1
|
Lee SE, Ahn S, Kumar S, Kim MH. NO classifier prediction of anti neuroinflammatory agents using text mining of 3D molecular fingerprints. Sci Rep 2024; 14:28338. [PMID: 39550405 PMCID: PMC11569247 DOI: 10.1038/s41598-024-78823-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 11/04/2024] [Indexed: 11/18/2024] Open
Abstract
CNS Drug discovery has been challenging due to the lack of clarity on CNS diseases' basic biological and pathological mechanisms. Despite the difficulty, some CNS drugs have been developed based on phenotypic effects. Herein, we propose a phenotype-structure relationship model, which predicts an anti-neuroinflammatory potency based on 3D molecular structures of the phenotype-active or inactive compounds without specifying targets. For this chemo-centric study, a predictive model of the nitric oxide (NO) inhibitory potency in hyper-activated microglia is built from the 548 agents, which were collected from 95 research articles (28 substructures consisting of natural products and synthetic scaffolds) and doubly externally validated by the agents of 9 research articles as third set. 3D Structures (multi-conformer ensemble) of every agent were encoded into the E3FP molecular fingerprint of the Keiser group as a 3D molecular representation. The location information of the molecular fingerprints could be learned and validated to classify the inhibitory potency of compounds (IC50 cut-off between the active and inactive: 37.1 µM): (1) multi-layer perceptron (MLP) (AUC-CV: 0.997, AUC-Test: 0.992), (2) recurrent neural network (RNN) (AUC-CV: 0.999, AUC-Test: 0.995), and (3) convolutional neural network (CNN) (AUC-CV: 0.998, AUC-Test: 0.994). The high performance of these models was compared with that of four classical machine classification models (Logistic, Ridge, Lasso, and Naïve Bayes). We named the binary classification models NO-Classifier. Independent test set validation and decision region analysis of the independent test set doubly demonstrated NO-Classifier effectively discerned the anti-inflammatory potency of testing compounds in inflammatory cell phenotype with the webserver in https://no-classifier.onrender.com.
Collapse
Affiliation(s)
- Si Eun Lee
- Gachon Institute of Pharmaceutical Science, Department of Pharmacy, College of Pharmacy, Gachon University, 191 Hambakmoeiro, Yeonsu-gu, Incheon, Republic of Korea
| | - Sangjin Ahn
- Gachon Institute of Pharmaceutical Science, Department of Pharmacy, College of Pharmacy, Gachon University, 191 Hambakmoeiro, Yeonsu-gu, Incheon, Republic of Korea
- Department of Financial Engineering, College of Business, Ajou University, Suwon, 16499, Republic of Korea
| | - Surendra Kumar
- Gachon Institute of Pharmaceutical Science, Department of Pharmacy, College of Pharmacy, Gachon University, 191 Hambakmoeiro, Yeonsu-gu, Incheon, Republic of Korea
| | - Mi-Hyun Kim
- Gachon Institute of Pharmaceutical Science, Department of Pharmacy, College of Pharmacy, Gachon University, 191 Hambakmoeiro, Yeonsu-gu, Incheon, Republic of Korea.
| |
Collapse
|
2
|
Ding J, Tie F, Dong Q, Hu N, Wang H. Kaempferol Derivatives from Hippophae rhamnoides Linn. Ameliorate H 2O 2-Induced Oxidative Stress in SH-SY5Y Cells by Upregulating Nrf2. Chem Biodivers 2024; 21:e202400145. [PMID: 38738490 DOI: 10.1002/cbdv.202400145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 05/08/2024] [Accepted: 05/13/2024] [Indexed: 05/14/2024]
Abstract
As a medicinal and edible resource, Hippophae rhamnoides Linn. subsp. sinensis Rousi is rich in bioactive secondary metabolites, including flavonoids and their derivatives, which offer protective effects against oxidative damage. This study reported the isolation of three new kaempferol derivatives from the seed residue of H. rhamnoides - Hippophandine A, B, and C (compounds 1-3). Their structures were elucidated by high-resolution electrospray ionization mass spectrometry (HR-ESI-MS), nuclear magnetic resonance (NMR), and chemical analyses. The compounds were evaluated for their ability to mitigate hydrogen peroxide (H2O2)-induced cell death in SH-SY5Y cells. The results elucidated that Hippophandine A-C at concentrations of 1, 5, and 10 μM reduced the levels of malondialdehyde (MDA) and increased the activity of antioxidative enzymes, such as superoxide dismutase (SOD), glutathione (GSH), and catalase (CAT). Furthermore, they significantly altered the protein expression of nuclear factor erythroid 2-related factor 2 (Nrf2) and its downstream heme oxygenase-1 (HO-1), which is an indicator of redox detection in H2O2-induced SH-SY5Y.
Collapse
Affiliation(s)
- Jin Ding
- CAS Key Laboratory of Tibetan Medicine Research, Qinghai Provincial Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810008, China
- University of Chinese Academy of Science, Beijing, P. R. China
| | - Fangfang Tie
- CAS Key Laboratory of Tibetan Medicine Research, Qinghai Provincial Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810008, China
| | - Qi Dong
- CAS Key Laboratory of Tibetan Medicine Research, Qinghai Provincial Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810008, China
| | - Na Hu
- CAS Key Laboratory of Tibetan Medicine Research, Qinghai Provincial Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810008, China
| | - Honglun Wang
- CAS Key Laboratory of Tibetan Medicine Research, Qinghai Provincial Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810008, China
| |
Collapse
|
3
|
Lee M, Lee HY, Kang JS, Lee H, Park KJ, Park JY, Yang TJ. Authentication of Allium ulleungense, A. microdictyon and A. ochotense based on super-barcoding of plastid genome and 45S nrDNA. PLoS One 2023; 18:e0294457. [PMID: 37983242 PMCID: PMC10659177 DOI: 10.1371/journal.pone.0294457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 10/31/2023] [Indexed: 11/22/2023] Open
Abstract
Allium ulleungense (AU) and A. microdictyon (AM) are valuable medicinal and edible vegetables, referred to as mountain garlic in Korea. The identification of AU, AM and a neighboring species A. ochotense (AO) is difficult because of their morphological similarities. We collected samples from three species and 46 cultivated collections to understand the genetic diversity of these valuable Allium species. Among them, we sequenced six collections, including three species and three cultivating collections to obtain data from the plastid genome (plastome) and nuclear 45S ribosomal DNA (nrDNA) for super-barcoding. The AM and AO showed around 60 single nucleotide polymorphisms (SNPs) and 39 Insertion/Deletion (InDels) in the plastome but no variations in the nrDNA sequences. Conversely, the AU and AM showed more than 170 SNPs and 80 InDels in the plastomes, and 20 SNPs and 1 InDel were found in the 45S nrDNA sequences. Among the three cultivating collections, one TB collection was determined to be the AU type in both plastome and nrDNA sequences. However, the other two collections, JB and SA, showed the AM type plastome but were heterozygous in the 45S nrDNA sequences, indicating both AU and AM types (putative AM x AU hybrid). Ten molecular markers were developed based on sequence variations to identify these three species and assess their genetic diversity. A total of 49 collections were genotyped using the ten developed markers and classified into five groups: 14 AU, 22 AM, 1 AO, 3 putative AM x AU hybrids, and 9 putative AU x AM hybrid collections. Super-barcoding with plastomes and nrDNAs revealed the genetic diversity of the three Allium species and putative hybrids between species. The newly developed markers will facilitate species and hybrid identification, thereby benefiting marker-assisted molecular breeding of Allium species.
Collapse
Affiliation(s)
- Minyoung Lee
- Department of Agriculture, Plant Genomics & Breeding Institute, Research Institute of Agriculture and Life Science, Forestry and Bioresources, College of Agriculture & Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Hyo Young Lee
- Gangwondo State Agricultural Research & Extension Services, Wild Vegetable Research Institute, Pyeongchang-gun, Gangwon State, Republic of Korea
| | - Jong-Soo Kang
- Department of Agriculture, Plant Genomics & Breeding Institute, Research Institute of Agriculture and Life Science, Forestry and Bioresources, College of Agriculture & Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Hyeji Lee
- Department of Agriculture, Plant Genomics & Breeding Institute, Research Institute of Agriculture and Life Science, Forestry and Bioresources, College of Agriculture & Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Ki-Jin Park
- Gangwondo State Agricultural Research & Extension Services, Wild Vegetable Research Institute, Pyeongchang-gun, Gangwon State, Republic of Korea
| | - Jee Young Park
- Department of Agriculture, Plant Genomics & Breeding Institute, Research Institute of Agriculture and Life Science, Forestry and Bioresources, College of Agriculture & Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Tae-Jin Yang
- Department of Agriculture, Plant Genomics & Breeding Institute, Research Institute of Agriculture and Life Science, Forestry and Bioresources, College of Agriculture & Life Sciences, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
4
|
Burenjargal M, Narangerel T, Batmunkh T, Dong A, Idesh S. A review of the bioactive properties of Mongolian plants, with a focus on their potential as natural food preservatives. Food Sci Nutr 2023; 11:5736-5752. [PMID: 37823130 PMCID: PMC10563759 DOI: 10.1002/fsn3.3529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 06/12/2023] [Accepted: 06/15/2023] [Indexed: 10/13/2023] Open
Abstract
Consumers have recently preferred food that is easy to make and of excellent quality, as well as food that is safe, natural, and minimally processed, but has a longer shelf life. Food deteriorates over time as a result of microbiological, chemical, or physical changes. Phytochemicals derived from medicinal and food plants have long been recognized for their biological activity to protect plants. These bioactivities are designed to increase the shelf life of food while inhibiting the growth of microorganisms. The use of natural plant food preservatives containing bioactive compounds as health-promoting agents is particularly intriguing. Furthermore, due to their effectiveness against food spoilage and foodborne pathogens, natural plant-origin antimicrobial compounds have been investigated as alternatives to synthetic antimicrobial compounds for preserving food quality. This review focused on the plant composition and properties that can be utilized as a natural food preservative, as well as the possibilities of using Mongolian medicinal plants.
