1
|
Robert‐Scott G, St‐Gelais J, Giguère D. Annulative Dimerization of Carbohydrates: Synthesis of Complex
C
2
‐Symmetrical 1,4‐Dioxane‐Sugar Hybrids. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Gabrielle Robert‐Scott
- Département de Chimie Université Laval 1045 av. De la Médecine Québec City, Qc G1V 0A6 Canada
| | - Jacob St‐Gelais
- Département de Chimie Université Laval 1045 av. De la Médecine Québec City, Qc G1V 0A6 Canada
| | - Denis Giguère
- Département de Chimie Université Laval 1045 av. De la Médecine Québec City, Qc G1V 0A6 Canada
| |
Collapse
|
2
|
Kumar R, Nehul S, Singh A, Tomar S. Identification and evaluation of antiviral potential of thymoquinone, a natural compound targeting Chikungunya virus capsid protein. Virology 2021; 561:36-46. [PMID: 34146962 DOI: 10.1016/j.virol.2021.05.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 05/20/2021] [Accepted: 05/30/2021] [Indexed: 10/21/2022]
Abstract
Capsid protein (CP) of Chikungunya virus (CHIKV) is a multifunctional protein with a conserved hydrophobic pocket that plays a crucial role in the capsid assembly and virus budding process. This study demonstrates antiviral activity of thymoquinone (TQ), a natural compound targeting the hydrophobic pocket of CP. The binding of TQ to the hydrophobic pocket of CHIKV CP was analysed by structure-based molecular docking, isothermal titration calorimetry and fluorescence spectroscopy. The binding constant KD obtained for TQ was 27 μM. Additionally, cell-based antiviral studies showed that TQ diminished CHIKV replication with an EC50 value 4.478 μM. Reduction in viral RNA copy number and viral replication as assessed by the qRT-PCR and immunofluorescence assay, confirmed the antiviral potential of TQ. Our study reveals that TQ is an effective antiviral targeting the hydrophobic pocket of CHIKV CP and may serve as the basis for development of a broad-spectrum therapy against alphaviral diseases.
Collapse
Affiliation(s)
- Ravi Kumar
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, 247667, Uttarakhand, India
| | - Sanketkumar Nehul
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, 247667, Uttarakhand, India
| | - Ankur Singh
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, 247667, Uttarakhand, India
| | - Shailly Tomar
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, 247667, Uttarakhand, India.
| |
Collapse
|
3
|
Arthritogenic Alphavirus Capsid Protein. Life (Basel) 2021; 11:life11030230. [PMID: 33799673 PMCID: PMC7999773 DOI: 10.3390/life11030230] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 03/08/2021] [Accepted: 03/09/2021] [Indexed: 01/03/2023] Open
Abstract
In the past two decades Old World and arthritogenic alphavirus have been responsible for epidemics of polyarthritis, causing high morbidity and becoming a major public health concern. The multifunctional arthritogenic alphavirus capsid protein is crucial for viral infection. Capsid protein has roles in genome encapsulation, budding and virion assembly. Its role in multiple infection processes makes capsid protein an attractive target to exploit in combating alphaviral infection. In this review, we summarize the function of arthritogenic alphavirus capsid protein, and describe studies that have used capsid protein to develop novel arthritogenic alphavirus therapeutic and diagnostic strategies.
