main text
Indole derivatives possess various biological activities, i.e., antiviral, anti-inflammatory, anticancer, anti-HIV, antioxidant, antimicrobial, antitubercular, antidiabetic, antimalarial, anticholinesterase activities, etc. which created interest among researchers to synthesize a variety of indole derivatives.
Conclusion
From the literature, it is revealed that indole derivatives have diverse biological activities and also have an immeasurable potential to be explored for newer therapeutic possibilities.
Collapse
|
17
|
Tchekalarova J, Ivanova N, Nenchovska Z, Tzoneva R, Stoyanova T, Uzunova V, Surcheva S, Tzonev A, T Angelova V, Andreeva-Gateva P. Evaluation of neurobiological and antioxidant effects of novel melatonin analogs in mice. Saudi Pharm J 2020; 28:1566-1579. [PMID: 33424250 PMCID: PMC7783092 DOI: 10.1016/j.jsps.2020.10.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 10/15/2020] [Indexed: 12/22/2022] Open
Abstract
Based on the pharmacophore model of melatonin (MT1) receptor, we recently synthesized a series of indole derivatives that showed anticonvulsant activity with low neurotoxicity and hepatotoxicity in rodents. In the present study, the three most potent C3-modified derivatives with hydrazine structure 3c, 3e, and 3f, with 2-chlorophenyl, 2-furyl, and 2-thienyl fragments, respectively, were selected, and their neurobiological activity was explored in mice. In Experiment #1, the dose-dependent anxiolytic effect of a single i.p. administration of the novel compounds at doses of 10, 30, and 60 mg/kg were studied in the open field (OF) test. In Experiment#2, the analgesic effect of 3c, 3e, and 3f (30–100 mg/kg) was tested in the hot plate test and formalin test. Experiment#3 was designed to assess the antidepressant-like activity of 3c, 3e, and 3f (10–60 mg/kg). The forced swimming test (FST) and tail suspension test (TST)-induced effect on markers of oxidative stress in the frontal cortex (FC), and the hippocampus was evaluated. Melatonin was used in the same doses as melatonin analogs in all three experiments as a positive control. Desipramine (10 mg/kg) was also applied as a control in the FST. The three melatonin analogs bearing hydrazide/hydrazone substitution at 3C of the indol scaffold demonstrated improved antidepressant-like activity compared to the melatonin. The tested substances are devoided of anxiolytic effects. The antioxidant activity of the melatonin analogs and analgesic potential is comparable to that of melatonin. The 3C substitution with hydrazide/hydrazone moiety substantially contributes to the antidepressant and antioxidant activity of the melatonin analogs.
Collapse
Affiliation(s)
- Jana Tchekalarova
- Institute of Neurobiology, Bulgarian Academy of Sciences, Sofia 1113, Bulgaria
| | - Natasha Ivanova
- Institute of Neurobiology, Bulgarian Academy of Sciences, Sofia 1113, Bulgaria
| | - Zlatina Nenchovska
- Institute of Neurobiology, Bulgarian Academy of Sciences, Sofia 1113, Bulgaria
| | - Rumiana Tzoneva
- Institute of Biophysics and Biomedical Engineering, BAS, Sofia, Bulgaria
| | - Tzveta Stoyanova
- Institute of Neurobiology, Bulgarian Academy of Sciences, Sofia 1113, Bulgaria
| | - Veselina Uzunova
- Institute of Biophysics and Biomedical Engineering, BAS, Sofia, Bulgaria
| | - Slavina Surcheva
- Department of Pharmacology and Toxicology, Medical Faculty, Medical University of Sofia, Bulgaria
| | - Alex Tzonev
- Department of Pharmacology and Toxicology, Medical Faculty, Medical University of Sofia, Bulgaria
| | - Violina T Angelova
- Department of Chemistry, Faculty of Pharmacy, Medical University of Sofia, Bulgaria
| | - Pavlina Andreeva-Gateva
- Department of Pharmacology and Toxicology, Medical Faculty, Medical University of Sofia, Bulgaria
| |
Collapse
|
18
|
Kumar D, Sharma S, Kalra S, Singh G, Monga V, Kumar B. Medicinal Perspective of Indole Derivatives: Recent Developments and Structure-Activity Relationship Studies. Curr Drug Targets 2020; 21:864-891. [DOI: 10.2174/1389450121666200310115327] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 02/11/2020] [Accepted: 02/24/2020] [Indexed: 12/22/2022]
Abstract
Heterocyclic compounds play a significant role in various biological processes of the human
body and many of them are in clinical use due to their diverse, chemical and biological properties.
Among these, indole is one of the most promising pharmacologically active molecules. Due to its
chemical reactivity, indole has been willingly modified to obtain a variety of new lead molecules,
which has been successfully utilized to obtained novel drug candidates for the treatment of different
pharmacological diseases. Indole-based compounds such as vincristine (anticancer), reserpine (antihypertensive),
amedalin (antidepressant) and many more describe the medicinal and pharmacological
importance of the indole in uplifting human life. In this review, we compiled various reports on indole
derivatives and their biological significance, including antifungal, antiprotozoal, antiplatelet, anti-
Alzheimer’s, anti-Parkinson’s, antioxidant and anticancer potential from 2015 onwards. In addition,
structure-activity relationship studies of the different derivatives have been included. We have also
discussed novel synthetic strategies developed during this period for the synthesis of different indole
derivatives. We believe that this review article will provide comprehensive knowledge about the medicinal
importance of indoles and will help in the design and synthesis of novel indole-based molecules
with high potency and efficacy.
