1
|
Zhang R, Sun J, Wang Y, Yu H, Wang S, Feng X. Ameliorative effect of phenolic compound-pterostilbene on corticosterone-induced hepatic lipid metabolic disorder in broilers. J Nutr Biochem 2025; 137:109822. [PMID: 39645170 DOI: 10.1016/j.jnutbio.2024.109822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 10/28/2024] [Accepted: 12/01/2024] [Indexed: 12/09/2024]
Abstract
The aim of this study was to investigate the ameliorative effects of pterostilbene (PTE), a polyphenolic compound, on stress-induced lipid metabolic disorders in the liver of broiler chickens. Six hundred healthy, 1-day-old Arbor Acres with similar weight were randomly assigned to five groups, each consisting of eight replicates with 15 broilers per replicate. The groups included: a control group (fed a basal diet), and four groups treated with corticosterone (CORT) at varying dietary levels of PTE supplementation: CORT (0 mg/kg PTE), CORT-PT200 (200 mg/kg PTE), CORT-PT400 (400 mg/kg PTE), and CORT-PT600 (600 mg/kg PTE). The results indicated that PTE administration to corticosterone (CORT)-injected broilers significantly improved weight gain, reduced liver index, and lowered the elevation of serum aspartate aminotransferase, gamma-glutamyl transferase, glucose, total cholesterol, triglycerides, and lipoprotein cholesterol concentrations induced by CORT injection (P<.05), but had no significant effect on serum CORT concentration (P>.05). PTE also significantly reduced the increased rate of abdominal fat deposition induced by CORT, decreased the average size of adipocytes, and downregulated the expression of the FAS gene (P<.05). It reversed the increase in liver total cholesterol, triglycerides, lipoprotein cholesterol, and non-esterified fatty acids content induced by CORT (P<.05). PTE had no significant effect on the expression of the glucocorticoid receptor (P>.05), but significantly upregulated the protein expression of Sirt1 and p-AMPK (P<.05), promoted the expression of lipid autophagy genes MAP1LC3B and lipolytic genes LPL, but inhibited the expression of fatty acid synthesis genes SREBP-1c, ACC, and SCD (P<.05). The addition of PTE to the diet alleviated CORT-induced oxidative stress and inflammation by enhancing T-SOD and GSH-Px activities, reducing MDA content, inhibiting p-NF-κB p65 and NLRP3 expression and the release of TNF-α and IL-1β in the serum, and increasing IL-4 content (P<.05). Overall, dietary PTE effectively regulates lipid metabolism and antioxidant status, offering a potential strategy to mitigate stress-induced metabolic disruptions in broilers.
Collapse
Affiliation(s)
- Ruoshi Zhang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Jing Sun
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Yingjie Wang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Hao Yu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Shenao Wang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Xingjun Feng
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
2
|
Burggraaf-Sánchez de las Matas R, Torres-Cuevas I, Millán I, Desco MDC, Oblaré-Delgado C, Asensi M, Mena-Mollá S, Oger C, Galano JM, Durand T, Ortega ÁL. Potential of Pterostilbene as an Antioxidant Therapy for Delaying Retinal Damage in Diabetic Retinopathy. Antioxidants (Basel) 2025; 14:244. [PMID: 40227230 PMCID: PMC11939822 DOI: 10.3390/antiox14030244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 01/15/2025] [Accepted: 01/21/2025] [Indexed: 04/15/2025] Open
Abstract
Chronic hyperglycemia is a major driver of neurovascular damage in diabetic retinopathy (DR), a leading cause of preventable blindness in adults. DR progression is often undetected until its advanced stages, with oxidative stress recognized as a primary contributor. In diabetes, oxidative stress disrupts retinal cellular balance, damaging proteins, DNA, and lipids, and triggering photoreceptor degeneration. Pterostilbene (Pter), a polyphenol with antioxidant properties, has demonstrated protective effects in DR animal models and was assessed in a pilot clinical study. DR patients treated with 250 mg/day of oral Pter showed a reduction in the development of retinal vascular alterations characteristic of the disease. Urinary analyses confirmed Pter's role in reducing the lipid peroxidation of polyunsaturated fatty acids (PUFAs), including arachidonic and adrenic acids, indicators of oxidative damage in DR. Pter also improved the GSH/GSSG ratio, reflecting a restored redox balance. However, after six months without treatment, retinal damage indicators reappeared, highlighting the importance of sustained intervention. These findings suggest that Pter may help slow the progression of DR by protecting against oxidative stress and highlight the importance of implementing antioxidant therapies from the diagnosis of diabetes, although its long-term impact and the development of consistent biomarkers deserve more research to optimize DR management.
Collapse
Affiliation(s)
| | - Isabel Torres-Cuevas
- Department of Physiology, Faculty of Pharmacy, University of Valencia, Vicente Andrés Estellés Av. s/n, 46100 Burjassot, Spain; (I.T.-C.); (C.O.-D.); (M.A.); (S.M.-M.)
| | - Iván Millán
- Cavanilles Institute of Biodiversity and Evolutionary Biology, University of Valencia, Catedrático José Beltrán Martínez st, 46980 Paterna, Spain;
| | - María del Carmen Desco
- Vitreo-Retina Unit, Fundación de Oftalmología Médica de la Comunidad Valenciana (FOM), Pío Baroja st 12, 46015 Valencia, Spain;
- Department of Medicine and Surgery, Faculty of Health sciences, Universidad CEU Cardenal Herrera, Luis Vives st 1, 46115 Alfara del Patriarca, Spain
| | - Candela Oblaré-Delgado
- Department of Physiology, Faculty of Pharmacy, University of Valencia, Vicente Andrés Estellés Av. s/n, 46100 Burjassot, Spain; (I.T.-C.); (C.O.-D.); (M.A.); (S.M.-M.)
| | - Miguel Asensi
- Department of Physiology, Faculty of Pharmacy, University of Valencia, Vicente Andrés Estellés Av. s/n, 46100 Burjassot, Spain; (I.T.-C.); (C.O.-D.); (M.A.); (S.M.-M.)
| | - Salvador Mena-Mollá
- Department of Physiology, Faculty of Pharmacy, University of Valencia, Vicente Andrés Estellés Av. s/n, 46100 Burjassot, Spain; (I.T.-C.); (C.O.-D.); (M.A.); (S.M.-M.)
| | - Camille Oger
- Institut des Biomolécules Max Mousseron (IBMM), Pôle Chimie Balard Recherche, UMR 5247, Université de Montpellier, CNRS, ENSCM, 340093 Montpellier, France; (C.O.); (J.-M.G.); (T.D.)
| | - Jean-Marie Galano
- Institut des Biomolécules Max Mousseron (IBMM), Pôle Chimie Balard Recherche, UMR 5247, Université de Montpellier, CNRS, ENSCM, 340093 Montpellier, France; (C.O.); (J.-M.G.); (T.D.)
| | - Thierry Durand
- Institut des Biomolécules Max Mousseron (IBMM), Pôle Chimie Balard Recherche, UMR 5247, Université de Montpellier, CNRS, ENSCM, 340093 Montpellier, France; (C.O.); (J.-M.G.); (T.D.)
| | - Ángel Luis Ortega
- Department of Physiology, Faculty of Pharmacy, University of Valencia, Vicente Andrés Estellés Av. s/n, 46100 Burjassot, Spain; (I.T.-C.); (C.O.-D.); (M.A.); (S.M.-M.)
| |
Collapse
|
3
|
Yu C, Xu Y, Zhao M, Song P, Yu J. New insights into mechanism of ellagic acid alleviating arsenic-induced oxidative stress through MAPK/keap1-Nrf2 signaling pathway response, molecular docking and metabolomics analysis in HepG2 cells. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 285:117029. [PMID: 39277998 DOI: 10.1016/j.ecoenv.2024.117029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 09/01/2024] [Accepted: 09/07/2024] [Indexed: 09/17/2024]
Abstract
The increase of oxidative stress level is one of the vital mechanisms of liver toxicity induced by arsenic (As). Ellagic acid (EA) is widely known due to its excellent antioxidation. Nevertheless, whether EA could alleviate As-induced oxidative stress and the underlying mechanisms remain unknown. Herein, As (2 and 4 μM) and EA (25 and 50 μM) were selected for alone and combined exposure of HepG2 cells to investigate the effects of EA on As-induced oxidative stress. Results indicated that EA could alleviate the oxidative stress caused by As via decreasing intracellular ROS level and MDA content, as well as improving SOD, CAT and GSH-PX activities. qRT-PCR showed that EA might enhance the expression levels of antioxidant enzymes NQO1, CAT and GPX1 by activating MAPK (JNK, p38 and ERK)/keap1-Nrf2 signaling pathway. EA was found to promote dissociation from keap1 and nuclear translocation of Nrf2 by competing with Nrf2 at ARG-380 and ARG-415 sites on keap1 to exert antioxidation using molecular docking. Moreover, metabolomics revealed that EA might maintain the redox balance of HepG2 cells by modulating or reversing disorders of carbon, amino acid, lipid and other metabolisms caused by As. This study provides diversified new insights for the removal of liver toxicity of As and the application of EA.
Collapse
Affiliation(s)
- Changhao Yu
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, PR China
| | - Yawen Xu
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, PR China
| | - Mengying Zhao
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, PR China
| | - Ping Song
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, PR China.
| | - Jing Yu
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, PR China.
| |
Collapse
|
4
|
Mohammadizad T, Taherpour K, Ghasemi HA, Shirzadi H, Tavakolinasab F, Nazaran MH. Potential benefits of advanced chelate-based trace minerals in improving bone mineralization, antioxidant status, immunity, and gene expression modulation in heat-stressed broilers. PLoS One 2024; 19:e0311083. [PMID: 39356694 PMCID: PMC11446444 DOI: 10.1371/journal.pone.0311083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 09/11/2024] [Indexed: 10/04/2024] Open
Abstract
Organic sources of trace minerals (TM) in broiler diets are more bioavailable and stable than inorganic sources, making them particularly beneficial during challenging periods such as heat stress (HS) conditions. A 42-d study investigated the effects of using advanced chelate technology-based TM (ACTM) or adding varying amounts of ACTM to broiler diets during HS conditions. The study involved 672 male broiler chickens in 7 treatment groups, including a thermoneutral control (TNC) group and six HS treatments. There were 8 replicate pens per treatment and 12 birds per replicate. The six HS treatments included birds exposed to a cyclic HS environment (34°C) for 8 h and were as follows: HSC, which consisted of the same basal diet with the recommended ITM levels; ACTM50 and ACTM100, which replaced the basal diet with 50% and 100% ACTM instead of ITM; ITM+ACTM12.5 and ITM+ACTM25, which involved adding extra ACTM to the ITM basal diet at 12.5% and 25%, respectively; and ITM125, which used 125% of the recommended levels of ITM in the basal diet. Compared with the HSC treatment, the TNC, ACTM100, and ITM+ACTM25 treatments resulted in increased (P < 0.05) body weight; tibia weight; tibia ash, phosphorus, iron, and manganese contents; secondary antibody titers; and serum TAC and SOD values but decreased (P < 0.05) serum MDA concentrations and the expression levels of the hepatic genes IL-1β, IL-6, and INF-γ. The TNC and ACTM100 groups also showed greater (P < 0.05) feed efficiency, tibia length, tibia zinc content, and hepatic SOD1 expression but exhibited reduced (P < 0.05) hepatic NF-kB expression. Significant increases (P < 0.05) in primary anti-NDV titers, serum GPx1 activity, and Nrf2 and GPx1 gene expression levels were also detected in the ACTM100, ITM+ACTM12.5, and ITM+ACTM25 groups. In conclusion, the findings suggest that replacing ITM with ACTM or adding ACTM to ITM diets, especially at a 25% higher dose, can effectively protect broilers from heat stress by promoting growth, reducing inflammation, and increasing the expression of antioxidant proteins.
Collapse
Affiliation(s)
- Taher Mohammadizad
- Faculty of Agriculture, Department of Animal Science, Ilam University, Ilam, Iran
| | - Kamran Taherpour
- Faculty of Agriculture, Department of Animal Science, Ilam University, Ilam, Iran
| | - Hossein Ali Ghasemi
- Faculty of Agriculture and Environment, Department of Animal Science, Arak University, Arak, Iran
| | - Hassan Shirzadi
- Faculty of Agriculture, Department of Animal Science, Ilam University, Ilam, Iran
| | | | | |
Collapse
|
5
|
Zhang M, Wang J, Liu R, Wang Q, Qin S, Chen Y, Li W. The role of Keap1-Nrf2 signaling pathway in the treatment of respiratory diseases and the research progress on targeted drugs. Heliyon 2024; 10:e37326. [PMID: 39309822 PMCID: PMC11414506 DOI: 10.1016/j.heliyon.2024.e37326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/30/2024] [Accepted: 09/01/2024] [Indexed: 09/25/2024] Open
Abstract
Lungs are exposed to external oxidants from the environment as in harmful particles and smog, causing oxidative stress in the lungs and consequently respiratory ailment. The NF-E2-related factor 2 (Nrf2) is the one with transcriptional regulatory function, while its related protein Kelch-like ECH-associated protein 1 (Keap1) inhibits Nrf2 activity. Together, they form the Keap1-Nrf2 pathway, which regulates the body's defense against oxidative stress. This pathway has been shown to maintain cellular homeostasis during oxidative stressing, inflammation, oncogenesis, and apoptosis by coordinating the expression of cytoprotective genes and making it a potential therapeutic target for respiratory diseases. This paper summarizes this point in detail in Chapter 2. In addition, this article summarizes the current drug development and clinical research progress related to the Keap1-Nrf2 signaling pathway, with a focus on the potential of Nrf2 agonists in treating respiratory diseases. Overall, the article reviews the regulatory mechanisms of the Keap1-Nrf2 signaling pathway in respiratory diseases and the progress of targeted drug research, aiming to provide new insights for treatment.
