1
|
Multitargeting the Action of 5-HT 6 Serotonin Receptor Ligands by Additional Modulation of Kinases in the Search for a New Therapy for Alzheimer's Disease: Can It Work from a Molecular Point of View? Int J Mol Sci 2022; 23:ijms23158768. [PMID: 35955902 PMCID: PMC9368844 DOI: 10.3390/ijms23158768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/03/2022] [Accepted: 08/05/2022] [Indexed: 11/26/2022] Open
Abstract
In view of the unsatisfactory treatment of cognitive disorders, in particular Alzheimer’s disease (AD), the aim of this review was to perform a computer-aided analysis of the state of the art that will help in the search for innovative polypharmacology-based therapeutic approaches to fight against AD. Apart from 20-year unrenewed cholinesterase- or NMDA-based AD therapy, the hope of effectively treating Alzheimer’s disease has been placed on serotonin 5-HT6 receptor (5-HT6R), due to its proven, both for agonists and antagonists, beneficial procognitive effects in animal models; however, research into this treatment has so far not been successfully translated to human patients. Recent lines of evidence strongly emphasize the role of kinases, in particular microtubule affinity-regulating kinase 4 (MARK4), Rho-associated coiled-coil-containing protein kinase I/II (ROCKI/II) and cyclin-dependent kinase 5 (CDK5) in the etiology of AD, pointing to the therapeutic potential of their inhibitors not only against the symptoms, but also the causes of this disease. Thus, finding a drug that acts simultaneously on both 5-HT6R and one of those kinases will provide a potential breakthrough in AD treatment. The pharmacophore- and docking-based comprehensive literature analysis performed herein serves to answer the question of whether the design of these kind of dual agents is possible, and the conclusions turned out to be highly promising.
Collapse
|
2
|
Ghosh S, Keretsu S, Cho SJ. Designing of the N-ethyl-4-(pyridin-4-yl)benzamide based potent ROCK1 inhibitors using docking, molecular dynamics, and 3D-QSAR. PeerJ 2021; 9:e11951. [PMID: 34434664 PMCID: PMC8359802 DOI: 10.7717/peerj.11951] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 07/20/2021] [Indexed: 01/20/2023] Open
Abstract
Rho-associated kinase-1 (ROCK1) has been recognized for its pivotal role in heart diseases, different types of malignancy, and many neurological disorders. Hyperactivity of ROCK phosphorylates the protein kinase-C (PKC), which ultimately induces smooth muscle cell contraction in the vascular system. Inhibition of ROCK1 has been shown to be a promising therapy for patients with cardiovascular disease. In this study, we have conducted molecular modeling techniques such as docking, molecular dynamics (MD), and 3-Dimensional structure-activity relationship (3D-QSAR) on a series of N-ethyl-4-(pyridin-4-yl)benzamide-based compounds. Docking and MD showed critical interactions and binding affinities between ROCK1 and its inhibitors. To establish the structure-activity relationship (SAR) of the compounds, 3D-QSAR techniques such as Comparative Molecular Field Analysis (CoMFA) and Comparative Molecular Similarity Indices Analysis (CoMSIA) were used. The CoMFA (q 2 = 0.774, r 2 = 0.965, ONC = 6, and r p r e d 2 = 0.703) and CoMSIA (q 2 = 0.676, r 2 = 0.949, ONC = 6, and r p r e d 2 = 0.548) both models have shown reasonable external predictive activity, and contour maps revealed favorable and unfavorable substitutions for chemical group modifications. Based on the contour maps, we have designed forty new compounds, among which, seven compounds exhibited higher predictive activity (pIC50). Further, we conducted the MD study, ADME/Tox, and SA score prediction using the seven newly designed compounds. The combination of docking, MD, and 3D-QSAR studies helps to understand the coherence modification of existing molecules. Our study may provide valuable insight into the development of more potent ROCK1 inhibitors.
Collapse
Affiliation(s)
- Suparna Ghosh
- Department of Biomedical Sciences, College of Medicine, Chosun University, Gwangju, South Korea
| | - Seketoulie Keretsu
- Department of Biomedical Sciences, College of Medicine, Chosun University, Gwangju, South Korea
| | - Seung Joo Cho
- Department of Biomedical Sciences, College of Medicine, Chosun University, Gwangju, South Korea.,Department of Cellular and Molecular Medicine, College of Medicine, Chosun University, Gwangju, South Korea
| |
Collapse
|
3
|
Liu J, Liu N, Yang Q, Wang L. Visible-light-driven photocyclization reaction: photocatalyst-free mediated intramolecular N–N coupling for the synthesis of 2 H-indazole-3-carboxamides from aryl azides. Org Chem Front 2021. [DOI: 10.1039/d1qo00777g] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
A visible-light-driven photocyclization reaction of aryl azides to access 2H-indazole-3-carboxamides in moderate to excellent yields has been realized efficiently under photocatalyst-free and external additive-free conditions.