Collapse
Affiliation(s)
- Devendra Kumar
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Ghal Kalan, G.T Road, Moga, Punjab, 142001, India
| | - Sahil Sharma
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Ghal Kalan, G.T Road, Moga, Punjab, 142001, India
| | - Sourav Kalra
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Ghal Kalan, G.T Road, Moga, Punjab, 142001, India
| | - Gurpreet Singh
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Ghal Kalan, G.T Road, Moga, Punjab, 142001, India
| | - Vikramdeep Monga
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Ghal Kalan, G.T Road, Moga, Punjab, 142001, India
| | - Bhupinder Kumar
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Ghal Kalan, G.T Road, Moga, Punjab, 142001, India
| |
Collapse
|
19
|
Haider K, Haider MR, Neha K, Yar MS. Free radical scavengers: An overview on heterocyclic advances and medicinal prospects. Eur J Med Chem 2020; 204:112607. [PMID: 32721784 DOI: 10.1016/j.ejmech.2020.112607] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 06/08/2020] [Accepted: 06/19/2020] [Indexed: 12/22/2022]
Abstract
In the present scenario, there has been a lot of consideration toward the field of free radical chemistry. Free radicals responsive oxygen species are produced by different endogenous frameworks, exposure to various physicochemical conditions, radiation, toxins, metabolized drug by-product, and pathological states. On the off chance that free radical overpowers the body's capacity, it generates a condition known as oxidative stress, which can alter physiological conditions of the body and results in several diseases. For appropriate physiological function, it is necessary to have a proper balance between free radicals and antioxidants. Antioxidants chemically inhibit the oxidation process; they are also known as free radical scavengers. For tackling the problem of oxidative stress application of an external source of antioxidant is helpful. A lot of antioxidants of natural, semi-synthetic and synthetic origin are in use, with time search of more effective, nontoxic, safe antioxidant is intensified. The present review, discuss different synthetic derivatives bearing various heterocyclic scaffolds as radical scavengers.
Collapse
Affiliation(s)
- Kashif Haider
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Md Rafi Haider
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Kumari Neha
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - M Shahar Yar
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India.
| |
Collapse
|
20
|
Abuelizz HA, Anouar E, Marzouk M, Taie HAA, Ahudhaif A, Al-Salahi R. DFT study and radical scavenging activity of 2-phenoxypyridotriazolo pyrimidines by DPPH, ABTS, FRAP and reducing power capacity. CHEMICAL PAPERS 2020. [DOI: 10.1007/s11696-020-01126-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
21
|
New benzimidazole-aldehyde hybrids as neuroprotectors with hypochlorite and superoxide radical-scavenging activity. Pharmacol Rep 2020; 72:846-856. [PMID: 32125683 DOI: 10.1007/s43440-020-00077-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 12/24/2019] [Accepted: 12/30/2019] [Indexed: 01/08/2023]
Abstract
BACKGROUND Many neurodegenerative disorders include oxidative stress-mediated pathology. Melatonin and its metabolites act as endogenous reactive oxygen species (ROS) scavengers and antioxidants. N,N'-Disubstituted benzimidazole-2-thiones with extended side chains could exert antioxidant and neuroprotective properties due to structural similarities to melatonin. METHODS The toxicological potential of the compounds was evaluated by monitoring the synaptosomal viability and the levels of reduced glutathione (GSH) in isolated rat brain synaptosomes. The neuroprotective effects were assessed in vitro in a model of 6-hydroxydopamine (6-OHDA)-induced neurotoxicity. The capability to decrease superoxide anion radical and hypochlorite was evaluated by luminol-dependent chemiluminescent assays. RESULTS Compounds 5-7 containing residues of veratraldehyde, vanillin, and syringaldehyde at concentration 250 μM, preserved at the highest degree the synaptosomal viability and GSH levels. Further screening of compounds 5-7 at lower concentrations of 100 μM, 10 μM, and 1 μM, respectively, demonstrated that 6 and 7 do not show any toxicity within this concentration range. In the model of 6-OHDA-induced oxidative stress, 6 revealed concentration-dependent, neuroprotective, and antioxidant activities similar to melatonin. All the three compounds demonstrated ability to decrease the chemiluminescent scavenging index (CL-SI) in the hypochlorite containing system. In the superoxide system, the hydrazones exhibited different effects on the signal. CONCLUSIONS Our studies suggest that the benzimidazole-aldehyde hybrids act as direct ROS scavengers and membranes' stabilizers against free radicals. Thus, they play a role in the antioxidative defense system and have a promising potential as therapeutic neuroprotective agents for the treatment of neurodegenerative disorders.