Collapse
Affiliation(s)
- Mengyang Zhang
- Qingdao Academy of Chinese Medical Sciences, Shandong University of Traditional Chinese Medicine, Qingdao, Shandong, 266112, China
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong, 264003, China
| | - Jing Wang
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong, 264003, China
| | - Runze Liu
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong, 264003, China
| | - Qi Wang
- Qingdao Academy of Chinese Medical Sciences, Shandong University of Traditional Chinese Medicine, Qingdao, Shandong, 266112, China
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong, 264003, China
| | - Song Qin
- Qingdao Academy of Chinese Medical Sciences, Shandong University of Traditional Chinese Medicine, Qingdao, Shandong, 266112, China
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong, 264003, China
| | - Yuqin Chen
- State Key Laboratory of Respiratory Diseases, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
- Section of Physiology, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of California San Diego, La Jolla, 92093, USA
| | - Wenjun Li
- Qingdao Academy of Chinese Medical Sciences, Shandong University of Traditional Chinese Medicine, Qingdao, Shandong, 266112, China
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong, 264003, China
| |
Collapse
|
6
|
Harithpriya K, Ganesan K, Ramkumar KM. Pterostilbene Reverses Epigenetic Silencing of Nrf2 and Enhances Antioxidant Response in Endothelial Cells in Hyperglycemic Microenvironment. Nutrients 2024; 16:2045. [PMID: 38999793 PMCID: PMC11242982 DOI: 10.3390/nu16132045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 06/24/2024] [Accepted: 06/25/2024] [Indexed: 07/14/2024] Open
Abstract
The epigenetic regulation of nuclear factor erythroid 2-related factor 2 (Nrf2), a pivotal redox transcription factor, plays a crucial role in maintaining cellular homeostasis. Recent research has underscored the significance of epigenetic modifications of Nrf2 in the pathogenesis of diabetic foot ulcers (DFUs). This study investigates the epigenetic reversal of Nrf2 by pterostilbene (PTS) in human endothelial cells in a hyperglycemic microenvironment (HGM). The activation potential of PTS on Nrf2 was evaluated through ARE-Luciferase reporter assays and nuclear translocation studies. Following 72 h of exposure to an HGM, mRNA expression and protein levels of Nrf2 and its downstream targets NAD(P)H quinone oxidoreductase 1 (NQO1), heme-oxygenase 1(HO-1), superoxide dismutase (SOD), and catalase (CAT) exhibited a decrease, which was mitigated in PTS-pretreated endothelial cells. Epigenetic markers, including histone deacetylases (HDACs class I-IV) and DNA methyltransferases (DNMTs 1/3A and 3B), were found to be downregulated under diabetic conditions. Specifically, Nrf2-associated HDACs, including HDAC1, HDAC2, HDAC3, and HDAC4, were upregulated in HGM-induced endothelial cells. This upregulation was reversed in PTS-pretreated cells, except for HDAC2, which exhibited elevated expression in endothelial cells treated with PTS in a hyperglycemic microenvironment. Additionally, PTS was observed to reverse the activity of the methyltransferase enzyme DNMT. Furthermore, CpG islands in the Nrf2 promoter were hypermethylated in cells exposed to an HGM, a phenomenon potentially counteracted by PTS pretreatment, as shown by methyl-sensitive restriction enzyme PCR (MSRE-qPCR) analysis. Collectively, our findings highlight the ability of PTS to epigenetically regulate Nrf2 expression under hyperglycemic conditions, suggesting its therapeutic potential in managing diabetic complications.
Collapse
Affiliation(s)
- Kannan Harithpriya
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603203, India;
| | - Kumar Ganesan
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 10 Sassoon Road, Pokfulam, Hong Kong 999077, China
| | - Kunka Mohanram Ramkumar
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603203, India;
| |
Collapse
|
7
|
Culletta G, Buttari B, Arese M, Brogi S, Almerico AM, Saso L, Tutone M. Natural products as non-covalent and covalent modulators of the KEAP1/NRF2 pathway exerting antioxidant effects. Eur J Med Chem 2024; 270:116355. [PMID: 38555855 DOI: 10.1016/j.ejmech.2024.116355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/11/2024] [Accepted: 03/21/2024] [Indexed: 04/02/2024]
Abstract
By controlling several antioxidant and detoxifying genes at the transcriptional level, including NAD(P)H quinone oxidoreductase 1 (NQO1), multidrug resistance-associated proteins (MRPs), UDP-glucuronosyltransferase (UGT), glutamate-cysteine ligase catalytic (GCLC) and modifier (GCLM) subunits, glutathione S-transferase (GST), sulfiredoxin1 (SRXN1), and heme-oxygenase-1 (HMOX1), the KEAP1/NRF2 pathway plays a crucial role in the oxidative stress response. Accordingly, the discovery of modulators of this pathway, activating cellular signaling through NRF2, and targeting the antioxidant response element (ARE) genes is pivotal for the development of effective antioxidant agents. In this context, natural products could represent promising drug candidates for supplementation to provide antioxidant capacity to human cells. In recent decades, by coupling in silico and experimental methods, several natural products have been characterized to exert antioxidant effects by targeting the KEAP1/NRF2 pathway. In this review article, we analyze several natural products that were investigated experimentally and in silico for their ability to modulate KEAP1/NRF2 by non-covalent and covalent mechanisms. These latter represent the two main sections of this article. For each class of inhibitors, we reviewed their antioxidant effects and potential therapeutic applications, and where possible, we analyzed the structure-activity relationship (SAR). Moreover, the main computational techniques used for the most promising identified compounds are detailed in this survey, providing an updated view on the development of natural products as antioxidant agents.
Collapse
Affiliation(s)
- Giulia Culletta
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università Degli Studi di Palermo, Via Archirafi 32, 90123, Palermo, Italy
| | - Brigitta Buttari
- Department of Cardiovascular, Endocrine-metabolic Diseases, and Aging, Italian National Institute of Health, 00161, Rome, Italy
| | - Marzia Arese
- Department of Biochemical Sciences "A. Rossi Fanelli", Sapienza University of Rome, 00185, Rome, Italy
| | - Simone Brogi
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126, Pisa, Italy; Bioinformatics Research Center, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, 81746-73461, Iran.
| | - Anna Maria Almerico
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università Degli Studi di Palermo, Via Archirafi 32, 90123, Palermo, Italy
| | - Luciano Saso
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University of Rome, P.Le Aldo Moro 5, 00185, Rome, Italy
| | - Marco Tutone
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università Degli Studi di Palermo, Via Archirafi 32, 90123, Palermo, Italy.
| |
Collapse
|
8
|
Li J, Yu J, Guo J, Liu J, Wan G, Wei X, Yang X, Shi J. Nardostachys jatamansi and levodopa combination alleviates Parkinson's disease symptoms in rats through activation of Nrf2 and inhibition of NLRP3 signaling pathways. PHARMACEUTICAL BIOLOGY 2023; 61:1175-1185. [PMID: 37559448 PMCID: PMC10416743 DOI: 10.1080/13880209.2023.2244176] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 06/10/2023] [Accepted: 07/29/2023] [Indexed: 08/11/2023]
Abstract
CONTEXT Levodopa combined with traditional Chinese medicine has a synergistic effect on Parkinson's disease (PD). Recently, we demonstrated that Nardostachys jatamansi (D. Don) DC. [syn. Patrinia jatamansi D.Don, N. grandiflora DC.] (Valerianaceae) (NJ) can alleviate PD. OBJECTIVE To explore the synergistic effect of NJ combined with levodopa against PD. MATERIALS AND METHODS The PD model was established by injecting rotenone. Eighty-four Sprague-Dawley rats were randomly divided into seven groups: sham, model, different doses of NJ (0.31, 0.62, or 1.24 g/kg) combined with levodopa (25 mg/kg), and levodopa alone (25 and 50 mg/kg) groups. The synergistic effect of the combination was investigated by pharmacodynamic investigation and detection of expression of nuclear factor erythro2-related factor 2 (Nrf2) and NLR family proteins containing Pyrin-related domain 3 (NLRP3) pathways. RESULTS Compared with the model group, NJ + levodopa (1.24 g/kg + 25 mg/kg) increased the moving distance of PD rats in the open field (2395.34 ± 668.73 vs. 1501.41 ± 870.23, p < 0.01), enhanced the stay time on the rotating rod (84.86 ± 18.15 vs. 71.36 ± 17.53, p < 0.01) and the combination was superior to other treatments. The synergistic effects were related to NJ + levodopa (1.24 g/kg + 25 mg/kg) increasing the neurotransmitter levels by 38.80%-88.67% in PD rats, and inhibiting oxidative stress and NLRP3 pathway by activating Nrf2 pathway. DISCUSSION AND CONCLUSIONS NJ combined with levodopa is a promising therapeutic candidate for PD, which provides a scientific basis for the subsequent clinical combination therapy of levodopa to enhance the anti-PD effect.
Collapse
Affiliation(s)
- Jiayuan Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Jiahe Yu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Jianyou Guo
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
| | - Jinfeng Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Guohui Wan
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Xiaojia Wei
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Xue Yang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Jinli Shi
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
9
|
Guan T, Bian C, Ma Z. In vitro and in silico perspectives on the activation of antioxidant responsive element by citrus-derived flavonoids. Front Nutr 2023; 10:1257172. [PMID: 37674886 PMCID: PMC10478098 DOI: 10.3389/fnut.2023.1257172] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 08/07/2023] [Indexed: 09/08/2023] Open
Abstract
Introduction Oxidative stress plays an essential role in the pathogenesis of chronic diseases. Disrupting the Keap1-Nrf2 pathway by binding Keap1 is identified as a potential strategy to prevent oxidative stress-related chronic diseases. Therefore, of special interest is the utilization of dietary antioxidations from citrus, including narirutin, naringenin, hesperetin, hesperidin, naringin, neohesperidin dihydrochalcone, neohesperidin, and nobiletin, has been exploited as a prospective way to treat or prevent several human pathologies as Keap1-Nrf2 inhibitors for modulation of antioxidant properties. Methods To probe into the structural foundation of the molecular identification of citrus-derived antioxidations, we calculated the antioxidant responsive element activation ability of citrus-derived flavonoids after binding with Keap1. Also, the quantum chemistry properties and binding mode were performed theoretically with frontier molecular orbitals, molecular electrostatic potential analysis, molecular docking, and absorption, distribution, metabolism, excretion (ADME) calculation. Results and discussion Experimental findings combining computational assays revealed that the tested citrus-derived flavonoids can be grouped into strong agonists and weak agonists. The citrus-derived antioxidations were well housed in the bound zone of Keap1 via stable hydrogen bonding and hydrophobic interaction. Eventually, three of eight antioxidations were identified after ADME and physicochemical evaluations. The citrus-derived flavonoids were identified as potential dietary antioxidants of the Keap1-Nrf2 interaction, and can be used to improve oxidative stress-related chronic diseases.
Collapse
Affiliation(s)
- Tianzhu Guan
- School of Food Science and Engineering, Yangzhou University, Yangzhou, China
| | - Canfeng Bian
- School of Food Science and Engineering, Yangzhou University, Yangzhou, China
| | - Zheng Ma
- Department of Thoracic Surgery, Qilu Hospital of Shandong University, Jinan, China
| |
Collapse
|
10
|
Arias-Sánchez RA, Torner L, Fenton Navarro B. Polyphenols and Neurodegenerative Diseases: Potential Effects and Mechanisms of Neuroprotection. Molecules 2023; 28:5415. [PMID: 37513286 PMCID: PMC10385962 DOI: 10.3390/molecules28145415] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 07/07/2023] [Accepted: 07/10/2023] [Indexed: 07/30/2023] Open
Abstract
The increase in people's longevity has, consequently, led to more brain involvement and neurodegenerative diseases, which can become complicated and lead to chronic degenerative diseases, thereby presenting greater public health problems. Medicinal plants have been used since ancient times and contain high concentrations of molecules, including polyphenols. It has been proven that polyphenols, which are present in various natural sources can provide curative effects against various diseases and brain disorders through neuroprotective effects. These neuroprotective effects are mainly attributed to their ability to cross the blood-brain barrier, eliminate reactive oxygen species, and cause the chelation of metal ions. Polyphenols increase the concentration of neurotrophic factors and bind directly to the membrane receptors of these neurotrophic factors, to modulate and activate the signaling cascades that allow the plasticity, survival, proliferation, and growth of neuronal cells, thereby allowing for better learning, memory, and cognition. Moreover, polyphenols have no serious adverse side effects resulting from their consumption.
Collapse
Affiliation(s)
- Raziel Alejandro Arias-Sánchez
- Laboratorio de Glicobiología y Farmacognosia, División de Estudios de Posgrado, Facultad de Ciencias Médicas y Biológicas "Dr. Ignacio Chávez", Universidad Michoacana de San Nicolás de Hidalgo (UMSNH), Morelia 58020, Mexico
| | - Luz Torner
- Centro de Investigaciones Biomédicas de Michoacán, Instituto Mexicano del Seguro Social, Morelia 58341, Mexico
| | - Bertha Fenton Navarro
- Laboratorio de Glicobiología y Farmacognosia, División de Estudios de Posgrado, Facultad de Ciencias Médicas y Biológicas "Dr. Ignacio Chávez", Universidad Michoacana de San Nicolás de Hidalgo (UMSNH), Morelia 58020, Mexico
| |
Collapse
|
11
|
Harithpriya K, Jayasuriya R, Adhikari T, Rai A, Ramkumar KM. Modulation of transcription factors by small molecules in β-cell development and differentiation. Eur J Pharmacol 2023; 946:175606. [PMID: 36809813 DOI: 10.1016/j.ejphar.2023.175606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 02/14/2023] [Accepted: 02/16/2023] [Indexed: 02/21/2023]
Abstract
Transcription factors regulate gene expression and play crucial roles in development and differentiation of pancreatic β-cell. The expression and/or activities of these transcription factors are reduced when β-cells are chronically exposed to hyperglycemia, which results in loss of β-cell function. Optimal expression of such transcription factors is required to maintain normal pancreatic development and β-cell function. Over many other methods of regenerating β-cells, using small molecules to activate transcription factors has gained insights, resulting in β-cells regeneration and survival. In this review, we discuss the broad spectrum of transcription factors regulating pancreatic β-cell development, differentiation and regulation of these factors in normal and pathological states. Also, we have presented set of potential pharmacological effects of natural and synthetic compounds on activities of transcription factor involved in pancreatic β-cell regeneration and survival. Exploring these compounds and their action on transcription factors responsible for pancreatic β-cell function and survival could be useful in providing new insights for development of small molecule modulators.