Collapse
Affiliation(s)
| | - Tuya Narangerel
- Department of ChemistryNational University of MongoliaUlaanbaatarMongolia
| | - Tuyagerel Batmunkh
- Department of Chemical and Biological EngineeringNational University of MongoliaUlaanbaatarMongolia
| | - Alideertu Dong
- College of Chemistry and Chemical Engineering, Engineering Research Center of Dairy Quality and Safety Control Technology, Ministry of EducationInner Mongolia UniversityHohhotChina
| | - Saruul Idesh
- Department of ChemistryNational University of MongoliaUlaanbaatarMongolia
| |
Collapse
|
5
|
Jiang YC, Han X, Dou JY, Yuan MH, Zhou MJ, Cui ZY, Lian LH, Nan JX, Zhang X, Wu YL. Protective role of Siberian onions against toxin-induced liver dysfunction: an insight into health-promoting effects. Food Funct 2022; 13:4678-4690. [PMID: 35377371 DOI: 10.1039/d1fo04404d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Siberian onions (SOs) are delicious wild vegetables. Their taste is most unique, not only like scallions but also like leeks or garlic. They also have a traditional medicinal value for anti-inflammation, anti-oxidation, and anti-pyretic analgesia, particularly facilitating hepatoprotective effects. The current study investigates the potential mechanism of SOs against toxin-induced liver dysfunction. BALB/c mice were administrated with SO or silymarin by oral gavage for one week, followed by injecting carbon tetrachloride (CCl4) to induce hepatic fibrosis. The effect of SO against hepatic fibrosis was evaluated by examining the liver tissue for serum transaminase, oxidative stress, extracellular matrix, histological alterations, cytokine levels, and apoptosis. In vitro, HSC-T6 cells were cultured with the supernatant from Raw 264.7 cells stimulated with lipopolysaccharides, followed by SO extracts or Niclosamide (Signal Transducer and Activator of Transcription 3 (STAT3) inhibitor) at indicated time periods and doses. SO decreased serum transaminase levels and oxidative stress, and regulated the balance of ECM in CCl4-induced mice, including α-SMA, collagen-I and TIMP-1. SO reduced the release of inflammatory factors and regulated apoptosis-associated proteins, which is related to the inhibition of STAT3 phosphorylation. Moreover, SO reduced the positive expressions of α-SMA and NLRP3 by inhibiting STAT3 phosphorylation in activated HSCs. SO could show health-promoting effects for liver dysfunction by alleviating hepatic fibrogenesis, apoptosis and inflammation in the development of hepatic fibrosis potential depending on the STAT3 signaling pathway.
Collapse
Affiliation(s)
- Yu-Chen Jiang
- Key Laboratory for Traditional Chinese Korean Medicine of Jilin Province, College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China.
| | - Xin Han
- Key Laboratory for Traditional Chinese Korean Medicine of Jilin Province, College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China. .,Chinese Medicine Processing Centre, College of pharmacy, Zhejiang Chinese Medical University, China
| | - Jia-Yi Dou
- Key Laboratory for Traditional Chinese Korean Medicine of Jilin Province, College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China.
| | - Ming-Hui Yuan
- Key Laboratory for Traditional Chinese Korean Medicine of Jilin Province, College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China.
| | - Mei-Jie Zhou
- Key Laboratory for Traditional Chinese Korean Medicine of Jilin Province, College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China.
| | - Zhen-Yu Cui
- Key Laboratory for Traditional Chinese Korean Medicine of Jilin Province, College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China.
| | - Li-Hua Lian
- Key Laboratory for Traditional Chinese Korean Medicine of Jilin Province, College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China.
| | - Ji-Xing Nan
- Key Laboratory for Traditional Chinese Korean Medicine of Jilin Province, College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China. .,Clinical Research Center, Affiliated Hospital of Yanbian University, Yanji, Jilin Province 133002, China
| | - Xian Zhang
- Agricultural College, Yanbian University, Yanji, Jilin Province 133002, China.
| | - Yan-Ling Wu
- Key Laboratory for Traditional Chinese Korean Medicine of Jilin Province, College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China.
| |
Collapse
|
6
|
Cui ZY, Han X, Jiang YC, Dou JY, Yao KC, Hu ZH, Yuan MH, Bao XX, Zhou MJ, Liu Y, Lian LH, Zhang X, Nan JX, Wu YL. Allium victorialis L. Extracts Promote Activity of FXR to Ameliorate Alcoholic Liver Disease: Targeting Liver Lipid Deposition and Inflammation. Front Pharmacol 2021; 12:738689. [PMID: 34690775 PMCID: PMC8531498 DOI: 10.3389/fphar.2021.738689] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 08/09/2021] [Indexed: 12/20/2022] Open
Abstract
Allium victorialis L. (AVL) is a traditional medicinal plant recorded in the Compendium of Materia Medica (the Ming Dynasty). In general, it is used for hemostasis, analgesia, anti-inflammation, antioxidation, and to especially facilitate hepatoprotective effect. In recent years, it has received more and more attention due to its special nutritional and medicinal value. The present study investigates the effect and potential mechanism of AVL against alcoholic liver disease (ALD). C57BL/6 mice were fed Lieber-DeCarli liquid diet containing 5% ethanol plus a single ethanol gavage (5 g/kg), and followed up with the administration of AVL or silymarin. AML12 cells were stimulated with ethanol and incubated with AVL. AVL significantly reduced serum transaminase and triglycerides in the liver and attenuated histopathological changes caused by ethanol. AVL significantly inhibited SREBP1 and its target genes, regulated lipin 1/2, increased PPARα and its target genes, and decreased PPARγ expression caused by ethanol. In addition, AVL significantly enhanced FXR, LXRs, Sirt1, and AMPK expressions compared with the EtOH group. AVL also inhibited inflammatory factors, NLRP3, and F4/80 and MPO, macrophage and neutrophil markers. In vitro, AVL significantly reduced lipid droplets, lipid metabolism enzymes, and inflammatory factors depending on FXR activation. AVL could ameliorate alcoholic steatohepatitis, lipid deposition and inflammation in ALD by targeting FXR activation.