Collapse
|
4
|
Abstract
Alphaviruses are enveloped positive-sense RNA viruses that can cause serious human illnesses such as polyarthritis and encephalitis. Despite their widespread distribution and medical importance, there are no licensed vaccines or antivirals to combat alphavirus infections. Berberine chloride (BBC) is a pan-alphavirus inhibitor that was previously identified in a replicon-based small-molecule screen. This work showed that BBC inhibits alphavirus replication but also suggested that BBC might have additional effects later in the viral life cycle. Here, we show that BBC has late effects that target the virus nucleocapsid (NC) core. Infected cells treated with BBC late in infection were unable to form stable cytoplasmic NCs or assembly intermediates, as assayed by gradient sedimentation. In vitro studies with recombinant capsid protein (Cp) and purified genomic RNA (gRNA) showed that BBC perturbs core-like particle formation and potentially traps the assembly process in intermediate states. Particles produced from BBC-treated cells were less infectious, despite efficient particle production and only minor decreases in genome packaging. In addition, BBC treatment of free virus particles strongly decreased alphavirus infectivity. In contrast, the infectivity of the negative-sense RNA virus vesicular stomatitis virus was resistant to BBC treatment of infected cells or free virus. Together, our data indicate that BBC alters alphavirus Cp-gRNA interactions and oligomerization and suggest that this may cause defects in NC assembly and in disassembly during subsequent virus entry. Thus, BBC may be considered a novel alphavirus NC assembly inhibitor.IMPORTANCE The alphavirus chikungunya virus (CHIKV) is an example of an emerging human pathogen with increased and rapid global spread. Although an acute CHIKV infection is rarely fatal, many patients suffer from debilitating chronic arthralgia for years. Antivirals against chikungunya and other alphaviruses have been identified in vitro, but to date none have been shown to be efficacious and have been licensed for human use. Here, we investigated a small molecule, berberine chloride (BBC), and showed that it inhibited infectious virus production by several alphaviruses including CHIKV. BBC acted on a late step in the alphavirus exit pathway, namely the formation of the nucleocapsid containing the infectious viral RNA. Better understanding of nucleocapsid formation and its inhibition by BBC will provide important information on the mechanisms of infectious alphavirus production and may enable their future targeting in antiviral strategies.
Collapse
|
5
|
|
6
|
Ching KC, F P Ng L, Chai CLL. A compendium of small molecule direct-acting and host-targeting inhibitors as therapies against alphaviruses. J Antimicrob Chemother 2018; 72:2973-2989. [PMID: 28981632 PMCID: PMC7110243 DOI: 10.1093/jac/dkx224] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Alphaviruses were amongst the first arboviruses to be isolated, characterized and assigned a taxonomic status. They are globally widespread, infecting a large variety of terrestrial animals, birds, insects and even fish. Moreover, they are capable of surviving and circulating in both sylvatic and urban environments, causing considerable human morbidity and mortality. The re-emergence of Chikungunya virus (CHIKV) in almost every part of the world has caused alarm to many health agencies throughout the world. The mosquito vector for this virus, Aedes, is globally distributed in tropical and temperate regions and capable of thriving in both rural and urban landscapes, giving the opportunity for CHIKV to continue expanding into new geographical regions. Despite the importance of alphaviruses as human pathogens, there is currently no targeted antiviral treatment available for alphavirus infection. This mini-review discusses some of the major features in the replication cycle of alphaviruses, highlighting the key viral targets and host components that participate in alphavirus replication and the molecular functions that were used in drug design. Together with describing the importance of these targets, we review the various direct-acting and host-targeting inhibitors, specifically small molecules that have been discovered and developed as potential therapeutics as well as their reported in vitro and in vivo efficacies.
Collapse
Affiliation(s)
- Kuan-Chieh Ching
- NUS Graduate School for Integrative Sciences and Engineering, Centre for Life Sciences, #05-01, 28 Medical Drive, Singapore 117456.,Department of Pharmacy, Faculty of Science, National University of Singapore, Block S4A, Level 3, 18 Science Drive 4, Singapore 117543
| | - Lisa F P Ng
- Singapore Immunology Network, A*STAR, 8A Biomedical Grove, Immunos Building, #04-06, Singapore 138648.,Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Block MD6, Centre for Translational Medicine, 14 Medical Drive, #14-01T, Singapore 117599.,Institute of Infection and Global Health, University of Liverpool, Ronald Ross Building, 8 West Derby Street, Liverpool L697BE, UK
| | - Christina L L Chai
- NUS Graduate School for Integrative Sciences and Engineering, Centre for Life Sciences, #05-01, 28 Medical Drive, Singapore 117456.,Department of Pharmacy, Faculty of Science, National University of Singapore, Block S4A, Level 3, 18 Science Drive 4, Singapore 117543
| |
Collapse
|
7
|