Collapse
Affiliation(s)
- Kannan Harithpriya
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, 603 203, Tamil Nadu, India
| | - Ravichandran Jayasuriya
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, 603 203, Tamil Nadu, India
| | - Trishla Adhikari
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, 603 203, Tamil Nadu, India
| | - Awantika Rai
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, 603 203, Tamil Nadu, India
| | - Kunka Mohanram Ramkumar
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, 603 203, Tamil Nadu, India.
| |
Collapse
|
12
|
Gentile MT, Camerino I, Ciarmiello L, Woodrow P, Muscariello L, De Chiara I, Pacifico S. Neuro-Nutraceutical Polyphenols: How Far Are We? Antioxidants (Basel) 2023; 12:antiox12030539. [PMID: 36978787 PMCID: PMC10044769 DOI: 10.3390/antiox12030539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/09/2023] [Accepted: 02/17/2023] [Indexed: 02/25/2023] Open
Abstract
The brain, composed of billions of neurons, is a complex network of interacting dynamical systems controlling all body functions. Neurons are the building blocks of the nervous system and their impairment of their functions could result in neurodegenerative disorders. Accumulating evidence shows an increase of brain-affecting disorders, still today characterized by poor therapeutic options. There is a strong urgency to find new alternative strategies to prevent progressive neuronal loss. Polyphenols, a wide family of plant compounds with an equally wide range of biological activities, are suitable candidates to counteract chronic degenerative disease in the central nervous system. Herein, we will review their role in human healthcare and highlight their: antioxidant activities in reactive oxygen species-producing neurodegenerative pathologies; putative role as anti-acetylcholinesterase inhibitors; and protective activity in Alzheimer’s disease by preventing Aβ aggregation and tau hyperphosphorylation. Moreover, the pathology of these multifactorial diseases is also characterized by metal dyshomeostasis, specifically copper (Cu), zinc (Zn), and iron (Fe), most important for cellular function. In this scenario, polyphenols’ action as natural chelators is also discussed. Furthermore, the critical importance of the role exerted by polyphenols on microbiota is assumed, since there is a growing body of evidence for the role of the intestinal microbiota in the gut–brain axis, giving new opportunities to study molecular mechanisms and to find novel strategies in neurological diseases.
Collapse
|
13
|
Pterostilbene Confers Protection against Diquat-Induced Intestinal Damage with Potential Regulation of Redox Status and Ferroptosis in Broiler Chickens. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2023; 2023:8258354. [PMID: 36733420 PMCID: PMC9889155 DOI: 10.1155/2023/8258354] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/15/2022] [Accepted: 01/13/2023] [Indexed: 01/25/2023]
Abstract
Oxidative stress causes damage to macromolecules, including proteins, DNA, and lipid, and has been recognized as a crucial driver of the onset and progression of several intestinal disorders. Pterostilbene, one of the natural antioxidants, has attracted considerable attention owing to its multiple biological activities. In the present study, we established an oxidative stress model in broiler chickens via injection with diquat to investigate whether pterostilbene could attenuate diquat-induced intestinal damage and reveal the underlying mechanisms. We found that diquat-induced decreases in the activities of superoxide dismutase and glutathione peroxidase and the level of reduced glutathione and the increase in hydrogen peroxide content in plasma and jejunum were significantly alleviated by pterostilbene (P < 0.05). Pterostilbene supplementation also decreased intestinal permeability and jejunal apoptosis rate, improved jejunal villus height and the ratio of villus height to crypt depth, and promoted the transcription and translation of jejunal tight junction proteins occludin and zona occludens 1 in diquat-challenged broilers (P < 0.05). Furthermore, pterostilbene reversed diquat-induced mitochondrial injury in the jejunum, as indicated by the decreased reactive oxygen species level and elevated activities of superoxide dismutase 2 and mitochondrial respiratory complexes (P < 0.05). Importantly, administering pterostilbene maintained iron homeostasis, inhibited lipid peroxidation, and regulated the expression of the markers of ferroptosis in the jejunum of diquat-exposed broilers (P < 0.05). The nuclear factor erythroid 2-related factor 2 signaling pathway in the jejunum of diquat-exposed broilers was also activated by pterostilbene (P < 0.05). In conclusion, our study provides evidence that pterostilbene alleviates diquat-induced intestinal mucosa injury and barrier dysfunction by strengthening antioxidant capacity and regulating ferroptosis of broiler chickens.
Collapse
|
14
|
Saleh Aldayel T. Apigenin attenuates high-fat diet-induced nephropathy in rats by hypoglycemic and hypolipidemic effects, and concomitant activation of the Nrf2/antioxidant axis. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.105295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
15
|
Li Y, Wang SM, Li X, Lv CJ, Peng LY, Yu XF, Song YJ, Wang CJ. Pterostilbene pre-treatment reduces LPS-induced acute lung injury through activating NR4A1. PHARMACEUTICAL BIOLOGY 2022; 60:394-403. [PMID: 35271397 PMCID: PMC8920364 DOI: 10.1080/13880209.2022.2034893] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 01/05/2022] [Accepted: 01/22/2022] [Indexed: 06/14/2023]
Abstract
CONTEXT Pterostilbene (PTE), a common polyphenol compound, exerts an anti-inflammatory effect in many diseases, including acute lung injury (ALI). OBJECTIVE This study explores the potential mechanism of PTE pre-treatment against lipopolysaccharide (LPS)-induced ALI. MATERIALS AND METHODS Sixty Sprague-Dawley rats were divided into control, ALI, 10 mg/kg PTE + LPS, 20 mg/kg PTE + LPS, and 40 mg/kg PTE + LPS groups. At 24 h before LPS instillation, PTE was administered orally. At 2 h before LPS instillation, PTE was again administered orally. After 24 h of LPS treatment, the rats were euthanized. The levels of inflammatory cells and inflammatory factors in the bronchoalveolar lavage fluid (BALF), the expression of nuclear receptor subfamily 4 group A member 1 (NR4A1), and the nuclear factor (NF)-κB pathway-related protein levels were detected. NR4A1 agonist was used to further investigate the mechanism of PTE pre-treatment. RESULTS After PTE pre-treatment, the LPS induced inflammation was controlled and the survival rate was increased to 100% from 70% after LPS treatment 24 h. For lung injury score, it decreased to 1.5 from 3.5 after treating 40 mg/kg PTE. Compared with the control group, the expression of NR4A1 in the ALI group was decreased by 20-40%. However, the 40 mg/kg PTE pre-treatment increased the NR4A1 expression by 20-40% in the lung tissue. The results obtained with pre-treatment NR4A1 agonist were similar to those obtained by pre-treatment 40 mg/kg PTE. CONCLUSIONS PTE pre-treatment might represent an appropriate therapeutic target and strategy for preventing ALI induced by LPS.
Collapse
Affiliation(s)
- Ying Li
- Department of Emergency, Yantai Yuhuangding Hospital, Yantai, Shandong, China
| | - Shu-Min Wang
- Department of Emergency, Yantai Yuhuangding Hospital, Yantai, Shandong, China
| | - Xing Li
- Department of Station Intergrate Service, Yantai Central Blood, Yantai, Shandong, China
| | - Chang-Jun Lv
- Binzhou Medical University, Yantai, Shandong, China
| | - Ling-Yun Peng
- Department of Thoracic Surgery, Yantai Yuhuangding Hospital, Yantai, Shandong, China
| | - Xiao-Feng Yu
- Department of Thoracic Surgery, Yantai Yuhuangding Hospital, Yantai, Shandong, China
| | - Ying-Jian Song
- Department of Thoracic Surgery, Yantai Yuhuangding Hospital, Yantai, Shandong, China
| | - Cong-Jie Wang
- Pulmonary and Critical Care Medicine, Yantai Yuhuangding Hospital, Yantai, Shandong, China
| |
Collapse
|
16
|
New Insights into Dietary Pterostilbene: Sources, Metabolism, and Health Promotion Effects. Molecules 2022; 27:molecules27196316. [PMID: 36234852 PMCID: PMC9571692 DOI: 10.3390/molecules27196316] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 09/17/2022] [Accepted: 09/21/2022] [Indexed: 11/17/2022] Open
Abstract
Pterostilbene (PTS), a compound most abundantly found in blueberries, is a natural analog of resveratrol. Several plant species, such as peanuts and grapes, produce PTS. While resveratrol has been extensively studied for its antioxidant properties, recent evidence also points out the diverse therapeutic potential of PTS. Several studies have identified the robust pharmacodynamic features of PTS, including better intestinal absorption and elevated hepatic stability than resveratrol. Indeed, due to its higher bioavailability paired with reduced toxicity compared to other stilbenes, PTS has become an attractive drug candidate for the treatment of several disease conditions, including diabetes, cancer, cardiovascular disease, neurodegenerative disorders, and aging. This review article provides an extensive summary of the nutraceutical potential of PTS in various disease conditions while discussing the crucial mechanistic pathways implicated. In particular, we share insights from our studies about the Nrf2-mediated effect of PTS in diabetes and associated complications. Moreover, we elucidate the important sources of PTS and discuss in detail its pharmacokinetics and the range of formulations and routes of administration used across experimental studies and human clinical trials. Furthermore, this review also summarizes the strategies successfully used to improve dietary availability and the bio-accessibility of PTS.
Collapse
|
17
|
Zhao Y, Li Z, Wang X, Zhao F, Wang C, Zhang Q, Chen X, Geng Z, Zhang C. Resveratrol Attenuates Heat Stress-Induced Impairment of Meat Quality in Broilers by Regulating the Nrf2 Signaling Pathway. Animals (Basel) 2022; 12:ani12151889. [PMID: 35892539 PMCID: PMC9330235 DOI: 10.3390/ani12151889] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 07/16/2022] [Accepted: 07/20/2022] [Indexed: 11/30/2022] Open
Abstract
Studies have indicated that dietary resveratrol (RES) improves the meat quality of broilers subjected to heat stress (HS), but the mechanism of action remains unclear. Therefore, the main purpose of this study was to investigate the effect of RES on meat quality, muscle antioxidant status, and its mechanism of action in broilers under HS. A total of 162 male AA broilers at 21 days old with similar weight were randomly assigned to 3 treatment groups with 6 replicates each. The control group (ambient temperature: 22 ± 1 °C) and HS group (ambient temperature: 33 ± 1 °C for 10 h a day from 8:00 to 18:00 and 22 ± 1 °C for the remaining time) were fed a basal diet and the HS + RES group was fed a basal diet with 400 mg/kg RES. The feeding was conducted for 21 continuous days. The results indicated that HS decreased final body weight (BW), average daily gain (ADG), average daily feed intake (ADFI), breast and leg muscle yield, a*24h, pH24h, the activities of catalase (CAT), glutathione S-transferase (GST) and glutathione peroxidase (GSH-Px), and mRNA levels of nuclear factor erythroid 2−related factor 2 (Nrf2), heme oxygenase-1 (HO-1), NADPH quinone oxidoreductase 1 (NQO1), and GSH-Px (p < 0.05). HS also increased b*45min, L*24h, drip loss, malondialdehyde (MDA) content, and kelch-like epichlorohydrin-associated protein 1 (Keap1) mRNA level (p < 0.05). Compared with the HS group, the HS + RES group exhibited a higher ADG, breast and leg muscle yield, a*24h, pH24h, activities of GST and GSH-Px, and mRNA levels of Nrf2, HO-1, and NQO1 but had lower drip loss and Keap1 mRNA level (p < 0.05). RES can improve meat quality and the muscle antioxidant ability of heat-stressed broilers by activating the Nrf2 signaling pathway.
Collapse
|
18
|
V Ganesh G, Ganesan K, Xu B, Ramkumar KM. Nrf2 driven macrophage responses in diverse pathophysiological contexts: Disparate pieces from a shared molecular puzzle. Biofactors 2022; 48:795-812. [PMID: 35618963 DOI: 10.1002/biof.1867] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Accepted: 05/03/2022] [Indexed: 11/10/2022]
Abstract
The wide anatomical distribution of macrophages and their vast array of functions match various polarization states and their involvement in homeostasis and disease. The confluence of different cellular signaling networks, including direct involvement in inflammation, at the doorstep of the transcription factor Nuclear Factor- erythroid (NF-E2) p45-related factor 2 (Nrf2) activation raises the importance of deciphering the molecular circuitry at the background of multiple-discrete and antagonistic yet flexible and contextual pathways. While we primarily focus on wound healing and repair mechanisms that are affected in diabetic foot ulcers (DFUs), we strive to explore the striking similarities and differences in molecular events including inflammation, angiogenesis, and fibrosis during tissue injury and wound persistence that accumulates pro-inflammatory senescent macrophages, as a means to identify possible targets or cellular mediators to lessen DFU disease burden. In addition, the role of iron in the modulation of Nrf2 response in macrophages is crucial and reviewed here. Targeted approaches, unlike conventional treatments, in DFU management will require the review and re-assessment of mediators with relevance to other pathological conditions.
Collapse
Affiliation(s)
- Goutham V Ganesh
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science & Technology, Kattankulathur, Tamil Nadu, India
| | - Kumar Ganesan
- School of Chinese Medicine, LKS Faculty of Medicine, University of Hong Kong, Hong Kong
| | - Baojun Xu
- Food Science and Technology Programme, BNU-HKBU United International College, Zhuhai, Guangdong, China
| | - Kunka Mohanram Ramkumar
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science & Technology, Kattankulathur, Tamil Nadu, India
| |
Collapse
|
19
|
Calcitriol ameliorates brain injury in the rat model of cerebral ischemia-reperfusion through Nrf2/HO-1 signalling axis: An in silico and in vivo study. J Stroke Cerebrovasc Dis 2022; 31:106331. [PMID: 35306470 DOI: 10.1016/j.jstrokecerebrovasdis.2022.106331] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 01/12/2022] [Accepted: 01/18/2022] [Indexed: 01/09/2023] Open
Abstract
OBJECTIVES Calcitriol has been revealed to exert neuroprotective effects in ischemic stroke; however, its role and the underlying mechanisms in brain injury induced by ischemia are not well known. The purpose of this study was to determine the neuroprotective effects of calcitriol pretreatment and to assess the possible neuroprotective function of nuclear factor erythroid 2-related factor 2 (Nrf2)/ heme oxygenase-1 (HO-1) signalling pathway against brain ischemia/reperfusion (I/R) injury in the rat models which was followed by a bioinformatics approach. METHODS The experimental I/R model induction was performed in male Wistar rats for 1 h followed by 23 h reperfusion. Calcitriol was administered intraperitoneally for 7 days prior to stroke. Following ischemia induction 24 h later, neurobehavioral deficits and infarction volume were examined. Oxidative stress was assessed by measurement of malondialdehyde (MDA), nitric oxide (NO) and total antioxidant capacity (TAC). The protein and mRNA expression of HO-1 and Nrf2 were determined by western blot and reverse transcription polymerase chain reaction (RT-PCR), respectively. A molecular docking approach was applied to identify the interaction value of Keap1 with calcitriol. RESULTS Our data demonstrated that calcitriol significantly decreased infarction volume and ameliorated neurological deficits in brain I/R. MDA and NO levels were decreased and TAC level was elevated significantly after calcitriol pretreatment. Furthermore, calcitriol upregulated the expression of HO-1 and Nrf2 protein and mRNA in ischemic brain. Molecular modelling demonstrated that calcitriol could interact with the pocket of Keap1 by an appropriate binding energy. CONCLUSIONS The results indicate that calcitriol protects the brain against I/R injury. This effect may pass through inhibition of oxidative stress and Nrf2/HO-1 pathway activation and this may arise by interaction of Keap1 and calcitriol.
