1
|
Perkins JJ, McQuade P, Bungard CJ, Diamond TL, Gantert LT, Gotter AL, Hanney B, Hills ID, Hurzy DM, Joshi A, Kern JT, Schlegel KAS, Manikowski JJ, Meng Z, O’Brien JA, Roecker AJ, Smith SM, Uslaner JM, Hostetler E, Meissner RS. Discovery of [ 11C]MK-8056: A Selective PET Imaging Agent for the Study of mGluR 2 Negative Allosteric Modulators. ACS Med Chem Lett 2023; 14:986-992. [PMID: 37465306 PMCID: PMC10351059 DOI: 10.1021/acsmedchemlett.3c00175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 06/09/2023] [Indexed: 07/20/2023] Open
Abstract
Modification of potent, selective metabotropic glutamate receptor 2 negative allosteric modulator (mGluR2 NAM) led to a series of analogues with excellent binding affinity, lipophilicity, and suitable physicochemical properties for a PET tracer with convenient chemical handles for incorporation of a 11C or 18F radiolabel. [11C]MK-8056 was synthesized and evaluated in vivo and demonstrated appropriate affinity, selectivity, and physicochemical properties to be used as a positron emission tomography tracer for mGluR2.
Collapse
Affiliation(s)
- James J. Perkins
- Departments
of Discovery Chemistry, Merck & Co.,
Inc., 770 Sumneytown Pike, PO Box 4, West Point, Pennsylvania 19486, USA
| | - Paul McQuade
- Translational
Imaging, Merck & Co., Inc., 770 Sumneytown Pike, PO Box 4, West Point, Pennsylvania 19486, USA
| | - Christopher J. Bungard
- Departments
of Discovery Chemistry, Merck & Co.,
Inc., 770 Sumneytown Pike, PO Box 4, West Point, Pennsylvania 19486, USA
| | - Tracy L. Diamond
- Pharmacology, Merck & Co., Inc., 770 Sumneytown Pike, PO Box 4, West Point, Pennsylvania 19486, USA
| | - Liza T. Gantert
- Translational
Imaging, Merck & Co., Inc., 770 Sumneytown Pike, PO Box 4, West Point, Pennsylvania 19486, USA
| | - Anthony L. Gotter
- Neuroscience
Biology Discovery, Merck & Co., Inc., 770 Sumneytown Pike, PO Box 4, West Point, Pennsylvania 19486, USA
| | - Barbara Hanney
- Departments
of Discovery Chemistry, Merck & Co.,
Inc., 770 Sumneytown Pike, PO Box 4, West Point, Pennsylvania 19486, USA
| | - Ivory D. Hills
- Departments
of Discovery Chemistry, Merck & Co.,
Inc., 770 Sumneytown Pike, PO Box 4, West Point, Pennsylvania 19486, USA
| | - Danielle M. Hurzy
- Departments
of Discovery Chemistry, Merck & Co.,
Inc., 770 Sumneytown Pike, PO Box 4, West Point, Pennsylvania 19486, USA
| | - Aniket Joshi
- Translational
Imaging, Merck & Co., Inc., 770 Sumneytown Pike, PO Box 4, West Point, Pennsylvania 19486, USA
| | - Jonathan T. Kern
- Neuroscience
Biology Discovery, Merck & Co., Inc., 770 Sumneytown Pike, PO Box 4, West Point, Pennsylvania 19486, USA
| | - Kelly-Ann S. Schlegel
- Departments
of Discovery Chemistry, Merck & Co.,
Inc., 770 Sumneytown Pike, PO Box 4, West Point, Pennsylvania 19486, USA
| | - Jesse J. Manikowski
- Departments
of Discovery Chemistry, Merck & Co.,
Inc., 770 Sumneytown Pike, PO Box 4, West Point, Pennsylvania 19486, USA
| | - Zhaoyang Meng
- Departments
of Discovery Chemistry, Merck & Co.,
Inc., 770 Sumneytown Pike, PO Box 4, West Point, Pennsylvania 19486, USA
| | - Julie A. O’Brien
- Pharmacology, Merck & Co., Inc., 770 Sumneytown Pike, PO Box 4, West Point, Pennsylvania 19486, USA
| | - Anthony J. Roecker
- Departments
of Discovery Chemistry, Merck & Co.,
Inc., 770 Sumneytown Pike, PO Box 4, West Point, Pennsylvania 19486, USA
| | - Sean M. Smith
- Neuroscience
Biology Discovery, Merck & Co., Inc., 770 Sumneytown Pike, PO Box 4, West Point, Pennsylvania 19486, USA
| | - Jason M. Uslaner
- Neuroscience
Biology Discovery, Merck & Co., Inc., 770 Sumneytown Pike, PO Box 4, West Point, Pennsylvania 19486, USA
| | - Eric Hostetler
- Translational