Collapse
Affiliation(s)
- Jinni Liu
- College of Materials and Chemical Engineering, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, China Three Gorges University, Yichang, Hubei 443002, China
| | - Na Liu
- College of Materials and Chemical Engineering, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, China Three Gorges University, Yichang, Hubei 443002, China
| | - Qingqing Yang
- College of Materials and Chemical Engineering, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, China Three Gorges University, Yichang, Hubei 443002, China
| | - Long Wang
- College of Materials and Chemical Engineering, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, China Three Gorges University, Yichang, Hubei 443002, China
| |
Collapse
|
4
|
Abbhi V, Piplani P. Rho-kinase (ROCK) Inhibitors - A Neuroprotective Therapeutic Paradigm with a Focus on Ocular Utility. Curr Med Chem 2020; 27:2222-2256. [PMID: 30378487 DOI: 10.2174/0929867325666181031102829] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 10/16/2018] [Accepted: 10/23/2018] [Indexed: 12/19/2022]
Abstract
BACKGROUND Glaucoma is a progressive optic neuropathy causing visual impairment and Retinal Ganglionic Cells (RGCs) death gradually posing a need for neuroprotective strategies to minimize the loss of RGCs and visual field. It is recognized as a multifactorial disease, Intraocular Pressure (IOP) being the foremost risk factor. ROCK inhibitors have been probed for various possible indications, such as myocardial ischemia, hypertension, kidney diseases. Their role in neuroprotection and neuronal regeneration has been suggested to be of value in the treatment of neurological diseases, like spinal-cord injury, Alzheimer's disease and multiple sclerosis but recently Rho-associated Kinase inhibitors have been recognized as potential antiglaucoma agents. EVIDENCE SYNTHESIS Rho-Kinase is a serine/threonine kinase with a kinase domain which is constitutively active and is involved in the regulation of smooth muscle contraction and stress fibre formation. Two isoforms of Rho-Kinase, ROCK-I (ROCK β) and ROCK-II (ROCK α) have been identified. ROCK II plays a pathophysiological role in glaucoma and hence the inhibitors of ROCK may be beneficial to ameliorate the vision loss. These inhibitors decrease the intraocular pressure in the glaucomatous eye by increasing the aqueous humour outflow through the trabecular meshwork pathway. They also act as anti-scarring agents and hence prevent post-operative scarring after the glaucoma filtration surgery. Their major role involves axon regeneration by increasing the optic nerve blood flow which may be useful in treating the damaged optic neurons. These drugs act directly on the neurons in the central visual pathway, interrupting the RGC apoptosis and therefore serve as a novel pharmacological approach for glaucoma neuroprotection. CONCLUSION Based on the results of high-throughput screening, several Rho kinase inhibitors have been designed and developed comprising of diverse scaffolds exhibiting Rho kinase inhibitory activity from micromolar to subnanomolar ranges. This diversity in the scaffolds with inhibitory potential against the kinase and their SAR development will be intricated in the present review. Ripasudil is the only Rho kinase inhibitor marketed to date for the treatment of glaucoma. Another ROCK inhibitor AR-13324 has recently passed the clinical trials whereas AMA0076, K115, PG324, Y39983 and RKI-983 are still under trials. In view of this, a detailed and updated account of ROCK II inhibitors as the next generation therapeutic agents for glaucoma will be discussed in this review.
Collapse
Affiliation(s)
- Vasudha Abbhi
- University Institute of Pharmaceutical Sciences, UGC-Centre of Advanced Study (UGCCAS), Panjab University, Chandigarh 160014, India
| | - Poonam Piplani
- University Institute of Pharmaceutical Sciences, UGC-Centre of Advanced Study (UGCCAS), Panjab University, Chandigarh 160014, India
| |
Collapse
|
5
|
Liu J, Lu Y, Li G, Xiao M, Yang G, Pan Y. Elucidation the binding mechanism of Nelumbo nucifera-derived isoquinoline alkaloids as Rho-kinase 1 inhibitors by molecular docking and dynamic simulation. J Biomol Struct Dyn 2020; 39:379-394. [PMID: 31918633 DOI: 10.1080/07391102.2020.1714484] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Rho-kinase 1 (ROCK1) is a key molecular target for controlling smooth muscle (SM) contraction in asthma, gastrointestinal disorders, hypertension. Embryos of lotus seed (Nelumbo nucifera) are traditional folk herbs widely used in treating various diseases which are closely related to SM contraction. With the aim of explaining the mechanism of embryos of lotus seed, 27 isoquinoline alkaloids were isolated from the embryos of lotus seed, the inhibitory activity of these alkaloids against ROCK1 were virtual screened via molecular docking and molecular dynamics (MD) simulations. The docking results indicated that 5 bisbenzylisoquinolines (BBIs) and 1 tribenzylisoquinoline (TBI) were potent inhibitors with high binding affinity for both A and B chains of ROCK1 (AcRock and BcRock). The MD results also revealed that neoliensinine (28) was the most potent inhibitor, which was corresponding to the irreversible relaxation effect of neoliensinine on SM. Moreover, through the MD simulation, it also indicated that neoliensinine (28) interacted in its stretched conformation through polar solvation interactions and van der Waal forces. Finally, with the best calculation results, the inhibition effect of neoliensinine (28) on the contraction of vascular smooth muscle cells (VSMCs) and ROCK1 was also confirmed by several biological tests.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Jian Liu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yang Lu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Guancong Li
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Min Xiao
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Guangming Yang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yang Pan
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
6
|
Zhang X, Pan Y, Liang P, Ma X, Jiao W, Shao H. An Effective Method for the Synthesis of 1,3‐Dihydro‐2
H
‐indazoles via N‐N Bond Formation. Adv Synth Catal 2019. [DOI: 10.1002/adsc.201901331] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Xiaoke Zhang
- Natural Products Research Centre, Chengdu Institute of Biology, ChineseAcademy of Sciences, Chengdu, People's Republic of China
- Zunyi Medical University, 563006 Zunyi, Guizhou People's Republic of China
- University of Chinese Academy of Sciences People's Republic of China
| | - Yang Pan
- Natural Products Research Centre, Chengdu Institute of Biology, ChineseAcademy of Sciences, Chengdu, People's Republic of China
- Zunyi Medical University, 563006 Zunyi, Guizhou People's Republic of China
| | - Peng Liang
- Natural Products Research Centre, Chengdu Institute of Biology, ChineseAcademy of Sciences, Chengdu, People's Republic of China
- Zunyi Medical University, 563006 Zunyi, Guizhou People's Republic of China