Collapse
|
20
|
Singh A, Kukreti R, Saso L, Kukreti S. Mechanistic Insight into Oxidative Stress-Triggered Signaling Pathways and Type 2 Diabetes. Molecules 2022; 27:950. [PMID: 35164215 PMCID: PMC8840622 DOI: 10.3390/molecules27030950] [Citation(s) in RCA: 136] [Impact Index Per Article: 45.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 01/20/2022] [Accepted: 01/26/2022] [Indexed: 02/07/2023] Open
Abstract
Oxidative stress (OS) is a metabolic dysfunction mediated by the imbalance between the biochemical processes leading to elevated production of reactive oxygen species (ROS) and the antioxidant defense system of the body. It has a ubiquitous role in the development of numerous noncommunicable maladies including cardiovascular diseases, cancers, neurodegenerative diseases, aging and respiratory diseases. Diseases associated with metabolic dysfunction may be influenced by changes in the redox balance. Lately, there has been increasing awareness and evidence that diabetes mellitus (DM), particularly type 2 diabetes, is significantly modulated by oxidative stress. DM is a state of impaired metabolism characterized by hyperglycemia, resulting from defects in insulin secretion or action, or both. ROS such as hydrogen peroxide and the superoxide anion introduce chemical changes virtually in all cellular components, causing deleterious effects on the islets of β-cells, in turn affecting insulin production. Under hyperglycemic conditions, various signaling pathways such as nuclear factor-κβ (NF-κβ) and protein kinase C (PKC) are also activated by ROS. All of these can be linked to a hindrance in insulin signaling pathways, leading to insulin resistance. Hyperglycemia-induced oxidative stress plays a substantial role in complications including diabetic nephropathy. DM patients are more prone to microvascular as well as atherosclerotic macrovascular diseases. This systemic disease affects most countries around the world, owing to population explosion, aging, urbanization, obesity, lifestyle, etc. However, some modulators, with their free radical scavenging properties, can play a prospective role in overcoming the debilitating effects of OS. This review is a modest approach to summarizing the basics and interlinkages of oxidative stress, its modulators and diabetes mellitus. It may add to the understanding of and insight into the pathophysiology of diabetes and the crucial role of antioxidants to weaken the complications and morbidity resulting from this chronic disease.
Collapse
Affiliation(s)
- Anju Singh
- Nucleic Acids Research Lab, Department of Chemistry, University of Delhi (North Campus), Delhi 110007, India;
- Department of Chemistry, Ramjas College, University of Delhi, Delhi 110007, India
| | - Ritushree Kukreti
- Genomics and Molecular Medicine Unit, CSIR-Institute of Genomics and Integrative Biology (IGIB), Mall Road, Delhi 110007, India;
| | - Luciano Saso
- Department of Physiology and Pharmacology “Vittorio Erspamer”, Sapienza University of Rome, P. le Aldo Moro 5, 00185 Rome, Italy;
| | - Shrikant Kukreti
- Nucleic Acids Research Lab, Department of Chemistry, University of Delhi (North Campus), Delhi 110007, India;
| |
Collapse
|
21
|
Guo L, Zhao Y, Huan Y. Pterostilbene Alleviates Chlorpyrifos-Induced Damage During Porcine Oocyte Maturation. Front Cell Dev Biol 2022; 9:803181. [PMID: 34993205 PMCID: PMC8724426 DOI: 10.3389/fcell.2021.803181] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 11/30/2021] [Indexed: 12/16/2022] Open
Abstract
Chlorpyrifos (CPF), a widely used organophosphate pesticide, is reported to severely impair mammalian reproductive system. Pterostilbene (PTS), an effective free radical scavenger, is considered as beneficial for mammalian reproduction. However, the toxicity of CPF on oocyte maturation and whether PTS can eliminate the detrimental effect of CPF on oocytes remain unclear. Here, porcine oocytes were applied to investigate the potential effect and possible mechanism of CPF and PTS during oocyte maturation. This work demonstrated that CPF significantly delayed the meiotic progression and decreased the polar body extrusion by disturbing spindle assembly and chromosome alignment and causing DNA damage in oocytes (p < 0.05). And, CPF significantly impaired oocyte cytoplasmic maturation by inducing the high level of reactive oxygen species and decreasing glutathione content (p < 0.05). Moreover, CPF significantly triggered embryo apoptosis and reduced the blastocyst rate and cell number following parthenogenetic activation (p < 0.05). Whereas CPF-exposed oocytes were treated with PTS, these defects caused by CPF were obviously rescued, and oocyte maturation and subsequent embryonic development were also significantly ameliorated (p < 0.05). In conclusion, these results revealed that CPF exerted the toxic effect on porcine oocytes, while PTS effectively alleviated CPF-induced damage on oocytes. This work provides a potential strategy to protect oocyte maturation in mammalian species.
Collapse
Affiliation(s)
- Lili Guo
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China.,National Risk Assessment Laboratory for Antimicrobial Resistance of Microorganisms in Animals, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Yongda Zhao
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China
| | - Yanjun Huan
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China
| |
Collapse
|
22
|
WANG F, SHIN JY, CHO BO, HAO S, PARK JH, JANG SI. Antioxidative stress effects of Humulus japonicus extracts on neuronal PC12 cells. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.101921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Feng WANG
- Jeonju University, Korea; Yuncheng University, China
| | | | | | | | | | - Seon Il JANG
- Jeonju University, Korea; Ato Q&A Co., LTD, Korea; Jeonju University, Korea
| |
Collapse
|
23
|
Jang S, Wang F, Cho B, Shin J, Hao S. Humulus japonicus extract alleviates oxidative stress and apoptosis in 6-hydroxydopamine-induced PC12 cells. Asian Pac J Trop Biomed 2022. [DOI: 10.4103/2221-1691.343387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
24
|
Protective and Therapeutic Effects of Orlistat on Metabolic Syndrome and Oxidative Stress in High-Fat Diet-Induced Metabolic Dysfunction-Associated Fatty Liver Disease (MAFLD) in Rats: Role on Nrf2 Activation. Vet Sci 2021; 8:vetsci8110274. [PMID: 34822647 PMCID: PMC8622931 DOI: 10.3390/vetsci8110274] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 10/27/2021] [Accepted: 11/10/2021] [Indexed: 12/13/2022] Open
Abstract
Metabolic dysfunction-associated fatty liver disease (MAFLD) is an excessive buildup of liver lipids closely associated with various kinds of undesirable metabolic effects and oxidative stress. We aimed to investigate the protective and therapeutic effects of orlistat on metabolic syndrome and oxidative stress parameters in high-fat diet (HFD) induced-MAFLD rats. Twenty-four male Sprague-Dawley rats were randomly divided into four groups (n = 6/group), i.e., Normal control (N), HFD, HFD + orlistat (HFD + O) (10 mg/kg/day administered concomitantly for 12 weeks as a protective model), and obese+orlistat (OB + O) (10 mg/kg/day administered 6 weeks after induction of obesity as a therapeutic model) groups. After 12 weeks, the HFD group had significantly increased Lee obesity index, serum alanine aminotransferase, aspartate aminotransferase, alkaline phosphatase, total cholesterol, triglyceride, low-density lipoprotein levels, liver total cholesterol and triglyceride levels, insulin resistance and non-alcoholic steatohepatitis (NASH) together with decreased serum high-density lipoprotein level. Additionally, the HFD group also showed increased Nrf2 translocation to the nucleus with high Keap1 expression and increased liver oxidative stress parameters. Orlistat significantly improved all these alterations in HFD rats. We demonstrated that orlistat might have protective and therapeutic effects against HFD-induced MAFLD rats by its activation on Nrf2 signaling pathway, which subsequently improved metabolic syndrome and oxidative stress parameters.
Collapse
|
25
|
Alam W, Rocca C, Khan H, Hussain Y, Aschner M, De Bartolo A, Amodio N, Angelone T, Cheang WS. Current Status and Future Perspectives on Therapeutic Potential of Apigenin: Focus on Metabolic-Syndrome-Dependent Organ Dysfunction. Antioxidants (Basel) 2021; 10:antiox10101643. [PMID: 34679777 PMCID: PMC8533599 DOI: 10.3390/antiox10101643] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 10/13/2021] [Accepted: 10/15/2021] [Indexed: 12/15/2022] Open
Abstract
Metabolic syndrome and its associated disorders such as obesity, insulin resistance, atherosclerosis and type 2 diabetes mellitus are globally prevalent. Different molecules showing therapeutic potential are currently available for the management of metabolic syndrome, although their efficacy has often been compromised by their poor bioavailability and side effects. Studies have been carried out on medicinal plant extracts for the treatment and prevention of metabolic syndrome. In this regard, isolated pure compounds have shown promising efficacy for the management of metabolic syndrome, both in preclinical and clinical settings. Apigenin, a natural bioactive flavonoid widely present in medicinal plants, functional foods, vegetables and fruits, exerts protective effects in models of neurological disorders and cardiovascular diseases and most of these effects are attributed to its antioxidant action. Various preclinical and clinical studies carried out so far show a protective effect of apigenin against metabolic syndrome. Herein, we provide a comprehensive review on both in vitro and in vivo evidence related to the promising antioxidant role of apigenin in cardioprotection, neuroprotection and renoprotection, and to its beneficial action in metabolic-syndrome-dependent organ dysfunction. We also provide evidence on the potential of apigenin in the prevention and/or treatment of metabolic syndrome, analysing the potential and limitation of its therapeutic use.
Collapse
Affiliation(s)
- Waqas Alam
- Department of Pharmacy, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan;
| | - Carmine Rocca
- Laboratory of Cellular and Molecular Cardiovascular Physiology, Department of Biology, Ecology and Earth Sciences (Di.B.E.S.T.), University of Calabria, 87036 Rende, Italy; (C.R.); (A.D.B.)
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan;
- Correspondence: or (H.K.); (N.A.); (T.A.)
| | - Yaseen Hussain
- College of Pharmaceutical Sciences, Soochow University, Suzhou 221400, China;
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Forchheimer 209, 1300 Morris Park Avenue, Bronx, NY 10461, USA;
| | - Anna De Bartolo
- Laboratory of Cellular and Molecular Cardiovascular Physiology, Department of Biology, Ecology and Earth Sciences (Di.B.E.S.T.), University of Calabria, 87036 Rende, Italy; (C.R.); (A.D.B.)
| | - Nicola Amodio
- Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, 88100 Catanzaro, Italy
- Correspondence: or (H.K.); (N.A.); (T.A.)
| | - Tommaso Angelone
- Laboratory of Cellular and Molecular Cardiovascular Physiology, Department of Biology, Ecology and Earth Sciences (Di.B.E.S.T.), University of Calabria, 87036 Rende, Italy; (C.R.); (A.D.B.)
- National Institute of Cardiovascular Research I.N.R.C., 40126 Bologna, Italy
- Correspondence: or (H.K.); (N.A.); (T.A.)
| | - Wai San Cheang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Avenida da Universidade, Taipa, Macao 999078, China;
| |
Collapse
|
26
|
Chemotherapy-Induced Myopathy: The Dark Side of the Cachexia Sphere. Cancers (Basel) 2021; 13:cancers13143615. [PMID: 34298829 PMCID: PMC8304349 DOI: 10.3390/cancers13143615] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 07/11/2021] [Accepted: 07/14/2021] [Indexed: 02/06/2023] Open
Abstract
Simple Summary In addition to cancer-related factors, anti-cancer chemotherapy treatment can drive life-threatening body wasting in a syndrome known as cachexia. Emerging evidence has described the impact of several key chemotherapeutic agents on skeletal muscle in particular, and the mechanisms are gradually being unravelled. Despite this evidence, there remains very little research regarding therapeutic strategies to protect muscle during anti-cancer treatment and current global grand challenges focused on deciphering the cachexia conundrum fail to consider this aspect—chemotherapy-induced myopathy remains very much on the dark side of the cachexia sphere. This review explores the impact and mechanisms of, and current investigative strategies to protect against, chemotherapy-induced myopathy to illuminate this serious issue. Abstract Cancer cachexia is a debilitating multi-factorial wasting syndrome characterised by severe skeletal muscle wasting and dysfunction (i.e., myopathy). In the oncology setting, cachexia arises from synergistic insults from both cancer–host interactions and chemotherapy-related toxicity. The majority of studies have surrounded the cancer–host interaction side of cancer cachexia, often overlooking the capability of chemotherapy to induce cachectic myopathy. Accumulating evidence in experimental models of cachexia suggests that some chemotherapeutic agents rapidly induce cachectic myopathy, although the underlying mechanisms responsible vary between agents. Importantly, we highlight the capacity of specific chemotherapeutic agents to induce cachectic myopathy, as not all chemotherapies have been evaluated for cachexia-inducing properties—alone or in clinically compatible regimens. Furthermore, we discuss the experimental evidence surrounding therapeutic strategies that have been evaluated in chemotherapy-induced cachexia models, with particular focus on exercise interventions and adjuvant therapeutic candidates targeted at the mitochondria.
Collapse
|
27
|
Chen Y, Zhang H, Chen Y, Jia P, Ji S, Zhang Y, Wang T. Resveratrol and its derivative pterostilbene ameliorate intestine injury in intrauterine growth-retarded weanling piglets by modulating redox status and gut microbiota. J Anim Sci Biotechnol 2021; 12:70. [PMID: 34108035 PMCID: PMC8191009 DOI: 10.1186/s40104-021-00589-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 04/02/2021] [Indexed: 12/13/2022] Open
Abstract
Background Intestinal disorder is an important factor contributing to growth lag and high rates of morbidity and mortality of piglets with intrauterine growth retardation (IUGR). Resveratrol (RSV) and its derivative pterostilbene (PT) are natural stilbenes possessing various bioactivities, such as antioxidative and anti-inflammatory effects. This study compared the protective potential of RSV and PT on the intestinal redox status and gut microbiota in weanling piglets with IUGR. Methods Eighteen male piglets of normal body weight (NBW) and 54 same-sex IUGR piglets were chosen according to their birth and weaning weights. The NBW piglets accepted a basal diet, while the IUGR piglets were allotted to one of three groups according to their body weight at weaning and received a basal diet, an RSV-supplemented diet (300 mg/kg), or a PT-supplemented diet (300 mg/kg), respectively. Results Compared with IUGR piglets, both RSV and PT improved the IUGR-associated decrease in jejunal villus height and increases in plasma diamine oxidase activity and D-lactate level and jejunal apoptosis of piglets (P < 0.05). Administering RSV and PT also enhanced jejunal superoxide dismutase activity and the mRNA and protein expression of superoxide dismutase 2 of IUGR piglets by promoting nuclear factor erythroid 2-related factor 2 (Nrf2) nuclear translocation (P < 0.05). Comparatively, PT was more effective than RSV in elevating the villus height/crypt depth ratio and occludin mRNA and protein levels in the jejunum of IUGR piglets (P < 0.05). PT was also superior to RSV in increasing Nrf2 nuclear translocation and inhibiting malondialdehyde accumulation in the jejunum of IUGR piglets (P < 0.05). Additionally, RSV modulated the composition of cecal microbiota of IUGR piglets, as evidenced by increasing the prevalence of the phylum Bacteroidetes and the genera Prevotella, Faecalibacterium, and Parabacteroides and inhibiting the growth of the phylum Proteobacteria and its genera Escherichia and Actinobacillus (P < 0.05). Moreover, RSV significantly increased the butyrate concentration in the cecum of IUGR piglets (P < 0.05). Conclusion PT is more potent than RSV to prevent intestinal oxidative stress, while RSV has a stronger capacity to regulate gut microbiota compared to PT. Supplementary Information The online version contains supplementary material available at 10.1186/s40104-021-00589-9.