Imaging, Merck & Co., Inc., 770 Sumneytown Pike, PO Box 4, West Point, Pennsylvania 19486, USA
| | - Robert S. Meissner
- Departments
of Discovery Chemistry, Merck & Co.,
Inc., 770 Sumneytown Pike, PO Box 4, West Point, Pennsylvania 19486, USA
| |
Collapse
|
2
|
Hattori Y, Yamasaki T, Ohashi T, Miyanohana Y, Kusumoto T, Maeda R, Miyamoto M, Debori Y, Hata A, Zhang Y, Wakizaka H, Wakabayashi T, Fujinaga M, Yamashita R, Zhang MR, Koike T. Design, Synthesis, and Evaluation of 11C-Labeled 3-Acetyl-Indole Derivatives as a Novel Positron Emission Tomography Imaging Agent for Diacylglycerol Kinase Gamma (DGKγ) in Brain. J Med Chem 2021; 64:11990-12002. [PMID: 34347478 DOI: 10.1021/acs.jmedchem.1c00584] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Diacylglycerol kinase gamma (DGKγ) is a subtype of DGK enzyme, which catalyzes ATP-dependent conversion of diacylglycerol to phosphatidic acid. DGKγ, localized in the brain, plays an important role in the central nervous system. However, its function has not been widely investigated. Positron emission tomography (PET) imaging of DGKγ validates target engagement of therapeutic DGKγ inhibitors and investigates DGKγ levels under normal and disease conditions. In this study, we designed and synthesized a series of 3-acetyl indole derivatives as candidates for PET imaging agents for DGKγ. Among the synthesized compounds, 2-((3-acetyl-1-(6-methoxypyridin-3-yl)-2-methyl-1H-indol-5-yl)oxy)-N-methylacetamide (9) exhibited potent inhibitory activity (IC50 = 30 nM) against DGKγ and desirable physicochemical properties allowing efficient blood-brain barrier penetration and low levels of undesirable nonspecific binding. The radiolabeling of 9 followed by PET imaging of wild-type and DGKγ-deficient mice and rats indicated that [11C]9 ([11C]T-278) specifically binds to DGKγ and yields a high signal-to-noise ratio for DGKγ in rodent brains.
Collapse
Affiliation(s)
- Yasushi Hattori
- Takeda Pharmaceutical Company Limited, 26-1 Muraoka-Higashi, 2-Chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Tomoteru Yamasaki
- Department of Advanced Nuclear Medicine Sciences, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, 4-9-1, Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Tomohiro Ohashi
- Takeda Pharmaceutical Company Limited, 26-1 Muraoka-Higashi, 2-Chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Yuhei Miyanohana
- Takeda Pharmaceutical Company Limited, 26-1 Muraoka-Higashi, 2-Chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Tomokazu Kusumoto
- Takeda Pharmaceutical Company Limited, 26-1 Muraoka-Higashi, 2-Chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Ryouta Maeda
- Takeda Pharmaceutical Company Limited, 26-1 Muraoka-Higashi, 2-Chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Maki Miyamoto
- Takeda Pharmaceutical Company Limited, 26-1 Muraoka-Higashi, 2-Chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Yasuyuki Debori
- Takeda Pharmaceutical Company Limited, 26-1 Muraoka-Higashi, 2-Chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Akito Hata
- Takeda Pharmaceutical Company Limited, 26-1 Muraoka-Higashi, 2-Chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Yiding Zhang
- Department of Advanced Nuclear Medicine Sciences, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, 4-9-1, Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Hidekatsu Wakizaka
- Department of Advanced Nuclear Medicine Sciences, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, 4-9-1, Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Takeshi Wakabayashi
- Takeda Pharmaceutical Company Limited, 26-1 Muraoka-Higashi, 2-Chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Masayuki Fujinaga