Collapse
Affiliation(s)
- Zhen-Yu Cui
- Key Laboratory for Traditional Chinese Korean Medicine of Jilin Province, College of Pharmacy, Yanbian University, Yanji, China
| | - Xin Han
- Chinese Medicine Processing Centre, College of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yu-Chen Jiang
- Key Laboratory for Traditional Chinese Korean Medicine of Jilin Province, College of Pharmacy, Yanbian University, Yanji, China
| | - Jia-Yi Dou
- Key Laboratory for Traditional Chinese Korean Medicine of Jilin Province, College of Pharmacy, Yanbian University, Yanji, China
| | - Kun-Chen Yao
- Key Laboratory for Traditional Chinese Korean Medicine of Jilin Province, College of Pharmacy, Yanbian University, Yanji, China
| | - Zhong-He Hu
- Key Laboratory for Traditional Chinese Korean Medicine of Jilin Province, College of Pharmacy, Yanbian University, Yanji, China
| | - Ming-Hui Yuan
- Key Laboratory for Traditional Chinese Korean Medicine of Jilin Province, College of Pharmacy, Yanbian University, Yanji, China
| | - Xiao-Xue Bao
- Key Laboratory for Traditional Chinese Korean Medicine of Jilin Province, College of Pharmacy, Yanbian University, Yanji, China
| | - Mei-Jie Zhou
- Key Laboratory for Traditional Chinese Korean Medicine of Jilin Province, College of Pharmacy, Yanbian University, Yanji, China
| | - Yue Liu
- Key Laboratory for Traditional Chinese Korean Medicine of Jilin Province, College of Pharmacy, Yanbian University, Yanji, China
| | - Li-Hua Lian
- Key Laboratory for Traditional Chinese Korean Medicine of Jilin Province, College of Pharmacy, Yanbian University, Yanji, China
| | - Xian Zhang
- Agricultural College, Yanbian University, Yanji, China
| | - Ji-Xing Nan
- Key Laboratory for Traditional Chinese Korean Medicine of Jilin Province, College of Pharmacy, Yanbian University, Yanji, China.,Clinical Research Center, Affiliated Hospital of Yanbian University, Yanji, China
| | - Yan-Ling Wu
- Key Laboratory for Traditional Chinese Korean Medicine of Jilin Province, College of Pharmacy, Yanbian University, Yanji, China
| |
Collapse
|
7
|
Bhatt SK, Javagal RM, Nanjarajurs MS, Eligar SM. In vitro anti-inflammatory property of a Quercetin-3-O-diglucoside-7-O-glucoside characterized from fresh leaves of Trigonella foenum-graecum L. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2021. [DOI: 10.1080/10942912.2021.1969946] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- S. Kavya Bhatt
- Department of Protein Chemistry and Technology, CSIR-Central Food Technological Research Institute, Mysuru, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - R. Manjunatha Javagal
- Department of Spices and Flavour Sciences, CSIR-Central Food Technological Research Institute, Mysuru, India
| | - M. Shashirekha Nanjarajurs
- Department of Fruit and Vegetable Technology, CSIR-Central Food Technological Research Institute, Mysuru, India
| | - Sachin M. Eligar
- Department of Protein Chemistry and Technology, CSIR-Central Food Technological Research Institute, Mysuru, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
8
|
Silva Dos Santos J, Gonçalves Cirino JP, de Oliveira Carvalho P, Ortega MM. The Pharmacological Action of Kaempferol in Central Nervous System Diseases: A Review. Front Pharmacol 2021; 11:565700. [PMID: 33519431 PMCID: PMC7838523 DOI: 10.3389/fphar.2020.565700] [Citation(s) in RCA: 111] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 11/20/2020] [Indexed: 01/01/2023] Open
Abstract
Kaempferol (KPF) is a flavonoid antioxidant found in fruits and vegetables. Many studies have described the beneficial effects of dietary KPF in reducing the risk of chronic diseases, especially cancer. Nevertheless, little is known about the cellular and molecular mechanisms underlying KPF actions in the central nervous system (CNS). Also, the relationship between KPF structural properties and their glycosylation and the biological benefits of these compounds is unclear. The aim of this study was to review studies published in the PubMed database during the last 10 years (2010–2020), considering only experimental articles that addressed the isolated cell effect of KPF (C15H10O6) and its derivatives in neurological diseases such as Alzheimer's disease, Parkinson, ischemia stroke, epilepsy, major depressive disorder, anxiety disorders, neuropathic pain, and glioblastoma. 27 publications were included in the present review, which presented recent advances in the effects of KPF on the nervous system. KPF has presented a multipotential neuroprotective action through the modulation of several proinflammatory signaling pathways such as the nuclear factor kappa B (NF-kB), p38 mitogen-activated protein kinases (p38MAPK), serine/threonine kinase (AKT), and β-catenin cascade. In addition, there are different biological benefits and pharmacokinetic behaviors between KPF aglycone and its glycosides. The antioxidant nature of KPF was observed in all neurological diseases through MMP2, MMP3, and MMP9 metalloproteinase inhibition; reactive oxygen species generation inhibition; endogenous antioxidants modulation as superoxide dismutase and glutathione; formation and aggregation of beta-amyloid (β-A) protein inhibition; and brain protective action through the modulation of brain-derived neurotrophic factor (BDNF), important for neural plasticity. In conclusion, we suggest that KPF and some glycosylated derivatives (KPF-3-O-rhamnoside, KPF-3-O-glucoside, KPF-7-O-rutinoside, and KPF-4′-methyl ether) have a multipotential neuroprotective action in CNS diseases, and further studies may make the KPF effect mechanisms in those pathologies clearer. Future in vivo studies are needed to clarify the mechanism of KPF action in CNS diseases as well as the impact of glycosylation on KPF bioactivity.
Collapse
Affiliation(s)
- Jéssica Silva Dos Santos
- Laboratory of Cell and Molecular Tumor Biology and Bioactive Compounds, Post Graduate Program in Health Science, São Francisco University (USF), Bragança Paulista, Brazil
| | - João Pedro Gonçalves Cirino
- Laboratory of Multidisciplinary Research, Post Graduate Program in Health Science, São Francisco University (USF), Bragança Paulista, Brazil
| | - Patrícia de Oliveira Carvalho
- Laboratory of Multidisciplinary Research, Post Graduate Program in Health Science, São Francisco University (USF), Bragança Paulista, Brazil
| | - Manoela Marques Ortega
- Laboratory of Cell and Molecular Tumor Biology and Bioactive Compounds, Post Graduate Program in Health Science, São Francisco University (USF), Bragança Paulista, Brazil
| |
Collapse
|
9
|
Vásquez-Ocmín PG, Gadea A, Cojean S, Marti G, Pomel S, Van Baelen AC, Ruiz-Vásquez L, Ruiz Mesia W, Figadère B, Ruiz Mesia L, Maciuk A. Metabolomic approach of the antiprotozoal activity of medicinal Piper species used in Peruvian Amazon. JOURNAL OF ETHNOPHARMACOLOGY 2021; 264:113262. [PMID: 32818574 DOI: 10.1016/j.jep.2020.113262] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 07/24/2020] [Accepted: 08/07/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE In the Peruvian Amazon as in the tropical countries of South America, the use of medicinal Piper species (cordoncillos) is common practice, particularly against symptoms of infection by protozoal parasites. However, there is few documented information about the practical aspects of their use and few scientific validation. The starting point of this work was a set of interviews of people living in six rural communities from the Peruvian Amazon (Alto Amazonas Province) about their uses of plants from Piper genus: one community of Amerindian native people (Shawi community) and five communities of mestizos. Infections caused by parasitic protozoa take a huge toll on public health in the Amazonian communities, who partly fight it using traditional remedies. Validation of these traditional practices contributes to public health care efficiency and may help to identify new antiprotozoal compounds. AIMS OF STUDY To record and validate the use of medicinal Piper species by rural people of Alto Amazonas Province (Peru) and annotate active compounds using a correlation study and a data mining approach. MATERIALS AND METHODS Rural communities were interviewed about traditional medication against parasite infections with medicinal Piper species. Ethnopharmacological surveys were undertaken in five mestizo villages, namely: Nueva Arica, Shucushuyacu, Parinari, Lagunas and Esperanza, and one Shawi community (Balsapuerto village). All communities belong to the Alto Amazonas Province (Loreto region, Peru). Seventeen Piper species were collected according to their traditional use for the treatment of parasitic diseases, 35 extracts (leaves or leaves and stems) were tested in vitro on P. falciparum (3D7 chloroquine-sensitive strain and W2 chloroquine-resistant strain), Leishmania donovani LV9 strain and Trypanosoma brucei gambiense. Assessments were performed on HUVEC cells and RAW 264.7 macrophages. The annotation of active compounds was realized by metabolomic analysis and molecular networking approach. RESULTS Nine extracts were active (IC50 ≤ 10 μg/mL) on 3D7 P. falciparum and only one on W2 P. falciparum, six on L. donovani (axenic and intramacrophagic amastigotes) and seven on Trypanosoma brucei gambiense. Only one extract was active on all three parasites (P. lineatum). After metabolomic analyses and annotation of compounds active on Leishmania, P. strigosum and P. pseudoarboreum were considered as potential sources of leishmanicidal compounds. CONCLUSIONS This ethnopharmacological study and the associated in vitro bioassays corroborated the relevance of use of Piper species in the Amazonian traditional medicine, especially in Peru. A series of Piper species with few previously available phytochemical data have good antiprotozoal activity and could be a starting point for subsequent promising work. Metabolomic approach appears to be a smart, quick but still limited methodology to identify compounds with high probability of biological activity.
Collapse
Affiliation(s)
- Pedro G Vásquez-Ocmín
- Université Paris-Saclay, CNRS, BioCIS, 92290, Châtenay-Malabry, France; UMR152 PHARMADEV, IRD, UPS, Université de Toulouse, Toulouse, France.
| | - Alice Gadea
- Université de Paris, CiTCoM, UMR CNRS 8038, Paris, France
| | - Sandrine Cojean
- Université Paris-Saclay, CNRS, BioCIS, 92290, Châtenay-Malabry, France; CNR du Paludisme, AP-HP, Hôpital Bichat - Claude Bernard, F-75018, Paris, France
| | - Guillaume Marti
- Laboratoire de Recherche en Sciences Végétales UMR 5546 UPS/CNRS, Plateforme MetaboHUB - MetaToul - Métabolites Végétaux, Auzeville-Tolosan, France
| | - Sébastien Pomel
- Université Paris-Saclay, CNRS, BioCIS, 92290, Châtenay-Malabry, France
| | | | - Liliana Ruiz-Vásquez
- Laboratorio de Investigación de Productos Naturales Antiparasitarios de la Amazonia (LIPNAA), Universidad Nacional de la Amazonía Peruana (UNAP), AA. HH. "Nuevo San Lorenzo", Pasaje Paujiles S/N, San Juan, Iquitos, Peru
| | - Wilfredo Ruiz Mesia
- Laboratorio de Investigación de Productos Naturales Antiparasitarios de la Amazonia (LIPNAA), Universidad Nacional de la Amazonía Peruana (UNAP), AA. HH. "Nuevo San Lorenzo", Pasaje Paujiles S/N, San Juan, Iquitos, Peru
| | - Bruno Figadère
- Université Paris-Saclay, CNRS, BioCIS, 92290, Châtenay-Malabry, France
| | - Lastenia Ruiz Mesia
- Laboratorio de Investigación de Productos Naturales Antiparasitarios de la Amazonia (LIPNAA), Universidad Nacional de la Amazonía Peruana (UNAP), AA. HH. "Nuevo San Lorenzo", Pasaje Paujiles S/N, San Juan, Iquitos, Peru
| | - Alexandre Maciuk
- Université Paris-Saclay, CNRS, BioCIS, 92290, Châtenay-Malabry, France.