| | - Xiaofeng Ma
- Natural Products Research Centre, Chengdu Institute of Biology, ChineseAcademy of Sciences, Chengdu, People's Republic of China
- Zunyi Medical University, 563006 Zunyi, Guizhou People's Republic of China
| | - Wei Jiao
- Natural Products Research Centre, Chengdu Institute of Biology, ChineseAcademy of Sciences, Chengdu, People's Republic of China
| | - Huawu Shao
- Natural Products Research Centre, Chengdu Institute of Biology, ChineseAcademy of Sciences, Chengdu, People's Republic of China
| |
Collapse
|
7
|
Hobson AD, Judge RA, Aguirre AL, Brown BS, Cui Y, Ding P, Dominguez E, DiGiammarino E, Egan DA, Freiberg GM, Gopalakrishnan SM, Harris CM, Honore MP, Kage KL, Kapecki NJ, Ling C, Ma J, Mack H, Mamo M, Maurus S, McRae B, Moore NS, Mueller BK, Mueller R, Namovic MT, Patel K, Pratt SD, Putman CB, Queeney KL, Sarris KK, Schaffter LM, Stoll V, Vasudevan A, Wang L, Wang L, Wirthl W, Yach K. Identification of Selective Dual ROCK1 and ROCK2 Inhibitors Using Structure-Based Drug Design. J Med Chem 2018; 61:11074-11100. [DOI: 10.1021/acs.jmedchem.8b01098] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Adrian D. Hobson
- AbbVie Bioresearch Center, 381 Plantation Street, Worcester, Massachusetts 01605, United States
| | - Russell A. Judge
- AbbVie, Inc., 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| | - Ana L. Aguirre
- AbbVie, Inc., 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| | - Brian S. Brown
- AbbVie, Inc., 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| | - Yifang Cui
- AbbVie Deutschland GmbH & Co. KG, Knollstrasse 50, 67061, Ludwigshafen, Germany
| | - Ping Ding
- AbbVie Bioresearch Center, 381 Plantation Street, Worcester, Massachusetts 01605, United States
| | - Eric Dominguez
- AbbVie Bioresearch Center, 381 Plantation Street, Worcester, Massachusetts 01605, United States
| | - Enrico DiGiammarino
- AbbVie, Inc., 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| | - David A. Egan
- AbbVie, Inc., 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| | - Gail M. Freiberg
- AbbVie, Inc., 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| | | | - Christopher M. Harris
- AbbVie Bioresearch Center, 381 Plantation Street, Worcester, Massachusetts 01605, United States
| | - Marie P. Honore
- AbbVie, Inc., 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| | - Karen L. Kage
- AbbVie, Inc., 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| | - Nicolas J. Kapecki
- AbbVie, Inc., 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| | - Christopher Ling
- AbbVie, Inc., 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| | - Junli Ma
- AbbVie, Inc., 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| | - Helmut Mack
- AbbVie Deutschland GmbH & Co. KG, Knollstrasse 50, 67061, Ludwigshafen, Germany
| | - Mulugeta Mamo
- AbbVie, Inc., 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| | - Stefan Maurus
- AbbVie Deutschland GmbH & Co. KG, Knollstrasse 50, 67061, Ludwigshafen, Germany
| | - Bradford McRae
- AbbVie Bioresearch Center, 381 Plantation Street, Worcester, Massachusetts 01605, United States
| | - Nigel S. Moore
- AbbVie Bioresearch Center, 381 Plantation Street, Worcester, Massachusetts 01605, United States
| | - Bernhard K. Mueller
- AbbVie Deutschland GmbH & Co. KG, Knollstrasse 50, 67061, Ludwigshafen, Germany
| | - Reinhold Mueller
- AbbVie Deutschland GmbH & Co. KG, Knollstrasse 50, 67061, Ludwigshafen, Germany
| | - Marian T. Namovic
- AbbVie, Inc., 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| | - Kaushal Patel
- AbbVie, Inc., 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| | - Steve D. Pratt
- AbbVie, Inc., 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| | - C. Brent Putman
- AbbVie, Inc., 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| | - Kara L. Queeney
- AbbVie Bioresearch Center, 381 Plantation Street, Worcester, Massachusetts 01605, United States
| | - Kathy K. Sarris
- AbbVie, Inc., 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| | - Lisa M. Schaffter
- AbbVie Bioresearch Center, 381 Plantation Street, Worcester, Massachusetts 01605, United States
| | - Vincent Stoll
- AbbVie, Inc., 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| | - Anil Vasudevan
- AbbVie, Inc., 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| | - Lei Wang
- AbbVie Bioresearch Center, 381 Plantation Street, Worcester, Massachusetts 01605, United States
| | - Lu Wang
- AbbVie Bioresearch Center, 381 Plantation Street, Worcester, Massachusetts 01605, United States
| | - William Wirthl
- AbbVie Bioresearch Center, 381 Plantation Street, Worcester, Massachusetts 01605, United States
| | - Kimberly Yach
- AbbVie Bioresearch Center, 381 Plantation Street, Worcester, Massachusetts 01605, United States
| |
Collapse
|
8
|
Shah S, Patel B, Savjani JK. Pharmacophore mapping based virtual screening, molecular docking and ADMET studies of ROCK II inhibitors. Mult Scler Relat Disord 2018; 21:35-41. [PMID: 29455072 DOI: 10.1016/j.msard.2018.02.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 01/20/2018] [Accepted: 02/09/2018] [Indexed: 11/16/2022]
Affiliation(s)
- Surmil Shah
- Department of Pharmaceutical Chemistry Institute of Pharmacy, Nirma University, S.G.Highway, Ahmedabad, Gujarat 382481, India
| | - Bhumika Patel
- Department of Pharmaceutical Chemistry Institute of Pharmacy, Nirma University, S.G.Highway, Ahmedabad, Gujarat 382481, India
| | - Jignasa K Savjani
- Department of Pharmaceutical Chemistry Institute of Pharmacy, Nirma University, S.G.Highway, Ahmedabad, Gujarat 382481, India.
| |
Collapse
|
9
|
Yao Y, Li R, Liu X, Yang F, Yang Y, Li X, Shi X, Yuan T, Fang L, Du G, Jiao X, Xie P. Discovery of Novel N-Substituted Prolinamido Indazoles as Potent Rho Kinase Inhibitors and Vasorelaxation Agents. Molecules 2017; 22:E1766. [PMID: 29048389 PMCID: PMC6151428 DOI: 10.3390/molecules22101766] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 10/16/2017] [Indexed: 01/04/2023] Open
Abstract
Inhibitors of Rho kinase (ROCK) have potential therapeutic applicability in a wide range of diseases, such as hypertension, stroke, asthma and glaucoma. In a previous article, we described the lead discovery of DL0805, a new ROCK I inhibitor, showing potent inhibitory activity (IC50 6.7 μM). Herein, we present the lead optimization of compound DL0805, resulting in the discovery of 24- and 39-fold more-active analogues 4a (IC50 0.27 μM) and 4b (IC50 0.17 μM), among other active analogues. Moreover, ex-vivo studies demonstrated that 4a and 4b exhibited comparable vasorelaxant activity to the approved drug fasudil in rat aortic rings. The research of a preliminary structure-activity relationship (SAR) indicated that the target compounds containing a β-proline moiety have improved activity against ROCK I relative to analogues bearing an α-proline moiety, and among the series of the derivatives with a β-proline-derived indazole scaffold, the inhibitory activity of the target compounds with a benzyl substituent is superior to those with a benzoyl substituent.
