1
|
Elewa M, Shehda M, Hanna PA, Said MM, Ramadan S, Barakat A, Abdel Aziz YM. Development of a selective COX-2 inhibitor: from synthesis to enhanced efficacy via nano-formulation. RSC Adv 2024; 14:32721-32732. [PMID: 39429925 PMCID: PMC11484160 DOI: 10.1039/d4ra06295g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Accepted: 09/19/2024] [Indexed: 10/22/2024] Open
Abstract
Non-steroidal anti-inflammatory drugs NSAIDs are widely used for managing various conditions including pain, inflammation, arthritis and many musculoskeletal disorders. NSAIDs exert their biological effects by inhibiting the cyclooxygenase (COX) enzyme, which has two main isoforms COX-1 and COX-2. The COX-2 isoform is believed to be directly related to inflammation. Based on structure-activity relationship (SAR) studies of known selective COX-2 inhibitors, our aim is to design and synthesize a novel series of 2-benzamido-N-(4-substituted phenyl)thiophene-3-carboxamide derivatives. These derivatives are intended to be selective COX-2 inhibitors through structural modification of diclofenac and celecoxib. The compound 2-benzamido-5-ethyl-N-(4-fluorophenyl)thiophene-3-carboxamide VIIa demonstrated selective COX-2 inhibition with an IC50 value of 0.29 μM and a selectivity index 67.24. This is compared to celecoxib, which has an IC50 value of 0.42 μM and a selectivity index 33.8. Molecular docking studies for compound VIIa displayed high binding affinity toward COX-2. Additionally, the suppression of protein denaturation with respect to albumin was performed as an indicative measure of the potential anti-inflammatory efficacy of the novel compounds. Compound VIIa showed potent anti-inflammatory activity with 93% inhibition and an IC50 value 0.54 μM. In comparison, celecoxib achieved 94% inhibition with an IC50 value 0.89 μM. Although molecule VIIa demonstrated significant in vitro anti-inflammatory activity, adhered to Lipinski's "five rules" (RO5) and exhibited promising drug-like properties, it showed indications of poor in vivo activity. This limitation is likely due to poor aqueous solubility, which impacts its bioavailability. This issue could be addressed by incorporating the drug in niosomal nanocarrier. Niosomes were prepared using the thin-film hydration technique. These niosomes exhibited a particle size of less than 200 nm, high entrapment efficiency, and an appropriate drug loading percentage. Transmission electron microscopy (TEM) and differential scanning calorimetry (DSC) studies revealed that the niosomes were spherical and demonstrated compatibility of all of its components. The drug release study indicated that the pure drug had limited practicality for in vivo use. However, incorporating the drug into niosomes significantly improved its release profile, making it more suitable for practical use.
Collapse
Affiliation(s)
- Marwa Elewa
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Suez Canal University Ismailia Egypt
| | - Mohamed Shehda
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Horus University-Egypt New Damietta Egypt
| | - Pierre A Hanna
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Suez Canal University Ismailia 41522 Egypt
| | - Mohamed M Said
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Suez Canal University Ismailia Egypt
| | - Sherif Ramadan
- Chemistry Department, Michigan State University East Lansing MI 48824 USA
- Department of Chemistry, Benha University Benha Egypt
| | - Assem Barakat
- Department of Chemistry, College of Science, King Saud University P. O. Box 2455 Riyadh 11451 Saudi Arabia
| | - Yasmine M Abdel Aziz
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Suez Canal University Ismailia Egypt
| |
Collapse
|
2
|
Tylińska B, Janicka-Kłos A, Gębarowski T, Nowotarska P, Plińska S, Wiatrak B. Pyrimidine Derivatives as Selective COX-2 Inhibitors with Anti-Inflammatory and Antioxidant Properties. Int J Mol Sci 2024; 25:11011. [PMID: 39456793 PMCID: PMC11507521 DOI: 10.3390/ijms252011011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 10/03/2024] [Accepted: 10/11/2024] [Indexed: 10/28/2024] Open
Abstract
Pyrimidine derivatives exhibit a wide range of biological activities, including anti-inflammatory properties. The aim of this study was to investigate the effects of tested pyrimidine derivatives on the activity of cyclooxygenase isoenzymes (COX-1 and COX-2), antioxidant properties, and their ability to inhibit the growth of inflammatory cells. In vitro tests were conducted to assess the ability of pyrimidine derivatives L1-L4 to inhibit COX-1 and COX-2 activity using the TMPD oxidation assay (N,N,N',N'-tetramethyl-p-phenylenediamine). The compounds' ability to inhibit the growth of lipopolysaccharide (LPS)-stimulated THP-1 (human leukemia monocytic) monocyte cells and their impact on reactive oxygen species (ROS) levels in an inflammatory model were also evaluated. The binding properties of human serum albumin (HSA) were assessed using UV-Vis spectroscopy, circular dichroism (CD), and isothermal titration calorimetry (ITC). Among the tested pyrimidine derivatives, L1 and L2 showed high selectivity towards COX-2, outperforming piroxicam and achieving results comparable to meloxicam. In the sulforhodamine B (SRB) assay, L1 and L2 demonstrated dose-dependent inhibition of LPS-stimulated THP-1 cell growth. Additionally, ROS assays indicated that these compounds reduced free radical levels, confirming their antioxidant properties. Binding studies with albumin revealed that L1 and L2 formed stable complexes with HSA. These results suggest that these compounds could serve as a basis for further research into anti-inflammatory and anticancer drugs with reduced toxicity.
Collapse
Affiliation(s)
- Beata Tylińska
- Department of Organic Chemistry, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland
| | - Anna Janicka-Kłos
- Department of Basic Chemical Sciences, Wroclaw Medical University, Borowska 211a, 50-556 Wrocław, Poland;
| | - Tomasz Gębarowski
- Department of Biostructure and Animal Physiology, The Wroclaw University of Environmental and Life Sciences, Kożuchowska 1/3, 51-631 Wroclaw, Poland; (T.G.); (P.N.)
| | - Paulina Nowotarska
- Department of Biostructure and Animal Physiology, The Wroclaw University of Environmental and Life Sciences, Kożuchowska 1/3, 51-631 Wroclaw, Poland; (T.G.); (P.N.)