| |
Collapse
|
10
|
Petropoulos SA, Di Gioia F, Polyzos N, Tzortzakis N. Natural Antioxidants, Health Effects and Bioactive Properties of Wild Allium Species. Curr Pharm Des 2020; 26:1816-1837. [PMID: 32013820 DOI: 10.2174/1381612826666200203145851] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 12/16/2019] [Indexed: 12/18/2022]
Abstract
BACKGROUND There is an increasing interest from the pharmaceutical and food industry in natural antioxidant and bioactive compounds derived from plants as substitutes for synthetic compounds. The genus Allium is one of the largest genera, with more than 900 species, including important cultivated and wild species, having beneficial health effects. OBJECTIVE The present review aims to unravel the chemical composition of wild Allium species and their healthrelated effects, focusing on the main antioxidant compounds. For this purpose, a thorough study of the literature was carried out to compile reports related to health effects and the principal bioactive compounds. Considering the vast number of species, this review is divided into subsections where the most studied species are presented, namely Allium ampeloprasum, A. flavum, A. hookeri, A. jesdianum, A. neapolitanum, A. roseum, A. stipitatum, A. tricoccum, and A. ursinum, with an additional composite section for less studied species. METHODS The information presented in this review was obtained from worldwide accepted databases such as Scopus, ScienceDirect, PubMed, Google Scholar and Researchgate, using as keywords the respective names of the studied species (both common and Latin names) and the additional terms of"antioxidants" "health effects" and "bioactive properties". CONCLUSION The genus Allium includes several wild species, many of which are commonly used in traditional and folklore medicine while others are lesser known or are of regional interest. These species can be used as sources of natural bioactive compounds with remarkable health benefits. Several studies have reported these effects and confirmed the mechanisms of action in several cases, although more research is needed in this field. Moreover, considering that most of the studies refer to the results obtained from species collected in the wild under uncontrolled conditions, further research is needed to elucidate the effects of growing conditions on bioactive compounds and to promote the exploitation of this invaluable genetic material.
Collapse
Affiliation(s)
- Spyridon A Petropoulos
- Department of Agriculture, Crop Production and Rural Environment, University of Thessaly, N. Ionia, Magnissia, Greece
| | - Francesco Di Gioia
- Department of Plant Science, Pennsylvania State University, Pennsylvania, United States
| | - Nikos Polyzos
- Department of Agriculture, Crop Production and Rural Environment, University of Thessaly, N. Ionia, Magnissia, Greece
| | - Nikos Tzortzakis
- Department of Agricultural Sciences, Biotechnology and Food Science, Cyprus University of Technology, Limassol, Cyprus
| |
Collapse
|
11
|
Flavonol Glycosides from Leaves of Allium microdictyon. Chem Nat Compd 2020. [DOI: 10.1007/s10600-020-03221-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
12
|
LI F, ZHANG X, AMEER K, EUN JB. Protective Effect of Victory Onion (Allium victorialis L.) Extract on Reproductive System Injury in Male Rats. FOOD SCIENCE AND TECHNOLOGY 2020. [DOI: 10.1590/fst.30220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Affiliation(s)
| | | | - Kashif AMEER
- Graduate School of Chonnam National University, South Korea
| | - Jong-Bang EUN
- Graduate School of Chonnam National University, South Korea
| |
Collapse
|
13
|
Kothari D, Lee WD, Kim SK. Allium Flavonols: Health Benefits, Molecular Targets, and Bioavailability. Antioxidants (Basel) 2020; 9:E888. [PMID: 32961762 PMCID: PMC7555649 DOI: 10.3390/antiox9090888] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 09/11/2020] [Accepted: 09/16/2020] [Indexed: 12/14/2022] Open
Abstract
Allium species are revered worldwide as vegetables, condiments, and spices as well as the therapeutic agents in traditional medicine. The bioactive compounds in alliums mainly include organosulfur compounds, polyphenols, dietary fibers, and saponins. Flavonoids, particularly flavonols from alliums, have been demonstrated to have the antioxidant, anticancer, hypolipidemic, anti-diabetic, cardioprotective, neuroprotective, and antimicrobial activities. However, flavonols are mostly characterized from onions and have not been comprehensively reviewed across different species. This article therefore focuses on flavonol profiles from different Allium species, their health effects, underlying molecular mechanisms, and bioavailability. Intriguingly, the functional health effects of flavonols were mainly ascribed to their antioxidant and anti-inflammatory activities involving a cascade of multiple signaling pathways. Although the Allium-derived flavonols offer tremendous potential in preventing chronic disease risks, in-depth studies are needed to translate their clinical application.
Collapse
Affiliation(s)
| | | | - Soo-Ki Kim
- Department of Animal Science and Technology, Konkuk University, Seoul 05029, Korea; (D.K.); (W.-D.L.)
| |
Collapse
|
14
|
Bai Z, Chen G, Li W, Hou Y, Li N. Natural Inhibitors on Over-Activation of Microglia from Herbals. Chem Pharm Bull (Tokyo) 2019; 67:640-647. [PMID: 31257319 DOI: 10.1248/cpb.c18-00926] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Neuroinflammation manifested by over-activation of microglial cells plays an essential role in neurodegenerative diseases. Short-term activation of microglia can be beneficial, but chronically activated microglia can aggravate neuronal dysfunction possibly by secreting potentially cytotoxic substances such as tumor necrosis factor-alpha (TNF-α) and nitric oxide (NO), which can result in dysfunction and death of neurons. Therefore inhibiting over-activation of microglia and the production of cytotoxic intermediates may become an effective therapeutic approach for neuroinflammation. In this paper, we review our continuous research on natural inhibitors of over-activated microglia from traditional herbals, including flavonoids, lignans, sesquiterpene coumarins, and stilbenes.
Collapse
Affiliation(s)
- Zisong Bai
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University.,College of Life and Health Sciences, Northeastern University
| | - Gang Chen
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University
| | - Wei Li
- Faculty of Pharmaceutical Sciences, Toho University
| | - Yue Hou
- College of Life and Health Sciences, Northeastern University
| | - Ning Li
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University
| |
Collapse
|
15
|
Liu X, Fan X, Wang X, Liu R, Meng C, Wang C. Structural characterization and screening of chemical markers of flavonoids in Lysimachiae Herba and Desmodii Styracifolii Herba by ultra high-performance liquid chromatography quadrupole time-of-flight tandem mass spectrometry based metabolomics approach. J Pharm Biomed Anal 2019; 171:52-64. [PMID: 30965221 DOI: 10.1016/j.jpba.2019.04.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Revised: 03/12/2019] [Accepted: 04/01/2019] [Indexed: 01/02/2023]
Abstract
In traditional Chinese medicine, Lysimachiae Herba (LH) and Desmodii Styracifolii Herba (DSH) have been widely used for the treatment of calculi, but there is a certain focus in clinical application. Flavonoids as their pharmacologically active substances were focusly studied to make clear of their chemical compositions and reveal the similarities and differences between LH and DHS by analysis of characteristic marker components at the molecular level. An ultra high performance liquid chromatography quadrupole time-of-flight tandem mass spectrometry (UPLC-QTOF-MS/MS) approach based on metabolite profiling was established. The high-resolution data was acquired through data dependent acquisition (DDA) mode. Based on the targeted and untargeted analytical strategies, a total of 113 compounds were identified, of which 80 compounds existed in LH and 61 in DSH. Then multivariate statistical analysis was applied to further find the characteristic marker components, and a total number of 21 variables were screened as the valuable variables for discrimination. By matching with identified flavonoids, these 21 variables were corresponding to 15 flavonoids (including 6 from LH and 9 from DSH) which were firstly identified as the marker compounds. These results indicated that the UPLC-QTOF-MS/MS method with analysis strategy was a powerful tool for rapidly identification and screening of marker compounds of flavonoids between LH and DSH, and the 15 screened marker compounds provide a chemical basis for the further researches on the mechanisms of LH and DSH in the treatment of cholelithiasis and nephrolithiasis respectively.