- Department of Advanced Nuclear Medicine Sciences, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, 4-9-1, Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Ryo Yamashita
- Takeda Pharmaceutical Company Limited, 26-1 Muraoka-Higashi, 2-Chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Ming-Rong Zhang
- Department of Advanced Nuclear Medicine Sciences, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, 4-9-1, Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Tatsuki Koike
- Takeda Pharmaceutical Company Limited, 26-1 Muraoka-Higashi, 2-Chome, Fujisawa, Kanagawa 251-8555, Japan
| |
Collapse
|
3
|
Kumata K, Zhang Y, Ogawa M, Kurihara Y, Mori W, Hu K, Fujinaga M, Nengaki N, Zhang MR. 3-(Cyclopropylmethyl)-7-((4-(4-[ 11C]methoxyphenyl)piperidin-1-yl)methyl)-8-(trifluoromethyl)-[1,2,4]triazolo[4,3-a]pyridine: Synthesis and preliminary evaluation for PET imaging of metabotropic glutamate receptor subtype 2. Bioorg Med Chem Lett 2020; 30:127555. [PMID: 32941990 DOI: 10.1016/j.bmcl.2020.127555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 09/06/2020] [Accepted: 09/11/2020] [Indexed: 10/23/2022]
Abstract
Selective metabotropic glutamate receptor 2 (mGluR2) inhibitors have been demonstrated to show therapeutic effects by improving alleviating symptoms of schizophrenic patients in clinical studies. Herein we report the synthesis and preliminary evaluation of a 11C-labeled positron emission tomography (PET) tracer originating from a mGluR2 inhibitor, 3-(cyclopropylmethyl)-7-((4-(4-methoxyphenyl)piperidin-1-yl)methyl)-8-(trifluoromethyl)-[1,2,4]triazolo[4,3-a]pyridine (CMTP, 1a). [11C]CMTP ([11C]1a) was synthesized by O-[11C]methylation of desmethyl precursor 1b with [11C]methyl iodide in 19.7 ± 8.9% (n = 10) radiochemical yield (based on [11C]CO2) with >98% radiochemical purity and >74 GBq/μmol molar activity. Autoradiography study showed that [11C]1a possessed moderate in vitro specific binding to mGluR2 in the rat brain, with a heterogeneous distribution of radioactive accumulation in the mGluR2-rich brain tissue sections, such as the cerebral cortex and striatum. PET study indicated that [11C]1a was able to cross the blood-brain barrier and enter the brain, but had very low specific binding in the rat brain. Further optimization for the chemical structure of 1a is necessary to increase binding affinity to mGluR2 and then improve in vivo specific binding in brain.
Collapse
Affiliation(s)
- Katsushi Kumata
- Department of Advanced Nuclear Medicine Sciences, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Yiding Zhang
- Department of Advanced Nuclear Medicine Sciences, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Masanao Ogawa
- Department of Advanced Nuclear Medicine Sciences, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan; SHI Accelerator Service, Ltd, 1-17-6 Osaki, Shinagawa-ku, Tokyo 141-0032, Japan
| | - Yusuke Kurihara
- Department of Advanced Nuclear Medicine Sciences, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan; SHI Accelerator Service, Ltd, 1-17-6 Osaki, Shinagawa-ku, Tokyo 141-0032, Japan
| | - Wakana Mori
- Department of Advanced Nuclear Medicine Sciences, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Kuan Hu
- Department of Advanced Nuclear Medicine Sciences, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Masayuki Fujinaga
- Department of Advanced Nuclear Medicine Sciences, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Nobuki Nengaki
- Department of Advanced Nuclear Medicine Sciences, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan; SHI Accelerator Service, Ltd, 1-17-6 Osaki, Shinagawa-ku, Tokyo 141-0032, Japan
| | - Ming-Rong Zhang
- Department of Advanced Nuclear Medicine Sciences, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan.