Ferreira PG, Ferraz AC, Figueiredo JE, Lima CF, Rodrigues VG, Taranto AG, Ferreira JMS, Brandão GC, Vieira-Filho SA, Duarte LP, de Brito Magalhães CL, de Magalhães JC. Detection of the antiviral activity of epicatechin isolated from Salacia crassifolia (Celastraceae) against Mayaro virus based on protein C homology modelling and virtual screening. Arch Virol 2018; 163:1567-1576. [DOI: 10.1007/s00705-018-3774-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2017] [Accepted: 02/06/2018] [Indexed: 11/29/2022]
|
8
|
Sharma R, Kesari P, Kumar P, Tomar S. Structure-function insights into chikungunya virus capsid protein: Small molecules targeting capsid hydrophobic pocket. Virology 2018; 515:223-234. [DOI: 10.1016/j.virol.2017.12.020] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2017] [Revised: 12/03/2017] [Accepted: 12/20/2017] [Indexed: 10/18/2022]
|
9
|
Aggarwal M, Kaur R, Saha A, Mudgal R, Yadav R, Dash PK, Parida M, Kumar P, Tomar S. Evaluation of antiviral activity of piperazine against Chikungunya virus targeting hydrophobic pocket of alphavirus capsid protein. Antiviral Res 2017; 146:102-111. [DOI: 10.1016/j.antiviral.2017.08.015] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 07/16/2017] [Accepted: 08/22/2017] [Indexed: 11/26/2022]
|
10
|
Sharma AS, Kaur H. Au NPs@ polystyrene resin for mild and selective aerobic oxidation of 1,4 dioxane to 1,4 dioxan-2-ol. CATAL COMMUN 2017. [DOI: 10.1016/j.catcom.2016.11.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
11
|
Inhibition of chikungunya virus by picolinate that targets viral capsid protein. Virology 2016; 498:265-276. [DOI: 10.1016/j.virol.2016.08.029] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Revised: 08/26/2016] [Accepted: 08/29/2016] [Indexed: 01/13/2023]
|
12
|
Yang W, Sun J. Organocatalytic Enantioselective Synthesis of 1,4-Dioxanes and Other Oxa-Heterocycles by Oxetane Desymmetrization. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201509888] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Wen Yang
- Department of Chemistry; The Hong Kong University of Science and Technology; Clear Water Bay Kowloon Hong Kong SAR China
| | - Jianwei Sun
- Department of Chemistry; The Hong Kong University of Science and Technology; Clear Water Bay Kowloon Hong Kong SAR China
| |
Collapse
|
13
|
Yang W, Sun J. Organocatalytic Enantioselective Synthesis of 1,4-Dioxanes and Other Oxa-Heterocycles by Oxetane Desymmetrization. Angew Chem Int Ed Engl 2015; 55:1868-71. [DOI: 10.1002/anie.201509888] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Indexed: 12/11/2022]
Affiliation(s)
- Wen Yang
- Department of Chemistry; The Hong Kong University of Science and Technology; Clear Water Bay Kowloon Hong Kong SAR China
| | - Jianwei Sun
- Department of Chemistry; The Hong Kong University of Science and Technology; Clear Water Bay Kowloon Hong Kong SAR China
| |
Collapse
|
14
|
trans-Protease activity and structural insights into the active form of the alphavirus capsid protease. J Virol 2014; 88:12242-53. [PMID: 25100849 DOI: 10.1128/jvi.01692-14] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The alphavirus capsid protein (CP) is a serine protease that possesses cis-proteolytic activity essential for its release from the nascent structural polyprotein. The released CP further participates in viral genome encapsidation and nucleocapsid core formation, followed by its attachment to glycoproteins and virus budding. Thus, protease activity of the alphavirus capsid is a potential antialphaviral target to arrest capsid release, maturation, and structural polyprotein processing. However, the discovery of capsid protease inhibitors has been hampered due to the lack of a suitable screening assay and of the crystal structure in its active form. Here, we report the development of a trans-proteolytic activity assay for Aura virus capsid protease (AVCP) based on fluorescence resonance energy transfer (FRET) for screening protease inhibitors. Kinetic parameters using fluorogenic peptide substrates were estimated, and the K(m) value was found to be 2.63 ± 0.62 μM while the k(cat)/K(m) value was 4.97 × 10(4) M(-1) min(-1). Also, the crystal structure of the trans-active form of AVCP has been determined to 1.81-Å resolution. Structural comparisons of the active form with the crystal structures of available substrate-bound mutant and inactive blocked forms of the capsid protease identify conformational changes in the active site, the oxyanion hole, and the substrate specificity pocket residues, which could be critical for rational drug design. IMPORTANCE The alphavirus capsid protease is an attractive antiviral therapeutic target. In this study, we have described the formerly unappreciated trans-proteolytic activity of the enzyme and for the first time have developed a FRET-based protease assay for screening capsid protease inhibitors. Our structural studies unveil the structural features of the trans-active protease, which has been previously proposed to exist in the natively unfolded form (M. Morillas, H. Eberl, F. H. Allain, R. Glockshuber, and E. Kuennemann, J. Mol. Biol. 376:721-735, 2008, doi:http://dx.doi.org/10.1016/j.jmb.2007.11.055). The different enzymatic forms have been structurally compared to reveal conformational variations in the active and substrate binding sites. The flexible active-site residue Ser218, the disordered C-terminal residues after His261, and the presence of a water molecule in the oxyanion hole of AVCPΔ2 (AVCP with a deletion of the last two residues at the C terminus) reveal the effect of the C-terminal Trp267 deletion on enzyme structure. New structural data reported in this study along with the fluorogenic assay will be useful in substrate specificity characterization, high-throughput protease inhibitor screening, and structure-based development of antiviral drugs.