Collapse
Affiliation(s)
- Yanan Chen
- College of Animal Science and Technology, Nanjing Agricultural University, No.1 Weigang Street, Nanjing, Jiangsu, 210095, People's Republic of China
| | - Hao Zhang
- College of Animal Science and Technology, Nanjing Agricultural University, No.1 Weigang Street, Nanjing, Jiangsu, 210095, People's Republic of China
| | - Yueping Chen
- College of Animal Science and Technology, Nanjing Agricultural University, No.1 Weigang Street, Nanjing, Jiangsu, 210095, People's Republic of China
| | - Peilu Jia
- College of Animal Science and Technology, Nanjing Agricultural University, No.1 Weigang Street, Nanjing, Jiangsu, 210095, People's Republic of China
| | - Shuli Ji
- College of Animal Science and Technology, Nanjing Agricultural University, No.1 Weigang Street, Nanjing, Jiangsu, 210095, People's Republic of China
| | - Yuying Zhang
- College of Animal Science and Technology, Nanjing Agricultural University, No.1 Weigang Street, Nanjing, Jiangsu, 210095, People's Republic of China
| | - Tian Wang
- College of Animal Science and Technology, Nanjing Agricultural University, No.1 Weigang Street, Nanjing, Jiangsu, 210095, People's Republic of China.
| |
Collapse
|
28
|
Zhang H, Chen Y, Li Y, Jia P, Ji S, Chen Y, Wang T. Protective effects of pterostilbene against hepatic damage, redox imbalance, mitochondrial dysfunction, and endoplasmic reticulum stress in weanling piglets. J Anim Sci 2021; 98:5919172. [PMID: 33027517 DOI: 10.1093/jas/skaa328] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 09/30/2020] [Indexed: 12/16/2022] Open
Abstract
This investigation evaluated the potential of natural antioxidants, pterostilbene (PT) and its parent compound resveratrol (RSV), to alleviate hepatic damage, redox imbalance, mitochondrial dysfunction, and endoplasmic reticulum (ER) stress in early-weaned piglets. A total of 144 suckling piglets were randomly assigned to four treatments (six replicates per group, n = 6): 1) sow reared, 2) early weaned and fed a basal diet, 3) early weaned and fed the basal diet supplemented with 300 mg/kg PT, or with 4) 300 mg/kg RSV. Early weaning increased plasma alanine aminotransferase (P = 0.004) and aspartate aminotransferase (P = 0.009) activities and hepatic apoptotic rate (P = 0.001) in piglets compared with the sow-reared piglets. Early weaning decreased hepatic adenosine triphosphate (ATP; P = 0.006) content and mitochondrial complexes III (P = 0.019) and IV activities (P = 0.038), but it increased superoxide anion accumulation (P = 0.026) and the expression levels of ER stress markers, such as glucose-regulated protein 78 (P < 0.001), CCAAT/enhancer-binding protein-homologous protein (P = 0.001), and activating transcription factor (ATF) 4 (P = 0.006). PT was superior to RSV at mitigating liver injury and oxidative stress after early weaning, as indicated by decreases in the number of apoptotic cells (P = 0.036) and the levels of superoxide anion (P = 0.002) and 8-hydroxy-2 deoxyguanosine (P < 0.001). PT increased mitochondrial deoxyribonucleic acid content (P = 0.031) and the activities of citrate synthase (P = 0.005), complexes I (P = 0.004) and III (P = 0.011), and ATP synthase (P = 0.041), which may contribute to the mitigation of hepatic ATP deficit (P = 0.017) in the PT-treated weaned piglets. PT also prevented increases in the ER stress marker and ATF 6 expression levels and in the phosphorylation of inositol-requiring enzyme 1 alpha caused by early weaning (P < 0.05). PT increased sirtuin 1 activity (P = 0.031) in the liver of early-weaned piglets than those in the early-weaned piglets fed a basal diet. In conclusion, PT supplementation alleviates liver injury in weanling piglets probably by inhibiting mitochondrial dysfunction and ER stress.
Collapse
Affiliation(s)
- Hao Zhang
- College of Animal Science & Technology, Nanjing Agricultural University, Nanjing, Jiangsu, China.,Postdoctoral Research Station of Clinical Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, China.,Shanghai Key Laboratory of Veterinary Biotechnology, Shanghai, China
| | - Yanan Chen
- College of Animal Science & Technology, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Yue Li
- Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Peilu Jia
- College of Animal Science & Technology, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Shuli Ji
- College of Animal Science & Technology, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Yueping Chen
- College of Animal Science & Technology, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Tian Wang
- College of Animal Science & Technology, Nanjing Agricultural University, Nanjing, Jiangsu, China
| |
Collapse
|
29
|
de Morais JMB, Cruz EMS, da Rosa CVD, Cesário RC, Comar JF, Moreira CCL, de Almeida Chuffa LG, Seiva FRF. Pterostilbene influences glycemia and lipidemia and enhances antioxidant status in the liver of rats that consumed sucrose solution. Life Sci 2021; 269:119048. [PMID: 33453246 DOI: 10.1016/j.lfs.2021.119048] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 01/05/2021] [Accepted: 01/06/2021] [Indexed: 02/07/2023]
Abstract
AIMS The present study investigated the potential effects of pterostilbene (PT) on glycemic and lipid profiles, fat storage, cardiovascular indices, and hepatic parameters of rats fed with sucrose solution. MAIN METHODS 24 male Wistar rats received either drinking water or a 40% sucrose solution over a period of 140 days. After this period, animals were randomly allocated into four groups (n = 6): Control (C), C + Pterostilbene (PT), Sucrose (S), and S + PT. Pterostilbene (40 mg/kg) was given orally for 45 consecutive days. KEY FINDINGS Pterostilbene did not influence morphometric and nutritional parameters. The insulin sensitivity index TyG was elevated in the C + PT group (p < 0.01) and reduced in S + PT group (p < 0.05). Basal glucose levels were lower in the S + PT group (p < 0.05), and the glycemic response was improved with PT treatment in glucose provocative tests. Conversely, rats from the C + PT group showed impaired glucose disposal during those tests. Lipid profile was partially improved by PT treatment. Hepatic oxidative stress in the S group was improved after PT treatment. In the C group, PT reduced SOD activity, glutathione levels, and increased catalase activity. Collagen content was reduced by PT treatment. SIGNIFICANCE PT effects depends on the type of diet the animals were submitted. In rats fed with sucrose-solution, PT confirmed its positive effects, improving glucose and lipid profile, and acting as a potent antioxidant. The effects of PT on rats that consumed a normal diet were very discrete or even undesirable. We suggest caution with indiscriminate consume of natural compounds by healthy subjects.
Collapse
Affiliation(s)
| | - Ellen Mayara Souza Cruz
- Post Graduation Program of Experimental Pathology, Universidade Estadual de Londrina - UEL, Paraná, Brazil
| | - Carlos Vinícius Dalto da Rosa
- Department of Biology, Biological Science Center, Universidade Estadual do Norte do Paraná - UENP, Luiz Meneghel Campus, Bandeirantes, Paraná, Brazil
| | - Roberta Carvalho Cesário
- Department of Anatomy, Institute of Biosciences of Botucatu, Universidade Estadual Paulista - UNESP, Botucatu, São Paulo, Brazil
| | | | | | - Luiz Gustavo de Almeida Chuffa
- Department of Anatomy, Institute of Biosciences of Botucatu, Universidade Estadual Paulista - UNESP, Botucatu, São Paulo, Brazil
| | - Fábio Rodrigues Ferreira Seiva
- Department of Biology, Biological Science Center, Universidade Estadual do Norte do Paraná - UENP, Luiz Meneghel Campus, Bandeirantes, Paraná, Brazil; Post Graduation Program of Experimental Pathology, Universidade Estadual de Londrina - UEL, Paraná, Brazil.
| |
Collapse
|
30
|
Lin WS, Leland JV, Ho CT, Pan MH. Occurrence, Bioavailability, Anti-inflammatory, and Anticancer Effects of Pterostilbene. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:12788-12799. [PMID: 32064876 DOI: 10.1021/acs.jafc.9b07860] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Supplementation with natural compounds found in fruits and vegetables has long been associated with a reduced risk of several types of cancer. Pterostilbene is a natural stilbenoid and a dimethylated analogue of resveratrol which is found primarily in blueberries. Pterostilbene exhibits a range of pharmacological properties, particularly anti-inflammatory and anticancer effects. Due to two methoxy groups in its skeleton, pterostilbene is more lipophilic than resveratrol and thus possesses higher intestinal permeability and cellular uptake and enhanced stability. Moreover, pterostilbene exhibits less toxicity and fewer adverse effects, providing it with superior potential in cancer chemoprevention and chemotherapy applications. Numerous research studies have demonstrated that pterostilbene possesses detoxification activities, mediating the anti-inflammation response, regulating the cell cycle, augmenting apoptosis, enhancing autophagy, and inhibiting tumor angiogenesis, invasion, and metastasis by modulating signal transduction pathways which block multiple stages of carcinogenesis. In this review, we illustrate that pterostilbene is a natural compound having bioavailability. The extensive metabolism of pterostilbene will be discussed. We also summarize recent research on pterostilbene's anti-inflammatory and anticancer properties in the multistage carcinogenesis process and related molecular mechanism and conclude that it should contribute to improved cancer management.
Collapse
Affiliation(s)
- Wei-Sheng Lin
- Institute of Food Science and Technology, National Taiwan University, Taipei 10617, Taiwan
| | | | - Chi-Tang Ho
- Department of Food Science, Rutgers University, New Brunswick, New Jersey 08901-8520, United States
| | - Min-Hsiung Pan
- Institute of Food Science and Technology, National Taiwan University, Taipei 10617, Taiwan
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 40402, Taiwan
- Department of Health and Nutrition Biotechnology, Asia University, Taichung 41354, Taiwan
| |
Collapse
|
31
|
Chartoumpekis DV, Fu CY, Ziros PG, Sykiotis GP. Patent Review (2017-2020) of the Keap1/Nrf2 Pathway Using PatSeer Pro: Focus on Autoimmune Diseases. Antioxidants (Basel) 2020; 9:antiox9111138. [PMID: 33212784 PMCID: PMC7697445 DOI: 10.3390/antiox9111138] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 11/04/2020] [Accepted: 11/14/2020] [Indexed: 12/18/2022] Open
Abstract
Research on the antioxidant pathway comprising the transcription factor nuclear factor erythroid 2-related factor 2 (Nrf2) and its cytoplasmic inhibitor Kelch-like ECH-associated protein 1 (Keap1) is ever increasing. As modulators of this pathway have started to be used in clinical trials and clinical practice, Nrf2 has become the subject of several patents. To assess the patent landscape of the last three years on Nrf2 and evaluate the main fields they refer to, we used the web-based tool PatSeer Pro to identify patents mentioning the Nrf2 pathway between January 2017 and May 2020. This search resulted in 509 unique patents that focus on topics such as autoimmune, neurodegenerative, liver, kidney, and lung diseases and refer to modulators (mainly activators) of the Nrf2 pathway as potential treatments. Autoimmunity emerged as the main theme among the topics of Nrf2 patents, including a broad range of diseases, such as systemic sclerosis, systemic lupus erythematosus, multiple sclerosis, inflammatory bowel diseases, Hashimoto's thyroiditis, etc.; however, there was a dearth of experimental support for the respective patents' claims. Given that chronic inflammation is the main element of the pathophysiology of most autoimmune diseases, the majority of patents referring to activation of Nrf2 as a method to treat autoimmune diseases base their claims on the well-established anti-inflammatory role of Nrf2. In conclusion, there is strong interest in securing intellectual property rights relating to the potential use of Nrf2 pathway activators in a variety of diseases, and this trend parallels the rise in related research publications. However, in the case of autoimmunity, more research is warranted to support the potential beneficial effects of Nrf2 modulation in each disease.
Collapse
Affiliation(s)
- Dionysios V. Chartoumpekis
- Service of Endocrinology and Diabetology, Lausanne University Hospital, and Faculty of Biology and Medicine, University of Lausanne, 1011 Lausanne, Switzerland; (D.V.C.); (P.G.Z.)
- Division of Endocrinology, Department of Internal Medicine, University of Patras, 26504 Patras, Greece
| | - Chun-Yan Fu
- Department of Pathology and Pathophysiology, Zhejiang University School of Medicine, Hangzhou 310058, China;
| | - Panos G. Ziros
- Service of Endocrinology and Diabetology, Lausanne University Hospital, and Faculty of Biology and Medicine, University of Lausanne, 1011 Lausanne, Switzerland; (D.V.C.); (P.G.Z.)
| | - Gerasimos P. Sykiotis
- Service of Endocrinology and Diabetology, Lausanne University Hospital, and Faculty of Biology and Medicine, University of Lausanne, 1011 Lausanne, Switzerland; (D.V.C.); (P.G.Z.)
- Correspondence: ; Tel.: +41-21-314-0606
| |
Collapse
|
32
|
Rolt A, Cox LS. Structural basis of the anti-ageing effects of polyphenolics: mitigation of oxidative stress. BMC Chem 2020; 14:50. [PMID: 32793891 PMCID: PMC7417423 DOI: 10.1186/s13065-020-00696-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 07/10/2020] [Indexed: 01/10/2023] Open
Abstract
Ageing, and particularly the onset of age-related diseases, is associated with tissue dysfunction and macromolecular damage, some of which can be attributed to accumulation of oxidative damage. Polyphenolic natural products such as stilbenoids, flavonoids and chalcones have been shown to be effective at ameliorating several age-related phenotypes, including oxidative stress, inflammation, impaired proteostasis and cellular senescence, both in vitro and in vivo. Here we aim to identify the structural basis underlying the pharmacology of polyphenols towards ROS and related biochemical pathways involved in age-related disease. We compile and describe SAR trends across different polyphenol chemotypes including stilbenoids, flavonoids and chalcones, review their different molecular targets and indications, and identify common structural ground between chemotypes and mechanisms of action. In particular, we focus on the structural requirements for the direct scavenging of reactive oxygen/nitrogen species such as radicals as well as coordination of a broader antioxidant response. We further suggest that it is important to consider multiple (rather than single) biological activities when identifying and developing new medicinal chemistry entities with utility in modulating complex biological properties such as cell ageing.