| |
Collapse
|
4
|
Kim JH, Marton J, Ametamey SM, Cumming P. A Review of Molecular Imaging of Glutamate Receptors. Molecules 2020; 25:molecules25204749. [PMID: 33081223 PMCID: PMC7587586 DOI: 10.3390/molecules25204749] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 10/13/2020] [Accepted: 10/14/2020] [Indexed: 12/22/2022] Open
Abstract
Molecular imaging with positron emission tomography (PET) and single photon emission computed tomography (SPECT) is a well-established and important in vivo technique to evaluate fundamental biological processes and unravel the role of neurotransmitter receptors in various neuropsychiatric disorders. Specific ligands are available for PET/SPECT studies of dopamine, serotonin, and opiate receptors, but corresponding development of radiotracers for receptors of glutamate, the main excitatory neurotransmitter in mammalian brain, has lagged behind. This state of affairs has persisted despite the central importance of glutamate neurotransmission in brain physiology and in disorders such as stroke, epilepsy, schizophrenia, and neurodegenerative diseases. Recent years have seen extensive efforts to develop useful ligands for molecular imaging of subtypes of the ionotropic (N-methyl-D-aspartate (NMDA), kainate, and AMPA/quisqualate receptors) and metabotropic glutamate receptors (types I, II, and III mGluRs). We now review the state of development of radioligands for glutamate receptor imaging, placing main emphasis on the suitability of available ligands for reliable in vivo applications. We give a brief account of the radiosynthetic approach for selected molecules. In general, with the exception of ligands for the GluN2B subunit of NMDA receptors, there has been little success in developing radiotracers for imaging ionotropic glutamate receptors; failure of ligands for the PCP/MK801 binding site in vivo doubtless relates their dependence on the open, unblocked state of the ion channel. Many AMPA and kainite receptor ligands with good binding properties in vitro have failed to give measurable specific binding in the living brain. This may reflect the challenge of developing brain-penetrating ligands for amino acid receptors, compounded by conformational differences in vivo. The situation is better with respect to mGluR imaging, particularly for the mGluR5 subtype. Several successful PET ligands serve for investigations of mGluRs in conditions such as schizophrenia, depression, substance abuse and aging. Considering the centrality and diversity of glutamatergic signaling in brain function, we have relatively few selective and sensitive tools for molecular imaging of ionotropic and metabotropic glutamate receptors. Further radiopharmaceutical research targeting specific subtypes and subunits of the glutamate receptors may yet open up new investigational vistas with broad applications in basic and clinical research.
Collapse
Affiliation(s)
- Jong-Hoon Kim
- Neuroscience Research Institute, Gachon University, Incheon 21565, Korea
- Gachon Advanced Institute for Health Science and Technology, Graduate School, Incheon 21565, Korea
- Department of Psychiatry, Gil Medical Center, Gachon University College of Medicine, Gachon University, Incheon 21565, Korea
- Correspondence: (J.-H.K.); (P.C.); Tel.: +41-31-664-0498 (P.C.); Fax: +41-31-632-7663 (P.C.)
| | - János Marton
- ABX Advanced Biochemical Compounds, Biomedizinische Forschungsreagenzien GmbH, Heinrich-Glaeser-Strasse 10-14, D-1454 Radeberg, Germany;
| | - Simon Mensah Ametamey
- Centre for Radiopharmaceutical Sciences ETH-PSI-USZ, Institute of Pharmaceutical Sciences ETH, Vladimir-Prelog-Weg 4, CH-8093 Zürich, Switzerland;
| | - Paul Cumming
- Department of Nuclear Medicine, University of Bern, Inselspital, Freiburgstrasse 18, CH-3010 Bern, Switzerland
- School of Psychology and Counselling, Queensland University of Technology, Brisbane QLD 4059, Australia
- Correspondence: (J.-H.K.); (P.C.); Tel.: +41-31-664-0498 (P.C.); Fax: +41-31-632-7663 (P.C.)
| |
Collapse
|
5
|
Yuan G, Qu X, Zheng B, Neelamegam R, Afshar S, Iyengar S, Pan C, Wang J, Kang HJ, Ondrechen MJ, Poutiainen P, El Fakhri G, Zhang Z, Brownell AL. Design, Synthesis, and Characterization of Benzimidazole Derivatives as Positron Emission Tomography Imaging Ligands for Metabotropic Glutamate Receptor 2. J Med Chem 2020; 63:12060-12072. [PMID: 32981322 DOI: 10.1021/acs.jmedchem.0c01394] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Three benzimidazole derivatives (13-15) have been synthetized as potential positron emission tomography (PET) imaging ligands for mGluR2 in the brain. Of these compounds, 13 exhibits potent binding affinity (IC50 = 7.6 ± 0.9 nM), positive allosteric modulator (PAM) activity (EC50 = 51.2 nM), and excellent selectivity against other mGluR subtypes (>100-fold). [11C]13 was synthesized via O-[11C]methylation of its phenol precursor 25 with [11C]methyl iodide. The achieved radiochemical yield was 20 ± 2% (n = 10, decay-corrected) based on [11C]CO2 with a radiochemical purity of >98% and molar activity of 98 ± 30 GBq/μmol EOS. Ex vivo biodistribution studies revealed reversible accumulation of [11C]13 and hepatobiliary and urinary excretions. PET imaging studies in rats demonstrated that [11C]13 accumulated in the mGluR2-rich brain regions. Pre-administration of mGluR2-selective PAM, 17 reduced the brain uptake of [11C]13, indicating a selective binding. Therefore, [11C]13 is a potential PET imaging ligand for mGluR2 in different central nervous system-related conditions.