Collapse
|
15
|
Kalt FR, Cock IE. Gas chromatography-mass spectroscopy analysis of bioactive petalostigma extracts: Toxicity, antibacterial and antiviral activities. Pharmacogn Mag 2014; 10:S37-49. [PMID: 24914307 PMCID: PMC4047571 DOI: 10.4103/0973-1296.127338] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Revised: 05/01/2013] [Accepted: 02/21/2014] [Indexed: 11/16/2022] Open
Abstract
Background: Petalostigma pubescens and Petalostigma triloculare were common components of pharmacopeia's of multiple Australian Aboriginal tribal groupings which traditionally inhabited the areas in which they grow. Among these groups, they had a myriad of medicinal uses in treating a wide variety of bacterial, fungal and viral infections. This study was undertaken to test P. pubescens and P. triloculare leaf and fruit extracts for the ability to inhibit bacterial and viral growth and thus validate Australian Aboriginal usage of these plants in treating bacterial and fungal diseases. Materials and Methods: P. pubescens, and P. triloculare leaves and fruit were extracted and tested for antimicrobial, antiviral activity and toxicity. The bioactive extracts were further examined by RP-HPLC and GC-MS to identify the component compounds. Results: The methanol, water and ethyl acetate leaf and fruit extracts of displayed potent antibacterial activity. The methanol and ethyl acetate extracts displayed the broadest specificity, inhibiting the growth of 10 of the 14 bacteria tested (71%) for the leaf extract and 9 of the 14 bacteria tested (64%) for the fruit extracts. The water extracts also had broad spectrum antibacterial activity, inhibiting the growth of 8 (57%) and 7 (50%) of the 14 bacteria tested, respectively. All antibacterial extracts were approximately equally effective against Gram-positive and Gram-negative bacteria, inhibiting the growth of 50-75% of the bacteria tested. The methanol, water and ethyl acetate extracts also displayed antiviral activity in the MS2 plaque reduction assay. The methanol and water extracts inhibited 26.6-49.0% and 85.4-97.2% of MS2 plaque formation, respectively, with the fruit extracts being more potent inhibitors. All ethyl acetate extracts inhibited 100% of MS2 plaque formation. All extracts were also non-toxic or of low toxicity. Analysis of these extracts by RP-HPLC showed that the P. triloculare ethyl acetate fruit extract was the least complex of the bioactive extracts. Subsequent analysis of this extract by GC-MS revealed that it contained 9 main compounds: acetic acid; 2,2-dimethoxybutane; 4-methyl-1,3-dioxane; decane; unadecane; 2-furanmethanol; 1,2-benzenediol; 1,2,3-benzenetriol; and benzoic acid. Conclusion: These studies validate Australian Aboriginal therapeutic usage of Petalostigma species and indicate their medicinal potential.