Collapse
|
22
|
Tan XJ, Wang D, Hei XM, Yang FC, Zhu YL, Xing DX, Ma JP. Synthesis, crystal structures, antiproliferative activities and reverse docking studies of eight novel Schiff bases derived from benzil. ACTA CRYSTALLOGRAPHICA SECTION C-STRUCTURAL CHEMISTRY 2020; 76:44-63. [PMID: 31919307 DOI: 10.1107/s2053229619015687] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 11/19/2019] [Indexed: 12/15/2022]
Abstract
Eight novel Schiff bases derived from benzil dihydrazone (BDH) or benzil monohydrazone (BMH) and four fused-ring carbonyl compounds (3-formylindole, FI; 3-acetylindole, AI; 3-formyl-1-methylindole, MFI; 1-formylnaphthalene, FN) were synthesized and characterized by elemental analysis, ESI-QTOF-MS, 1H and 13C NMR spectroscopy, as well as single-crystal X-ray diffraction. They are (1Z,2Z)-1,2-bis{(E)-[(1H-indol-3-yl)methylidene]hydrazinylidene}-1,2-diphenylethane (BDHFI), C32H24N6, (1Z,2Z)-1,2-bis{(E)-[1-(1H-indol-3-yl)ethylidene]hydrazinylidene}-1,2-diphenylethane (BDHAI), C34H28N6, (1Z,2Z)-1,2-bis{(E)-[(1-methyl-1H-indol-3-yl)methylidene]hydrazinylidene}-1,2-diphenylethane (BMHMFI) acetonitrile hemisolvate, C34H28N6·0.5CH3CN, (1Z,2Z)-1,2-bis{(E)-[(naphthalen-1-yl)methylidene]hydrazinylidene}-1,2-diphenylethane (BDHFN), C36H26N4, (Z)-2-{(E)-[(1H-indol-3-yl)methylidene]hydrazinylidene}-1,2-diphenylethanone (BMHFI), C23H17N3O, (Z)-2-{(E)-[1-(1H-indol-3-yl)ethylidene]hydrazinylidene}-1,2-diphenylethanone (BMHAI), C24H19N3O, (Z)-2-{(E)-[(1-methyl-1H-indol-3-yl)methylidene]hydrazinylidene}-1,2-diphenylethanone (BMHMFI), C24H19N3O, and (Z)-2-{(E)-[(naphthalen-1-yl)methylidene]hydrazinylidene}-1,2-diphenylethanone (BMHFN) C25H18N2O. Moreover, the in vitro cytotoxicity of the eight title compounds was evaluated against two tumour cell lines (A549 human lung cancer and 4T1 mouse breast cancer) and two normal cell lines (MRC-5 normal lung cells and NIH 3T3 fibroblasts) by MTT assay. The results indicate that four (BDHMFI, BDHFN, BMHMFI and BMHFN) are inactive and the other four (BDHFI, BDHAI, BMHFI and BMHAI) show severe toxicities against human A549 and mouse 4T1 cells, similar to the standard cisplatin. All the compounds exhibited weaker cytotoxicity against normal cells than cancer cells. The Swiss Target Prediction web server was applied for the prediction of protein targets. After analyzing the differences in frequency hits between these active and inactive Schiff bases, 18 probable targets were selected for reverse docking with the Surflex-dock function in SYBYL-X 2.0 software. Three target proteins, i.e. human ether-á-go-go-related (hERG) potassium channel, the inhibitor of apoptosis protein 3 and serine/threonine-protein kinase PIM1, were chosen as the targets. Finally, the ligand-based structure-activity relationships were analyzed based on the putative protein target (hERG) docking results, which will be used to design and synthesize novel hERG ion channel inhibitors.
Collapse
Affiliation(s)
- Xue Jie Tan
- School of Chemistry and Pharmaceutical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong Province 250353, People's Republic of China
| | - Di Wang
- School of Chemistry and Pharmaceutical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong Province 250353, People's Republic of China
| | - Xiao Ming Hei
- School of Chemistry and Pharmaceutical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong Province 250353, People's Republic of China
| | - Feng Cun Yang
- School of Chemistry and Pharmaceutical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong Province 250353, People's Republic of China
| | - Ya Ling Zhu
- School of Chemistry and Pharmaceutical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong Province 250353, People's Republic of China
| | - Dian Xiang Xing
- School of Chemistry and Pharmaceutical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong Province 250353, People's Republic of China
| | - Jian Ping Ma
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Centre of Functionalized Probes for Chemical Imaging, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, People's Republic of China
| |
Collapse
|
23
|
Angelova VT, Rangelov M, Todorova N, Dangalov M, Andreeva-Gateva P, Kondeva-Burdina M, Karabeliov V, Shivachev B, Tchekalarova J. Discovery of novel indole-based aroylhydrazones as anticonvulsants: Pharmacophore-based design. Bioorg Chem 2019; 90:103028. [DOI: 10.1016/j.bioorg.2019.103028] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 05/29/2019] [Accepted: 05/31/2019] [Indexed: 10/26/2022]
|
24
|
Kumari A, Singh RK. Medicinal chemistry of indole derivatives: Current to future therapeutic prospectives. Bioorg Chem 2019; 89:103021. [PMID: 31176854 DOI: 10.1016/j.bioorg.2019.103021] [Citation(s) in RCA: 296] [Impact Index Per Article: 49.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 05/22/2019] [Accepted: 05/29/2019] [Indexed: 12/21/2022]
Abstract
Indole is a versatile pharmacophore, a privileged scaffold and an outstanding heterocyclic compound with wide ranges of pharmacological activities due to different mechanisms of action. It is an superlative moiety in drug discovery with the sole property of resembling different structures of the protein. Plenty of research has been taking place in recent years to synthesize and explore the various therapeutic prospectives of this moiety. This review summarizes some of the recent effective chemical synthesis (2014-2018) for indole ring. This review also emphasized on the structure-activity relationship (SAR) to reveal the active pharmacophores of various indole analogues accountable for anticancer, anticonvulsant, antimicrobial, antitubercular, antimalarial, antiviral, antidiabetic and other miscellaneous activities which have been investigated in the last five years. The precise features with motives and framework of each research topic is introduced for helping the medicinal chemists to understand the perspective of the context in a better way. This review will definitely offer the platform for researchers to strategically design diverse novel indole derivatives having different promising pharmacological activities with reduced toxicity and side effects.