Collapse
Affiliation(s)
- Adam Rolt
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU UK
| | - Lynne S Cox
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU UK
| |
Collapse
|
33
|
Zhang H, Chen Y, Chen Y, Ji S, Jia P, Xu J, Li Y, Wang T. Pterostilbene attenuates liver injury and oxidative stress in intrauterine growth-retarded weanling piglets. Nutrition 2020; 81:110940. [PMID: 32755743 DOI: 10.1016/j.nut.2020.110940] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 04/20/2020] [Accepted: 05/27/2020] [Indexed: 10/23/2022]
Abstract
OBJECTIVES The aim of the present study was to investigate the potential of pterostilbene, a beneficial component primarily found in blueberries, to alleviate the intrauterine growth retardation (IUGR)-induced early liver injury and oxidative stress in a porcine model. METHODS Thirty-six IUGR piglets and an equal number of normal birth weight (NBW) counterparts received a diet with or without pterostilbene (250 mg/kg diet) during the first week post-weaning. Parameters related to the hepatic injury, oxidative stress, and antioxidant defense mechanisms were analyzed. RESULTS Relative to NBW, IUGR induced liver injury, which corresponded to increments in circulating alanine transaminase activity and hepatic apoptotic cell rate, superoxide radical generation, and the accumulation of oxidative damage products (P < 0.05). Administering pterostilbene reduced plasma transaminase activities, decreased hepatocyte apoptosis rate, and prevented the augmented levels of hepatic superoxide anion, 8-hydroxy-2 deoxyguanosine, and 4-hydroxynonenal-modified protein (P < 0.05). In terms of the hepatic antioxidant function, pterostilbene was efficient in improving the superoxide dismutase activity and the metabolic cycle between reduced glutathione and its oxidized form (P < 0.05). The pterostilbene-supplemented diet facilitated the nuclear translocation of nuclear factor erythroid-2-related factor 2 (NRF2) and promoted the expression levels of superoxide dismutase 2 in the liver of IUGR piglets (P < 0.05). CONCLUSION This study indicates that pterostilbene treatment has an auxiliary therapeutic potential to ameliorate early liver injury in IUGR neonates, presumably by stimulating the NRF2 signals and the associated antioxidant function.
Collapse
Affiliation(s)
- Hao Zhang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, P. R. China; Postdoctoral Research Station of Clinical Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, P. R. China; Shanghai Key Laboratory of Veterinary Biotechnology, Shanghai, P. R. China
| | - Yanan Chen
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, P. R. China
| | - Yueping Chen
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, P. R. China
| | - Shuli Ji
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, P. R. China
| | - Peilu Jia
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, P. R. China
| | - Jianxiong Xu
- Shanghai Key Laboratory of Veterinary Biotechnology, Shanghai, P. R. China; School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, P. R. China
| | - Yue Li
- Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing, P. R. China
| | - Tian Wang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, P. R. China.
| |
Collapse
|
34
|
Zhang H, Chen Y, Chen Y, Ji S, Jia P, Li Y, Wang T. Comparison of the protective effects of resveratrol and pterostilbene against intestinal damage and redox imbalance in weanling piglets. J Anim Sci Biotechnol 2020; 11:52. [PMID: 32514341 PMCID: PMC7262760 DOI: 10.1186/s40104-020-00460-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Accepted: 04/13/2020] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND Evidence indicates that early weaning predisposes piglets to intestinal oxidative stress and increases the risk of intestinal dysfunction; however, there are minimal satisfactory treatment strategies for these conditions. This study investigated the potential of resveratrol and its analog, pterostilbene, as antioxidant protectants for regulating intestinal morphology, barrier function, and redox status among weanling piglets. METHODS A total of 144 piglets were selected at 21 days of age and randomly allocated into one of four treatment groups, each of which included six replicates. Piglets in a sow-reared control group were suckling normally between ages 21 and 28 days, while those in weaned groups were fed a basal diet, supplemented with either 300 mg/kg of resveratrol or with 300 mg/kg of pterostilbene. Parameters associated with intestinal injury and redox status were analyzed at the end of the feeding trial. RESULTS Early weaning disrupted the intestinal function of young piglets, with evidence of increased diamine oxidase activity and D-lactate content in the plasma, shorter villi, an imbalance between cell proliferation and apoptosis, an impaired antioxidant defense system, and severe oxidative damage in the jejunum relative to suckling piglets. Feeding piglets with a resveratrol-supplemented diet partially increased villus height (P = 0.056) and tended to diminish apoptotic cell numbers (P = 0.084) in the jejunum compared with those fed a basal diet. Similarly, these beneficial effects were observed in the pterostilbene-fed piglets. Pterostilbene improved the feed efficiency of weanling piglets between the ages of 21 and 28 days; it also resulted in diminished plasma diamine oxidase activity and D-lactate content relative to untreated weaned piglets (P < 0.05). Notably, pterostilbene restored jejunal antioxidant capacity, an effect that was nearly absent in the resveratrol-fed piglets. Pterostilbene reduced the malondialdehyde and 8-hydroxy-2´-deoxyguanosine contents of jejunal mucosa possibly through its regulatory role in facilitating the nuclear translocation of nuclear factor erythroid-2-related factor 2 and the expression levels of NAD(P)H quinone dehydrogenase 1 and superoxide dismutase 2 (P < 0.05). CONCLUSIONS The results indicate that pterostilbene may be more effective than its parent compound in alleviating early weaning-induced intestinal damage and redox imbalance among young piglets.
Collapse
Affiliation(s)
- Hao Zhang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095 Jiangsu China
- Postdoctoral Research Station of Clinical Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095 Jiangsu China
- Shanghai Key Laboratory of Veterinary Biotechnology, Shanghai, 200240 China
| | - Yanan Chen
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095 Jiangsu China
| | - Yueping Chen
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095 Jiangsu China
- Postdoctoral Research Station of Food Science and Engineering, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095 Jiangsu China
| | - Shuli Ji
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095 Jiangsu China
| | - Peilu Jia
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095 Jiangsu China
| | - Yue Li
- Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014 China
| | - Tian Wang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095 Jiangsu China
| |
Collapse
|
35
|
Zhang H, Chen Y, Chen Y, Jia P, Ji S, Xu J, Li Y, Wang T. Comparison of the effects of resveratrol and its derivative pterostilbene on hepatic oxidative stress and mitochondrial dysfunction in piglets challenged with diquat. Food Funct 2020; 11:4202-4215. [PMID: 32352466 DOI: 10.1039/d0fo00732c] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
This study investigated the potential of resveratrol (RSV) and its derivative pterostilbene (PT) to prevent diquat (DQ)-induced hepatic oxidative damage and mitochondrial dysfunction in piglets. Seventy-two weanling piglets were randomly divided into the following treatment groups: non-challenged control group, DQ-challenged control group, and DQ-challenged groups supplemented with either 300 mg RSV per kg of diet or an equivalent amount of PT. Each treatment group consisted of six replicates with three piglets per replicate (n = 6). After a two-week feeding trial, piglets were intraperitoneally injected with either 10 mg DQ per kg of body weight or sterile saline. At 24 hours post-injection, one piglet from each replicate (six piglets per treatment) was randomly selected for sample collection and biochemical analysis. Compared with the DQ-challenged control group, PT attenuated the growth loss of piglets after the DQ challenge (P < 0.05). Administration of PT was more effective than its parent compound in inhibiting the DQ-induced hepatic apoptosis and the increased generation of total cholesterol, superoxide anion, and lipid peroxidation products (P < 0.05). Specifically, PT facilitated nuclear factor erythroid 2-related factor 2 signals and the expression and activity of manganese superoxide dismutase, while it also prevented mitochondrial swelling, membrane potential collapse, and adenosine triphosphate depletion, possibly through the activation of sirtuin 1 (P < 0.05). These results indicate that PT may be superior to RSV as an antioxidant to protect the liver of young piglets from oxidative insults.
Collapse
Affiliation(s)
- Hao Zhang
- College of Animal Science & Technology, Nanjing Agricultural University, Nanjing 210095, China.
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Bioactive Polyphenols and Neuromodulation: Molecular Mechanisms in Neurodegeneration. Int J Mol Sci 2020; 21:ijms21072564. [PMID: 32272735 PMCID: PMC7178158 DOI: 10.3390/ijms21072564] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 03/27/2020] [Accepted: 04/03/2020] [Indexed: 12/12/2022] Open
Abstract
The interest in dietary polyphenols in recent years has greatly increased due to their antioxidant bioactivity with preventive properties against chronic diseases. Polyphenols, by modulating different cellular functions, play an important role in neuroprotection and are able to neutralize the effects of oxidative stress, inflammation, and apoptosis. Interestingly, all these mechanisms are involved in neurodegeneration. Although polyphenols display differences in their effectiveness due to interindividual variability, recent studies indicated that bioactive polyphenols in food and beverages promote health and prevent age-related cognitive decline. Polyphenols have a poor bioavailability and their digestion by gut microbiota produces active metabolites. In fact, dietary bioactive polyphenols need to be modified by microbiota present in the intestine before being absorbed, and to exert health preventive effects by interacting with cellular signalling pathways. This literature review includes an evaluation of the literature in English up to December 2019 in PubMed and Web of Science databases. A total of 307 studies, consisting of research reports, review articles and articles were examined and 146 were included. The review highlights the role of bioactive polyphenols in neurodegeneration, with a particular emphasis on the cellular and molecular mechanisms that are modulated by polyphenols involved in protection from oxidative stress and apoptosis prevention.
Collapse
|
37
|
Lacerda D, Türck P, Campos-Carraro C, Hickmann A, Ortiz V, Bianchi S, Belló-Klein A, de Castro AL, Bassani VL, Araujo ASDR. Pterostilbene improves cardiac function in a rat model of right heart failure through modulation of calcium handling proteins and oxidative stress. Appl Physiol Nutr Metab 2020; 45:987-995. [PMID: 32191845 DOI: 10.1139/apnm-2019-0864] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
This study explored the effect of pterostilbene (PTS) complexed with hydroxypropyl-β-cyclodextrin (HPβCD) on right heart function, glutathione and glutaredoxin systems, and the expression of redox-sensitive proteins involved with regulation calcium levels in the experimental model of pulmonary arterial hypertension (PAH) induced by monocrotaline (MCT). After 7 days of PAH induction, rats received daily doses of the PTS:HPβCD complex (corresponding to 25, 50, or 100 mg·kg-1 of PTS) or vehicle (control group, CTR0) (an aqueous solution containing HPβCD; CTR0 and MCT0 (MCT group that did not receive PTS treatment)) via oral administration for 2 weeks. The results showed that the PTS:HPβCD complex increased the content of reduced glutathione and the activity of glutathione-S-transferase and glutaredoxin in the right ventricle (RV) of MCT-treated rats in a dose-dependent manner. Additionally, at higher doses, it also prevented the reduction of stroke volume and cardiac output, prevented myocardial performance index (MPI) increase, reduced lipoperoxidation, reduced total phospholamban, and increased the expression of sarcoplasmic reticulum calcium ATPase in the RV of MCT-treated rats. These results demonstrate that the PTS:HPβCD complex has a dose-dependent antioxidant mechanism that results in improved cardiac function in experimental right heart failure. Our results open a field of possibilities to PTS administration as new therapeutic approach to conventional therapy for right ventricular dysfunction. Novelty Pterostilbene complexed with hydroxypropyl-β-cyclodextrin could be a new therapeutic approach. Pterostilbene complexed with hydroxypropyl-β-cyclodextrin reestablishes redox homeostasis through glutathione metabolism modulation, leading to an improved MPI in pulmonary arterial hypertension-provoked right heart failure.
Collapse
Affiliation(s)
- Denise Lacerda
- Programa de Pós-Graduação em Ciências Biológicas: Farmacologia e Terapêutica, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS 90050-170, Brazil
| | - Patrick Türck
- Programa de Pós-Graduação em Ciências Biológicas: Fisiologia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS 90050-170, Brazil
| | - Cristina Campos-Carraro
- Programa de Pós-Graduação em Ciências Biológicas: Fisiologia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS 90050-170, Brazil
| | - Alexandre Hickmann
- Programa de Pós-Graduação em Ciências Biológicas: Farmacologia e Terapêutica, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS 90050-170, Brazil
| | - Vanessa Ortiz
- Programa de Pós-Graduação em Ciências Biológicas: Farmacologia e Terapêutica, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS 90050-170, Brazil
| | - Sara Bianchi
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS 90610-000, Brazil
| | - Adriane Belló-Klein
- Programa de Pós-Graduação em Ciências Biológicas: Fisiologia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS 90050-170, Brazil
| | - Alexandre Luz de Castro
- Programa de Pós-Graduação em Ciências Biológicas: Fisiologia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS 90050-170, Brazil
| | - Valquiria Linck Bassani
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS 90610-000, Brazil
| | - Alex Sander da Rosa Araujo
- Programa de Pós-Graduação em Ciências Biológicas: Farmacologia e Terapêutica, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS 90050-170, Brazil.,Programa de Pós-Graduação em Ciências Biológicas: Fisiologia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS 90050-170, Brazil
| |
Collapse
|
38
|
Wang C, Zheng L, Su G, Zeng XA, Sun B, Zhao M. Evaluation and Exploration of Potentially Bioactive Peptides in Casein Hydrolysates against Liver Oxidative Damage in STZ/HFD-Induced Diabetic Rats. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:2393-2405. [PMID: 31995979 DOI: 10.1021/acs.jafc.9b07687] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Hyperglycemia-induced oxidative stress can cause liver damage in diabetes, and protein hydrolysates with antidiabetic and antioxidant properties are emerging as a potential therapy. In this study, protective effects of casein hydrolysates against live oxidative damage in streptozotocin/high-fat-induced diabetic rats were studied and potentially bioactive peptides were explored by an integrated approach of differential peptide and in silico analysis. Results showed that different casein hydrolysates significantly alleviated liver oxidative damage (p < 0.05) via different mechanisms. Particularly, casein hydrolyzed by a papain-flavourzyme combination (P-FCH) treatment significantly improved liver antioxidant enzyme activities by enhancing nuclear factor erythroid 2-related factor 2 (Nrf2) transcription (p < 0.05). Furthermore, 18 peptides were screened as potential bioactive peptides by analyzing differential peptides among different hydrolysates combined with in silico prediction. Among them, the dipeptide WM might directly inhibit the Kelch-like ECH-associated protein 1 (Keap1)-Nrf2 interaction as potential Nrf2 activators. These results suggested that P-FCH might be an alternative way to treat liver damage in diabetes.