| | - Stanisława Plińska
- Department of Basic Chemical Sciences, Wroclaw Medical University, Borowska 211a, 50-556 Wrocław, Poland;
| | - Benita Wiatrak
- Department of Pharmacology, Wroclaw Medical University, Mikulicza-Radeckiego 2, 50-345 Wrocław, Poland;
| |
Collapse
|
3
|
Asghar S, Mushtaq N, Ahmed A, Anwar L, Munawar R, Akhtar S. Potential of Tryptamine Derivatives as Multi-Target Directed Ligands for Alzheimer's Disease: AChE, MAO-B, and COX-2 as Molecular Targets. Molecules 2024; 29:490. [PMID: 38276568 PMCID: PMC10820890 DOI: 10.3390/molecules29020490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 12/14/2023] [Accepted: 12/16/2023] [Indexed: 01/27/2024] Open
Abstract
Extensive research has been dedicated to develop compounds that can target multiple aspects of Alzheimer's disease (AD) treatment due to a growing understanding of AD's complex multifaceted nature and various interconnected pathological pathways. In the present study, a series of biological assays were performed to evaluate the potential of the tryptamine analogues synthesized earlier in our lab as multi-target-directed ligands (MTDLs) for AD. To assess the inhibitory effects of the compounds, various in vitro assays were employed. Three compounds, SR42, SR25, and SR10, displayed significant AChE inhibitory activity, with IC50 values of 0.70 µM, 0.17 µM, and 1.00 µM, respectively. These values superseded the standard drug donepezil (1.96 µM). In the MAO-B inhibition assay, SR42 (IC50 = 43.21 µM) demonstrated superior inhibitory effects as compared to tryptamine and other derivatives. Moreover, SR22 (84.08%), SR24 (79.30%), and SR42 (75.16%) exhibited notable percent inhibition against the COX-2 enzyme at a tested concentration of 100 µM. To gain insights into their binding mode and to validate the biological results, molecular docking studies were conducted. Overall, the results suggest that SR42, a 4,5 nitro-benzoyl derivative of tryptamine, exhibited significant potential as a MTDL and warrants further investigation for the development of anti-Alzheimer agents.
Collapse
Affiliation(s)
- Saira Asghar
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Hamdard University, Karachi 74600, Pakistan;
| | - Nousheen Mushtaq
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Pharmaceutical Sciences, University of Karachi, Karachi 75270, Pakistan;
| | - Ahsaan Ahmed
- Institute of Pharmaceutical Sciences, Jinnah Sindh Medical University, Karachi 75510, Pakistan;
| | - Laila Anwar
- Department of Pharmacology, Faculty of Pharmacy, Hamdard University, Karachi 74600, Pakistan;
| | - Rabya Munawar
- Department of Pharmaceutical Chemistry, Dow College of Pharmacy, Dow University of Health Sciences, Karachi 74200, Pakistan;
| | - Shamim Akhtar
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Hamdard University, Karachi 74600, Pakistan;
| |
Collapse
|
4
|
Chahal S, Rani P, Kiran, Sindhu J, Joshi G, Ganesan A, Kalyaanamoorthy S, Mayank, Kumar P, Singh R, Negi A. Design and Development of COX-II Inhibitors: Current Scenario and Future Perspective. ACS OMEGA 2023; 8:17446-17498. [PMID: 37251190 PMCID: PMC10210234 DOI: 10.1021/acsomega.3c00692] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 04/21/2023] [Indexed: 09/29/2023]
Abstract
Innate inflammation beyond a threshold is a significant problem involved in cardiovascular diseases, cancer, and many other chronic conditions. Cyclooxygenase (COX) enzymes are key inflammatory markers as they catalyze prostaglandins production and are crucial for inflammation processes. While COX-I is constitutively expressed and is generally involved in "housekeeping" roles, the expression of the COX-II isoform is induced by the stimulation of different inflammatory cytokines and also promotes the further generation of pro-inflammatory cytokines and chemokines, which affect the prognosis of various diseases. Hence, COX-II is considered an important therapeutic target for drug development against inflammation-related illnesses. Several selective COX-II inhibitors with safe gastric safety profiles features that do not cause gastrointestinal complications associated with classic anti-inflammatory drugs have been developed. Nevertheless, there is mounting evidence of cardiovascular side effects from COX-II inhibitors that resulted in the withdrawal of market-approved anti-COX-II drugs. This necessitates the development of COX-II inhibitors that not only exhibit inhibit potency but also are free of side effects. Probing the scaffold diversity of known inhibitors is vital to achieving this goal. A systematic review and discussion on the scaffold diversity of COX inhibitors are still limited. To address this gap, herein we present an overview of chemical structures and inhibitory activity of different scaffolds of known COX-II inhibitors. The insights from this article could be helpful in seeding the development of next-generation COX-II inhibitors.