Collapse
Affiliation(s)
- Archana Kumari
- Rayat-Bahra Institute of Pharmacy, Dist. Hoshiarpur, 146104 Punjab, India
| | - Rajesh K Singh
- Department of Pharmaceutical Chemistry, Shivalik College of Pharmacy, Nangal, Dist. Rupnagar, 140126 Punjab, India.
| |
Collapse
|
25
|
Kilic H, Dalkilic O. The Reaction of Donor‐Acceptor Cyclopropanes with 4,7‐Dihydroindole: A New Protocol for the Synthesis of Divergent C2‐Alkylated Indoles. ChemistrySelect 2019. [DOI: 10.1002/slct.201900268] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Haydar Kilic
- Department of ChemistryFaculty of SciencesAtatürk University Erzurum 25240 Turkey
- Oltu Vocational Training SchoolAtatürk University Erzurum 25400 Turkey
| | - Oguzhan Dalkilic
- Department of ChemistryFaculty of SciencesAtatürk University Erzurum 25240 Turkey
| |
Collapse
|
26
|
El-Farrash RA, El-Shimy MS, Tawfik S, Nada AS, Salem DAD, M Gallo MS, Abd-Elmohsen EW. Effect of phototherapy on oxidant/antioxidant status: a randomized controlled trial. Free Radic Res 2019; 53:179-186. [PMID: 30458636 DOI: 10.1080/10715762.2018.1549364] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
In order to evaluate the effect of different types of phototherapy on oxidant/antioxidant status in hyperbilirubinemic neonates, an interventional randomized control trial was conducted on 120 neonates ≥35 weeks' gestational age with indirect hyperbilirubinemia reaching phototherapy level. This study is registered with ClinicalTrials.gov as NCT03074292. Neonates were assigned to three groups; 40 neonates received conventional phototherapy, 40 received intensive phototherapy and 40 received blue light-emitting diodes (LED) phototherapy. Complete blood count (CBC), total serum bilirubin (TSB), total antioxidant capacity (TAC), malondialdehyde (MDA), nitric oxide (NO), copper (Cu), zinc (Zn), and iron (Fe) levels were measured before and 24 hours after phototherapy. TSB decreased postphototherapy in all three groups (p < .05 for all), with significantly lower levels following intensive and LED phototherapy compared to conventional phototherapy (p < .05 for both). TAC decreased postphototherapy in the three groups (p < .05 for all). MDA and NO increased postphototherapy (p < .05 for all), with the intensive phototherapy group having the highest levels followed by the conventional while LED phototherapy group showed the lowest levels in comparison to the other groups (p < .05). Cu, Zn and Fe increased postphototherapy in all three groups (p < .05 for all). Positive correlations were found between postphototherapy TSB with TAC, Cu and Zn (p < .05) and negative correlations with MDA, NO and Fe (p < .05) among neonates of the 3 studied groups. In conclusion, different photo therapies have an impact on oxidant/antioxidant balance and are associated with increased oxidative stress markers with the LED phototherapy being the safest.
Collapse
Affiliation(s)
- Rania A El-Farrash
- a Pediatrics Department, Faculty of Medicine , Ain Shams University , Cairo , Egypt
| | - Mohammed S El-Shimy
- a Pediatrics Department, Faculty of Medicine , Ain Shams University , Cairo , Egypt
| | - Sameh Tawfik
- b Pediatrics Department , Military Medical Academy , Cairo , Egypt
| | - Ahmed S Nada
- c Drug Radiation Research Department , National Center for Radiation Research Technology, Atomic Energy Authority , Cairo , Egypt
| | - Dalia A D Salem
- d Clinical pathology Department, Faculty of Medicine , Ain Shams University , Cairo , Egypt
| | | | | |
Collapse
|
27
|
Ozcan-Sezer S, Ince E, Akdemir A, Ceylan ÖÖ, Suzen S, Gurer-Orhan H. Aromatase inhibition by 2-methyl indole hydrazone derivatives evaluated via molecular docking and in vitro activity studies. Xenobiotica 2018; 49:549-556. [DOI: 10.1080/00498254.2018.1482029] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Senem Ozcan-Sezer
- Faculty of Pharmacy, Department of Pharmaceutical Toxicology, Ege University, Izmir, Turkey
| | - Elif Ince
- Faculty of Pharmacy, Department of Pharmaceutical Toxicology, Ege University, Izmir, Turkey
| | - Atilla Akdemir
- Computer-Aided Drug Discovery Laboratory, Faculty of Pharmacy, Department of Pharmacology, Bezmialem Vakif University, Istanbul, Turkey
| | - Özlem Öztürk Ceylan
- Faculty of Pharmacy, Department of Pharmaceutical Chemistry, Ankara University, Ankara, Turkey
| | - Sibel Suzen
- Faculty of Pharmacy, Department of Pharmaceutical Chemistry, Ankara University, Ankara, Turkey
| | - Hande Gurer-Orhan
- Faculty of Pharmacy, Department of Pharmaceutical Toxicology, Ege University, Izmir, Turkey
| |
Collapse
|
28
|
Vincent B. Protective roles of melatonin against the amyloid-dependent development of Alzheimer’s disease: A critical review. Pharmacol Res 2018; 134:223-237. [DOI: 10.1016/j.phrs.2018.06.011] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 05/22/2018] [Accepted: 06/12/2018] [Indexed: 12/21/2022]