Collapse
Affiliation(s)
- F R Kalt
- Biomolecular and Physical Sciences, Nathan Campus, Griffith University, Nathan, Queensland 4111, Australia
| | - I E Cock
- Biomolecular and Physical Sciences, Nathan Campus, Griffith University, Nathan, Queensland 4111, Australia ; Environmental Futures Centre, Nathan Campus, Griffith University, Nathan, Queensland 4111, Australia
| |
Collapse
|
16
|
Spurgers KB, Hurt CR, Cohen JW, Eccelston LT, Lind CM, Lingappa VR, Glass PJ. Validation of a cell-based ELISA as a screening tool identifying anti-alphavirus small-molecule inhibitors. J Virol Methods 2013; 193:226-31. [DOI: 10.1016/j.jviromet.2013.06.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Revised: 05/17/2013] [Accepted: 06/03/2013] [Indexed: 12/29/2022]
|
17
|
Crystal structure of aura virus capsid protease and its complex with dioxane: new insights into capsid-glycoprotein molecular contacts. PLoS One 2012; 7:e51288. [PMID: 23251484 PMCID: PMC3522669 DOI: 10.1371/journal.pone.0051288] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2012] [Accepted: 11/01/2012] [Indexed: 12/25/2022] Open
Abstract
The nucleocapsid core interaction with endodomains of glycoproteins plays a critical role in the alphavirus life cycle that is essential to virus budding. Recent cryo-electron microscopy (cryo-EM) studies provide structural insights into key interactions between capsid protein (CP) and trans-membrane glycoproteins E1 and E2. CP possesses a chymotrypsin-like fold with a hydrophobic pocket at the surface responsible for interaction with glycoproteins. In the present study, crystal structures of the protease domain of CP from Aura virus and its complex with dioxane were determined at 1.81 and 1.98 Å resolution respectively. Due to the absence of crystal structures, homology models of E1 and E2 from Aura virus were generated. The crystal structure of CP and structural models of E1 and E2 were fitted into the cryo-EM density map of Venezuelan equine encephalitis virus (VEEV) for detailed analysis of CP-glycoprotein interactions. Structural analysis revealed that the E2 endodomain consists of a helix-loop-helix motif where the loop region fits into the hydrophobic pocket of CP. Our studies suggest that Cys397, Cys418 and Tyr401 residues of E2 are involved in stabilizing the structure of E2 endodomain. Density map fitting analysis revealed that Pro405, a conserved E2 residue is present in the loop region of the E2 endodomain helix-loop-helix structure and makes intermolecular hydrophobic contacts with the capsid. In the Aura virus capsid protease (AVCP)-dioxane complex structure, dioxane occupies the hydrophobic pocket on CP and structurally mimics the hydrophobic pyrollidine ring of Pro405 in the loop region of E2.
Collapse
|
18
|
Tang J, Jose J, Chipman P, Zhang W, Kuhn RJ, Baker TS. Molecular links between the E2 envelope glycoprotein and nucleocapsid core in Sindbis virus. J Mol Biol 2011; 414:442-59. [PMID: 22001018 DOI: 10.1016/j.jmb.2011.09.045] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2011] [Revised: 09/26/2011] [Accepted: 09/28/2011] [Indexed: 10/17/2022]
Abstract
A three-dimensional reconstruction of Sindbis virus at 7.0 Å resolution presented here provides a detailed view of the virion structure and includes structural evidence for key interactions that occur between the capsid protein (CP) and transmembrane (TM) glycoproteins E1 and E2. Based on crystal structures of component proteins and homology modeling, we constructed a nearly complete, pseudo-atomic model of the virus. Notably, this includes identification of the 33-residue cytoplasmic domain of E2 (cdE2), which follows a path from the E2 TM helix to the CP where it enters and exits the CP hydrophobic pocket and then folds back to contact the viral membrane. Modeling analysis identified three major contact regions between cdE2 and CP, and the roles of specific residues were probed by molecular genetics. This identified R393 and E395 of cdE2 and Y162 and K252 of CP as critical for virus assembly. The N-termini of the CPs form a contiguous network that interconnects 12 pentameric and 30 hexameric CP capsomers. A single glycoprotein spike cross-links three neighboring CP capsomers as might occur during initiation of virus budding.