Collapse
Affiliation(s)
- Sandhya Chahal
- Department
of Chemistry, COBS&H, CCS Haryana Agricultural
University, Hisar 125004, India
| | - Payal Rani
- Department
of Chemistry, COBS&H, CCS Haryana Agricultural
University, Hisar 125004, India
| | - Kiran
- Department
of Chemistry, COBS&H, CCS Haryana Agricultural
University, Hisar 125004, India
| | - Jayant Sindhu
- Department
of Chemistry, COBS&H, CCS Haryana Agricultural
University, Hisar 125004, India
| | - Gaurav Joshi
- Department
of Pharmaceutical Sciences, Hemvati Nandan
Bahuguna Garhwal (A Central) University, Chauras Campus, Tehri Garhwal, Uttarakhand 249161, India
- Adjunct
Faculty at Department of Biotechnology, Graphic Era (Deemed to be) University, 566/6, Bell Road, Clement Town, Dehradun, Uttarakhand 248002, India
| | - Aravindhan Ganesan
- ArGan’sLab,
School of Pharmacy, University of Waterloo, Waterloo, Ontario N2G 1C5, Canada
| | | | - Mayank
- University
College of Pharmacy, Guru Kashi University, Talwandi Sabo, Punjab 151302, India
| | - Parvin Kumar
- Department
of Chemistry, Kurukshetra University, Kurukshetra 136119, India
| | - Rajvir Singh
- Department
of Chemistry, COBS&H, CCS Haryana Agricultural
University, Hisar 125004, India
| | - Arvind Negi
- Department
of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, Espoo 02150, Finland
| |
Collapse
|
5
|
Dotsenko VV, Jassim NT, Temerdashev AZ, Abdul-Hussein ZR, Aksenov NA, Aksenova IV. New 6′-Amino-5′-cyano-2-oxo-1,2-dihydro-1′H-spiro[indole-3,4′-pyridine]-3′-carboxamides: Synthesis, Reactions, Molecular Docking Studies and Biological Activity. Molecules 2023; 28:molecules28073161. [PMID: 37049923 PMCID: PMC10096136 DOI: 10.3390/molecules28073161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/31/2023] [Accepted: 03/31/2023] [Indexed: 04/05/2023] Open
Abstract
The purpose of this work was to prepare new isatin- and monothiomalondiamide-based indole derivatives, as well as to study the properties of the new compounds. The four-component reaction of 5-R-isatins (R = H, CH3), malononitrile, monothiomalonamide (3-amino-3-thioxo- propanamide) and triethylamine in hot EtOH yields a mixture of isomeric triethylammonium 6′-amino-3′-(aminocarbonyl)-5′-cyano-2-oxo-1,2-dihydro-1′H- and 6′-amino-3′-(aminocarbonyl)- 5′-cyano-2-oxo-1,2-dihydro-3′H-spiro[indole-3,4′-pyridine]-2′-thiolates. The reactivity and structure of the products was studied. We found that oxidation of spiro[indole-3,4′-pyridine]-2′-thiolates with DMSO-HCl system produced only acidification products, diastereomeric 6′-amino-5′-cyano-5-methyl-2-oxo-2′-thioxo-1,2,2′,3′-tetrahydro-1′H-spiro-[indole-3,4′-pyridine]- 3′-carboxamides, instead of the expected isothiazolopyridines. The alkylation of the prepared spiro[indole-3,4′-pyridine]-2′-thiolates upon treatment with N-aryl α-chloroacetamides and α-bromoacetophenones proceeds in a regioselective way at the sulfur atom. In the case of α-bromoacetophenones, ring-chain tautomerism was observed for the S-alkylation products. According to NMR data, the compounds consist of a mixture of stereoisomers of 2′-amino-6′-[(2-aryl-2-oxoethyl)thio]-3′-cyano-2-oxo-1′H-spiro[indoline-3,4′-pyridine]-5′-carboxamides and 5′-amino-3′-aryl-6′-cyano-3′-hydroxy-2-oxo-2′,3′-dihydrospiro[indoline-3,7′-thiazolo[3,2-a]pyridine]-8′-carboxamides in various ratios. The structure of the synthesized compounds was confirmed by IR spectroscopy, HRMS, 1H and 13C DEPTQ NMR studies and the results of 2D NMR experiments (1H-13C HSQC, 1H-13C HMBC). Molecular docking studies were performed to investigate suitable binding modes of some new compounds with respect to the transcriptional regulator protein PqsR of Pseudomonas aeruginosa. The docking studies revealed that the compounds have affinity for the bacterial regulator protein PqsR of Pseudomonas aeruginosa with a binding energy in the range of −5.8 to −8.2 kcal/mol. In addition, one of the new compounds, 2′-amino-3′-cyano-5-methyl-2-oxo-6′-{[2-oxo-2-(p-tolylamino)ethyl]thio}-1′H-spiro-[indoline-3,4′-pyridine]-5′-carboxamide, showed in vitro moderate antibacterial effect against Pseudomonas aeruginosa and good antioxidant properties in a test with 1,1-diphenyl-2-picrylhydrazyl radical. Finally, three of the new compounds were recognized as moderately active herbicide safeners with respect to herbicide 2,4-D in the laboratory experiments on sunflower seedlings.
Collapse
Affiliation(s)
- Victor V. Dotsenko
- Department of Organic Chemistry and Technologies, Kuban State University, 149 Stavropolskaya St., 350040 Krasnodar, Russia
- Department of Chemistry, North Caucasus Federal University, 1a Pushkin St., 355017 Stavropol, Russia
| | - Nawras T. Jassim
- Department of Organic Chemistry and Technologies, Kuban State University, 149 Stavropolskaya St., 350040 Krasnodar, Russia
| | - Azamat Z. Temerdashev
- Department of Analytical Chemistry, Kuban State University, 149 Stavropolskaya St., 350040 Krasnodar, Russia
| | - Zainab R. Abdul-Hussein
- Department of Pathological Analyses, College of Science, University of Basra, P.O. Box 49, Basrah 61004, Iraq
| | - Nicolai A. Aksenov
- Department of Chemistry, North Caucasus Federal University, 1a Pushkin St., 355017 Stavropol, Russia
| | - Inna V. Aksenova
- Department of Chemistry, North Caucasus Federal University, 1a Pushkin St., 355017 Stavropol, Russia
| |
Collapse
|
6
|
Dotsenko VV, Jassim NT, Temerdashev AZ, Aksenov NA, Aksenova IV. Synthesis and Structure of 4-Aryl-3,6-dioxo-2,3,4,5,6,7-hexahydroisothiazolo[5,4-b]pyridine-5-carbonitriles. RUSS J GEN CHEM+ 2022. [DOI: 10.1134/s1070363222120386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
7
|
Tambe A, Sadaphal G, Dhawale R, Shirole G. Pumice-based sulfonic acid: a sustainable and recyclable acidic catalyst for one-pot synthesis of pyrazole anchored 1,4-dihydropyridine derivatives at room temperature. RESEARCH ON CHEMICAL INTERMEDIATES 2022. [DOI: 10.1007/s11164-021-04649-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
8
|
Świątek P, Glomb T, Dobosz A, Gębarowski T, Wojtkowiak K, Jezierska A, Panek JJ, Świątek M, Strzelecka M. Biological Evaluation and Molecular Docking Studies of Novel 1,3,4-Oxadiazole Derivatives of 4,6-Dimethyl-2-sulfanylpyridine-3-carboxamide. Int J Mol Sci 2022; 23:ijms23010549. [PMID: 35008977 PMCID: PMC8745710 DOI: 10.3390/ijms23010549] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 12/30/2021] [Accepted: 12/31/2021] [Indexed: 02/06/2023] Open
Abstract
To date, chronic inflammation is involved in most main human pathologies such as cancer, and autoimmune, cardiovascular or neurodegenerative disorders. Studies suggest that different prostanoids, especially prostaglandin E2, and their own synthase (cyclooxygenase enzyme-COX) can promote tumor growth by activating signaling pathways which control cell proliferation, migration, apoptosis, and angiogenesis. Non-steroidal anti-inflammatory drugs (NSAIDs) are used, alongside corticosteroids, to treat inflammatory symptoms particularly in all chronic diseases. However, their toxicity from COX inhibition and the suppression of physiologically important prostaglandins limits their use. Therefore, in continuation of our efforts in the development of potent, safe, non-toxic chemopreventive compounds, we report herein the design, synthesis, biological evaluation of new series of Schiff base-type hybrid compounds containing differently substituted N-acyl hydrazone moieties, 1,3,4-oxadiazole ring, and 4,6-dimethylpyridine core. The anti-COX-1/COX-2, antioxidant and anticancer activities were studied. Schiff base 13, containing 2-bromobenzylidene residue inhibited the activity of both isoenzymes, COX-1 and COX-2 at a lower concentration than standard drugs, and its COX-2/COX-1 selectivity ratio was similar to meloxicam. Furthermore, the results of cytotoxicity assay indicated that all of the tested compounds exhibited potent anti-cancer activity against A549, MCF-7, LoVo, and LoVo/Dx cell lines, compared with piroxicam and meloxicam. Moreover, our experimental study was supported by density functional theory (DFT) and molecular docking to describe the binding mode of new structures to cyclooxygenase.