Collapse
Affiliation(s)
- Gengyang Yuan
- Gordon Center for Medical Imaging, Massachusetts General Hospital and Harvard Medical School, 3rd Avenue, Charlestown, Massachusetts 02129, United States
| | - Xiying Qu
- Gordon Center for Medical Imaging, Massachusetts General Hospital and Harvard Medical School, 3rd Avenue, Charlestown, Massachusetts 02129, United States
| | - Baohui Zheng
- Gordon Center for Medical Imaging, Massachusetts General Hospital and Harvard Medical School, 3rd Avenue, Charlestown, Massachusetts 02129, United States
| | - Ramesh Neelamegam
- Gordon Center for Medical Imaging, Massachusetts General Hospital and Harvard Medical School, 3rd Avenue, Charlestown, Massachusetts 02129, United States
| | - Sepideh Afshar
- Gordon Center for Medical Imaging, Massachusetts General Hospital and Harvard Medical School, 3rd Avenue, Charlestown, Massachusetts 02129, United States
| | - Suhasini Iyengar
- Department of Chemistry and Chemical Biology, Northeastern University, 360 Huntington Avenue, Boston, Massachusetts 02115, United States
| | - Chuzhi Pan
- Gordon Center for Medical Imaging, Massachusetts General Hospital and Harvard Medical School, 3rd Avenue, Charlestown, Massachusetts 02129, United States
| | - Junfeng Wang
- Gordon Center for Medical Imaging, Massachusetts General Hospital and Harvard Medical School, 3rd Avenue, Charlestown, Massachusetts 02129, United States
| | - Hye Jin Kang
- Department of Pharmacology, University of North Carolina Chapel Hill School of Medicine, Chapel Hill, North Carolina 27514, United States
| | - Mary Jo Ondrechen
- Department of Chemistry and Chemical Biology, Northeastern University, 360 Huntington Avenue, Boston, Massachusetts 02115, United States
| | - Pekka Poutiainen
- Department of Clinical Physiology and Nuclear Medicine, Kuopio University Hospital, Kuopio 70210, Finland
| | - Georges El Fakhri
- Gordon Center for Medical Imaging, Massachusetts General Hospital and Harvard Medical School, 3rd Avenue, Charlestown, Massachusetts 02129, United States
| | - Zhaoda Zhang
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, 149 Thirteenth Street, Suite 2301, Charlestown, Massachusetts 02129, United States
| | - Anna-Liisa Brownell
- Gordon Center for Medical Imaging, Massachusetts General Hospital and Harvard Medical School, 3rd Avenue, Charlestown, Massachusetts 02129, United States
| |
Collapse
|
6
|
Zhang X, Zhang Y, Chen Z, Shao T, Van R, Kumata K, Deng X, Fu H, Yamasaki T, Rong J, Hu K, Hatori A, Xie L, Yu Q, Ye W, Xu H, Sheffler DJ, Cosford NDP, Shao Y, Tang P, Wang L, Zhang MR, Liang SH. Synthesis and preliminary studies of 11C-labeled tetrahydro-1,7-naphthyridine-2-carboxamides for PET imaging of metabotropic glutamate receptor 2. Theranostics 2020; 10:11178-11196. [PMID: 33042277 PMCID: PMC7532674 DOI: 10.7150/thno.42587] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 08/19/2020] [Indexed: 12/21/2022] Open
Abstract
Selective modulation of metabotropic glutamate receptor 2 (mGlu2) represents a novel therapeutic approach for treating brain disorders, including schizophrenia, depression, Parkinson's disease (PD), Alzheimer's disease (AD), drug abuse and addiction. Imaging mGlu2 using positron emission tomography (PET) would allow for in vivo quantification under physiological and pathological conditions and facilitate drug discovery by enabling target engagement studies. In this paper, we aimed to develop a novel specific radioligand derived from negative allosteric modulators (NAMs) for PET imaging of mGlu2. Methods. A focused small molecule library of mGlu2 NAMs with tetrahydro naphthyridine scaffold was synthesized for pharmacology and physicochemical evaluation. GIRK dose-response assays and CNS panel binding selectivity assays were performed to study the affinity and selectivity of mGlu2 NAMs, among which compounds 14a and 14b were selected as PET ligand candidates. Autoradiography in SD rat brain sections was used to confirm the in vitro binding specificity and selectivity of [11C]14a and [11C]14b towards mGlu2. In vivo binding specificity was then studied by PET imaging. Whole body biodistribution study and radiometabolite analysis were conducted to demonstrate the pharmacokinetic properties of [11C]14b as most promising PET mGlu2 PET ligand. Results. mGlu2 NAMs 14a-14g were synthesized in 14%-20% yields in five steps. NAMs 14a and 14b were selected to be the most promising ligands due to their high affinity in GIRK dose-response assays. [11C]14a and [11C]14b displayed similar heterogeneous distribution by autoradiography, consistent with mGlu2 expression in the brain. While PET imaging study showed good brain permeability for both tracers, compound [11C]14b demonstrated superior binding specificity compared to [11C]14a. Further radiometabolite analysis of [11C]14b showed excellent stability in the brain. Conclusions. Compound 14b exhibited high affinity and excellent subtype selectivity, which was then evaluated by in vitro autoradiography and in vivo PET imaging study after labeling with carbon-11. Ligand [11C]14b, which we named [11C]MG2-1904, demonstrated high brain uptake and excellent in vitro/in vivo specific binding towards mGlu2 with high metabolic stability in the brain. As proof-of-concept, our preliminary work demonstrated a successful example of visualizing mGlu2in vivo derived from NAMs, which represents a promising chemotype for further development and optimization aimed for clinical translation.