Collapse
Affiliation(s)
- Jinghua Tang
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093-0378, USA
| | | | | | | | | | | |
Collapse
|
19
|
Abstract
BACKGROUND Infection by mosquito-borne flaviviruses (family Flaviviridae) is increasing in prevalence worldwide. The vast global, social and economic impact due to the morbidity and mortality associated with the diseases caused by these viruses necessitates therapeutic intervention. There is currently no effective clinical treatment for any flaviviral infection. Therefore, there is a great need for the identification of novel inhibitors to target the virus life cycle. DISCUSSION In this article, we discuss structural and nonstructural viral proteins that are the focus of current target validation and drug discovery efforts. Both inhibition of essential enzymatic activities and disruption of necessary protein–protein interactions are considered. In addition, we address promising new targets for future research. CONCLUSION As our molecular and biochemical understanding of the flavivirus life cycle increases, the number of targets for antiviral therapeutic discovery grows and the possibility for novel drug discovery continues to strengthen.
Collapse
|
20
|
Stewart GW, Brands KMJ, Brewer SE, Cowden CJ, Davies AJ, Edwards JS, Gibson AW, Hamilton SE, Katz JD, Keen SP, Mullens PR, Scott JP, Wallace DJ, Wise CS. Process Development and Large-Scale Synthesis of a c-Met Kinase Inhibitor. Org Process Res Dev 2010. [DOI: 10.1021/op100101q] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Gavin W. Stewart
- Department of Process Research, Merck Sharp and Dohme Research Laboratories, Hertford Road, Hoddesdon, Hertfordshire, EN11 9BU, U.K., and Department of Chemistry, Merck and Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts 02115, U.S.A
| | - Karel M. J. Brands
- Department of Process Research, Merck Sharp and Dohme Research Laboratories, Hertford Road, Hoddesdon, Hertfordshire, EN11 9BU, U.K., and Department of Chemistry, Merck and Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts 02115, U.S.A
| | - Sarah E. Brewer
- Department of Process Research, Merck Sharp and Dohme Research Laboratories, Hertford Road, Hoddesdon, Hertfordshire, EN11 9BU, U.K., and Department of Chemistry, Merck and Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts 02115, U.S.A
| | - Cameron J. Cowden
- Department of Process Research, Merck Sharp and Dohme Research Laboratories, Hertford Road, Hoddesdon, Hertfordshire, EN11 9BU, U.K., and Department of Chemistry, Merck and Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts 02115, U.S.A
| | - Antony J. Davies
- Department of Process Research, Merck Sharp and Dohme Research Laboratories, Hertford Road, Hoddesdon, Hertfordshire, EN11 9BU, U.K., and Department of Chemistry, Merck and Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts 02115, U.S.A
| | - John S. Edwards
- Department of Process Research, Merck Sharp and Dohme Research Laboratories, Hertford Road, Hoddesdon, Hertfordshire, EN11 9BU, U.K., and Department of Chemistry, Merck and Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts 02115, U.S.A
| | - Andrew W. Gibson
- Department of Process Research, Merck Sharp and Dohme Research Laboratories, Hertford Road, Hoddesdon, Hertfordshire, EN11 9BU, U.K., and Department of Chemistry, Merck and Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts 02115, U.S.A
| | - Simon E. Hamilton
- Department of Process Research, Merck Sharp and Dohme Research Laboratories, Hertford Road, Hoddesdon, Hertfordshire, EN11 9BU, U.K., and Department of Chemistry, Merck and Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts 02115, U.S.A
| | - Jason D. Katz
- Department of Process Research, Merck Sharp and Dohme Research Laboratories, Hertford Road, Hoddesdon, Hertfordshire, EN11 9BU, U.K., and Department of Chemistry, Merck and Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts 02115, U.S.A
| | - Stephen P. Keen
- Department of Process Research, Merck Sharp and Dohme Research Laboratories, Hertford Road, Hoddesdon, Hertfordshire, EN11 9BU, U.K., and Department of Chemistry, Merck and Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts 02115, U.S.A
| | - Peter R. Mullens
- Department of Process Research, Merck Sharp and Dohme Research Laboratories, Hertford Road, Hoddesdon, Hertfordshire, EN11 9BU, U.K., and Department of Chemistry, Merck and Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts 02115, U.S.A
| | - Jeremy P. Scott
- Department of Process Research, Merck Sharp and Dohme Research Laboratories, Hertford Road, Hoddesdon, Hertfordshire, EN11 9BU, U.K., and Department of Chemistry, Merck and Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts 02115, U.S.A