Collapse
Affiliation(s)
- Piotr Świątek
- Department of Medicinal Chemistry, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211, 50-556 Wroclaw, Poland;
- Correspondence: (P.Ś.); (T.G.); Tel.: +48-717840391 (P.Ś. & T.G.)
| | - Teresa Glomb
- Department of Medicinal Chemistry, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211, 50-556 Wroclaw, Poland;
- Correspondence: (P.Ś.); (T.G.); Tel.: +48-717840391 (P.Ś. & T.G.)
| | - Agnieszka Dobosz
- Department of Medical Science Foundation, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211, 50-556 Wroclaw, Poland;
| | - Tomasz Gębarowski
- Department of Biostructure and Animal Physiology, Wroclaw University of Environmental and Life Sciences, Kożuchowska 1/3, 51-631 Wroclaw, Poland;
| | - Kamil Wojtkowiak
- Faculty of Chemistry, University of Wroclaw, F. Joliot-Curie 14, 50-383 Wrocław, Poland; (K.W.); (A.J.); (J.J.P.)
| | - Aneta Jezierska
- Faculty of Chemistry, University of Wroclaw, F. Joliot-Curie 14, 50-383 Wrocław, Poland; (K.W.); (A.J.); (J.J.P.)
| | - Jarosław J. Panek
- Faculty of Chemistry, University of Wroclaw, F. Joliot-Curie 14, 50-383 Wrocław, Poland; (K.W.); (A.J.); (J.J.P.)
| | - Małgorzata Świątek
- Hospital Pharmacy, University Clinical Hospital, Borowska 213, 50-556 Wrocław, Poland;
| | - Małgorzata Strzelecka
- Department of Medicinal Chemistry, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211, 50-556 Wroclaw, Poland;
| |
Collapse
|
9
|
Guerra Faura G, Wu B, Oyelere AK, France S. Synthetic Methodology-Enabled Discovery of a Tunable Indole Template for COX-1 Inhibition and Anti-cancer activity. Bioorg Med Chem 2022; 57:116633. [DOI: 10.1016/j.bmc.2022.116633] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 01/10/2022] [Accepted: 01/20/2022] [Indexed: 02/07/2023]
|
10
|
Peregrym K, Szczukowski Ł, Wiatrak B, Potyrak K, Czyżnikowska Ż, Świątek P. In Vitro and In Silico Evaluation of New 1,3,4-Oxadiazole Derivatives of Pyrrolo[3,4- d]pyridazinone as Promising Cyclooxygenase Inhibitors. Int J Mol Sci 2021; 22:ijms22179130. [PMID: 34502040 PMCID: PMC8431030 DOI: 10.3390/ijms22179130] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/20/2021] [Accepted: 08/21/2021] [Indexed: 12/24/2022] Open
Abstract
Since long-term use of classic NSAIDs can cause severe side effects related mainly to the gastroduodenal tract, discovery of novel cyclooxygenase inhibitors with a safe gastric profile still remains a crucial challenge. Based on the most recent literature data and previous own studies, we decided to modify the structure of already reported 1,3,4-oxadiazole based derivatives of pyrrolo[3,4-d]pyridazinone in order to obtain effective COX inhibitors. Herein we present the synthesis, biological evaluation and molecular docking studies of 12 novel compounds with disubstituted arylpiperazine pharmacophore linked in a different way with 1,3,4-oxadiazole ring. None of the obtained molecules show cytotoxicity on NHDF and THP-1 cell lines and, therefore, all were qualified for further investigation. In vitro cyclooxygenase inhibition assay revealed almost equal activity of new derivatives towards both COX-1 and COX-2 isoenzymes. Moreover, all compounds inhibit COX-2 isoform better than Meloxicam which was used as reference. Anti-inflammatory activity was confirmed in biological assays according to which title molecules are able to reduce induced inflammation within cells. Molecular docking studies were performed to describe the binding mode of new structures to cyclooxygenase. Investigated derivatives take place in the active site of COX, very similar to Meloxicam. For some compounds, promising druglikeness was calculated using in silico predictions.
Collapse
Affiliation(s)
- Krzysztof Peregrym
- Department of Medicinal Chemistry, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211, 50-556 Wroclaw, Poland;
| | - Łukasz Szczukowski
- Department of Medicinal Chemistry, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211, 50-556 Wroclaw, Poland;
- Correspondence: (Ł.S.); (P.Ś.); Tel.: +48-71-784-03-91 (P.Ś.)
| | - Benita Wiatrak
- Department of Pharmacology, Faculty of Medicine, Wroclaw Medical University, Mikulicza-Radeckiego 2, 50-345 Wroclaw, Poland; (B.W.); (K.P.)
| | - Katarzyna Potyrak
- Department of Pharmacology, Faculty of Medicine, Wroclaw Medical University, Mikulicza-Radeckiego 2, 50-345 Wroclaw, Poland; (B.W.); (K.P.)
| | - Żaneta Czyżnikowska
- Department of Inorganic Chemistry, Wroclaw Medical University, Borowska 211, 50-556 Wroclaw, Poland;
| | - Piotr Świątek
- Department of Medicinal Chemistry, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211, 50-556 Wroclaw, Poland;
- Correspondence: (Ł.S.); (P.Ś.); Tel.: +48-71-784-03-91 (P.Ś.)