Collapse
Affiliation(s)
- Yangyang Yao
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Beijing Key Laboratory of Active Substances Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| | - Renze Li
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Beijing Key Laboratory of Active Substances Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| | - Xiaoyu Liu
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Beijing Key Laboratory of Active Substances Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| | - Feilong Yang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Beijing Key Laboratory of Active Substances Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| | - Ying Yang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Beijing Key Laboratory of Active Substances Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| | - Xiaoyu Li
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Beijing Key Laboratory of Active Substances Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| | - Xiang Shi
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Beijing Key Laboratory of Active Substances Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| | - Tianyi Yuan
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| | - Lianhua Fang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| | - Guanhua Du
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| | - Xiaozhen Jiao
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Beijing Key Laboratory of Active Substances Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| | - Ping Xie
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Beijing Key Laboratory of Active Substances Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| |
Collapse
|
10
|
Research advances in kinase enzymes and inhibitors for cardiovascular disease treatment. Future Sci OA 2017; 3:FSO204. [PMID: 29134113 PMCID: PMC5674217 DOI: 10.4155/fsoa-2017-0010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 03/29/2017] [Indexed: 12/13/2022] Open
Abstract
The targeting of protein kinases has great future potential for the design of new drugs against cardiovascular diseases (CVDs). Enormous efforts have been made toward achieving this aim. Unfortunately, kinase inhibitors designed to treat CVDs have suffered from numerous limitations such as poor selectivity, bad permeability and toxicity. So, where are we now in terms of discovering effective kinase targeting drugs to treat CVDs? Various drug design techniques have been approached for this purpose since the discovery of the inhibitory activity of Staurosporine against protein kinase C in 1986. This review aims to provide context for the status of several emerging classes of direct kinase modulators to treat CVDs and discuss challenges that are preventing scientists from finding new kinase drugs to treat heart disease.
Collapse
|
11
|
Shah S, Savjani J. A review on ROCK-II inhibitors: From molecular modelling to synthesis. Bioorg Med Chem Lett 2016; 26:2383-2391. [PMID: 27080184 DOI: 10.1016/j.bmcl.2016.03.113] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Revised: 03/29/2016] [Accepted: 03/30/2016] [Indexed: 10/22/2022]
Abstract
Rho kinase enzyme expressed in different disease conditions and involved in mediating vasoconstriction and vascular remodeling in the pathogenesis. There are two isoforms of Rho kinases, namely ROCK I and ROCK II, responsible for different physiological function due to difference in distribution, but almost similar in structure. The Rho kinase 2 belongs to AGC family and is widely distributed in brain, heart and muscles. It is responsible for contraction of vascular smooth muscles by calcium sensitization. Its defective and unwanted expression can lead to many medical conditions like multiple sclerosis, myocardial ischemia, inflammatory responses, etc. Many Rho kinase 1 and 2 inhibitors have been designed for Rho/Rho kinase pathway by use of molecular modeling studies. Most of the designed compounds have been modeled based on ROCK 1 enzyme. This article is focused on Rho kinase 2 inhibitors as there are many ways to improvise by use of Computer aided drug designing as very less quantum of research work carried out. Herein, the article highlights different stages of designing like docking, SAR and synthesis of ROCK inhibitors and recent advances. It also highlights future prospective to improve the activity.
Collapse
Affiliation(s)
- Surmil Shah
- Department of Pharmaceutical Chemistry, Institute of Pharmacy, Nirma University, S.G. Highway, Ahmedabad 382481, Gujarat, India
| | - Jignasa Savjani
- Department of Pharmaceutical Chemistry, Institute of Pharmacy, Nirma University, S.G. Highway, Ahmedabad 382481, Gujarat, India.
| |
Collapse
|
12
|
Donegan RK, Lieberman RL. Discovery of Molecular Therapeutics for Glaucoma: Challenges, Successes, and Promising Directions. J Med Chem 2016; 59:788-809. [PMID: 26356532 PMCID: PMC5547565 DOI: 10.1021/acs.jmedchem.5b00828] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Glaucoma, a heterogeneous ocular disorder affecting ∼60 million people worldwide, is characterized by painless neurodegeneration of retinal ganglion cells (RGCs), resulting in irreversible vision loss. Available therapies, which decrease the common causal risk factor of elevated intraocular pressure, delay, but cannot prevent, RGC death and blindness. Notably, it is changes in the anterior segment of the eye, particularly in the drainage of aqueous humor fluid, which are believed to bring about changes in pressure. Thus, it is primarily this region whose properties are manipulated in current and emerging therapies for glaucoma. Here, we focus on the challenges associated with developing treatments, review the available experimental methods to evaluate the therapeutic potential of new drugs, describe the development and evaluation of emerging Rho-kinase inhibitors and adenosine receptor ligands that offer the potential to improve aqueous humor outflow and protect RGCs simultaneously, and present new targets and approaches on the horizon.
Collapse
Affiliation(s)
- Rebecca K Donegan
- School of Chemistry and Biochemistry, Georgia Institute of Technology , 901 Atlantic Drive NW, Atlanta, Georgia 30332-0400, United States
| | - Raquel L Lieberman
- School of Chemistry and Biochemistry, Georgia Institute of Technology , 901 Atlantic Drive NW, Atlanta, Georgia 30332-0400, United States
| |
Collapse
|
13
|
Feng Y, LoGrasso PV, Defert O, Li R. Rho Kinase (ROCK) Inhibitors and Their Therapeutic Potential. J Med Chem 2015; 59:2269-300. [PMID: 26486225 DOI: 10.1021/acs.jmedchem.5b00683] [Citation(s) in RCA: 278] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Rho kinases (ROCKs) belong to the serine-threonine family, the inhibition of which affects the function of many downstream substrates. As such, ROCK inhibitors have potential therapeutic applicability in a wide variety of pathological conditions including asthma, cancer, erectile dysfunction, glaucoma, insulin resistance, kidney failure, neuronal degeneration, and osteoporosis. To date, two ROCK inhibitors have been approved for clinical use in Japan (fasudil and ripasudil) and one in China (fasudil). In 1995 fasudil was approved for the treatment of cerebral vasospasm, and more recently, ripasudil was approved for the treatment of glaucoma in 2014. In this Perspective, we present a comprehensive review of the physiological and biological functions for ROCK, the properties and development of over 170 ROCK inhibitors as well as their therapeutic potential, the current status, and future considerations.