Collapse
Affiliation(s)
- Xiaofei Zhang
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, MA, 02114, USA
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Collaborative Innovation Center of Chemical Science and Engineering, Nankai University, Tianjin 300071, China
| | - Yiding Zhang
- Department of Radiopharmaceuticals Development, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Zhen Chen
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, MA, 02114, USA
| | - Tuo Shao
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, MA, 02114, USA
| | - Richard Van
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma 73019, United States
| | - Katsushi Kumata
- Department of Radiopharmaceuticals Development, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Xiaoyun Deng
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, MA, 02114, USA
| | - Hualong Fu
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, MA, 02114, USA
| | - Tomoteru Yamasaki
- Department of Radiopharmaceuticals Development, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Jian Rong
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, MA, 02114, USA
| | - Kuan Hu
- Department of Radiopharmaceuticals Development, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Akiko Hatori
- Department of Radiopharmaceuticals Development, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Lin Xie
- Department of Radiopharmaceuticals Development, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Qingzhen Yu
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, MA, 02114, USA
| | - Weijian Ye
- Department of Nuclear Medicine and PET/CT-MRI Center, The First Affiliated Hospital of Jinan University, 613 West Huangpu Road, Tianhe District, Guangzhou 510630, China
| | - Hao Xu
- Department of Nuclear Medicine and PET/CT-MRI Center, The First Affiliated Hospital of Jinan University, 613 West Huangpu Road, Tianhe District, Guangzhou 510630, China
| | - Douglas J. Sheffler
- Cancer Metabolism and Signaling Networks Program and Conrad Prebys Center for Chemical Genomics, Sanford-Burnham Prebys Medical Discovery Institute, La Jolla, California 92037, United States
| | - Nicholas D. P. Cosford
- Cancer Metabolism and Signaling Networks Program and Conrad Prebys Center for Chemical Genomics, Sanford-Burnham Prebys Medical Discovery Institute, La Jolla, California 92037, United States
| | - Yihan Shao
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma 73019, United States
| | - Pingping Tang
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Collaborative Innovation Center of Chemical Science and Engineering, Nankai University, Tianjin 300071, China
| | - Lu Wang
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, MA, 02114, USA
- Department of Nuclear Medicine and PET/CT-MRI Center, The First Affiliated Hospital of Jinan University, 613 West Huangpu Road, Tianhe District, Guangzhou 510630, China
| | - Ming-Rong Zhang
- Department of Radiopharmaceuticals Development, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Steven H. Liang
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, MA, 02114, USA
| |
Collapse
|
7
|
Kumata K, Hatori A, Yamasaki T, Zhang Y, Mori W, Fujinaga M, Xie L, Nengaki N, Zhang MR. Synthesis and evaluation of 4-(2-fluoro-4-[ 11C]methoxyphenyl)-5-((2-methylpyridin-4-yl)methoxy)picolinamide for PET imaging of the metabotropic glutamate receptor 2 in the rat brain. Bioorg Med Chem 2018; 27:483-491. [PMID: 30611634 DOI: 10.1016/j.bmc.2018.12.025] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 12/13/2018] [Accepted: 12/15/2018] [Indexed: 12/21/2022]
Abstract