| |
Collapse
|
11
|
Szkatuła D, Krzyżak E, Stanowska P, Duda M, Wiatrak B. A New N-Substituted 1 H-Isoindole-1,3(2 H)-Dione Derivative-Synthesis, Structure and Affinity for Cyclooxygenase Based on In Vitro Studies and Molecular Docking. Int J Mol Sci 2021; 22:ijms22147678. [PMID: 34299298 PMCID: PMC8306876 DOI: 10.3390/ijms22147678] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 07/14/2021] [Accepted: 07/16/2021] [Indexed: 12/30/2022] Open
Abstract
Isoindoline-1,3-dione derivatives constitute an important group of medicinal substances. In this study, nine new 1H-isoindole-1,3(2H)-dione derivatives and five potential pharmacophores were obtained in good yield (47.24–92.91%). The structure of the new imides was confirmed by the methods of elemental and spectral analysis: FT–IR, H NMR, and MS. Based on the obtained results of ESI–MS the probable path of the molecules decay and the hypothetical structure of the resulting pseudo-molecular ions have been proposed. The physicochemical properties of the new phthalimides were determined on the basis of Lipiński’s rule. The biological properties were determined in terms of their cyclooxygenase (COX) inhibitory activity. Three compounds showed greater inhibition of COX-2, three compounds inhibited COX-1 more strongly than the reference compound meloxicam. From the obtained results, the affinity ratio COX-2/COX-1 was calculated. Two compounds had a value greater than that of meloxicam. All tested compounds showed oxidative or nitrosan stress (ROS and RNS) scavenging activity. The degree of chromatin relaxation outside the cell nucleus was lower than the control after incubation with all test compounds. The newly synthesized phthalimide derivatives showed no cytotoxic activity in the concentration range studied (10–90 µM). A molecular docking study was used to determined interactions inside the active site of cyclooxygenases.
Collapse
Affiliation(s)
- Dominika Szkatuła
- Department of Medicinal Chemistry, Wroclaw Medical University, Borowska 211, 50-556 Wroclaw, Poland
- Correspondence: (D.S.); (E.K.)
| | - Edward Krzyżak
- Department of Inorganic Chemistry, Wroclaw Medical University, ul. Borowska 211a, 50-556 Wrocław, Poland
- Correspondence: (D.S.); (E.K.)
| | - Paulina Stanowska
- Student Scientific Club of Medicinal Chemistry, Wroclaw Medical University, Borowska 211, 50-556 Wroclaw, Poland; (P.S.); (M.D.)
| | - Magdalena Duda
- Student Scientific Club of Medicinal Chemistry, Wroclaw Medical University, Borowska 211, 50-556 Wroclaw, Poland; (P.S.); (M.D.)
| | - Benita Wiatrak
- Department of Pharmacology, Faculty of Medicine, Wroclaw Medical University, Mikulicza-Radeckiego 2, 50-345 Wroclaw, Poland;
| |
Collapse
|
12
|
Redzicka A, Czyżnikowska Ż, Wiatrak B, Gębczak K, Kochel A. Design and Synthesis of N-Substituted 3,4-Pyrroledicarboximides as Potential Anti-Inflammatory Agents. Int J Mol Sci 2021; 22:1410. [PMID: 33573356 PMCID: PMC7866801 DOI: 10.3390/ijms22031410] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/27/2021] [Accepted: 01/28/2021] [Indexed: 11/23/2022] Open
Abstract
In the present paper, we describe the biological activity of the newly designed and synthesized series N-substituted 3,4-pyrroledicarboximides 2a-2p. The compounds 2a-2p were obtained in good yields by one-pot, three-component condensation of pyrrolo[3,4-c]pyrrole scaffold (1a-c) with secondary amines and an excess of formaldehyde solution in C2H5OH. The structural properties of the compounds were characterized by 1H NMR, 13C NMR FT-IR, MS, and elemental analysis. Moreover, single crystal X-ray diffraction has been recorded for compound 2h. The colorimetric inhibitor screening assay was used to obtain their potencies to inhibit COX-1 and COX-2 enzymes. According to the results, all of the tested compounds inhibited the activity of COX-1 and COX-2. Theoretical modeling was also applied to describe the binding properties of compounds towards COX-1 and COX-2 cyclooxygenase isoform. The data were supported by QSAR study.
Collapse
Affiliation(s)
- Aleksandra Redzicka
- Department of Chemistry of Drugs, Wroclaw Medical University, Borowska 211, 50-556 Wrocław, Poland
| | - Żaneta Czyżnikowska
- Department of Inorganic Chemistry, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211a, 50-556 Wroclaw, Poland;
| | - Benita Wiatrak
- Department of Basic Medical Sciences, Wroclaw Medical University, Borowska 211, 50-556 Wrocław, Poland; (B.W.); (K.G.)
- Department of Pharmacology, Faculty of Medicine, Wroclaw Medical University, Mikulicza-Radeckiego 2, 50-345 Wrocław, Poland
| | - Katarzyna Gębczak
- Department of Basic Medical Sciences, Wroclaw Medical University, Borowska 211, 50-556 Wrocław, Poland; (B.W.); (K.G.)
| | - Andrzej Kochel
- Department of Chemistry, University of Wroclaw, F. Joliot-Curie 14, 54-234 Wrocław, Poland;
| |
Collapse
|
13
|
Novel 1,3,4-Oxadiazole Derivatives of Pyrrolo[3,4- d]pyridazinone Exert Antinociceptive Activity in the Tail-Flick and Formalin Test in Rodents and Reveal Reduced Gastrotoxicity. Int J Mol Sci 2020; 21:ijms21249685. [PMID: 33353118 PMCID: PMC7766312 DOI: 10.3390/ijms21249685] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 12/13/2020] [Accepted: 12/16/2020] [Indexed: 12/12/2022] Open
Abstract
Despite the availability of the current drug arsenal for pain management, there is still a clinical need to identify new, more effective, and safer analgesics. Based on our earlier study, newly synthesized 1,3,4-oxadiazole derivatives of pyrrolo[3,4-d]pyridazinone, especially 10b and 13b, seem to be promising as potential analgesics. The current study was designed to investigate whether novel derivatives attenuate nociceptive response in animals subjected to thermal or chemical noxious stimulus, and to compare this effect to reference drugs. The antinociceptive effect of novel compounds was studied using the tail-flick and formalin test. Pretreatment with novel compounds at all studied doses increased the latency time in the tail-flick test and decreased the licking time during the early phase of the formalin test. New derivatives given at the medium and high doses also reduced the late phase of the formalin test. The achieved results indicate that new derivatives dose-dependently attenuate nociceptive response in both models of pain and exert a lack of gastrotoxicity. Both studied compounds act more efficiently than indomethacin, but not morphine. Compound 13b at the high dose exerts the greatest antinociceptive effect. It may be due to the reduction of nociceptor sensitization via prostaglandin E2 and myeloperoxidase levels decrease.