Collapse
Affiliation(s)
| | | | - Olivier Defert
- Amakem Therapeutics , Agoralaan A bis, 3590 Diepenbeek, Belgium
| | - Rongshi Li
- Center for Drug Discovery and Department of Pharmaceutical Sciences, College of Pharmacy, Cancer Genes and Molecular Regulation Program, Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center , 986805 Nebraska Medical Center, Omaha, Nebraska 68198, United States
| |
Collapse
|
14
|
Yin Y, Zheng K, Eid N, Howard S, Jeong JH, Yi F, Guo J, Park CM, Bibian M, Wu W, Hernandez P, Park H, Wu Y, Luo JL, LoGrasso PV, Feng Y. Bis-aryl urea derivatives as potent and selective LIM kinase (Limk) inhibitors. J Med Chem 2015; 58:1846-61. [PMID: 25621531 DOI: 10.1021/jm501680m] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The discovery/optimization of bis-aryl ureas as Limk inhibitors to obtain high potency and selectivity and appropriate pharmacokinetic properties through systematic SAR studies is reported. Docking studies supported the observed SAR. Optimized Limk inhibitors had high biochemical potency (IC50 < 25 nM), excellent selectivity against ROCK and JNK kinases (>400-fold), potent inhibition of cofilin phosphorylation in A7r5, PC-3, and CEM-SS T cells (IC50 < 1 μM), and good in vitro and in vivo pharmacokinetic properties. In the profiling against a panel of 61 kinases, compound 18b at 1 μM inhibited only Limk1 and STK16 with ≥80% inhibition. Compounds 18b and 18f were highly efficient in inhibiting cell-invasion/migration in PC-3 cells. In addition, compound 18w was demonstrated to be effective on reducing intraocular pressure (IOP) on rat eyes. Taken together, these data demonstrated that we had developed a novel class of bis-aryl urea derived potent and selective Limk inhibitors.
Collapse
Affiliation(s)
- Yan Yin
- Medicinal Chemistry, ‡Discovery Biology, §Crystallography/Modeling Facility, Translational Research Institute, ∥Department of Molecular Therapeutics, and ⊥Department of Cancer Biology, The Scripps Research Institute, Scripps Florida , 130 Scripps Way, No. 2A1, Jupiter, Florida 33458, United States
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Abstract
INTRODUCTION The Rho kinase/ROCK is critical in vital signal transduction pathways central to many essential cellular activities. Since ROCK possess multiple substrates, modulation of ROCK activity is useful for treatment of many diseases. AREAS COVERED Significant progress has been made in the development of ROCK inhibitors over the past two years (Jan 2012 to Aug 2013). Patent search in this review was based on FPO IP Research and Communities and Espacenet Patent Search. In this review, patent applications will be classified into four groups for discussions. The grouping is mainly based on structures or scaffolds (groups 1 and 2) and biological functions of ROCK inhibitors (groups 3 and 4). These four groups are i) ROCK inhibitors based on classical structural elements for ROCK inhibition; ii) ROCK inhibitors based on new scaffolds; iii) bis-functional ROCK inhibitors; and iv) novel applications of ROCK inhibitors. EXPERT OPINION Although currently only one ROCK inhibitor (fasudil) is used as a drug, more drugs based on ROCK inhibition are expected to be advanced into market in the near future. Several directions should be considered for future development of ROCK inhibitors, such as soft ROCK inhibitors, bis-functional ROCK inhibitors, ROCK2 isoform-selective inhibitors, and ROCK inhibitors as antiproliferation agents.
Collapse
Affiliation(s)
- Yangbo Feng
- Translational Research Institute, The Scripps Research Institute , Scripps Florida, #2A1, 130 Scripps Way, Jupiter, FL 33458 , USA +1 561 228 2201 ;
| | | |
Collapse
|
16
|
Guan R, Xu X, Chen M, Hu H, Ge H, Wen S, Zhou S, Pi R. Advances in the studies of roles of Rho/Rho-kinase in diseases and the development of its inhibitors. Eur J Med Chem 2013; 70:613-22. [PMID: 24211637 DOI: 10.1016/j.ejmech.2013.10.048] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2013] [Revised: 10/14/2013] [Accepted: 10/16/2013] [Indexed: 12/20/2022]
Abstract
RhoA/Rho-kinase pathway plays a pivotal role in numerous fundamental cellular functions including contraction, motility, proliferation, differentiation and apoptosis. The pathway is also involved in the development of many diseases such as vasospasm, pulmonary hypertension, cancer and central nervous systems (CNS) disorders. The inhibitors of Rho kinase have been extensively studied since the Rho/Rho-kinase pathway was verified as a target for a number of diseases. Herein, we reviewed the advances in the studies of the roles of Rho/Rho-kinase in diseases and the development of Rho-kinase inhibitors in recent five years.
Collapse
Affiliation(s)
- Ronggui Guan
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Thomé I, Besson C, Kleine T, Bolm C. Base-catalyzed synthesis of substituted indazoles under mild, transition-metal-free conditions. Angew Chem Int Ed Engl 2013; 52:7509-13. [PMID: 23740864 DOI: 10.1002/anie.201300917] [Citation(s) in RCA: 90] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Revised: 04/29/2013] [Indexed: 11/09/2022]
Abstract
Back to basics: A transition-metal-free method developed for the synthesis of indazoles involves an inexpensive catalytic system composed of a diamine and K2CO3. Various (Z)-2-bromoacetophenone tosylhydrazones were converted into indazoles at room temperature in excellent yields (see example; Ts = p-toluenesulfonyl). The yield was improved by photoisomerization with UV light when E/Z isomeric mixtures of the starting material were used.
Collapse
Affiliation(s)
- Isabelle Thomé
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52056 Aachen, Germany
| | | | | | | |
Collapse
|
18
|
Thomé I, Besson C, Kleine T, Bolm C. Base-Catalyzed Synthesis of Substituted Indazoles under Mild, Transition-Metal-Free Conditions. Angew Chem Int Ed Engl 2013. [DOI: 10.1002/ange.201300917] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
19
|
Chowdhury S, Chen YT, Fang X, Grant W, Pocas J, Cameron MD, Ruiz C, Lin L, Park H, Schröter T, Bannister TD, Lograsso PV, Feng Y. Amino acid derived quinazolines as Rock/PKA inhibitors. Bioorg Med Chem Lett 2013; 23:1592-9. [PMID: 23416002 DOI: 10.1016/j.bmcl.2013.01.109] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Revised: 01/14/2013] [Accepted: 01/22/2013] [Indexed: 01/19/2023]
Abstract
SAR and lead optimization studies for Rock inhibitors based on amino acid-derived quinazolines are described. Studies demonstrated that these amino acid derived quinazolinones were mainly pan-Rock (I & II) inhibitors. While selectivity against other kinases could be achieved, selectivity for most of these compounds against PKA was not achieved. This is distinct from Rock inhibitors based on non-amino acid derived quinazolinones, where high selectivity against PKA could be obtained.(22) The inhibitors presented here in some cases possessed sub-nanomolar inhibition of Rock, nanomolar potency in ppMLC cell based assays, low to fair cytochrome P-450 inhibition, and good human microsomal stability.