|
29
|
Goyal D, Kaur A, Goyal B. Benzofuran and Indole: Promising Scaffolds for Drug Development in Alzheimer's Disease. ChemMedChem 2018; 13:1275-1299. [DOI: 10.1002/cmdc.201800156] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Revised: 04/27/2018] [Indexed: 12/20/2022]
Affiliation(s)
- Deepti Goyal
- Department of Chemistry, Faculty of Basic and Applied Sciences; Sri Guru Granth Sahib World University; Fatehgarh Sahib 140406 Punjab India
| | - Amandeep Kaur
- Department of Chemistry, Faculty of Basic and Applied Sciences; Sri Guru Granth Sahib World University; Fatehgarh Sahib 140406 Punjab India
| | - Bhupesh Goyal
- School of Chemistry and Biochemistry; Thapar Institute of Engineering & Technology; Patiala 147004 Punjab India
| |
Collapse
|
30
|
Danne AB, Choudhari AS, Chakraborty S, Sarkar D, Khedkar VM, Shingate BB. Triazole-diindolylmethane conjugates as new antitubercular agents: synthesis, bioevaluation, and molecular docking. MEDCHEMCOMM 2018; 9:1114-1130. [PMID: 30108999 DOI: 10.1039/c8md00055g] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 04/09/2018] [Indexed: 11/21/2022]
Abstract
We describe the synthesis of novel triazole-incorporated diindolylmethanes (DIMs) using a molecular hybridization approach. The in vitro antitubercular activity of the DIMs against Mycobacterium tuberculosis H37Ra (ATCC 25177) was tested in the active and dormant state. Among all the synthesized conjugates, the compounds 6b, 6f, 6l, 6n, 6q, 6r, and 6s displayed good antitubercular activity against both the active and dormant Mtb H37Ra strain. The compound 6l exhibited good antitubercular activity against dormant Mtb H37Ra with an IC50 value of 1 μg mL-1 and IC90 (MIC) value of 3 μg mL-1. The compounds 6b, 6l, and 6r displayed good antitubercular activity against active Mtb H37Ra with IC50 values of 2.19, 1.52, and 0.22 μg mL-1, respectively. The compounds 6b, 6h, 6l, and 6s displayed more than 70% inhibition against the Gram-positive Bacillus subtilus strain at 3 μg mL-1. The molecular docking study showed the binding modes of the titled compounds in the active site of the DprE1 enzyme and assisted with elucidating a structural basis for the inhibition of Mycobacteria.
Collapse
Affiliation(s)
- Ashruba B Danne
- Department of Chemistry , Dr. Babasaheb Ambedkar Marathwada University , Aurangabad 431 004 , India . ; ; Tel: +(91) 240 2403312
| | - Amit S Choudhari
- Combi-Chem Bio-Resource Center , Organic Chemistry Division , CSIR-National Chemical Laboratory , Pune 411 008 , India
| | - Shakti Chakraborty
- Combi-Chem Bio-Resource Center , Organic Chemistry Division , CSIR-National Chemical Laboratory , Pune 411 008 , India
| | - Dhiman Sarkar
- Combi-Chem Bio-Resource Center , Organic Chemistry Division , CSIR-National Chemical Laboratory , Pune 411 008 , India
| | - Vijay M Khedkar
- Department of Pharmaceutical Chemistry , Shri Vile Parle Kelavani Mandal's Institute of Pharmacy , Dhule , Maharashtra 424 001 , India
| | - Bapurao B Shingate
- Department of Chemistry , Dr. Babasaheb Ambedkar Marathwada University , Aurangabad 431 004 , India . ; ; Tel: +(91) 240 2403312
| |
Collapse
|
31
|
Zhou H, Ma Q, Zhu P, Ren J, Reiter RJ, Chen Y. Protective role of melatonin in cardiac ischemia-reperfusion injury: From pathogenesis to targeted therapy. J Pineal Res 2018; 64. [PMID: 29363153 DOI: 10.1111/jpi.12471] [Citation(s) in RCA: 186] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 01/16/2018] [Indexed: 02/06/2023]
Abstract
Acute myocardial infarction (MI) is a major cause of mortality and disability worldwide. In patients with MI, the treatment option for reducing acute myocardial ischemic injury and limiting MI size is timely and effective myocardial reperfusion using either thombolytic therapy or primary percutaneous coronary intervention (PCI). However, the procedure of reperfusion itself induces cardiomyocyte death, known as myocardial reperfusion injury, for which there is still no effective therapy. Recent evidence has depicted a promising role of melatonin, which possesses powerful antioxidative and anti-inflammatory properties, in the prevention of ischemia-reperfusion (IR) injury and the protection against cardiomyocyte death. A number of reports explored the mechanism of action behind melatonin-induced beneficial effects against myocardial IR injury. In this review, we summarize the research progress related to IR injury and discuss the unique actions of melatonin as a protective agent. Furthermore, the possible mechanisms responsible for the myocardial benefits of melatonin against reperfusion injury are listed with the prospect of the use of melatonin in clinical application.