Collapse
|
14
|
Szczukowski Ł, Krzyżak E, Zborowska A, Zając P, Potyrak K, Peregrym K, Wiatrak B, Marciniak A, Świątek P. Design, Synthesis and Comprehensive Investigations of Pyrrolo[3,4- d]pyridazinone-Based 1,3,4-Oxadiazole as New Class of Selective COX-2 Inhibitors. Int J Mol Sci 2020; 21:E9623. [PMID: 33348757 PMCID: PMC7766220 DOI: 10.3390/ijms21249623] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 12/09/2020] [Accepted: 12/11/2020] [Indexed: 12/13/2022] Open
Abstract
The long-term use of Non-Steroidal Anti-Inflammatory Drugs (NSAIDs) in treatment of different chronic inflammatory disorders is strongly restricted by their serious gastrointestinal adverse effects. Therefore, there is still an urgent need to search for new, safe, and efficient anti-inflammatory agents. Previously, we have reported the Mannich base-type derivatives of pyrrolo[3,4-d]pyridazinone which strongly inhibit cyclooxygenase, have better affinity to COX-2 isoenzyme and exert promising anti-oxidant activity. These findings encouraged us to perform further optimization of that structure. Herein, we present the design, synthesis, molecular docking, spectroscopic, and biological studies of novel pyrrolo[3,4-d]pyridazinone derivatives bearing 4-aryl-1-(1-oxoethyl)piperazine pharmacophore 5a,b-6a,b. The new compounds were obtained via convenient, efficient, one-pot synthesis. According to in vitro evaluations, novel molecules exert no cytotoxicity and act as selective COX-2 inhibitors. These findings stay in good correlation with molecular modeling results, which additionally showed that investigated compounds take a position in the active site of COX-2 very similar to Meloxicam. Moreover, all derivatives reduce the increased level of reactive oxygen and nitrogen species and prevent DNA strand breaks caused by oxidative stress. Finally, performed spectroscopic and molecular docking studies demonstrated that new compound interactions with bovine serum albumin (BSA) are moderate, formation of complexes is in one-to-one ratio, and binding site II (subdomain IIIA) is favorable.
Collapse
Affiliation(s)
- Łukasz Szczukowski
- Department of Medicinal Chemistry, Wroclaw Medical University, Borowska 211, 50-556 Wroclaw, Poland;
| | - Edward Krzyżak
- Department of Inorganic Chemistry, Wroclaw Medical University, Borowska 211a, 50-556 Wroclaw, Poland; (E.K.); (A.M.)
| | - Adrianna Zborowska
- Student Scientific Club of Medicinal Chemistry, Wroclaw Medical University, Borowska 211, 50-556 Wroclaw, Poland; (A.Z.); (P.Z.); (K.P.); (K.P.)
| | - Patrycja Zając
- Student Scientific Club of Medicinal Chemistry, Wroclaw Medical University, Borowska 211, 50-556 Wroclaw, Poland; (A.Z.); (P.Z.); (K.P.); (K.P.)
| | - Katarzyna Potyrak
- Student Scientific Club of Medicinal Chemistry, Wroclaw Medical University, Borowska 211, 50-556 Wroclaw, Poland; (A.Z.); (P.Z.); (K.P.); (K.P.)
| | - Krzysztof Peregrym
- Student Scientific Club of Medicinal Chemistry, Wroclaw Medical University, Borowska 211, 50-556 Wroclaw, Poland; (A.Z.); (P.Z.); (K.P.); (K.P.)
| | - Benita Wiatrak
- Department of Basic Medical Sciences, Wroclaw Medical University, Borowska 211, 50-556 Wroclaw, Poland;
- Department of Pharmacology, Wroclaw Medical University, Mikulicza-Radeckiego 2, 50-345 Wroclaw, Poland
| | - Aleksandra Marciniak
- Department of Inorganic Chemistry, Wroclaw Medical University, Borowska 211a, 50-556 Wroclaw, Poland; (E.K.); (A.M.)
| | - Piotr Świątek
- Department of Medicinal Chemistry, Wroclaw Medical University, Borowska 211, 50-556 Wroclaw, Poland;
| |
Collapse
|
15
|
New 1,3,4-Oxadiazole Derivatives of Pyridothiazine-1,1-Dioxide with Anti-Inflammatory Activity. Int J Mol Sci 2020; 21:ijms21239122. [PMID: 33266208 PMCID: PMC7729791 DOI: 10.3390/ijms21239122] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 11/25/2020] [Accepted: 11/26/2020] [Indexed: 12/20/2022] Open
Abstract
Numerous studies have confirmed the coexistence of oxidative stress and inflammatory processes. Long-term inflammation and oxidative stress may significantly affect the initiation of the neoplastic transformation process. Here, we describe the synthesis of a new series of Mannich base-type hybrid compounds containing an arylpiperazine residue, 1,3,4-oxadiazole ring, and pyridothiazine-1,1-dioxide core. The synthesis was carried out with the hope that the hybridization of different pharmacophoric molecules would result in a synergistic effect on their anti-inflammatory activity, especially the ability to inhibit cyclooxygenase. The obtained compounds were investigated in terms of their potencies to inhibit cyclooxygenase COX-1 and COX-2 enzymes with the use of the colorimetric inhibitor screening assay. Their antioxidant and cytotoxic effect on normal human dermal fibroblasts (NHDF) was also studied. Strong COX-2 inhibitory activity was observed after the use of TG6 and, especially, TG4. The TG11 compound, as well as reference meloxicam, turned out to be a preferential COX-2 inhibitor. TG12 was, in turn, a non-selective COX inhibitor. A molecular docking study was performed to understand the binding interaction of compounds at the active site of cyclooxygenases.