Collapse
Affiliation(s)
- Sarwat Chowdhury
- Medicinal Chemistry, Translational Research Institute, The Scripps Research Institute, 130 Scripps Way, 2A1, Jupiter, FL 33458, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Rath N, Olson MF. Rho-associated kinases in tumorigenesis: re-considering ROCK inhibition for cancer therapy. EMBO Rep 2012; 13:900-8. [PMID: 22964758 DOI: 10.1038/embor.2012.127] [Citation(s) in RCA: 257] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2012] [Accepted: 08/01/2012] [Indexed: 12/21/2022] Open
Abstract
The Rho-associated (ROCK) serine/threonine kinases have emerged as central regulators of the actomyosin cytoskeleton, their main purpose being to promote contractile force generation. Aided by the discovery of effective inhibitors such as Y27632, their roles in cancer have been extensively explored with particular attention focused on motility, invasion and metastasis. Recent studies have revealed a surprisingly diverse range of functions of ROCK. These insights could change the way ROCK inhibitors might be used in cancer therapy to include the targeting of stromal rather than tumour cells, the concomitant blocking of ROCK and proteasome activity in K-Ras-driven lung cancers and the combination of ROCK with tyrosine kinase inhibitors for treating haematological malignancies such as chronic myeloid leukaemia. Despite initial optimism for therapeutic efficacy of ROCK inhibition for cancer treatment, no compounds have progressed into standard therapy so far. However, by carefully defining the key cancer types and expanding the appreciation of ROCK's role in cancer beyond being a cell-autonomous promoter of tumour cell invasion and metastasis, the early promise of ROCK inhibitors for cancer therapy might still be realized.
Collapse
Affiliation(s)
- Nicola Rath
- Beatson Institute for Cancer Research, Glasgow, UK
| | | |
Collapse
|
21
|
Mardilovich K, Olson MF, Baugh M. Targeting Rho GTPase signaling for cancer therapy. Future Oncol 2012; 8:165-77. [PMID: 22335581 DOI: 10.2217/fon.11.143] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Accumulating evidence from basic and clinical studies supports the concept that signaling pathways downstream of Rho GTPases play important roles in tumor development and progression. As a result, there has been considerable interest in the possibility that specific proteins in these signal transduction pathways could be potential targets for cancer therapy. A number of inhibitors targeting critical effector proteins, activators or the Rho GTPases themselves, have been developed. We will review the strategies currently being used to develop inhibitors of Rho GTPases and downstream signaling kinases and discuss candidate entities. Although molecularly targeted drugs that inhibit Rho GTPase signaling have not yet been widely adopted for clinical use, their potential value as cancer therapeutics continues to drive considerable pharmaceutical research and development.
Collapse
Affiliation(s)
- Katerina Mardilovich
- Beatson Institute for Cancer Research, Garscube Estate, Switchback Road, Glasgow G61 1BD, UK
| | | | | |
Collapse
|
22
|
Tsuno A, Nasu K, Kawano Y, Yuge A, Li H, Abe W, Narahara H. Fasudil inhibits the proliferation and contractility and induces cell cycle arrest and apoptosis of human endometriotic stromal cells: a promising agent for the treatment of endometriosis. J Clin Endocrinol Metab 2011; 96:E1944-52. [PMID: 21917869 DOI: 10.1210/jc.2011-1503] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
CONTEXT During the development of endometriotic lesions, excess fibrosis may lead to scarring and to the alterations of tissue function that are the characteristic features of this disease. Enhanced extracellular matrix contractility of endometriotic stromal cells (ECSC) mediated by the mevalonate-Ras homology (Rho)/Rho-associated coiled-coil-forming protein kinase (ROCK) pathway has been shown to contribute to the pathogenesis of endometriosis. DESIGN To assess the use of fasudil, a selective ROCK inhibitor, for the medical treatment of endometriosis-associated fibrosis, the effects of this agent on the cell proliferation, apoptosis, cell cycle, morphology, cell density, and contractility of ECSC were investigated. The effects of fasudil on the expression of contractility-related, apoptosis-related, and cell cycle-related molecules in ECSC were also evaluated. RESULTS Fasudil significantly inhibited the proliferation and contractility of ECSC and induced the cell cycle arrest in the G2/M phase and apoptosis of these cells. Morphological observation revealed the suppression of ECSC attachment to collagen fibers and decrease of cell density by fasudil. The expression of α-smooth muscle actin, RhoA, ROCK-I, and ROCK-II proteins was inhibited by fasudil administration. The expression of the antiapoptotic factors, Bcl-2 and Bcl-X(L), in two-dimensional cultured ECSC were down-regulated by the addition of fasudil, whereas, the expression of p16(INK4a) and p21(Waf1/Cip1) was up-regulated by the addition of fasudil. CONCLUSIONS The present findings suggest that fasudil is a promising agent for the treatment of endometriosis. The inhibition of cell proliferation, contractility, and myofibroblastic differentiation, the attenuation of attachment to collagen fibers, the decrease of cell density, and the induction of cell cycle arrest and apoptosis of ECSC are involved in the active mechanisms of fasudil.
Collapse
Affiliation(s)
- Akitoshi Tsuno
- Department of Obstetrics and Gynecology, Faculty of Medicine, Oita University, Idaigaoka 1-1, Hasama-machi, Yufu-shi, Oita 879-5593, Japan
| | | | | | | | | | | | | |
Collapse
|
23
|
Chowdhury S, Sessions EH, Pocas JR, Grant W, Schröter T, Lin L, Ruiz C, Cameron MD, Schürer S, LoGrasso P, Bannister TD, Feng Y. Discovery and optimization of indoles and 7-azaindoles as Rho kinase (ROCK) inhibitors (part-I). Bioorg Med Chem Lett 2011; 21:7107-12. [DOI: 10.1016/j.bmcl.2011.09.083] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2011] [Accepted: 09/20/2011] [Indexed: 01/21/2023]
|
24
|
Yao L, Romero MJ, Toque HA, Yang G, Caldwell RB, Caldwell RW. The role of RhoA/Rho kinase pathway in endothelial dysfunction. J Cardiovasc Dis Res 2011; 1:165-70. [PMID: 21264179 PMCID: PMC3023892 DOI: 10.4103/0975-3583.74258] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Endothelial dysfunction is a key event in the development of vascular disease, and it precedes clinically obvious vascular pathology. Abnormal activation of the RhoA/Rho kinase (ROCK) pathway has been found to elevate vascular tone through unbalancing the production of vasodilating and vasoconstricting substances. Inhibition of the RhoA/ROCK pathway can prevent endothelial dysfunction in a variety of pathological conditions. This review, based on recent molecular, cellular, and animal studies, focuses on the current understanding of the ROCK pathway and its roles in endothelial dysfunction.