Metabotropic glutamate receptor 2 (mGluR2) has been suggested as a therapeutic target for treating schizophrenia-like symptoms arising from increased glutamate transmission in the human forebrain. However, no reliable positron emission tomography (PET) radiotracer allowing for in vivo visualization of mGluR2 in the human brain is currently available. In this study, we synthesized 4-(2-fluoro-4-[11C]methoxyphenyl)-5-((2-methylpyridin-4-yl)methoxy)picolinamide ([11C]1) and evaluated its potential as a PET tracer for imaging mGluR2 in the rodent brain. Compound 1, a negative allosteric modulator (NAM) of mGluR2, showed high in vitro binding affinity (IC50: 26 nM) for mGluR2 overexpressed in human cells. [11C]1 was synthesized by O-[11C]methylation of the phenol precursor 2 with [11C]methyl iodide. After the reaction, HPLC purification and formulation, [11C]1 of 7.4 ± 2.8 GBq (n = 8) was obtained from [11C]carbon dioxide of 22.5 ± 4.8 GBq (n = 8) with >99% radiochemical purity and 70 ± 32 GBq/μmol (n = 8) molar activity at the end of synthesis. In vitro autoradiography for rat brains showed that [11C]1 binding was heterogeneously distributed in the cerebral cortex, striatum, hippocampus, and cerebellum. This pattern is consistent with the regional distribution pattern of mGluR2 in the rodent brain. The radioactivity was significantly reduced by self- or MNI-137 (a mGluR2 NAM) blocking. Small-animal PET studies indicated a low in vivo specific binding of [11C]1 in the rat brain. The brain uptake was increased in a P-glycoprotein and breast cancer resistant protein double knockout mouse, when compared to a wild-type mouse. While [11C]1 presented limited potential as an in vivo PET tracer for mGluR2, we suggested that it can be used as a lead compound for developing new radiotracers with improved in vivo brain properties.
Collapse
Affiliation(s)
- Katsushi Kumata
- Department of Radiopharmaceuticals Development, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba 263-8555, Japan
| | - Akiko Hatori
- Department of Radiopharmaceuticals Development, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba 263-8555, Japan
| | - Tomoteru Yamasaki
- Department of Radiopharmaceuticals Development, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba 263-8555, Japan
| | - Yiding Zhang
- Department of Radiopharmaceuticals Development, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba 263-8555, Japan
| | - Wakana Mori
- Department of Radiopharmaceuticals Development, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba 263-8555, Japan
| | - Masayuki Fujinaga
- Department of Radiopharmaceuticals Development, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba 263-8555, Japan
| | - Lin Xie
- Department of Radiopharmaceuticals Development, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba 263-8555, Japan
| | - Nobuki Nengaki
- Department of Radiopharmaceuticals Development, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba 263-8555, Japan; SHI Accelerator Services Co., 1-17-6 Osaki, Shinagawa-ku, Tokyo 141-0032, Japan
| | - Ming-Rong Zhang
- Department of Radiopharmaceuticals Development, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba 263-8555, Japan.
| |
Collapse
|
8
|
Imaging the glutamate receptor subtypes-Much achieved, and still much to do. DRUG DISCOVERY TODAY. TECHNOLOGIES 2017; 25:27-36. [PMID: 29233264 DOI: 10.1016/j.ddtec.2017.10.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 10/17/2017] [Accepted: 10/24/2017] [Indexed: 11/20/2022]
Abstract
Functional imaging of glutamate receptors using PET imaging modality can be used to study numerous CNS disorders and also to select appropriate doses of clinically relevant glutamate-receptor-targeting candidate drugs. Great strides have been made in developing PET imaging probes for the non-invasive detection of glutamate receptors in the brain. This review highlights recent progress made towards the development of glutamatergic PET imaging agents. Focus is placed on PET imaging probes that have been labelled with either carbon-11 or fluorine-18.