Collapse
|
16
|
Design, synthesis, biological evaluation and in silico studies of novel pyrrolo[3,4-d]pyridazinone derivatives with promising anti-inflammatory and antioxidant activity. Bioorg Chem 2020; 102:104035. [DOI: 10.1016/j.bioorg.2020.104035] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 06/05/2020] [Accepted: 06/15/2020] [Indexed: 01/08/2023]
|
17
|
Krzyżak E, Szkatuła D, Wiatrak B, Gębarowski T, Marciniak A. Synthesis, Cyclooxygenases Inhibition Activities and Interactions with BSA of N-substituted 1 H-pyrrolo[3,4-c]pyridine-1,3( 2H)-diones Derivatives. Molecules 2020; 25:molecules25122934. [PMID: 32630594 PMCID: PMC7355801 DOI: 10.3390/molecules25122934] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 06/22/2020] [Accepted: 06/23/2020] [Indexed: 11/16/2022] Open
Abstract
Inhibition of cyclooxygenase is the way of therapeutic activities for anti-inflammatory pharmaceuticals. Serum albumins are the major soluble protein able to bind and transport a variety of exogenous and endogenous ligands, including hydrophobic pharmaceuticals. In this study, a novel N-substituted 1H-pyrrolo[3-c]pyridine-1,3(2H)-diones derivatives were synthesized and biologically evaluated for their inhibitory activity against cyclooxygenases and interactions with BSA. In vitro, COX-1 and COX-2 inhibition assays were performed. Interaction with BSA was studied by fluorescence spectroscopy and circular dichroism measurement. The molecular docking study was conducted to understand the binding interaction of compounds in the active site of cyclooxygenases and BSA. The result of the COX-1 and COX-2 inhibitory studies revealed that all the compounds potentially inhibited COX-1 and COX-2. The IC50 value was found similar to meloxicam. The intrinsic fluorescence of BSA was quenched by tested compounds due to the formation of A/E-BSA complex. The results of the experiment and molecular docking confirmed the main interaction forces between studied compounds and BSA were hydrogen bonding and van der Waals force.
Collapse
Affiliation(s)
- Edward Krzyżak
- Department of Inorganic Chemistry, Wroclaw Medical University, ul. Borowska 211a, 50–556 Wrocław, Poland;
- Correspondence: ; Tel.: +48-71-784-0330; Fax: +48-71-784-0336
| | - Dominika Szkatuła
- Department of Medicinal Chemistry, Wroclaw Medical University, Borowska 211, 50–556 Wroclaw, Poland;
| | - Benita Wiatrak
- Department of Basic Medical Sciences, Wroclaw Medical University, Borowska 211, 50–556 Wroclaw, Poland; (B.W.); (T.G.)
| | - Tomasz Gębarowski
- Department of Basic Medical Sciences, Wroclaw Medical University, Borowska 211, 50–556 Wroclaw, Poland; (B.W.); (T.G.)
| | - Aleksandra Marciniak
- Department of Inorganic Chemistry, Wroclaw Medical University, ul. Borowska 211a, 50–556 Wrocław, Poland;
| |
Collapse
|
18
|
Świątek P, Saczko J, Rembiałkowska N, Kulbacka J. Synthesis of New Hydrazone Derivatives and Evaluation of their Efficacy as Proliferation Inhibitors in Human Cancer Cells. Med Chem 2019; 15:903-910. [PMID: 30686263 DOI: 10.2174/1573406415666190128100524] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 11/09/2018] [Accepted: 12/21/2018] [Indexed: 02/07/2023]
Abstract
BACKGROUND Hydrazine-hydrazones represent a group of bioactive compounds that display antibacterial, anti-inflammatory, antiviral or anticancer activities. OBJECTIVE In this study, we designed new derivative compounds from groups of hydrazones. METHODS The group of new derivatives was evaluated by the viability assay in human cancer and normal cells. RESULTS The dimethylpyridine hydrazones showed potent inhibition of cell proliferation of breast, colon cancer cells, human melanoma and glioblastoma. Compound 12 inhibited proliferation of cancer cells exhibiting a drug-resistant phenotype (MCF-7/DX and LoVoDX) at low millimolar concentrations. Whereas, antimelanoma activity was revealed by Compounds 2, 4, 7 and 12. CONCLUSION The present results highlighted newly synthetized hydrazine derivatives an excellent base for the design of new anticancer agents and resistance inhibitors.
Collapse
Affiliation(s)
- Piotr Świątek
- Department of Chemistry of Drugs, Wroclaw Medical University, Borowska 211, 50-556 Wroclaw, Poland
| | - Jolanta Saczko
- Department of Molecular and Cellular Biology, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland
| | - Nina Rembiałkowska
- Department of Molecular and Cellular Biology, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland
| | - Julita Kulbacka
- Department of Molecular and Cellular Biology, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland
| |
Collapse
|
19
|
Wang H, Gao Y, Wang J, Cheng M. Computational Strategy Revealing the Structural Determinant of Ligand Selectivity towards Highly Similar Protein Targets. Curr Drug Targets 2019; 21:76-88. [PMID: 31556854 DOI: 10.2174/1389450120666190926113524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Revised: 08/27/2019] [Accepted: 08/27/2019] [Indexed: 11/22/2022]
Abstract
BACKGROUND Poor selectivity of drug candidates may lead to toxicity and side effects accounting for as high as 60% failure rate, thus, the selectivity is consistently significant and challenging for drug discovery. OBJECTIVE To find highly specific small molecules towards very similar protein targets, multiple strategies are always employed, including (1) To make use of the diverse shape of binding pocket to avoid steric bump; (2) To increase binding affinities for favorite residues; (3) To achieve selectivity through allosteric regulation of target; (4) To stabalize the inactive conformation of protein target and (5) To occupy dual binding pockets of single target. CONCLUSION In this review, we summarize computational strategies along with examples of their successful applications in designing selective ligands, with the aim to provide insights into everdiversifying drug development practice and inspire medicinal chemists to utilize computational strategies to avoid potential side effects due to low selectivity of ligands.