Collapse
Affiliation(s)
- Lin Yao
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta, GA, USA
| | | | | | | | | | | |
Collapse
|
25
|
Cankařová N, Hlaváč J, Krchňák V. Recent Synthetic Approaches to 1H- and 2H-Indazoles. A Review. ORG PREP PROCED INT 2010. [DOI: 10.1080/00304948.2010.513898] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
26
|
Fang X, Yin Y, Chen YT, Yao L, Wang B, Cameron MD, Lin L, Khan S, Ruiz C, Schröter T, Grant W, Weiser A, Pocas J, Pachori A, Schürer S, LoGrasso P, Feng Y. Tetrahydroisoquinoline Derivatives As Highly Selective and Potent Rho Kinase Inhibitors. J Med Chem 2010; 53:5727-37. [DOI: 10.1021/jm100579r] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Xingang Fang
- Translational Research Institute and Department of Molecular Therapeutics, The Scripps Research Institute, Florida, 130 Scripps Way, 2A1, Jupiter, Florida 33458
| | - Yan Yin
- Translational Research Institute and Department of Molecular Therapeutics, The Scripps Research Institute, Florida, 130 Scripps Way, 2A1, Jupiter, Florida 33458
| | - Yen Ting Chen
- Translational Research Institute and Department of Molecular Therapeutics, The Scripps Research Institute, Florida, 130 Scripps Way, 2A1, Jupiter, Florida 33458
| | - Lei Yao
- Translational Research Institute and Department of Molecular Therapeutics, The Scripps Research Institute, Florida, 130 Scripps Way, 2A1, Jupiter, Florida 33458
| | - Bo Wang
- Translational Research Institute and Department of Molecular Therapeutics, The Scripps Research Institute, Florida, 130 Scripps Way, 2A1, Jupiter, Florida 33458
| | - Michael D. Cameron
- Translational Research Institute and Department of Molecular Therapeutics, The Scripps Research Institute, Florida, 130 Scripps Way, 2A1, Jupiter, Florida 33458
| | - Li Lin
- Translational Research Institute and Department of Molecular Therapeutics, The Scripps Research Institute, Florida, 130 Scripps Way, 2A1, Jupiter, Florida 33458
| | - Susan Khan
- Translational Research Institute and Department of Molecular Therapeutics, The Scripps Research Institute, Florida, 130 Scripps Way, 2A1, Jupiter, Florida 33458
| | - Claudia Ruiz
- Translational Research Institute and Department of Molecular Therapeutics, The Scripps Research Institute, Florida, 130 Scripps Way, 2A1, Jupiter, Florida 33458
| | - Thomas Schröter
- Translational Research Institute and Department of Molecular Therapeutics, The Scripps Research Institute, Florida, 130 Scripps Way, 2A1, Jupiter, Florida 33458
| | - Wayne Grant
- Translational Research Institute and Department of Molecular Therapeutics, The Scripps Research Institute, Florida, 130 Scripps Way, 2A1, Jupiter, Florida 33458
| | | | - Jennifer Pocas
- Translational Research Institute and Department of Molecular Therapeutics, The Scripps Research Institute, Florida, 130 Scripps Way, 2A1, Jupiter, Florida 33458
| | - Alok Pachori
- Translational Research Institute and Department of Molecular Therapeutics, The Scripps Research Institute, Florida, 130 Scripps Way, 2A1, Jupiter, Florida 33458
| | - Stephan Schürer
- Department of Pharmacology and Center for Computational Science, University of Miami, Miami, Florida 33136
| | - Philip LoGrasso
- Translational Research Institute and Department of Molecular Therapeutics, The Scripps Research Institute, Florida, 130 Scripps Way, 2A1, Jupiter, Florida 33458
| | - Yangbo Feng
- Translational Research Institute and Department of Molecular Therapeutics, The Scripps Research Institute, Florida, 130 Scripps Way, 2A1, Jupiter, Florida 33458
| |
Collapse
|
27
|
Rho-kinase inhibition: a novel therapeutic target for the treatment of cardiovascular diseases. Drug Discov Today 2010; 15:622-9. [PMID: 20601092 DOI: 10.1016/j.drudis.2010.06.011] [Citation(s) in RCA: 126] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2009] [Revised: 06/07/2010] [Accepted: 06/21/2010] [Indexed: 01/01/2023]
Abstract
The Rho/rho-kinase (ROCK) pathway has an important role in the pathogenesis of several cardiovascular diseases. The activation of ROCK is involved in the regulation of vascular tone, endothelial dysfunction, inflammation and remodeling. The inhibition of ROCK has a beneficial effect in a variety of cardiovascular disorders. Evidence from animal models and from clinical use of ROCK inhibitors, such as Y-27632, fasudil and statins (i.e. pleiotropic effects), supports the hypothesis that ROCK is a potential therapeutic target. This review provides a current understanding of the role of ROCK pathway in the regulation of vascular function and the use of ROCK inhibitors in the treatment of cardiovascular disorders.
Collapse
|
28
|
Sessions EH, Smolinski M, Wang B, Frackowiak B, Chowdhury S, Yin Y, Chen YT, Ruiz C, Lin L, Pocas J, Schröter T, Cameron MD, LoGrasso P, Feng Y, Bannister TD. The development of benzimidazoles as selective rho kinase inhibitors. Bioorg Med Chem Lett 2010; 20:1939-43. [PMID: 20167489 DOI: 10.1016/j.bmcl.2010.01.124] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2009] [Revised: 01/21/2010] [Accepted: 01/27/2010] [Indexed: 01/15/2023]
Abstract
Rho Kinase (ROCK) is a serine/threonine kinase whose inhibition could prove beneficial in numerous therapeutic areas. We have developed a promising class of ATP-competitive inhibitors based upon a benzimidazole scaffold, which show excellent potency toward ROCK (IC(50)<10nM). This report details the optimization of selectivity for ROCK over other related kinases such as Protein kinase A (PKA).