Collapse
Affiliation(s)
- Hao Zhou
- Department of Cardiology, Chinese PLA General Hospital, Beijing, China
| | - Qiang Ma
- Department of Cardiology, Chinese PLA General Hospital, Beijing, China
| | - Pingjun Zhu
- Department of Cardiology, Chinese PLA General Hospital, Beijing, China
| | - Jun Ren
- Department of Cardiology, Zhongshan Hospital Fudan University, Shanghai, China
| | - Russel J Reiter
- Department of Cellular and Structural Biology, UT Health San Antonio, San Antonio, TX, USA
| | - Yundai Chen
- Department of Cardiology, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
32
|
Sakagami H, Tsuji M, Tomomura M, Masuda Y, Iwama S, Nakagawa M, Suzuki H, Tanaka K, Abe T, Tamura N, Tomomura A, Yokose S, Takeshima H, Natori T, Horiuchi M, Fujisawa T, Kiuchi Y, Oguchi K, Yasui T, Oizumi H, Oizumi T. Protection of Differentiating Neuronal Cells from Amyloid β Peptide-induced Injury by Alkaline Extract of Leaves of Sasa senanensis Rehder. In Vivo 2018; 32:231-239. [PMID: 29475904 PMCID: PMC5905189 DOI: 10.21873/invivo.11229] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 12/15/2017] [Accepted: 12/18/2017] [Indexed: 12/28/2022]
Abstract
BACKGROUND/AIM We have previously reported the protection of doxorubicin-induced keratinocyte toxicity by alkaline extract of the leaves of Sasa senanensis Rehder (SE). In order to extend the generality of the cell protective effect of SE, we investigated whether it also protects rat PC12 and human SH-SY5Y neuron model cells from amyloid β-peptide (Aβ)-induced injury. MATERIALS AND METHODS Viability of cells was determined by the MTT method. Cytotoxicity was evaluated by the concentration that reduces the cell viability by 50% (CC50). Protection from Aβ-induced cytotoxicity was evaluated by the concentration that reversed the Aβ-induced reduction of viability by 50% (EC50). The selectivity index (SI) of neuroprotective activity was defined as the ratio of EC50 to CC50 Aβ1-42 aggregation was assayed using Aβ1-42 ammonium hydroxide. RESULTS SE showed hormetic growth stimulation at lower concentrations in both neuron precursors and differentiated cells. SE reproducibly inhibited Aβ-induced cytotoxicity against both undifferentiated and differentiated neuron cells. Both the extent of differentiation induction and viability depended on the cell density, suggesting the release of growth and differentiation stimulation substances into culture supernatant. Higher concentrations of SE partially reduced the Aβ1-42 aggregation. CONCLUSION Hormetic growth stimulation and inhibition of aggregation may be involved in the neuroprotective activity of SE.
Collapse
Affiliation(s)
| | - Mayumi Tsuji
- School of Medicine, Showa University, Tokyo, Japan
| | | | | | - Soichi Iwama
- Meikai University School of Dentistry, Saitama, Japan
| | - Mika Nakagawa
- Meikai University School of Dentistry, Saitama, Japan
| | - Hayato Suzuki
- Meikai University School of Dentistry, Saitama, Japan
| | - Kenta Tanaka
- Meikai University School of Dentistry, Saitama, Japan
| | - Tomoyuki Abe
- Meikai University School of Dentistry, Saitama, Japan
| | | | | | | | | | - Takenori Natori
- Faculty of Pharmaceutical Sciences, Teikyo Heisei University, Tokyo, Japan
| | - Misaki Horiuchi
- Daiwa Biological Research Institute Co., Ltd., Kanagawa, Japan
| | | | - Yuji Kiuchi
- School of Medicine, Showa University, Tokyo, Japan
| | | | | | - Hiroshi Oizumi
- Daiwa Biological Research Institute Co., Ltd., Kanagawa, Japan
| | - Takaaki Oizumi
- Daiwa Biological Research Institute Co., Ltd., Kanagawa, Japan
| |
Collapse
|
33
|
Singh G, Kalra P, Arora A, Singh A, Sharma G, Sanchita, Maurya IK, Dutta S, Munshi P, Verma V. Acetylenic Indole-Encapsulated Schiff Bases: Synthesis, In Silico Studies as Potent Antimicrobial Agents, Cytotoxic Evaluation and Synergistic Effects. ChemistrySelect 2018. [DOI: 10.1002/slct.201703018] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Gurjaspreet Singh
- Department of Chemistry and Centre of Advanced Studies; Panjab University, Chandigarh; 160014 India
| | - Pooja Kalra
- Department of Chemistry and Centre of Advanced Studies; Panjab University, Chandigarh; 160014 India
| | - Aanchal Arora
- Khalsa College for Women, Civil Lines, Ludhiana, Punjab; 141001 India
| | - Akshpreet Singh
- Department of Chemistry and Centre of Advanced Studies; Panjab University, Chandigarh; 160014 India
| | - Geetika Sharma
- Department of Chemistry and Centre of Advanced Studies; Panjab University, Chandigarh; 160014 India
| | - Sanchita
- Department of Chemistry and Centre of Advanced Studies; Panjab University, Chandigarh; 160014 India
| | - Indresh Kumar Maurya
- Department of Microbial Biotechnology; Panjab University, Chandigarh; 160014 India
| | - Sanjay Dutta
- Department of Chemistry; School of Natural Sciences; Shiv Nadar University, Greater Noida; 201314 India
| | - Parthapratim Munshi
- Department of Chemistry; School of Natural Sciences; Shiv Nadar University, Greater Noida; 201314 India
| | - Vikas Verma
- Department of Chemistry; Guru Jambheshwar University, Hisar; 125001 India
| |
Collapse
|
34
|
Effects of Melatonin on Intestinal Microbiota and Oxidative Stress in Colitis Mice. BIOMED RESEARCH INTERNATIONAL 2018; 2018:2607679. [PMID: 29546052 PMCID: PMC5818891 DOI: 10.1155/2018/2607679] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Revised: 12/29/2017] [Accepted: 01/04/2018] [Indexed: 12/15/2022]
Abstract
This study investigated the antioxidant capacity and intestinal bacteria community in a mouse model of DSS-induced colitis. Twenty mice were randomly assigned to two treatments: mice with colitis induced by 5% DSS (DSS group) and mice with colitis induced by 5% DSS that also received melatonin treatment (MEL group). The DSS group showed significantly less antioxidant capability than the MEL group, but the two groups did not differ significantly in terms of diversity index (Shannon and Simpson), bacterial culture abundance (Chao1 and ACE), and coverage (Good's coverage estimator). Bacteroidetes were the most abundant phylum in the DSS group (58.93%), followed by Firmicutes with 31.46% and Proteobacteria with 7.97%. In contrast, Firmicutes were the most abundant in the MEL group (49.48%), followed by Bacteroidetes with 41.63% and Proteobacteria with 7.50%. The results support the use of melatonin for prevention of intestinal bowel disease due to its modulatory effect on antioxidant capability and microbiota in mice with colitis. Melatonin was demonstrated to improve the oxidative stress resistance of mice with colitis and regulate the intestinal microbial flora, thus improving intestinal health.