Collapse
Affiliation(s)
- Chenyang Wang
- School of Food Science and Engineering , South China University of Technology , Guangzhou 510640 , China
- Guangdong Food Green Processing and Nutrition Regulation Technologies Research Center , Guangzhou 510650 , China
| | - Lin Zheng
- School of Food Science and Engineering , South China University of Technology , Guangzhou 510640 , China
- Guangdong Food Green Processing and Nutrition Regulation Technologies Research Center , Guangzhou 510650 , China
| | - Guowan Su
- School of Food Science and Engineering , South China University of Technology , Guangzhou 510640 , China
- Guangdong Food Green Processing and Nutrition Regulation Technologies Research Center , Guangzhou 510650 , China
| | - Xin-An Zeng
- School of Food Science and Engineering , South China University of Technology , Guangzhou 510640 , China
| | - Baoguo Sun
- Beijing Advanced Innovation Center for Food Nutrition and Human Health , Beijing Technology & Business University , Beijing 100048 , China
| | - Mouming Zhao
- School of Food Science and Engineering , South China University of Technology , Guangzhou 510640 , China
- Guangdong Food Green Processing and Nutrition Regulation Technologies Research Center , Guangzhou 510650 , China
- Beijing Advanced Innovation Center for Food Nutrition and Human Health , Beijing Technology & Business University , Beijing 100048 , China
| |
Collapse
|
39
|
Carrera-Juliá S, Moreno ML, Barrios C, de la Rubia Ortí JE, Drehmer E. Antioxidant Alternatives in the Treatment of Amyotrophic Lateral Sclerosis: A Comprehensive Review. Front Physiol 2020; 11:63. [PMID: 32116773 PMCID: PMC7016185 DOI: 10.3389/fphys.2020.00063] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 01/21/2020] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease that produces a selective loss of the motor neurons of the spinal cord, brain stem and motor cortex. Oxidative stress (OS) associated with mitochondrial dysfunction and the deterioration of the electron transport chain has been shown to be a factor that contributes to neurodegeneration and plays a potential role in the pathogenesis of ALS. The regions of the central nervous system affected have high levels of reactive oxygen species (ROS) and reduced antioxidant defenses. Scientific studies propose treatment with antioxidants to combat the characteristic OS and the regeneration of nicotinamide adenine dinucleotide (NAD+) levels by the use of precursors. This review examines the possible roles of nicotinamide riboside and pterostilbene as therapeutic strategies in ALS.
Collapse
Affiliation(s)
- Sandra Carrera-Juliá
- Doctoral Degree’s School, Catholic University of Valencia “San Vicente Mártir”, Valencia, Spain
- Department of Nutrition and Dietetics, Catholic University of Valencia “San Vicente Mártir”, Valencia, Spain
| | - Mari Luz Moreno
- Department of Basic Sciences, Catholic University of Valencia “San Vicente Mártir”, Valencia, Spain
| | - Carlos Barrios
- Institute for Research on Musculoskeletal Disorders, Catholic University of Valencia “San Vicente Mártir”, Valencia, Spain
| | | | - Eraci Drehmer
- Department of Basic Sciences, Catholic University of Valencia “San Vicente Mártir”, Valencia, Spain
| |
Collapse
|
40
|
Yu W, Zhao J, Li W, Zheng Y, Zhu J, Liu J, Liu R, Wang Z, Wang X, Hai C. 2,3,5,4′-Tetrahydroxystilbene-2-O-β-d-glucoside alleviated the acute hepatotoxicity and DNA damage in diethylnitrosamine-contaminated mice. Life Sci 2020; 243:117274. [DOI: 10.1016/j.lfs.2020.117274] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 12/20/2019] [Accepted: 01/02/2020] [Indexed: 12/17/2022]
|
41
|
Millán I, Desco MDC, Torres-Cuevas I, Pérez S, Pulido I, Mena-Mollá S, Mataix J, Asensi M, Ortega ÁL. Pterostilbene Prevents Early Diabetic Retinopathy Alterations in a Rabbit Experimental Model. Nutrients 2019; 12:nu12010082. [PMID: 31892189 PMCID: PMC7019414 DOI: 10.3390/nu12010082] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 12/05/2019] [Accepted: 12/23/2019] [Indexed: 12/13/2022] Open
Abstract
Oxidative stress generated by diabetes plays a key role in the development of diabetic retinopathy (DR), a common diabetic complication. DR remains asymptomatic until it reaches advanced stages, which complicate its treatment. Although it is known that good metabolic control is essential for preventing DR, knowledge of the disease is incomplete and an effective treatment with no side effects is lacking. Pterostilbene (Pter), a natural stilbene with good antioxidant activity, has proved to beneficially affect different pathologies, including diabetes. Therefore, our study aimed to analyse the protective and/or therapeutic capacity of Pter against oxidant damage by characterising early retinal alterations induced by hyperglycaemia, and its possible mechanism of action in a rabbit model of type 1 diabetes mellitus. Pter reduced lipid and protein oxidative damage, and recovered redox status and the main activities of antioxidant enzymes. Moreover, the redox regulation by Pter was associated with activation of the PI3K/AKT/GSK3β/NRF2 pathway. Our results show that Pter is a powerful protective agent that may delay early DR development.
Collapse
Affiliation(s)
- Iván Millán
- Health Research Institute La Fe, Neonatal Research Group, Av. Fernando Abril Martorell 106, 46026 Valencia, Spain; (I.M.); (I.T.-C.)
| | - María del Carmen Desco
- FISABIO Oftalmología Médica, Vitreo-retina unit, Bif. Pío Baroja General Avilés s/n, 46015 Valencia, Spain; (M.d.C.D.); (J.M.)
| | - Isabel Torres-Cuevas
- Health Research Institute La Fe, Neonatal Research Group, Av. Fernando Abril Martorell 106, 46026 Valencia, Spain; (I.M.); (I.T.-C.)
| | - Salvador Pérez
- Faculty of Pharmacy, Department of Physiology, University of Valencia, Vicente Andrés Estellés Av. s/n, 46100 Burjassot, Spain; (S.P.); (I.P.); (S.M.-M.); (M.A.)
| | - Inés Pulido
- Faculty of Pharmacy, Department of Physiology, University of Valencia, Vicente Andrés Estellés Av. s/n, 46100 Burjassot, Spain; (S.P.); (I.P.); (S.M.-M.); (M.A.)
| | - Salvador Mena-Mollá
- Faculty of Pharmacy, Department of Physiology, University of Valencia, Vicente Andrés Estellés Av. s/n, 46100 Burjassot, Spain; (S.P.); (I.P.); (S.M.-M.); (M.A.)
| | - Jorge Mataix
- FISABIO Oftalmología Médica, Vitreo-retina unit, Bif. Pío Baroja General Avilés s/n, 46015 Valencia, Spain; (M.d.C.D.); (J.M.)
| | - Miguel Asensi
- Faculty of Pharmacy, Department of Physiology, University of Valencia, Vicente Andrés Estellés Av. s/n, 46100 Burjassot, Spain; (S.P.); (I.P.); (S.M.-M.); (M.A.)
| | - Ángel Luis Ortega
- Faculty of Pharmacy, Department of Physiology, University of Valencia, Vicente Andrés Estellés Av. s/n, 46100 Burjassot, Spain; (S.P.); (I.P.); (S.M.-M.); (M.A.)
- Correspondence: ; Tel.: +34-9-6354-3817
| |
Collapse
|
42
|
Karan A, Bhakkiyalakshmi E, Jayasuriya R, Sarada DVL, Ramkumar KM. The pivotal role of nuclear factor erythroid 2-related factor 2 in diabetes-induced endothelial dysfunction. Pharmacol Res 2019; 153:104601. [PMID: 31838079 DOI: 10.1016/j.phrs.2019.104601] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Revised: 11/23/2019] [Accepted: 12/11/2019] [Indexed: 02/07/2023]
Abstract
Endothelial dysfunction (ED) is a key event in the onset and progression of vascular complications associated with diabetes. Regulation of endothelial function and the underlying signaling mechanisms in the progression of diabetes-induced vascular complications have been well established. Recent studies indicate that increased oxidative stress is an important determinant of endothelial injury and patients with hypertension display ED mediated by impaired Nitric Oxide (NO) availability. Further, oxidative stress is known to be associated with inflammation and ED in vascular remodeling and diabetes-associated hypertension. Numerous strategies have been developed to improve the function of endothelial cells and increasing number of evidences highlight the indispensable role of antioxidants in modulation of endothelium-dependent vasodilation responses. Nuclear factor Erythroid 2-related factor 2 (Nrf2), is the principal transcriptional regulator, that is central in mediating oxidative stress signal response. Having unequivocally established the relationship between type 2 diabetes mellitus (T2DM) and oxidative stress, the pivotal role of Nrf2/Keap1/ARE network, has taken the center stage as target for developing therapies towards maintaining the cellular redox environment. Several activators of Nrf2 are known to combat diabetes-induced ED and few are currently in clinical trials. Focusing on their therapeutic value in diabetes-induced ED, this review highlights some natural and synthetic molecules that are involved in the modulation of the Nrf2/Keap1/ARE network and its underlying molecular mechanisms in the regulation of ED. Further emphasis is also laid on the therapeutic benefits of directly up-regulating Nrf2-mediated antioxidant defences in regulating endothelial redox homeostasis for countering diabetes-induced ED.
Collapse
Affiliation(s)
- Amin Karan
- Life Science Division, SRM Research Institute, SRM Institute of Science & Technology, Kattankulathur, 603 203, Tamilnadu, India; Department of Biotechnology, School of Bioengineering, SRM Institute of Science & Technology, Kattankulathur, 603 203, Tamil Nadu, India
| | - Elango Bhakkiyalakshmi
- Life Science Division, SRM Research Institute, SRM Institute of Science & Technology, Kattankulathur, 603 203, Tamilnadu, India; Department of Biotechnology, School of Bioengineering, SRM Institute of Science & Technology, Kattankulathur, 603 203, Tamil Nadu, India
| | - Ravichandran Jayasuriya
- Life Science Division, SRM Research Institute, SRM Institute of Science & Technology, Kattankulathur, 603 203, Tamilnadu, India; Department of Biotechnology, School of Bioengineering, SRM Institute of Science & Technology, Kattankulathur, 603 203, Tamil Nadu, India
| | - D V L Sarada
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science & Technology, Kattankulathur, 603 203, Tamil Nadu, India
| | - Kunka Mohanram Ramkumar
- Life Science Division, SRM Research Institute, SRM Institute of Science & Technology, Kattankulathur, 603 203, Tamilnadu, India; Department of Biotechnology, School of Bioengineering, SRM Institute of Science & Technology, Kattankulathur, 603 203, Tamil Nadu, India.
| |
Collapse
|
43
|
Zhou Y, Jiang Z, Lu H, Xu Z, Tong R, Shi J, Jia G. Recent Advances of Natural Polyphenols Activators for Keap1-Nrf2 Signaling Pathway. Chem Biodivers 2019; 16:e1900400. [PMID: 31482617 DOI: 10.1002/cbdv.201900400] [Citation(s) in RCA: 110] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 09/03/2019] [Indexed: 01/01/2023]
Abstract
The Keap1-Nrf2/ARE signaling pathway is an important defense system against exogenous and endogenous oxidative stress injury. The dysregulation of the signaling pathway is associated with many diseases, such as cancer, diabetes, and respiratory diseases. Over the years, a wide range of natural products has provided sufficient resources for the discovery of potential therapeutic drugs. Among them, polyphenols possess Nrf2 activation, not only inhibit the production of ROS, inhibit Keap1-Nrf2 protein-protein interaction, but also degrade Keap1 and regulate the Nrf2 related pathway. In fact, with the continuous improvement of natural polyphenols separation and purification technology and further studies on the Keap1-Nrf2 molecular mechanism, more and more natural polyphenols monomer components of Nrf2 activators have been gradually discovered. In this view, we summarize the research status of natural polyphenols that have been found with apparent Nrf2 activation and their action modes. On the whole, this review may guide the design of novel Keap1-Nrf2 activator.
Collapse
Affiliation(s)
- Yanping Zhou
- Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Science & Sichuan Provincial People's Hospital, School of Medicine of University of Electronic Science and Technology of China, No. 32 West Second Section First Ring Road, Chengdu, 610072, P. R. China
| | - Zhongliang Jiang
- Department of Hematology, Miller School of Medicine, University of Miami, Miami, 33136, USA
| | - Haiying Lu
- Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Science & Sichuan Provincial People's Hospital, School of Medicine of University of Electronic Science and Technology of China, No. 32 West Second Section First Ring Road, Chengdu, 610072, P. R. China
| | - Zhuyu Xu
- Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Science & Sichuan Provincial People's Hospital, School of Medicine of University of Electronic Science and Technology of China, No. 32 West Second Section First Ring Road, Chengdu, 610072, P. R. China
| | - Rongsheng Tong
- Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Science & Sichuan Provincial People's Hospital, School of Medicine of University of Electronic Science and Technology of China, No. 32 West Second Section First Ring Road, Chengdu, 610072, P. R. China
| | - Jianyou Shi
- Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Science & Sichuan Provincial People's Hospital, School of Medicine of University of Electronic Science and Technology of China, No. 32 West Second Section First Ring Road, Chengdu, 610072, P. R. China
| | - Guiqing Jia
- Department of Gastrointestinal Surgery, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, 610072, P. R. China
| |
Collapse
|
44
|
Türck P, Fraga S, Salvador I, Campos-Carraro C, Lacerda D, Bahr A, Ortiz V, Hickmann A, Koetz M, Belló-Klein A, Henriques A, Agostini F, da Rosa Araujo AS. Blueberry extract decreases oxidative stress and improves functional parameters in lungs from rats with pulmonary arterial hypertension. Nutrition 2019; 70:110579. [PMID: 31743815 DOI: 10.1016/j.nut.2019.110579] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Revised: 05/08/2019] [Accepted: 05/20/2019] [Indexed: 12/16/2022]
Abstract
OBJECTIVES Pulmonary arterial hypertension (PAH) is a condition characterized by an increased resistance of pulmonary vasculature, culminating in an increase in pulmonary pressure. This process involves disturbances in lung redox homeostasis, causing progressive right heart failure. In this context, the use of natural antioxidants, such as those found in blueberries, may represent a therapeutic approach. The aim of this study was to evaluate the effect of blueberry extract (BB) on functional parameters and oxidative stress levels in rat lungs with induced PAH. METHODS Forty-eight male Wistar rats (weighing 200 ± 20 g) were randomized into five groups: control, monocrotaline, monocrotaline + BB 50, monocrotaline + BB 100, and monocrotaline + BB 200. PAH was induced by the administration of monocrotaline (60 mg/kg, intraperitoneal). Rats were treated with BB at doses of 50, 100, and 200 mg/kg via gavage for 5 wk (2 wk before monocrotaline and 3 wk after monocrotaline injection). At day 35, rats were submitted to echocardiography and catheterization. They were then sacrificed and lungs were harvested for biochemical analyses. RESULTS BB increased the E/A ratio of blood flow across the tricuspid valve and tricuspid annular phase systolic excursion, as wells as decreased the mean pulmonary artery pressure of animals compared with the PAH group. Moreover, BB decreased total reactive species concentration and lipid oxidation, reduced activity of nicotinamide adenine dinucleotide phosphate oxidase and expression of xanthine oxidase, increased the activity of superoxide dismutase and restored sulfhydryl content in the animal lungs compared with those in the PAH group. Additionally, BB restored expression of the antioxidant transcriptional factor Nrf2 in the lungs of the animal subjects. Finally, BB normalized the endothelin receptor (ETA/ETB) expression ratio in the animal lungs, which were increased in the PAH group. CONCLUSION Intervention with BB mitigated functional PAH outcomes through improvement of the pulmonary redox state. Our results provide a basis for future research on natural antioxidant interventions as a novel treatment strategy in PAH.