Collapse
Affiliation(s)
- E Hampton Sessions
- Department of Molecular Therapeutics and Translational Research Institute, The Scripps Research Institute, Scripps Florida, Jupiter, FL 33458, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Benzothiazoles as Rho-associated kinase (ROCK-II) inhibitors. Bioorg Med Chem Lett 2009; 19:6686-90. [DOI: 10.1016/j.bmcl.2009.09.115] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2009] [Revised: 09/28/2009] [Accepted: 09/30/2009] [Indexed: 01/21/2023]
|
30
|
Schirok H, Kast R, Figueroa-Pérez S, Bennabi S, Gnoth M, Feurer A, Heckroth H, Thutewohl M, Paulsen H, Knorr A, Hütter J, Lobell M, Münter K, Geiß V, Ehmke H, Lang D, Radtke M, Mittendorf J, Stasch JP. Design and Synthesis of Potent and Selective Azaindole-Based Rho Kinase (ROCK) Inhibitors. ChemMedChem 2008; 3:1893-904. [DOI: 10.1002/cmdc.200800211] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
31
|
Chen YT, Bannister TD, Weiser A, Griffin E, Lin L, Ruiz C, Cameron MD, Schürer S, Duckett D, Schröter T, LoGrasso P, Feng Y. Chroman-3-amides as potent Rho kinase inhibitors. Bioorg Med Chem Lett 2008; 18:6406-9. [DOI: 10.1016/j.bmcl.2008.10.080] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2008] [Revised: 10/16/2008] [Accepted: 10/17/2008] [Indexed: 01/06/2023]
|
32
|
Sessions EH, Yin Y, Bannister TD, Weiser A, Griffin E, Pocas J, Cameron MD, Ruiz C, Lin L, Schürer SC, Schröter T, LoGrasso P, Feng Y. Benzimidazole- and benzoxazole-based inhibitors of Rho kinase. Bioorg Med Chem Lett 2008; 18:6390-3. [PMID: 18996009 DOI: 10.1016/j.bmcl.2008.10.095] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2008] [Revised: 10/16/2008] [Accepted: 10/17/2008] [Indexed: 11/25/2022]
Abstract
Inhibitors of Rho kinase have been developed based on two distinct scaffolds, benzimidazoles, and benzoxazoles. SAR studies and efforts to optimize the initial lead compounds are described. Novel selective inhibitors of ROCK-II with excellent potency in both enzyme and cell-based assays were obtained. These inhibitors possess good microsomal stability, low cytochrome P-450 inhibitions and good oral bioavailability.
Collapse
Affiliation(s)
- E Hampton Sessions
- Department of Molecular Therapeutics, The Scripps Research Institute Florida, 130 Scripps Way, #2A1, Jupiter, FL 33458, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Sehon CA, Wang GZ, Viet AQ, Goodman KB, Dowdell SE, Elkins PA, Semus SF, Evans C, Jolivette LJ, Kirkpatrick RB, Dul E, Khandekar SS, Yi T, Wright LL, Smith GK, Behm DJ, Bentley R, Doe CP, Hu E, Lee D. Potent, selective and orally bioavailable dihydropyrimidine inhibitors of Rho kinase (ROCK1) as potential therapeutic agents for cardiovascular diseases. J Med Chem 2008; 51:6631-4. [PMID: 18842034 DOI: 10.1021/jm8005096] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Recent studies using known Rho-associated kinase isoform 1 (ROCK1) inhibitors along with cellular and molecular biology data have revealed a pivotal role of this enzyme in many aspects of cardiovascular function. Here we report a series of ROCK1 inhibitors which were originally derived from a dihydropyrimidinone core 1. Our efforts focused on the optimization of dihydropyrimidine 2, which resulted in the identification of a series of dihydropyrimidines with improved pharmacokinetics and P450 properties.
Collapse
Affiliation(s)
- Clark A Sehon
- Departments of Medicinal Chemistry, Investigative Biology, Vascular Biology, GlaxoSmithKline, 709 Swedeland Road, King of Prussia, Pennsylvania 19406, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Feng Y, Yin Y, Weiser A, Griffin E, Cameron MD, Lin L, Ruiz C, Schürer SC, Inoue T, Rao PV, Schröter T, Lograsso P. Discovery of substituted 4-(pyrazol-4-yl)-phenylbenzodioxane-2-carboxamides as potent and highly selective Rho kinase (ROCK-II) inhibitors. J Med Chem 2008; 51:6642-5. [PMID: 18834107 DOI: 10.1021/jm800986w] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The identification of a new class of potent and selective ROCK-II inhibitors is presented. Compound 5 (SR-3677) had an IC 50 of approximately 3 nM in enzyme and cell based assays and had an off-target hit rate of 1.4% against 353 kinases, and inhibited only 3 out of 70 nonkinase enzymes and receptors. Pharmacology studies showed that 5 was efficacious in both, increasing ex vivo aqueous humor outflow in porcine eyes and inhibiting myosin light chain phosphorylation.
Collapse
Affiliation(s)
- Yangbo Feng
- Department of Molecular Therapeutics, and Translational Research Institute, The Scripps Research Institute, Florida, 5353 Parkside Drive, Jupiter, Florida 33458, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Schröter T, Griffin E, Weiser A, Feng Y, LoGrasso P. Detection of myosin light chain phosphorylation—A cell-based assay for screening Rho-kinase inhibitors. Biochem Biophys Res Commun 2008; 374:356-60. [DOI: 10.1016/j.bbrc.2008.07.028] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2008] [Accepted: 07/09/2008] [Indexed: 11/30/2022]
|
36
|
Counceller CM, Eichman CC, Wray BC, Stambuli JP. A Practical, Metal-Free Synthesis of 1H-Indazoles. Org Lett 2008; 10:1021-3. [PMID: 18229936 DOI: 10.1021/ol800053f] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Carla M. Counceller
- Evans Chemical Laboratories, Department of Chemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210
| | - Chad C. Eichman
- Evans Chemical Laboratories, Department of Chemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210
| | - Brenda C. Wray
- Evans Chemical Laboratories, Department of Chemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210
| | - James P. Stambuli
- Evans Chemical Laboratories, Department of Chemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210
| |
Collapse
|
37
|
Rho-Kinase Inhibitors for Cardiovascular Disease. ANNUAL REPORTS IN MEDICINAL CHEMISTRY 2008. [DOI: 10.1016/s0065-7743(08)00006-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register]
|