Collapse
|
35
|
Abstract
Ordered mesoporous siliceous material has been identified as one of the key elements of the catalysis concept. Here we report an efficient Friedel-Crafts reaction of indoles with isatins catalyzed by PWA/MCM-41, which got the di(indolyl)indolin-2-ones derivatives with high yield. Moreover, the catalysts were characterized by XRD and SEM/EDS, the EDS spectrum indicated that the catalyst used in this reaction also contains tungsten, and the proposed mechanism for the synthesis of 3,3-di(indolyl)indolin-2-ones was also discussed. Finally, the catalyst can be reused repeatedly for several times without obvious loss of activity.
Collapse
|
36
|
Borowiecki P, Justyniak I, Ochal Z. Lipase-catalyzed kinetic resolution approach toward enantiomerically enriched 1-(β-hydroxypropyl)indoles. ACTA ACUST UNITED AC 2017. [DOI: 10.1016/j.tetasy.2017.10.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
37
|
Iraji A, Firuzi O, Khoshneviszadeh M, Tavakkoli M, Mahdavi M, Nadri H, Edraki N, Miri R. Multifunctional iminochromene-2H-carboxamide derivatives containing different aminomethylene triazole with BACE1 inhibitory, neuroprotective and metal chelating properties targeting Alzheimer's disease. Eur J Med Chem 2017; 141:690-702. [PMID: 29107423 DOI: 10.1016/j.ejmech.2017.09.057] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 09/25/2017] [Accepted: 09/27/2017] [Indexed: 01/26/2023]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder known for the presence of amyloid beta plaques resulting from the sequential action of β-secretase and γ-secretase on amyloid precursor protein. We developed and synthesized, through click reactions, a new family of iminochromene carboxamides containing different aminomethylene triazole. The BACE1 inhibition, neuroprotective capacity and metal chelation of these derivatives make them ideal candidates against AD. Most of the synthesized compounds were shown to have potent BACE1 inhibitory activity in a FRET assay, with an IC50 value of 2.2 μM for the most potent compound. Moreover, molecular modeling evaluation of these BACE1 inhibitors demonstrates the vital role of the amine and amide linkers through hydrogen bond interactions with key amino acids in the BACE1 active site. Our in vitro neuroprotective evaluations in PC12 neuronal cells of Aβ-induced neuroprotection demonstrated promising activity for most of the compounds as neuroprotective agents. Based on our findings, we propose that introduction of a phthalimide substitute on the triazole ring shown to be interesting multifunctional lead compound worthy of further study.
Collapse
Affiliation(s)
- Aida Iraji
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Omidreza Firuzi
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mehdi Khoshneviszadeh
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Medicinal Chemistry, Faculty of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Marjan Tavakkoli
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Mahdavi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamid Nadri
- Department of Medicinal Chemistry, Faculty of Pharmacy, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Najmeh Edraki
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Ramin Miri
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
38
|
Grasso G, Santoro AM, Lanza V, Sbardella D, Tundo GR, Ciaccio C, Marini S, Coletta M, Milardi D. The double faced role of copper in Aβ homeostasis: A survey on the interrelationship between metal dyshomeostasis, UPS functioning and autophagy in neurodegeneration. Coord Chem Rev 2017. [DOI: 10.1016/j.ccr.2017.06.004] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
39
|
Microwave assisted synthesis of novel hybrid tacrine-sulfonamide derivatives and investigation of their antioxidant and anticholinesterase activities. Bioorg Chem 2017; 70:245-255. [DOI: 10.1016/j.bioorg.2017.01.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2016] [Revised: 01/06/2017] [Accepted: 01/07/2017] [Indexed: 11/18/2022]
|
40
|
Detection of Reactive Oxygen and Nitrogen Species by Electron Paramagnetic Resonance (EPR) Technique. Molecules 2017; 22:molecules22010181. [PMID: 28117726 PMCID: PMC6155876 DOI: 10.3390/molecules22010181] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 01/05/2017] [Accepted: 01/17/2017] [Indexed: 01/15/2023] Open
Abstract
During the last decade there has been growing interest in physical-chemical oxidation processes and the behavior of free radicals in living systems. Radicals are known as intermediate species in a variety of biochemical reactions. Numerous techniques, assays and biomarkers have been used to measure reactive oxygen and nitrogen species (ROS and RNS), and to examine oxidative stress. However, many of these assays are not entirely satisfactory or are used inappropriately. The purpose of this chapter is to review current EPR (Electron Paramagnetic Resonance) spectroscopy methods for measuring ROS, RNS, and their secondary products, and to discuss the strengths and limitations of specific methodological approaches.