| | - Debra J. Wallace
- Department of Process Research, Merck Sharp and Dohme Research Laboratories, Hertford Road, Hoddesdon, Hertfordshire, EN11 9BU, U.K., and Department of Chemistry, Merck and Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts 02115, U.S.A
| | - Christopher S. Wise
- Department of Process Research, Merck Sharp and Dohme Research Laboratories, Hertford Road, Hoddesdon, Hertfordshire, EN11 9BU, U.K., and Department of Chemistry, Merck and Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts 02115, U.S.A
| |
Collapse
|
21
|
Reichert E, Clase A, Bacetty A, Larsen J. Alphavirus antiviral drug development: scientific gap analysis and prospective research areas. Biosecur Bioterror 2010; 7:413-27. [PMID: 20028250 DOI: 10.1089/bsp.2009.0032] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The New World alphaviruses Venezuelan equine encephalitis virus (VEEV), eastern equine encephalitis virus (EEEV), and western equine encephalitis virus (WEEV) pose a significant threat to human health as the etiological agents of serious viral encephalitis through natural infection as well as through their potential use as a biological weapon. At present, there is no FDA-approved medical treatment for infection with these viruses. The Defense Threat Reduction Agency, Joint Science and Technology Office for Chemical and Biological Defense (DTRA/JSTO), is currently funding research aimed at developing antiviral drugs and vaccines against VEEV, EEEV, and WEEV. A review of antiviral drug discovery efforts for these viruses revealed significant gaps in the data, assays, and models required for successful drug development. This review provides a description of these gaps and highlights specific critical research areas for the development of a target-based drug discovery program for the VEEV, EEEV, and WEEV nonstructural proteins. These efforts will increase the probability of the successful development of a pharmaceutical intervention against these viral threat agents.
Collapse
Affiliation(s)
- Erin Reichert
- Biological Therapeutics, Defense Threat Reduction Agency, Fort Belvoir, Virginia 22060-6201, USA
| | | | | | | |
Collapse
|
22
|
Kumar D, Judge V, Narang R, Sangwan S, De Clercq E, Balzarini J, Narasimhan B. Benzylidene/2-chlorobenzylidene hydrazides: synthesis, antimicrobial activity, QSAR studies and antiviral evaluation. Eur J Med Chem 2010; 45:2806-16. [PMID: 20347509 PMCID: PMC7127590 DOI: 10.1016/j.ejmech.2010.03.002] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2009] [Revised: 02/26/2010] [Accepted: 03/01/2010] [Indexed: 11/12/2022]
Abstract
A series of benzylidene hydrazides (1–20) was synthesized and tested, in vitro, for antibacterial, antifungal and antiviral activities. The microbial screening results indicated that compounds having chloro and nitro substituents were the most active ones. The antiviral evaluation depicted that compounds 9 and 19 were active against Vesicular stomatitis virus (VSV) in HeLa cell cultures. QSAR investigations indicated that the multi-target QSAR model was effective in describing the antimicrobial (antibacterial and antifungal) activity over the one-target QSAR models. Further the mt-QSAR model indicated that the topological parameters, second order molecular connectivity index (2χ) and third order Kier's alpha shape index (κα3) are effective in describing the antimicrobial activity of synthesized hydrazides.
Collapse
Affiliation(s)
- Davinder Kumar
- Department of Pharmaceutical Sciences, Guru Jambheshwar University of Science and Technology, Hisar 125001, India
| | | | | | | | | | | | | |
Collapse
|
23
|
Sharma D, Narasimhan B, Kumar P, Judge V, Narang R, De Clercq E, Balzarini J. Synthesis, antimicrobial and antiviral activity of substituted benzimidazoles. J Enzyme Inhib Med Chem 2010; 24:1161-8. [PMID: 19772489 DOI: 10.1080/14756360802694427] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
In the present study we have synthesized (4-nitrophenyl)-[2-(substituted phenyl)-benzoimidazol-1-yl]-methanones, (2-bromophenyl)-[2-(substituted phenyl)-benzoimidazol-1-yl]-methanone analogues (1-14) and evaluated them for their antimicrobial and antiviral potential. The results of antimicrobial screening indicated that none of the synthesized compounds were effective against the tested bacterial strains. Compounds 3, 11, 13 and compounds 5, 11, 12 were found to be active against Aspergillus niger and Candida albicans respectively, and may be further developed as antifungal agents. Furthermore, evaluation against a panel of different viruses pointed out the selective activity of compounds 5 and 6 against vaccinia virus and Coxsackie virus B4.