Collapse
Affiliation(s)
- Xiaochen Liu
- Department of Pharmaceutical Analysis, School of Pharmacy, Hebei Medical University, 361 East Zhongshan Road, Shijiazhuang, Hebei 050017, PR China
| | - Xueyan Fan
- Department of Pharmaceutical Analysis, School of Pharmacy, Hebei Medical University, 361 East Zhongshan Road, Shijiazhuang, Hebei 050017, PR China
| | - Xin Wang
- Pharmacy Department, Affiliated Hospital of Hebei University, 212 East Yuhua Road, Baoding, Hebei 071000, PR China
| | - Ruina Liu
- Department of Pharmaceutical Analysis, School of Pharmacy, Hebei Medical University, 361 East Zhongshan Road, Shijiazhuang, Hebei 050017, PR China
| | - Caifeng Meng
- Department of Pharmaceutical Analysis, School of Pharmacy, Hebei Medical University, 361 East Zhongshan Road, Shijiazhuang, Hebei 050017, PR China
| | - Chunying Wang
- Department of Pharmaceutical Analysis, School of Pharmacy, Hebei Medical University, 361 East Zhongshan Road, Shijiazhuang, Hebei 050017, PR China.
| |
Collapse
|
16
|
Woo KW, Park JE, Cha JM, Subedi L, Kim SY, Lee KR. Three New Lignan Glycosides from the Firmiana simplex. Chem Pharm Bull (Tokyo) 2019; 67:18-22. [PMID: 30606947 DOI: 10.1248/cpb.c18-00537] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In our quest for structurally intriguing compounds from Korean medicinal plant sources, chromatographic separation of the 80% MeOH extract from Firmiana simplex resulted in the isolation and identification of three new lignan glycosides (1-3), together with six known lignan glycosides (4-9). The structures of 1-3 were determined on the basis of spectroscopic analyses, including extensive 2D-NMR and enzyme hydrolysis. Nitric oxide (NO) production was evaluated in the lipopolysaccharide-activated microglial cell line, BV-2 to investigate the anti-neuroinflammatory effects of the isolated compounds (1-9). Compound 7 marginally inhibited NO levels with IC50 values of 59.83 µM.
Collapse
Affiliation(s)
- Kyeong Wan Woo
- Natural Products Laboratory, School of Pharmacy, Sungkyunkwan University
| | - Jong Eel Park
- Natural Products Laboratory, School of Pharmacy, Sungkyunkwan University
| | - Joon Min Cha
- Natural Products Laboratory, School of Pharmacy, Sungkyunkwan University
| | - Lalita Subedi
- Laboratory of Pharmacognosy, College of Pharmacy, Gachon University
| | - Sun Yeou Kim
- Laboratory of Pharmacognosy, College of Pharmacy, Gachon University
| | - Kang Ro Lee
- Natural Products Laboratory, School of Pharmacy, Sungkyunkwan University
| |
Collapse
|
17
|
Wang Y, Wang C, Lin H, Liu Y, Li Y, Zhao Y, Li P, Liu J. Discovery of the Potential Biomarkers for Discrimination between Hedyotis diffusa and Hedyotis corymbosa by UPLC-QTOF/MS Metabolome Analysis. Molecules 2018; 23:E1525. [PMID: 29941819 PMCID: PMC6100407 DOI: 10.3390/molecules23071525] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 06/21/2018] [Accepted: 06/22/2018] [Indexed: 02/08/2023] Open
Abstract
Hedyotis diffuse Willd. (HD) and Hedyotis corymbosa (L.) Lam. (HC), two closely related species of the same genus, are both used for health benefits and disease prevention in China. HC is also indiscriminately sold as HD in the wholesale chain and food markets. This confusion has led to a growing concern about their identification and quality evaluation. In order to further understand the molecular diversification between them, we focus on the screening of chemical components and the analysis of non-targeted metabolites. In this study, UPLC-QTOF-MSE, UNIFI platform and multivariate statistical analyses were used to profile them. Firstly, a total of 113 compounds, including 80 shared chemical constituents of the two plants, were identified from HC and HD by using the UNIFI platform. Secondly, the differences between two herbs were highlighted with the comparative analysis. As a result, a total of 33 robust biomarkers enabling the differentiation were discovered by using multivariate statistical analyses. For HC, there were 18 potential biomarkers (either the contents were much greater than in HD or being detected only in HC) including three iridoids, eight flavonoids, two tannins, two ketones, one alcohol and two monoterpenes. For HD, there were15 potential biomarkers (either the contents were much greater than in HC or being detected only in HD) including two iridoids, eight flavonoids, one tannin, one ketone, and three anthraquinones. With a comprehensive consideration of the contents or the MS responses of the chemical composition, Hedycoryside A and B, detected only in HC, could be used for rapid identification of HC. The compounds 1,3-dihydroxy-2-methylanthraquinone and 2-hydroxy-3-methylanthraquinone, detected only in HD, could be used for rapid identification of that plant. The systematic comparison of similarities and differences between two confusing Chinese herbs will provide reliable characterization profiles to clarify the pharmacological fundamental substances. HC should not be used as the substitute of HD.
Collapse
Affiliation(s)
- Yaru Wang
- School of Pharmaceutical Sciences, Jilin University, Fujin Road 1266, Changchun 130021, China.
| | - Cuizhu Wang
- School of Pharmaceutical Sciences, Jilin University, Fujin Road 1266, Changchun 130021, China.
| | - Hongqiang Lin
- School of Pharmaceutical Sciences, Jilin University, Fujin Road 1266, Changchun 130021, China.
| | - Yunhe Liu
- School of Pharmaceutical Sciences, Jilin University, Fujin Road 1266, Changchun 130021, China.
| | - Yameng Li
- School of Pharmaceutical Sciences, Jilin University, Fujin Road 1266, Changchun 130021, China.
| | - Yan Zhao
- College of Chinese Medicinal Materials, Jilin Agriculture University, Xincheng Street 2888, Changchun 130118, China.
| | - Pingya Li
- School of Pharmaceutical Sciences, Jilin University, Fujin Road 1266, Changchun 130021, China.
| | - Jinping Liu
- School of Pharmaceutical Sciences, Jilin University, Fujin Road 1266, Changchun 130021, China.
| |
Collapse
|
18
|
Vien LT, Van QTT, Hanh TTH, Huong PTT, Thuy NTK, Cuong NT, Dang NH, Thanh NV, Cuong NX, Nam NH, Kiem PV, Minh CV. Flavonoid glycosides from Barringtonia acutangula. Bioorg Med Chem Lett 2017; 27:3776-3781. [DOI: 10.1016/j.bmcl.2017.06.066] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 06/06/2017] [Accepted: 06/26/2017] [Indexed: 11/27/2022]
|
19
|
Xiao J. Dietary flavonoid aglycones and their glycosides: Which show better biological significance? Crit Rev Food Sci Nutr 2017; 57:1874-1905. [PMID: 26176651 DOI: 10.1080/10408398.2015.1032400] [Citation(s) in RCA: 188] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The dietary flavonoids, especially their glycosides, are the most vital phytochemicals in diets and are of great general interest due to their diverse bioactivity. The natural flavonoids almost all exist as their O-glycoside or C-glycoside forms in plants. In this review, we summarized the existing knowledge on the different biological benefits and pharmacokinetic behaviors between flavonoid aglycones and their glycosides. Due to various conclusions from different flavonoid types and health/disease conditions, it is very difficult to draw general or universally applicable comments regarding the impact of glycosylation on the biological benefits of flavonoids. It seems as though O-glycosylation generally reduces the bioactivity of these compounds - this has been observed for diverse properties including antioxidant activity, antidiabetes activity, anti-inflammation activity, antibacterial, antifungal activity, antitumor activity, anticoagulant activity, antiplatelet activity, antidegranulating activity, antitrypanosomal activity, influenza virus neuraminidase inhibition, aldehyde oxidase inhibition, immunomodulatory, and antitubercular activity. However, O-glycosylation can enhance certain types of biological benefits including anti-HIV activity, tyrosinase inhibition, antirotavirus activity, antistress activity, antiobesity activity, anticholinesterase potential, antiadipogenic activity, and antiallergic activity. However, there is a lack of data for most flavonoids, and their structures vary widely. There is also a profound lack of data on the impact of C-glycosylation on flavonoid biological benefits, although it has been demonstrated that in at least some cases C-glycosylation has positive effects on properties that may be useful in human healthcare such as antioxidant and antidiabetes activity. Furthermore, there is a lack of in vivo data that would make it possible to make broad generalizations concerning the influence of glycosylation on the benefits of flavonoids for human health. It is possible that the effects of glycosylation on flavonoid bioactivity in vitro may differ from that seen in vivo. With in vivo (oral) treatment, flavonoid glycosides showed similar or even higher antidiabetes, anti-inflammatory, antidegranulating, antistress, and antiallergic activity than their flavonoid aglycones. Flavonoid glycosides keep higher plasma levels and have a longer mean residence time than those of aglycones. We should pay more attention to in vivo benefits of flavonoid glycosides, especially C-glycosides.