Collapse
Affiliation(s)
- Hanxun Wang
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, Liaoning, China
| | - Yinli Gao
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, Liaoning, China
| | - Jian Wang
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, Liaoning, China
| | - Maosheng Cheng
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, Liaoning, China
| |
Collapse
|
20
|
Izabel da Silva Hage-Melim L, Curtolo Poiani JG, Tomich de Paula da Silva CH, Boylan F. In silico study of the mechanism of action, pharmacokinetic and toxicological properties of some N-methylanthranilates and their analogs. Food Chem Toxicol 2019; 131:110556. [DOI: 10.1016/j.fct.2019.06.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 05/31/2019] [Accepted: 06/01/2019] [Indexed: 12/13/2022]
|
21
|
Maddila S, Nagaraju K, Chinnam S, Jonnalagadda SB. Microwave‐Assisted Multicomponent Reaction: A Green and Catalyst‐Free Method for the Synthesis of Poly‐Functionalized 1,4‐Dihydropyridines. ChemistrySelect 2019. [DOI: 10.1002/slct.201902779] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Suresh Maddila
- Department of ChemistryGITAM Institute of SciencesGITAM University, Visakhapatnam, Andhra Pradesh India
- School of Chemistry & PhysicsUniversity of KwaZulu-NatalWestville Campus, Chilten Hills, Private Bag 54001 Durban- 4000 South Africa
| | - Kerru Nagaraju
- School of Chemistry & PhysicsUniversity of KwaZulu-NatalWestville Campus, Chilten Hills, Private Bag 54001 Durban- 4000 South Africa
| | - Sampath Chinnam
- Department of ChemistryB.M.S. College of Engineering, Basavanagudi, Bull Temple Road Bangalore 560019 Karnataka India
| | - Sreekantha B Jonnalagadda
- School of Chemistry & PhysicsUniversity of KwaZulu-NatalWestville Campus, Chilten Hills, Private Bag 54001 Durban- 4000 South Africa
| |
Collapse
|
22
|
Qin Z, Xi Y, Zhang S, Tu G, Yan A. Classification of Cyclooxygenase-2 Inhibitors Using Support Vector Machine and Random Forest Methods. J Chem Inf Model 2019; 59:1988-2008. [PMID: 30762371 DOI: 10.1021/acs.jcim.8b00876] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
This work reports the classification study conducted on the biggest COX-2 inhibitor data set so far. Using 2925 diverse COX-2 inhibitors collected from 168 pieces of literature, we applied machine learning methods, support vector machine (SVM) and random forest (RF), to develop 12 classification models. The best SVM and RF models resulted in MCC values of 0.73 and 0.72, respectively. The 2925 COX-2 inhibitors were reduced to a data set of 1630 molecules by removing intermediately active inhibitors, and 12 new classification models were constructed, yielding MCC values above 0.72. The best MCC value of the external test set was predicted to be 0.68 by the RF model using ECFP_4 fingerprints. Moreover, the 2925 COX-2 inhibitors were clustered into eight subsets, and the structural features of each subset were investigated. We identified substructures important for activity including halogen, carboxyl, sulfonamide, and methanesulfonyl groups, as well as the aromatic nitrogen atoms. The models developed in this study could serve as useful tools for compound screening prior to lab tests.
Collapse
Affiliation(s)
- Zijian Qin
- State Key Laboratory of Chemical Resource Engineering, Department of Pharmaceutical Engineering , Beijing University of Chemical Technology , P.O. Box 53, 15 BeiSanHuan East Road , Beijing 100029 , P. R. China
| | - Yao Xi
- State Key Laboratory of Chemical Resource Engineering, Department of Pharmaceutical Engineering , Beijing University of Chemical Technology , P.O. Box 53, 15 BeiSanHuan East Road , Beijing 100029 , P. R. China
| | - Shengde Zhang
- State Key Laboratory of Chemical Resource Engineering, Department of Pharmaceutical Engineering , Beijing University of Chemical Technology , P.O. Box 53, 15 BeiSanHuan East Road , Beijing 100029 , P. R. China
| | - Guiping Tu
- State Key Laboratory of Chemical Resource Engineering, Department of Pharmaceutical Engineering , Beijing University of Chemical Technology , P.O. Box 53, 15 BeiSanHuan East Road , Beijing 100029 , P. R. China
| | - Aixia Yan
- State Key Laboratory of Chemical Resource Engineering, Department of Pharmaceutical Engineering , Beijing University of Chemical Technology , P.O. Box 53, 15 BeiSanHuan East Road , Beijing 100029 , P. R. China
| |
Collapse
|
23
|
Biological Evaluation and Molecular Docking Studies of Dimethylpyridine Derivatives. Molecules 2019; 24:molecules24061093. [PMID: 30897717 PMCID: PMC6471528 DOI: 10.3390/molecules24061093] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 03/16/2019] [Accepted: 03/18/2019] [Indexed: 11/16/2022] Open
Abstract
Cyclooxygenase inhibitors as anti-inflammatory agents can be used in chemoprevention. Many in vitro and in vivo studies on human and animal models have explained the mechanisms of the chemopreventive effect of COX inhibitors such as: induction of apoptosis, inhibition of neoplasia, angiogenesis suppression, induction of cell cycle inhibition and inhibition of the expression of peroxisome proliferator-activated receptors. Here, biological evaluation of twelve different Schiff base derivatives of N-(2-hydrazine-2-oxoethyl)-4,6-dimethyl-2-sulfanylpyridine- 3-carboxamide are presented. Their in vitro anti-COX-1/COX-2, antioxidant and anticancer activities were studied. The molecular docking study was performed in order to understand the binding interaction of compounds in the active site of cyclooxygenases. Compounds PS18 and PS33 showed a significant inhibitory activity on COX-1 at lower concentrations compared to meloxicam and piroxicam. The IC50 of COX-1 of these compounds was 57.3 µM for PS18 and 51.8 µM for PS33. Out of the tested compounds, the highest therapeutic index was demonstrated by PS18, PS19, PS33, PS40 and PS41. Lower molar concentrations of these compounds inhibit the growth of cancer cells while not inhibiting the healthy cells. Compounds PS18, PS19 and PS33 simultaneously demonstrated a statistically-significant inhibition of COX-1 or COX-2. This opens up the possibility of applying these compounds in the chemoprevention of cancer.
Collapse
|
24
|
Ahmed M, Qadir MA, Hameed A, Imran M, Muddassar M. Screening of curcumin-derived isoxazole, pyrazoles, and pyrimidines for their anti-inflammatory, antinociceptive, and cyclooxygenase-2 inhibition. Chem Biol Drug Des 2017; 91:338-343. [DOI: 10.1111/cbdd.13076] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 06/07/2017] [Accepted: 07/15/2017] [Indexed: 01/15/2023]
Affiliation(s)
- Mahmood Ahmed
- Institute of Chemistry; University of the Punjab; Lahore Pakistan
| | | | - Abdul Hameed
- H. E. J. Research Institute of Chemistry; International Center for Chemical and Biological Sciences; University of Karachi; Karachi Pakistan
| | - Muhammad Imran
- Department of Biological Sciences; Forman Christian College; (A Chartered University), Lahore Pakistan
| | - Muhammad Muddassar
- Department of Biosciences; COMSATS Institute of Information Technology; Islamabad Pakistan
| |
Collapse
|