Collapse
Affiliation(s)
- Deepika Sharma
- Department of Pharmaceutical Sciences, Guru Jambheshwar University of Science and Technology, Hisar 125001, India
| | | | | | | | | | | | | |
Collapse
|
24
|
Pohjala L, Barai V, Azhayev A, Lapinjoki S, Ahola T. A luciferase-based screening method for inhibitors of alphavirus replication applied to nucleoside analogues. Antiviral Res 2008; 78:215-22. [PMID: 18294708 DOI: 10.1016/j.antiviral.2008.01.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2007] [Revised: 12/31/2007] [Accepted: 01/04/2008] [Indexed: 11/17/2022]
Abstract
Several members of the widespread alphavirus group are pathogenic, but no therapy is available to treat these RNA virus infections. We report here a quantitative assay to screen for inhibitors of Semliki Forest virus (SFV) replication, and demonstrate the effects of 29 nucleosides on SFV and Sindbis virus replication. The anti-SFV assay developed is based on a SFV strain containing Renilla luciferase inserted after the nsP3 coding region, yielding a marker virus in which the luciferase is cleaved out during polyprotein processing. The reporter-gene assay was miniaturized, automated and validated, resulting in a Z' value of 0.52. [3H]uridine labeling for 1 h at the maximal viral RNA synthesis time point was used as a comparative method. Anti-SFV screening and counter-screening for cell viability led to the discovery of several new SFV inhibitors. 3'-amino-3'-deoxyadenosine was the most potent inhibitor in this set, with an IC50 value of 18 microM in the reporter-gene assay and 2 microM in RNA synthesis rate detection. Besides the 3'-substituted analogues, certain N6-substituted nucleosides had similar IC50 values for both SFV and Sindbis replication, suggesting the applicability of this methodology to alphaviruses in general.
Collapse
Affiliation(s)
- Leena Pohjala
- Program in Cellular Biotechnology, Institute of Biotechnology, P.O. Box 56 (Viikinkaari 9), University of Helsinki, 00014 Helsinki, Finland
| | | | | | | | | |
Collapse
|
25
|
Kim HY, Kuhn RJ, Patkar C, Warrier R, Cushman M. Synthesis of dioxane-based antiviral agents and evaluation of their biological activities as inhibitors of Sindbis virus replication. Bioorg Med Chem 2007; 15:2667-79. [PMID: 17287124 PMCID: PMC1951788 DOI: 10.1016/j.bmc.2007.01.040] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2006] [Accepted: 01/19/2007] [Indexed: 10/23/2022]
Abstract
The crystal structure of the Sindbis virus capsid protein contains one or two solvent-derived dioxane molecules in the hydrophobic binding pocket. A bis-dioxane antiviral agent was designed by linking the two dioxane molecules with a three-carbon chain having R,R connecting stereochemistry, and a stereospecific synthesis was performed. This resulted in an effective antiviral agent that inhibited Sindbis virus replication with an EC(50) of 14 microM. The synthesis proceeded through an intermediate (R)-2-hydroxymethyl-[1,4]dioxane, which unexpectedly proved to be a more effecting antiviral agent than the target compound, as evidenced by its EC(50) of 3.4 microM as an inhibitor of Sindbis virus replication. Both compounds were not cytotoxic in uninfected BHK cells at concentrations of 1mM.
Collapse
Affiliation(s)
- Ha Young Kim
- Department of Medicinal Chemistry and Molecular Pharmacology, School of Pharmacy and Pharmaceutical Sciences, the Purdue Cancer Center, Purdue University, West Lafayette, IN 47907
| | - Richard J. Kuhn
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907
| | - Chinmay Patkar
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907
| | - Ranjit Warrier
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907
| | - Mark Cushman
- Department of Medicinal Chemistry and Molecular Pharmacology, School of Pharmacy and Pharmaceutical Sciences, the Purdue Cancer Center, Purdue University, West Lafayette, IN 47907
- Corresponding author: Tel: 765-494-1465. Fax: 765-494-6790. E–mail:
| |
Collapse
|