Collapse
Affiliation(s)
- Jianbo Xiao
- a Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau , Taipa , Macau
- b Institut für Pharmazie und Lebensmittelchemie, Universität Würzburg , Am Hubland , Würzburg , Germany
| |
Collapse
|
20
|
Seo UM, Nguyen DH, Zhao BT, Min BS, Woo MH. Flavanonol glucosides from the aerial parts of Agrimonia pilosa Ledeb. and their acetylcholinesterase inhibitory effects. Carbohydr Res 2017; 445:75-79. [DOI: 10.1016/j.carres.2017.04.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 04/10/2017] [Accepted: 04/13/2017] [Indexed: 10/19/2022]
|
21
|
|
22
|
de Oliveira Silva E, Batista R. Ferulic Acid and Naturally Occurring Compounds Bearing a Feruloyl Moiety: A Review on Their Structures, Occurrence, and Potential Health Benefits. Compr Rev Food Sci Food Saf 2017; 16:580-616. [PMID: 33371567 DOI: 10.1111/1541-4337.12266] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 03/14/2017] [Accepted: 03/22/2017] [Indexed: 12/31/2022]
Abstract
The ubiquitous compound 4-hydroxy-3-methoxycinnamic acid, also known as ferulic acid (FA), constitutes a bioactive ingredient of many foods that may offer beneficial effects against disorders related to oxidative stress, including cancer, diabetes, and neurodegenerative diseases. This review discusses the antioxidant properties of FA, establishing relationships to several biological activities already described for this natural product. Next, 387 naturally occurring compounds, all isolated from plants and published between 1990 and 2015, the structures of which bear 1 or more feruloyl moieties, are covered in this review along with their structural formulas, botanical sources, and bioactivities. The compounds' distribution, structural patterns, bioactivities, and perspectives on food research are also succinctly discussed.
Collapse
Affiliation(s)
- Eliane de Oliveira Silva
- Dept. of Organic Chemistry, Inst. of Chemistry, Federal Univ. of Bahia (UFBA), Rua Barão de Jeremoabo, s/n, Ondina, 40170-115, Salvador, Bahia, Brazil
| | - Ronan Batista
- Dept. of Organic Chemistry, Inst. of Chemistry, Federal Univ. of Bahia (UFBA), Rua Barão de Jeremoabo, s/n, Ondina, 40170-115, Salvador, Bahia, Brazil
| |
Collapse
|
23
|
Mba Nguekeu YM, Awouafack MD, Tane P, Nguedia Lando MR, Kodama T, Morita H. A kaempferol triglycoside from Tephrosia preussii Taub. (Fabaceae). Nat Prod Res 2017; 31:2520-2526. [DOI: 10.1080/14786419.2017.1315720] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Yves Martial Mba Nguekeu
- Laboratory of Natural Products Chemistry, Faculty of Science, Department of Chemistry, University of Dschang, Dschang, Cameroon
| | - Maurice Ducret Awouafack
- Laboratory of Natural Products Chemistry, Faculty of Science, Department of Chemistry, University of Dschang, Dschang, Cameroon
- Institute of Natural Medicine, University of Toyama, Toyama, Japan
| | - Pierre Tane
- Laboratory of Natural Products Chemistry, Faculty of Science, Department of Chemistry, University of Dschang, Dschang, Cameroon
| | - Marius Roch Nguedia Lando
- Laboratory of Natural Products Chemistry, Faculty of Science, Department of Chemistry, University of Dschang, Dschang, Cameroon
| | - Takeshi Kodama
- Institute of Natural Medicine, University of Toyama, Toyama, Japan
| | - Hiroyuki Morita
- Institute of Natural Medicine, University of Toyama, Toyama, Japan
| |
Collapse
|
24
|
Kim CS, Bae M, Oh J, Subedi L, Suh WS, Choi SZ, Son MW, Kim SY, Choi SU, Oh DC, Lee KR. Anti-Neurodegenerative Biflavonoid Glycosides from Impatiens balsamina. JOURNAL OF NATURAL PRODUCTS 2017; 80:471-478. [PMID: 28165740 DOI: 10.1021/acs.jnatprod.6b00981] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Four biflavonoid glycosides, balsamisides A-D (1-4), and nine known compounds (5-13) were obtained from the white petals of Impatiens balsamina. The 2D structures of the purified phytochemicals were established using conventional NMR techniques in addition to the new long-range HSQMBC NMR experiment. Acid hydrolysis followed by experimental and quantum-mechanics-based ECD data analysis permitted full configurational assignment of the purified metabolites. Compounds 1-13 were assessed for their potential to impede the generation of nitric oxide in lipopolysaccharide-stimulated BV2 cells. They were also investigated for potential neuroprotective activity using C6 cells and cytotoxicity against some human tumor cell lines, but were inactive (IC50 > 10 μM) against all the cell lines.
Collapse
Affiliation(s)
- Chung Sub Kim
- Natural Products Laboratory, School of Pharmacy, Sungkyunkwan University , Suwon 16419, Republic of Korea
| | - Munhyung Bae
- Natural Products Research Institute, College of Pharmacy, Seoul National University , Seoul 08826, Republic of Korea
| | - Joonseok Oh
- Department of Chemistry, Yale University , New Haven, Connecticut 06520, United States
- Chemical Biology Institute, Yale University , West Haven, Connecticut 06516, United States
| | - Lalita Subedi
- Gachon Institute of Pharmaceutical Science, Gachon University , Incheon 21936, Republic of Korea
- College of Pharmacy, Gachon University , #191, Hambakmoero, Yeonsu-gu, Incheon 21936, Republic of Korea
| | - Won Se Suh
- Natural Products Laboratory, School of Pharmacy, Sungkyunkwan University , Suwon 16419, Republic of Korea
| | - Sang Zin Choi
- Dong-A ST Research Institute , Kiheung, Yongin 17073, Republic of Korea
| | - Mi Won Son
- Dong-A ST Research Institute , Kiheung, Yongin 17073, Republic of Korea
| | - Sun Yeou Kim
- Gachon Institute of Pharmaceutical Science, Gachon University , Incheon 21936, Republic of Korea
- College of Pharmacy, Gachon University , #191, Hambakmoero, Yeonsu-gu, Incheon 21936, Republic of Korea
| | - Sang Un Choi
- Korea Research Institute of Chemical Technology , Daejeon 34114, Republic of Korea
| | - Dong-Chan Oh
- Natural Products Research Institute, College of Pharmacy, Seoul National University , Seoul 08826, Republic of Korea
| | - Kang Ro Lee
- Natural Products Laboratory, School of Pharmacy, Sungkyunkwan University , Suwon 16419, Republic of Korea
| |
Collapse
|
25
|
Kim YS, Suh WS, Park KJ, Choi SU, Lee KR. Allimacrosides A-E, new steroidal glycosides from Allium macrostemon Bunge. Steroids 2017; 118:41-46. [PMID: 27964942 DOI: 10.1016/j.steroids.2016.12.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 12/03/2016] [Accepted: 12/05/2016] [Indexed: 10/20/2022]
Abstract
A new pregnane-type steroidal glycoside (1), two new spirostane-type steroidal glycosides (2, 3), and two new furostane-type steroidal glycosides (4, 5), named allimacrosides A-E, together with four known compounds (6-9) were isolated from a 80% MeOH extract of Allium macrostemon Bunge. The identification and structural elucidation of these compounds were based on their 1D- and 2D-NMR spectra, and HR-FAB-MS data analysis. The isolated compounds were tested for cytotoxicity against four human tumor cell lines in vitro using the sulforhodamine B bioassay.
Collapse
Affiliation(s)
- Yun Sik Kim
- Natural Products Laboratory, School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Won Se Suh
- Natural Products Laboratory, School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Kyoung Jin Park
- Natural Products Laboratory, School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Sang Un Choi
- Korea Research Institute of Chemical Technology, Daejeon 34114, Republic of Korea
| | - Kang Ro Lee
- Natural Products Laboratory, School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea.
| |
Collapse
|
26
|
Woo KW, Lee KH, Jang JH, Kim MS, Cho HW, Cho JH, An B. Anti-inflammatory Constituents from the Aerial Parts of Iris minutiaurea. Nat Prod Commun 2016. [DOI: 10.1177/1934578x1601100630] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Phytochemical investigation of the methanol extract of the aerial parts of Iris minutiaurea (Iridaceae) using column chromatography led to the isolation of a new xanthone glycoside, 1-hydroxy-3,5-dimethoxy-xanthone-6- O-β-D-glucoside (1), together with one known flavonoid glycoside (2). The structure of this new compound was elucidated by analysis of spectroscopic, including ID (1H, 13C), 2D NMR (COSY, HMQC, HMBC), and high resolution fast atom bombardment mass spectrometric (HR-FAB-MS) data and enzyme hydrolysis. We found that compounds 1 and 2 significantly suppressed production of NO, and pro-inflammatory cytokine in LPS-induced RAW264.7 cells. These results suggest that compound 1 and 2 have anti-inflammatory activity related with production of TNF-α, IL-6, IL-β, and NO in macrophages, and then compound 1 were more efficient than compound 2 in lowering the level of proinflammatory cytokine.