Collapse
|
9
|
Zhang X, Kumata K, Yamasaki T, Cheng R, Hatori A, Ma L, Zhang Y, Xie L, Wang L, Kang HJ, Sheffler DJ, Cosford NDP, Zhang MR, Liang SH. Synthesis and Preliminary Studies of a Novel Negative Allosteric Modulator, 7-((2,5-Dioxopyrrolidin-1-yl)methyl)-4-(2-fluoro-4-[ 11C]methoxyphenyl) quinoline-2-carboxamide, for Imaging of Metabotropic Glutamate Receptor 2. ACS Chem Neurosci 2017; 8:1937-1948. [PMID: 28565908 PMCID: PMC5607115 DOI: 10.1021/acschemneuro.7b00098] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Metabotropic glutamate 2 receptors (mGlu2) are involved in the pathogenesis of several CNS disorders and neurodegenerative diseases. Pharmacological modulation of this target represents a potential disease-modifying approach for the treatment of substance abuse, depression, schizophrenia, and dementias. While quantification of mGlu2 receptors in the living brain by positron emission tomography (PET) would help us better understand signaling pathways relevant to these conditions, few successful examples have been demonstrated to image mGlu2 in vivo, and a suitable PET tracer is yet to be identified. Herein we report the design and synthesis of a radiolabeled negative allosteric modulator (NAM) for mGlu2 PET tracer development based on a quinoline 2-carboxamide scaffold. The most promising candidate, 7-((2,5-dioxopyrrolidin-1-yl)methyl)-4-(2-fluoro-4-[11C]methoxyphenyl) quinoline-2-carboxamide ([11C]QCA) was prepared in 13% radiochemical yield (non-decay-corrected at the end of synthesis) with >99% radiochemical purity and >74 GBq/μmol (2 Ci/μmol) specific activity. While the tracer showed limited brain uptake (0.3 SUV), probably attributable to effects on PgP/Bcrp efflux pump, in vitro autoradiography studies demonstrated heterogeneous brain distribution and specific binding. Thus, [11C]QCA is a chemical probe that provides the basis for the development of a new generation mGlu2 PET tracers.
Collapse
MESH Headings
- ATP Binding Cassette Transporter, Subfamily G, Member 2/deficiency
- ATP Binding Cassette Transporter, Subfamily G, Member 2/genetics
- Adhesins, Escherichia coli
- Allosteric Regulation
- Animals
- Autoradiography
- Brain/diagnostic imaging
- Brain/metabolism
- Drug Design
- Humans
- Magnetic Resonance Imaging
- Male
- Mice, Knockout
- Mice, Mutant Strains
- Microsomes, Liver/drug effects
- Microsomes, Liver/metabolism
- Molecular Structure
- Positron-Emission Tomography
- Preliminary Data
- Pyrrolidines/chemistry
- Quinolines/chemistry
- Radiopharmaceuticals/chemical synthesis
- Rats, Sprague-Dawley
- Receptors, Metabotropic Glutamate/metabolism
- Tissue Distribution
Collapse
Affiliation(s)
- Xiaofei Zhang
- Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, MA, 02114, USA
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Collaborative Innovation Center of Chemical Science and Engineering, Nankai Unviersity, Tianjin 300071, China
| | - Katsushi Kumata
- Department of Radiopharmaceutics Development, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, 263-8555, Japan
| | - Tomoteru Yamasaki
- Department of Radiopharmaceutics Development, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, 263-8555, Japan
| | - Ran Cheng
- Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, MA, 02114, USA
| | - Akiko Hatori
- Department of Radiopharmaceutics Development, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, 263-8555, Japan
| | - Longle Ma
- Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, MA, 02114, USA
| | - Yiding Zhang
- Department of Radiopharmaceutics Development, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, 263-8555, Japan
| | - Lin Xie
- Department of Radiopharmaceutics Development, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, 263-8555, Japan
| | - Lu Wang
- Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, MA, 02114, USA
| | - Hye Jin Kang
- Department of Pharmacology & National Institute of Mental Health Psychoactive Drug Screening Program, University of North Carolina at Chapel Hill, North Carolina, 27515, USA
| | - Douglas J. Sheffler
- Cell Death and Survival Networks Program and Conrad Prebys Center for Chemical Genomics, Sanford-Burnham Medical Research Institute, La Jolla, CA, 92037, USA
| | - Nicholas D. P. Cosford
- Cell Death and Survival Networks Program and Conrad Prebys Center for Chemical Genomics, Sanford-Burnham Medical Research Institute, La Jolla, CA, 92037, USA
| | - Ming-Rong Zhang
- Department of Radiopharmaceutics Development, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, 263-8555, Japan
| | - Steven H. Liang
- Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, MA, 02114, USA
| |
Collapse
|
10
|
Kumata K, Yamasaki T, Hatori A, Zhang Y, Mori W, Fujinaga M, Xie L, Okubo T, Nengaki N, Zhang MR. Synthesis and in vitro evaluation of three novel radiotracers for imaging of metabotropic glutamate receptor subtype 2 in rat brain. Bioorg Med Chem Lett 2017; 27:3139-3143. [DOI: 10.1016/j.bmcl.2017.05.029] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2017] [Revised: 05/08/2017] [Accepted: 05/10/2017] [Indexed: 11/30/2022]
|