Collapse
|
41
|
Pei HF, Hou JN, Wei FP, Xue Q, Zhang F, Peng CF, Yang Y, Tian Y, Feng J, Du J, He L, Li XC, Gao EH, Li D, Yang YJ. Melatonin attenuates postmyocardial infarction injury via increasing Tom70 expression. J Pineal Res 2017; 62. [PMID: 27706848 DOI: 10.1111/jpi.12371] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Accepted: 09/30/2016] [Indexed: 12/15/2022]
Abstract
Mitochondrial dysfunction leads to reactive oxygen species (ROS) overload, exacerbating injury in myocardial infarction (MI). As a receptor for translocases in the outer mitochondrial membrane (Tom) complex, Tom70 has an unknown function in MI, including melatonin-induced protection against MI injury. We delivered specific small interfering RNAs against Tom70 or lentivirus vectors carrying Tom70a sequences into the left ventricles of mice or to cultured neonatal murine ventricular myocytes (NMVMs). At 48 h post-transfection, the left anterior descending coronary arteries of mice were permanently ligated, while the NMVMs underwent continuous hypoxia. At 24 h after ischemia/hypoxia, oxidative stress was assessed by dihydroethidium and lucigenin-enhanced luminescence, mitochondrial damage by transmission electron microscopy and ATP content, and cell apoptosis by terminal deoxynucleotidyl transferase dUTP nick-end labeling and caspase-3 assay. At 4 weeks after ischemia, cardiac function and fibrosis were evaluated in mice by echocardiography and Masson's trichrome staining, respectively. Ischemic/hypoxic insult reduced Tom70 expression in cardiomyocytes. Tom70 downregulation aggravated post-MI injury, with increased mitochondrial fragmentation and ROS overload. In contrast, Tom70 upregulation alleviated post-MI injury, with improved mitochondrial integrity and decreased ROS production. PGC-1α/Tom70 expression in ischemic myocardium was increased with melatonin alone, but not when combined with luzindole. Melatonin attenuated post-MI injury in control but not in Tom70-deficient mice. N-acetylcysteine (NAC) reversed the adverse effects of Tom70 deficiency in mitochondria and cardiomyocytes, but at a much higher concentration than melatonin. Our findings showed that Tom70 is essential for melatonin-induced protection against post-MI injury, by breaking the cycle of mitochondrial impairment and ROS generation.
Collapse
Affiliation(s)
- Hai-Feng Pei
- Department of Cardiology, Chengdu Military General Hospital, Chengdu, China
| | - Juan-Ni Hou
- Department of Cardiology, Chengdu Military General Hospital, Chengdu, China
| | - Fei-Peng Wei
- Department of Interventional Radiology, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Qiang Xue
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Fan Zhang
- Department of Nephrology, Chengdu Military General Hospital, Chengdu, China
| | - Cheng-Fei Peng
- Cardiovascular Research Institute, Department of Cardiology, General Hospital of Shenyang Military Region, Shenyang, China
| | - Yi Yang
- Department of Cardiology, Chengdu Military General Hospital, Chengdu, China
| | - Yue Tian
- Department of Cardiology, Chengdu Military General Hospital, Chengdu, China
| | - Juan Feng
- Department of Cardiology, Chengdu Military General Hospital, Chengdu, China
| | - Jin Du
- Department of Cardiology, Chengdu Military General Hospital, Chengdu, China
| | - Lei He
- Department of Cardiology, Chengdu Military General Hospital, Chengdu, China
| | - Xiu-Chuan Li
- Department of Cardiology, Chengdu Military General Hospital, Chengdu, China
| | - Er-He Gao
- Center of Translational Medicine, Temple University School of Medicine, Philadelphia, USA
| | - De Li
- Department of Cardiology, Chengdu Military General Hospital, Chengdu, China
| | - Yong-Jian Yang
- Department of Cardiology, Chengdu Military General Hospital, Chengdu, China
| |
Collapse
|
42
|
Li Y, Liu H, Sun J, Tian Y, Li C. Effect of melatonin on the peripheral T lymphocyte cell cycle and levels of reactive oxygen species in patients with premature ovarian failure. Exp Ther Med 2016; 12:3589-3594. [PMID: 28105091 PMCID: PMC5228535 DOI: 10.3892/etm.2016.3833] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 10/03/2016] [Indexed: 12/21/2022] Open
Abstract
The objective of the present study was to observe the curative effect and mechanism of melatonin for suppression of premature ovarian failure (POF). From December 2014 to June 2015, 128 patients were consecutively diagnosed with POF in the Department of Gynaecology and Obstetrics. The patients were randomly divided into the experimental and control groups. The experimental group received melatonin tablets (1–3 mg/day), while the control group received placebo tablets. The levels of six sex hormones, percentage of T lymphocytes in the G1/M phase, and levels of reactive oxygen species (ROS) were determined at four different time-points (1 day before treatment, and at 1, 3 and 6 months after treatment) in both groups. After 6 months of treatment, the levels of luteinizing hormone and follicle-stimulating hormone were significantly decreased in the experimental group compared with the control group (P<0.05). Compared with the control group, the levels of ROS in plasma were significantly decreased in the experimental group (P<0.05). Correlation analysis showed that the levels of melatonin in peripheral blood were negatively related with the levels of ROS (rs=−0.481, P<0.05). One-year follow-up study showed that the normal excretion of ovarian hormones in the experimental group was significantly higher than that of the control group (P<0.05). In conclusion, treatment with melatonin is an effective approach to suppress POF. The potential mechanism of melatonin is inhibition of ROS production and protection of the process of normal follicle development.
Collapse
Affiliation(s)
- Yanmin Li
- Department of Gynaecology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China; Department of Reproductive Medicine, Weifang People's Hospital, Weifang, Shandong 261041, P.R. China
| | - Hongli Liu
- Department of Obstetrics, Weifang Traditional Chinese Medicine Hospital, Weifang, Shandong 261041, P.R. China
| | - Jing Sun
- Department of Obstetrics, Weifang People's Hospital, Weifang, Shandong 261041, P.R. China
| | - Yipeng Tian
- Weifang People's Hospital, Weifang, Shandong 261041, P.R. China
| | - Changzhong Li
- Department of Gynaecology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| |
Collapse
|