Collapse
Affiliation(s)
- Kyeong Wan Woo
- Traditional Korean Medicines Research Team, National Development Institute of Korea Medicine, Jangheunggun 59338, Republic of Korea
| | - Ki Ho Lee
- Traditional Korean Medicines Research Team, National Development Institute of Korea Medicine, Jangheunggun 59338, Republic of Korea
| | - Ji Hun Jang
- Traditional Korean Medicines Research Team, National Development Institute of Korea Medicine, Jangheunggun 59338, Republic of Korea
| | - Min Suk Kim
- Traditional Korean Medicines Research Team, National Development Institute of Korea Medicine, Jangheunggun 59338, Republic of Korea
- Department of Pathology, College of Korean Medicine, Wonkwang University, Iksan 54538, Republic of Korea
| | - Hyun Woo Cho
- Traditional Korean Medicines Research Team, National Development Institute of Korea Medicine, Jangheunggun 59338, Republic of Korea
| | - Jung Hee Cho
- Traditional Korean Medicines Research Team, National Development Institute of Korea Medicine, Jangheunggun 59338, Republic of Korea
| | - Byeongkwan An
- Traditional Korean Medicines Research Team, National Development Institute of Korea Medicine, Jangheunggun 59338, Republic of Korea
| |
Collapse
|
27
|
Bioactive lignan derivatives from the stems of Firmiana simplex. Bioorg Med Chem Lett 2016; 26:730-733. [DOI: 10.1016/j.bmcl.2016.01.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Revised: 12/28/2015] [Accepted: 01/05/2016] [Indexed: 11/19/2022]
|
28
|
Ro Lee K, Wan Woo K, Subedi L, Yeou Kim S, Un Choi S, Se Suh W. Phenolic Derivatives from the Stems of Lagerstroemia indica and Their Biological Activity. HETEROCYCLES 2015. [DOI: 10.3987/com-15-13328] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
29
|
Kim BW, Koppula S, Park SY, Hwang JW, Park PJ, Lim JH, Choi DK. Attenuation of inflammatory-mediated neurotoxicity by Saururus chinensis extract in LPS-induced BV-2 microglia cells via regulation of NF-κB signaling and anti-oxidant properties. Altern Ther Health Med 2014; 14:502. [PMID: 25514974 PMCID: PMC4301828 DOI: 10.1186/1472-6882-14-502] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Accepted: 09/19/2014] [Indexed: 01/16/2023]
Abstract
Background A Saururus chinensis Baill (SC) has been used by Native Americans, early colonists and practitioners of Korean traditional medicine for treating several diseases including cancer, rheumatoid arthritis and edema. The objective of this study was to evaluate the effects of SC extract in lipopolysaccharide (LPS)-stimulated neuroinflammatory responses in BV-2 microglial cells. Methods The effects of SC on the LPS–induced neuroinflammatory responses in BV-2 microglial cells were assessed by Western blotting, RT-PCR and immunofluorescence labeling techniques. DPPH and alkyl radical scavenging assay was performed to evaluate the anti-oxidant effects. Comparisons between groups were analyzed using one-way analysis of variance followed by Dunnett’s multiple comparisons test using GraphPad Prism V5.01 software. Results Pre-treatment with SC extract (1, 5 and 10 μg/mL) significantly (p < 0.001 at 10 μg/mL) and concentration dependently inhibited LPS-induced production of nitric oxide (NO), inducible NO synthase (iNOS), cyclooxygenase-2 (COX-2) and suppressed the inflammatory cytokine levels such as tumor necrosis factor-alpha and interleukin (IL)-6 in BV-2 microglial cells (p < 0.001 at 10 μg/mL). Further, SC suppressed the nuclear factor-kappa B (NF-κB) activation by blocking the degradation of IκB-α. SC also exhibited profound anti-oxidant effects by scavenging 1, 1-diphenyl-2-picrylhydrazyl (DPPH) (IC50: 0.055 mg/mL) and alkyl radicals (IC50: 0.349 mg/mL). High performance liquid chromatography finger printing analysis of SC revealed quercetin (QCT) as one of the major constituents compared with reference standard. QCT also inhibited the excessive release of NO, and inhibited the increased expressional levels of IL-6, iNOS and COX-2 in LPS-stimulated BV-2 cells. Conclusions Our results indicated that SC inhibited the LPS-stimulated neuroinflammatory responses in BV-2 microglia via regulation of NF-κB signaling. The antioxidant active constituents of SC might be partly involved in delivering such effects. Based on the traditional claims and our present results SC can be potentially used in treating inflammatory-mediated neurodegenerative diseases.
Collapse
|
30
|
Xiao J, Muzashvili TS, Georgiev MI. Advances in the biotechnological glycosylation of valuable flavonoids. Biotechnol Adv 2014; 32:1145-1156. [PMID: 24780153 DOI: 10.1016/j.biotechadv.2014.04.006] [Citation(s) in RCA: 229] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Revised: 04/16/2014] [Accepted: 04/17/2014] [Indexed: 02/08/2023]
Abstract
The natural flavonoids, especially their glycosides, are the most abundant polyphenols in foods and have diverse bioactivities. The biotransformation of flavonoid aglycones into their glycosides is vital in flavonoid biosynthesis. The main biological strategies that have been used to achieve flavonoid glycosylation in the laboratory involve metabolic pathway engineering and microbial biotransformation. In this review, we summarize the existing knowledge on the production and biotransformation of flavonoid glycosides using biotechnology, as well as the impact of glycosylation on flavonoid bioactivity. Uridine diphosphate glycosyltransferases play key roles in decorating flavonoids with sugars. Modern metabolic engineering and proteomic tools have been used in an integrated fashion to generate numerous structurally diverse flavonoid glycosides. In vitro, enzymatic glycosylation tends to preferentially generate flavonoid 3- and 7-O-glucosides; microorganisms typically convert flavonoids into their 7-O-glycosides and will produce 3-O-glycosides if supplied with flavonoid substrates having a hydroxyl group at the C-3 position. In general, O-glycosylation reduces flavonoid bioactivity. However, C-glycosylation can enhance some of the benefits of flavonoids on human health, including their antioxidant and anti-diabetic potential.
Collapse
Affiliation(s)
- Jianbo Xiao
- Department of Biology, Shanghai Normal University, 100 Guilin Rd, Shanghai 200234, China; Institut für Pharmazie und Lebensmittelchemie, Universität Würzburg, Am Hubland, 97074 Würzburg, Germany; Anhui Academy of Applied Technology, Suixi Road 312, 230031 Hefei, Anhui, China.
| | - Tamar S Muzashvili
- Iovel Kutateladze Institute of Pharmacochemistry, Tbilisi State Medical University, 36 P. Sarajishvili st., 0159 Tbilisi, Georgia
| | - Milen I Georgiev
- The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, 139 Ruski Blvd., 4000 Plovdiv, Bulgaria
| |
Collapse
|
31
|
Kim HJ, Park MJ, Park HJ, Chung WY, Kim KR, Park KK. Chemopreventive and Anticancer Activities of Allium victorialis var. platyphyllum Extracts. J Cancer Prev 2014; 19:179-86. [PMID: 25337587 PMCID: PMC4189512 DOI: 10.15430/jcp.2014.19.3.179] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Revised: 09/03/2014] [Accepted: 09/03/2014] [Indexed: 12/04/2022] Open
Abstract
Background: Allium victorialis var. platyphyllum is an edible perennial herb and has been used as a vegetable or as a Korean traditional medicine. Allium species have received much attention owing to their diverse pharmacological properties, including antioxidative, anti-inflammatory, and anticancer activities. However, A. victorialis var. platyphyllum needs more study. Methods: The chemopreventive potential of A. victorialis var. platyphyllum methanol extracts was examined by measuring 12-O-tetra-decanoylphorbol 13-acetate (TPA)-induced superoxide anion production in the differentiated HL-60 cells, TPA-induced mouse ear edema, and Ames/Salmonella mutagenicity. The apoptosis-inducing capabilities of the extracts were evaluated by the 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide assay, 4’,6-diamidino-2-phenylindole staining, and the DNA fragmentation assay in human colon cancer HT-29 cells. Antimetastatic activities of the extracts were also investigated in an experimental mouse lung metastasis model. Results: The methanol extracts of A. victorialis var. platyphyllum rhizome (AVP-R) and A. victorialis var. platyphyllum stem (AVP-S) dose-dependently inhibited the TPA-induced generation of superoxide anion in HL-60 cells and TPA-induced ear edema in mice, as well as 7,12-dimethylbenz[a]anthracene (DMBA) and tert-butyl hydroperoxide (t-BOOH) -induced bacterial mutagenesis. AVP-R and AVP-S reduced cell viability in a dose-related manner and induced apoptotic morphological changes and internucleosomal DNA fragmentation in HT-29 cells. In the experimental mouse lung metastasis model, the formation of tumor nodules in lung tissue was significantly inhibited by the treatment of the extracts. Conclusions: AVP-R and AVP-S possess antioxidative, anti-inflammatory, antimutagenic, proapoptotic, and antimetastatic activities. Therefore, these extracts can serve as a beneficial supplement for the prevention and treatment of cancer.