Collapse
Affiliation(s)
- Patrick Türck
- Department of Physiology, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Brazil.
| | - Schauana Fraga
- Department of Physiology, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Brazil
| | - Isadora Salvador
- Department of Physiology, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Brazil
| | - Cristina Campos-Carraro
- Department of Physiology, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Brazil
| | - Denise Lacerda
- Postgraduate Program in Biological Sciences: Pharmacology and Therapeutics, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Brazil
| | - Alan Bahr
- Department of Physiology, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Brazil
| | - Vanessa Ortiz
- Department of Physiology, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Brazil
| | - Alexandre Hickmann
- Department of Physiology, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Brazil
| | - Mariana Koetz
- Postgraduate Program in Pharmaceutical Sciences, Pharmacy College, Federal University of Rio Grande do Sul, Brazil
| | - Adriane Belló-Klein
- Department of Physiology, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Brazil
| | - Amélia Henriques
- Postgraduate Program in Pharmaceutical Sciences, Pharmacy College, Federal University of Rio Grande do Sul, Brazil
| | - Fabiana Agostini
- Postgraduate Program at Biosciences and Rehabilitation, Centro Universitário Metodista-IPA, Porto Alegre, Brazil
| | - Alex Sander da Rosa Araujo
- Department of Physiology, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Brazil; Postgraduate Program in Biological Sciences: Pharmacology and Therapeutics, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Brazil
| |
Collapse
|
45
|
Dhamodharan U, Karan A, Sireesh D, Vaishnavi A, Somasundar A, Rajesh K, Ramkumar KM. Tissue-specific role of Nrf2 in the treatment of diabetic foot ulcers during hyperbaric oxygen therapy. Free Radic Biol Med 2019; 138:53-62. [PMID: 31035003 DOI: 10.1016/j.freeradbiomed.2019.04.031] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 04/18/2019] [Accepted: 04/25/2019] [Indexed: 12/20/2022]
Abstract
Hyperbaric oxygen (HBO) therapy is proven to be very successful for diabetic foot ulcer (DFU) treatment due to its antimicrobial effect, increased angiogenesis and enhanced collagen synthesis. The molecular mechanism underlying HBO therapy particularly the involvement of Nrf2 in the wound healing process was investigated in the present study. In addition, we have studied the levels of angiogenic markers in ulcer tissues and their correlation with Nrf2 during HBO therapy compared with standard therapy (Non-HBO) for DFU. A total of 32 Patients were recruited and randomized to standard wound care procedure alone (n = 17) or HBO therapy in combination with standard wound care procedure (n = 15) for 20 days. Our results showed that the tissue levels of Nrf2 along with its downstream targets were significantly increased in patients who underwent HBO therapy when compared to Non-HBO therapy. Further, HBO therapy induced angiogenesis as assessed by increased levels of angiogenesis markers such as EGF, VEGF, PDGF, FGF-2 and CXCL10 in the tissue samples. The expressions of eNOS and nitrite concentrations were also significantly increased in HBO therapy when compared to Non-HBO therapy subjects. Moreover, HBO therapy sensitises the macrophages to release FGF-2 and EGF thereby promotes angiogenesis. Further, it increased the levels of neutrophil attractant CXCL-8 thereby promotes the release of chemokine CCL2, a well-known mediator of neovascularization. The Pearson correlation showed that Nrf2 has a positive correlation with EGF, VEGF and PDGF. In conclusion, the findings of the present study suggest that HBO therapy promotes wound healing by increasing oxygen supply and distribution to damaged tissues, stimulating angiogenesis, decreasing inflammation, and increasing the nitrite levels. Increased levels of Nrf2 transiently regulate the expression of angiogenic genes in wound biopsies, which may result in accelerated healing of chronic wounds.
Collapse
Affiliation(s)
- Umapathy Dhamodharan
- SRM Research Institute, SRM Institute of Science and Technology, Kattankulathur, 603 203, Tamilnadu, India
| | - Amin Karan
- Department of Biotechnology, School of Bio-engineering, SRM Institute of Science and Technology, Kattankulathur, 603 203, Tamilnadu, India
| | - Dornadula Sireesh
- Department of Biotechnology, School of Bio-engineering, SRM Institute of Science and Technology, Kattankulathur, 603 203, Tamilnadu, India
| | - Alladi Vaishnavi
- Department of Biotechnology, School of Bio-engineering, SRM Institute of Science and Technology, Kattankulathur, 603 203, Tamilnadu, India
| | - Arumugam Somasundar
- Department of Biotechnology, School of Bio-engineering, SRM Institute of Science and Technology, Kattankulathur, 603 203, Tamilnadu, India
| | - Kesavan Rajesh
- Department of Podiatry, Hycare Super Speciality Hospital, MMDA Colony, Arumbakkam, Chennai, 600 106, Tamilnadu, India.
| | - Kunka Mohanram Ramkumar
- SRM Research Institute, SRM Institute of Science and Technology, Kattankulathur, 603 203, Tamilnadu, India; Department of Biotechnology, School of Bio-engineering, SRM Institute of Science and Technology, Kattankulathur, 603 203, Tamilnadu, India.
| |
Collapse
|
46
|
Renaud J, Martinoli MG. Considerations for the Use of Polyphenols as Therapies in Neurodegenerative Diseases. Int J Mol Sci 2019; 20:E1883. [PMID: 30995776 PMCID: PMC6514961 DOI: 10.3390/ijms20081883] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 04/04/2019] [Accepted: 04/12/2019] [Indexed: 12/29/2022] Open
Abstract
Over the last two decades, the increase in the incidence of neurodegenerative diseases due to the increasingly ageing population has resulted in a major social and economic burden. At present, a large body of literature supports the potential use of functional nutrients, which exhibit potential neuroprotective properties to mitigate these diseases. Among the most studied dietary molecules, polyphenols stand out because of their multiple and often overlapping reported modes of action. However, ambiguity still exists as to the significance of their influence on human health. This review discusses the characteristics and functions of polyphenols that shape their potential therapeutic actions in neurodegenerative diseases while the less-explored gaps in knowledge of these nutrients will also be highlighted.
Collapse
Affiliation(s)
- Justine Renaud
- Cellular Neurobiology, Department of Medical Biology, Université du Québec, Trois-Rivières, Québec, QC G9A5H7, Canada.
| | - Maria-Grazia Martinoli
- Cellular Neurobiology, Department of Medical Biology, Université du Québec, Trois-Rivières, Québec, QC G9A5H7, Canada.
- Department of Psychiatry & Neuroscience, Université Laval and CHU Research Center, Ste-Foy, QC G1V 4G2, Canada.
| |
Collapse
|
47
|
Liu Q, Chen J, Qin Y, Jiang B, Zhang T. Encapsulation of pterostilbene in nanoemulsions: influence of lipid composition on physical stability, in vitro digestion, bioaccessibility, and Caco-2 cell monolayer permeability. Food Funct 2019; 10:6604-6614. [DOI: 10.1039/c9fo01260e] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Nanoemulsions fabricated using medium chain triglycerides as carrier lipid are more effective for delivering pterostilbene than long chain triglycerides.
Collapse
Affiliation(s)
- Qianyuan Liu
- State Key Laboratory of Food Science and Technology
- Jiangnan University
- Wuxi
- China
- International Joint Laboratory on Food Safety
| | - Jingjing Chen
- State Key Laboratory of Food Science and Technology
- Jiangnan University
- Wuxi
- China
- International Joint Laboratory on Food Safety
| | - Yang Qin
- State Key Laboratory of Food Science and Technology
- Jiangnan University
- Wuxi
- China
- International Joint Laboratory on Food Safety
| | - Bo Jiang
- State Key Laboratory of Food Science and Technology
- Jiangnan University
- Wuxi
- China
- International Joint Laboratory on Food Safety
| | - Tao Zhang
- State Key Laboratory of Food Science and Technology
- Jiangnan University
- Wuxi
- China
- International Joint Laboratory on Food Safety
| |
Collapse
|
48
|
Couto GK, Fernandes RO, Lacerda D, Campos-Carraro C, Türck P, Bianchi SE, Ferreira GD, Brum IS, Bassani VL, Belló-Klein A, Araujo ASR. Profile of pterostilbene-induced redox homeostasis modulation in cardiac myoblasts and heart tissue. J Biosci 2018. [DOI: 10.1007/s12038-018-9815-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
49
|
Lacerda D, Ortiz V, Türck P, Campos-Carraro C, Zimmer A, Teixeira R, Bianchi S, de Castro AL, Schenkel PC, Belló-Klein A, Bassani VL, da Rosa Araujo AS. Stilbenoid pterostilbene complexed with cyclodextrin preserves left ventricular function after myocardial infarction in rats: possible involvement of thiol proteins and modulation of phosphorylated GSK-3β. Free Radic Res 2018; 52:988-999. [PMID: 30203709 DOI: 10.1080/10715762.2018.1506115] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Oxidative stress alters signalling pathways for survival and cell death favouring the adverse remodelling of postmyocardial remnant cardiomyocytes, promoting functional impairment. The administration of pterostilbene (PTS), a phytophenol with antioxidant potential, can promote cardioprotection and represents a therapeutic alternative in acute myocardial infarction (AMI). The present study aims to explore the effects of oral administration of PTS complexed with hydroxypropyl-β-cyclodextrin HPβCD (PTS:HPβCD complex) on the glutathione cycle, thiol protein activities and signalling pathways involving the protein kinase B (AKT) and glycogen synthase kinase-3β (GSK-3β) proteins in the left ventricle (LV) of infarcted rats. Animals were submitted to acute myocardial infarction through surgical ligation of the descending anterior branch of the left coronary artery and received over 8 days, by gavage, PTS:HPβCD complex at dose of 100 mg kg-1 day-1 (AMI + PTS group) or vehicle (aqueous solution with HPβCD) divided into Sham-operated (SHAM) and infarcted (AMI) groups. The results showed that the PBS: HPβCD complex decreased lipid peroxidation, prevented the decrease in thioredoxin reductase (TRxR) activity, and increased the activity of glutathione-S-transferase (GST) and glutaredoxin (GRx). Additionally, the expression of nuclear factor-erythroid two (Nrf2) and p-GSK-3β was increased, whereas the p-GSK-3β/GSK-3β ratio was reduced in the LV of the infarcted animals. Overall, the PTS:HPβCD complex modulates activity of thiol-dependent enzymes and induces to the expression of antioxidant proteins, improving systolic function and mitigating the adverse cardiac remodelling post infarction.
Collapse
Affiliation(s)
- Denise Lacerda
- a Programa de Pós-Graduação em Ciências Biológicas: Farmacologia e Terapêutica, Universidade Federal do Rio Grande do Sul , Porto Alegre , Brazil
| | - Vanessa Ortiz
- b Programa de Pós-Graduação em Ciências Biológicas: Fisiologia, Universidade Federal do Rio Grande do Sul , Porto Alegre , Brazil
| | - Patrick Türck
- b Programa de Pós-Graduação em Ciências Biológicas: Fisiologia, Universidade Federal do Rio Grande do Sul , Porto Alegre , Brazil
| | - Cristina Campos-Carraro
- b Programa de Pós-Graduação em Ciências Biológicas: Fisiologia, Universidade Federal do Rio Grande do Sul , Porto Alegre , Brazil
| | - Alexsandra Zimmer
- b Programa de Pós-Graduação em Ciências Biológicas: Fisiologia, Universidade Federal do Rio Grande do Sul , Porto Alegre , Brazil
| | - Rayane Teixeira
- b Programa de Pós-Graduação em Ciências Biológicas: Fisiologia, Universidade Federal do Rio Grande do Sul , Porto Alegre , Brazil
| | - Sara Bianchi
- c Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul , Porto Alegre , Brazil
| | - Alexandre Luz de Castro
- b Programa de Pós-Graduação em Ciências Biológicas: Fisiologia, Universidade Federal do Rio Grande do Sul , Porto Alegre , Brazil.,d Instituto de Ciências Básicas (ICB), Universidade Federal do Rio Grande , Porto Alegre , Brazil
| | - Paulo Cavalheiro Schenkel
- b Programa de Pós-Graduação em Ciências Biológicas: Fisiologia, Universidade Federal do Rio Grande do Sul , Porto Alegre , Brazil
| | - Adriane Belló-Klein
- b Programa de Pós-Graduação em Ciências Biológicas: Fisiologia, Universidade Federal do Rio Grande do Sul , Porto Alegre , Brazil
| | - Valquiria Linck Bassani
- c Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul , Porto Alegre , Brazil
| | - Alex Sander da Rosa Araujo
- a Programa de Pós-Graduação em Ciências Biológicas: Farmacologia e Terapêutica, Universidade Federal do Rio Grande do Sul , Porto Alegre , Brazil.,b Programa de Pós-Graduação em Ciências Biológicas: Fisiologia, Universidade Federal do Rio Grande do Sul , Porto Alegre , Brazil
| |
Collapse
|
50
|
Apigenin prevents metabolic syndrome in high-fructose diet-fed mice by Keap1-Nrf2 pathway. Biomed Pharmacother 2018; 105:1283-1290. [DOI: 10.1016/j.biopha.2018.06.108] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 06/04/2018] [Accepted: 06/18/2018] [Indexed: 01/06/2023] Open
|