Collapse
Affiliation(s)
- Hyun-Jeong Kim
- Department of Applied Life Science, The Graduate School, Yonsei University, Seoul, Korea ; Department of Oral Biology, Oral Cancer Research Institute, BK21 PLUS project, Yonsei University College of Dentistry, Seoul, Korea
| | - Min Jeong Park
- Department of Applied Life Science, The Graduate School, Yonsei University, Seoul, Korea ; Department of Oral Biology, Oral Cancer Research Institute, BK21 PLUS project, Yonsei University College of Dentistry, Seoul, Korea
| | - Hee-Juhn Park
- Department of Pharmaceutical Engineering, Sangji University, Wonju, Korea
| | - Won-Yoon Chung
- Department of Applied Life Science, The Graduate School, Yonsei University, Seoul, Korea ; Department of Oral Biology, Oral Cancer Research Institute, BK21 PLUS project, Yonsei University College of Dentistry, Seoul, Korea
| | - Ki-Rim Kim
- Department of Dental Hygiene, Kyungpook National University, Sangju, Korea
| | - Kwang-Kyun Park
- Department of Applied Life Science, The Graduate School, Yonsei University, Seoul, Korea ; Department of Oral Biology, Oral Cancer Research Institute, BK21 PLUS project, Yonsei University College of Dentistry, Seoul, Korea
| |
Collapse
|
32
|
El Shabrawy MO, Hosni HA, El Garf IA, Marzouk MM, Kawashty SA, Saleh NA. Flavonoids from Allium myrianthum Boiss. BIOCHEM SYST ECOL 2014. [DOI: 10.1016/j.bse.2014.05.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
33
|
Woo KW, Kwon OW, Kim SY, Choi SZ, Son MW, Kim KH, Lee KR. Phenolic derivatives from the rhizomes of Dioscorea nipponica and their anti-neuroinflammatory and neuroprotective activities. JOURNAL OF ETHNOPHARMACOLOGY 2014; 155:1164-1170. [PMID: 24973689 DOI: 10.1016/j.jep.2014.06.043] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Revised: 06/16/2014] [Accepted: 06/17/2014] [Indexed: 06/03/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Dioscorea nipponica (Dioscoreaceae) have been used as traditional medicines for diabetes, inflammatory and neurodegenerative diseases in Korea. The aim of the study was to isolate the bioactive components from the rhizomes of Dioscorea nipponica and to evaluate their anti-neuroinfalmmatory and neuroprotective activities. MATERIAL AND METHODS The phytochemical investigation of 50% EtOH extract of Dioscorea nipponica using successive column chromatography over silica gel, Sephadex LH-20, and preparative high performance liquid chromatography (HPLC) resulted in the isolation and identification of 17 phenolic derivatives, including four new phenolic compounds (1-4). The structural elucidation of these compounds was based on spectroscopic methods, including 1D and 2D nuclear magnetic resonance (NMR) spectroscopy techniques, mass spectrometry, and optical rotation. All isolated compounds were evaluated for their effects on nerve growth factor (NGF) secretion in a C6 rat glioma cell line and nitric oxide (NO) production in lipopolysaccharide (LPS)-activated BV2 cells. The neurite outgrowth of compound 16 was further evaluated by using mouse neuroblastoma N2a cell lines. RESULTS Three new stilbene derivatives, diosniponol C (1), D (2) and diosniposide A (3) and one new phenanthrene glycoside, diosniposide B (4), together with 13 known compounds were isolated from the rhizomes of Dioscorea nipponica. Of the tested compounds (1-17), phenanthrene, 3,7-dihydroxy-2,4,6-trimethoxy-phenanthrene (16) was the most potent NGF inducer, with 162.35±16.18% stimulation, and strongly reduced NO levels with an IC50 value of 19.56 μM in BV2 microglial cells. Also, it significantly increased neurite outgrowth in N2a cells. CONCLUSIONS This study supports the ethnopharmacological use of Dioscorea nipponica rhizomes as traditional medicine.
Collapse
Affiliation(s)
- Kyeong Wan Woo
- Natural Products Laboratory, School of Pharmacy, Sungkyunkwan University, 300 Chonchon-dong, Jangan-ku, Suwon, Gyeonggi-do 440-746, Republic of Korea
| | - Oh Wook Kwon
- Graduate School of East-West Medical Science, Kyung Hee University Global Campus, Yongin 446-701, Republic of Korea
| | - Sun Yeou Kim
- College of Pharmacy, Gachon University, Incheon 406-799, Republic of Korea; Gachon Institute of Pharmaceutical Science, Gachon University, Incheon 406-799, Republic of Korea; Gachon Medical Research Institute, Gil Medical Center, Inchon 405-760, Republic of Korea
| | - Sang Zin Choi
- Dong-A Pharm Institute, Kiheung, Yongin 449-905, Republic of Korea
| | - Mi Won Son
- Dong-A Pharm Institute, Kiheung, Yongin 449-905, Republic of Korea
| | - Ki Hyun Kim
- Natural Products Laboratory, School of Pharmacy, Sungkyunkwan University, 300 Chonchon-dong, Jangan-ku, Suwon, Gyeonggi-do 440-746, Republic of Korea
| | - Kang Ro Lee
- Natural Products Laboratory, School of Pharmacy, Sungkyunkwan University, 300 Chonchon-dong, Jangan-ku, Suwon, Gyeonggi-do 440-746, Republic of Korea.
| |
Collapse
|
34
|
Xiao J, Chen T, Cao H. WITHDRAWN: Flavonoid glycosylation and biological benefits. Biotechnol Adv 2014:S0734-9750(14)00092-5. [PMID: 24858477 DOI: 10.1016/j.biotechadv.2014.05.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2014] [Revised: 05/09/2014] [Accepted: 05/11/2014] [Indexed: 01/16/2023]
Abstract
This article has been withdrawn at the request of the editor. The Publisher apologizes for any inconvenience this may cause. The full Elsevier Policy on Article Withdrawal can be found at http://www.elsevier.com/locate/withdrawalpolicy.
Collapse
Affiliation(s)
- Jianbo Xiao
- Department of Biology, Shanghai Normal University, 100 Guilin Rd, Shanghai 200234, China; Institut für Pharmazie und Lebensmittelchemie, Universität Würzburg, Am Hubland, 97074 Würzburg, Germany; Anhui Academy of Applied Technology, Suixi Road 312, 230031 Hefei, Anhui, China.
| | - Tingting Chen
- School of Chemistry and Chemical Engineering, Nantong University, Nantong 226007, China
| | - Hui Cao
- Institut für Pharmazie und Lebensmittelchemie, Universität Würzburg, Am Hubland, 97074 Würzburg, Germany; School of Chemistry and Chemical Engineering, Nantong University, Nantong 226007, China.
| |
Collapse
|
35
|
Cho DW, Kim DE, Lee DH, Jung KH, Hurh BS, Kwon OW, Kim SY. Metabolite profiling of enzymatically hydrolyzed and fermented forms of Opuntia ficus-indica and their effect on UVB-induced skin photoaging. Arch Pharm Res 2014; 37:1159-68. [DOI: 10.1007/s12272-013-0320-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Accepted: 12/19/2013] [Indexed: 10/25/2022]
|
36
|
Soni K, Sah AK. The synthesis of amino acid derived glycoconjugates and the investigation of their anti-inflammatory and analgesic properties. RSC Adv 2014. [DOI: 10.1039/c3ra43201g] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
37
|
Kim YS, Jung DH, Lee IS, Choi SJ, Yu SY, Ku SK, Kim MH, Kim JS. Effects of Allium victorialis leaf extracts and its single compounds on aldose reductase, advanced glycation end products and TGF-β1 expression in mesangial cells. Altern Ther Health Med 2013; 13:251. [PMID: 24090434 PMCID: PMC4015874 DOI: 10.1186/1472-6882-13-251] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Accepted: 09/26/2013] [Indexed: 11/20/2022]
Abstract
Background Accumulating evidences suggest that aldose reductase (AR) inhibitors and advanced glycation end product (AGE) formation inhibitors may prevent chronic hyperglycemia-induced long-term complication in diabetes. Transforming growth factor-beta1 (TGF-β1) plays an important role in the development of diabetic nephropathy. Allium species have been utilized in folk medicine throughout the world for the treatment of various physical disorders. However, the benefits of Allium victorialis (A. victorialis) against diabetic complications, especially nephropathy, have yet to be explored. In the present study, we investigated the protective effect of the compounds isolated from A. victorialis leaf on diabetic nephropathy. Methods In vitro AR activity, AGEs formation, and AGE-receptor for AGEs (RAGE) binding in human RAGE (hRAGE)-overexpressing cells were tested. High glucose-induced transforming growth factor-beta1 (TGF-β1) expression was also examined in mouse kidney mesangial cells (MMCs) cultured under high glucose. Results Of the isolated eight compounds from A. victorialis leaf extracts tested, quercitrin exhibited the most pronounced inhibitory effects on AR activity (IC50 value of 0.17 μM) and AGEs formation (IC50 value of 4.20 μM). Furthermore, quercitrin disrupted AGE-RAGE binding in a concentration-dependent manner in hRAGE-overexpressing cells. Additionally, of the eight compounds tested, ferulic acid significantly reduced high glucose-induced TGF-β1 expression and secretion in MMCs. Conclusions Our results suggest that active compounds isolated from A. victorialis leaf exhibit inhibitory effects on AR activity in rat lenses and AGE formation. Further, ferulic acid reduces TGF-β1 mRNA expression and secretion in MMCs under diabetic conditions. Thus, A. victorialis is a good candidate for the development of treatments for diabetic nephropathy.
Collapse
|