1
|
Komninou MA, Egli S, Rossi A, Ernst J, Krauthammer M, Schuepbach RA, Delgado M, Bartussek J. Former smoking, but not active smoking, is associated with delirium in postoperative ICU patients: a matched case-control study. Front Psychiatry 2024; 15:1347071. [PMID: 38559401 PMCID: PMC10979642 DOI: 10.3389/fpsyt.2024.1347071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 02/27/2024] [Indexed: 04/04/2024] Open
Abstract
Objective To examine the relationship between current and former smoking and the occurrence of delirium in surgical Intensive Care Unit (ICU) patients. Methods We conducted a single center, case-control study involving 244 delirious and 251 non-delirious patients that were admitted to our ICU between 2018 and 2022. Using propensity score analysis, we obtained 115 pairs of delirious and non-delirious patients matched for age and Simplified Acute Physiology Score II (SAPS II). Both groups of patients were further stratified into non-smokers, active smokers and former smokers, and logistic regression was performed to further investigate potential confounders. Results Our study revealed a significant association between former smoking and the incidence of delirium in ICU patients, both in unmatched (adjusted odds ratio (OR): 1.82, 95% confidence interval (CI): 1.17-2.83) and matched cohorts (OR: 3.0, CI: 1.53-5.89). Active smoking did not demonstrate a significant difference in delirium incidence compared to non-smokers (unmatched OR = 0.98, CI: 0.62-1.53, matched OR = 1.05, CI: 0.55-2.0). Logistic regression analysis of the matched group confirmed former smoking as an independent risk factor for delirium, irrespective of other variables like surgical history (p = 0.010). Notably, also respiratory and vascular surgeries were associated with increased odds of delirium (respiratory: OR: 4.13, CI: 1.73-9.83; vascular: OR: 2.18, CI: 1.03-4.59). Medication analysis showed that while Ketamine and Midazolam usage did not significantly correlate with delirium, Morphine use was linked to a decreased likelihood (OR: 0.27, 95% CI: 0.13-0.55). Discussion Nicotine's complex neuropharmacological impact on the brain is still not fully understood, especially its short-term and long-term implications for critically ill patients. Although our retrospective study cannot establish causality, our findings suggest that smoking may induce structural changes in the brain, potentially heightening the risk of postoperative delirium. Intriguingly, this effect seems to be obscured in active smokers, potentially due to the recognized neuroprotective properties of nicotine. Our results motivate future prospective studies, the results of which hold the potential to substantially impact risk assessment procedures for surgeries.
Collapse
Affiliation(s)
- Maria Angeliki Komninou
- Institute of Intensive Care Medicine, University Hospital Zurich & University of Zurich, Zurich, Switzerland
| | - Simon Egli
- Institute of Intensive Care Medicine, University Hospital Zurich & University of Zurich, Zurich, Switzerland
| | - Aurelio Rossi
- Institute of Intensive Care Medicine, University Hospital Zurich & University of Zurich, Zurich, Switzerland
| | - Jutta Ernst
- Center of Clinical Nursing Sciences, University Hospital Zurich, Zurich, Switzerland
| | - Michael Krauthammer
- Department for Quantitative Biomedicine, University of Zurich, Zurich, Switzerland
| | - Reto A. Schuepbach
- Institute of Intensive Care Medicine, University Hospital Zurich & University of Zurich, Zurich, Switzerland
| | - Marcos Delgado
- Institute of Intensive Care Medicine, University Hospital Zurich & University of Zurich, Zurich, Switzerland
- Department of Anesthesia and Intensive Care Medicine, Tiefenau Hospital, Insel Group. University of Bern, Bern, Switzerland
| | - Jan Bartussek
- Institute of Intensive Care Medicine, University Hospital Zurich & University of Zurich, Zurich, Switzerland
- Department for Quantitative Biomedicine, University of Zurich, Zurich, Switzerland
| |
Collapse
|
2
|
Plodukhin AY, Boichenko MA, Andreev IA, Tarasenko EA, Anisovich KV, Ratmanova NK, Zhokhov SS, Trushkov IV, Ivanova OA. Concise approach to γ-(het)aryl- and γ-alkenyl-γ-aminobutyric acids. Synthesis of vigabatrin. Org Biomol Chem 2024; 22:1027-1033. [PMID: 38193622 DOI: 10.1039/d3ob01769a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2024]
Abstract
γ-Aminobutyric acid (GABA) and GABA derivatives have attracted increased attention over the years in the fields of medicinal chemistry and chemical biology due to their interesting biological properties and synthetic relevance. Here, we report a short synthetic route to γ-(het)aryl- and γ-alkenyl-γ-aminobutyric acids, including the antiepileptic drug vigabatrin, from readily available donor-acceptor cyclopropanes and ammonia or methylamine. This protocol includes a facile synthesis of 2-oxopyrrolidine-3-carboxamides and their acid hydrolysis to γ-aryl- or γ-alkenyl-substituted GABAs, which can serve as perspective building blocks for the synthesis of various GABA-based N-heterocycles and bioactive compounds.
Collapse
Affiliation(s)
- Andrey Yu Plodukhin
- Department of Chemistry, M. V. Lomonosov Moscow State University, Leninskie gory 1-3, Moscow 119991, Russia.
| | - Maksim A Boichenko
- Department of Chemistry, M. V. Lomonosov Moscow State University, Leninskie gory 1-3, Moscow 119991, Russia.
| | - Ivan A Andreev
- N. D. Zelinsky Institute of Organic Chemistry Russian Academy of Sciences, Leninsky pr. 47, Moscow 119991, Russia.
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Samory Mashela 1, Moscow 117997, Russia
| | - Elena A Tarasenko
- Department of Chemistry, M. V. Lomonosov Moscow State University, Leninskie gory 1-3, Moscow 119991, Russia.
| | - Kanstantsin V Anisovich
- Department of Chemistry, M. V. Lomonosov Moscow State University, Leninskie gory 1-3, Moscow 119991, Russia.
| | - Nina K Ratmanova
- N. D. Zelinsky Institute of Organic Chemistry Russian Academy of Sciences, Leninsky pr. 47, Moscow 119991, Russia.
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Samory Mashela 1, Moscow 117997, Russia
| | - Sergey S Zhokhov
- Department of Chemistry, M. V. Lomonosov Moscow State University, Leninskie gory 1-3, Moscow 119991, Russia.
| | - Igor V Trushkov
- N. D. Zelinsky Institute of Organic Chemistry Russian Academy of Sciences, Leninsky pr. 47, Moscow 119991, Russia.
| | - Olga A Ivanova
- Department of Chemistry, M. V. Lomonosov Moscow State University, Leninskie gory 1-3, Moscow 119991, Russia.
| |
Collapse
|
3
|
Boiangiu RS, Brinza I, Honceriu I, Mihasan M, Hritcu L. Insights into Pharmacological Activities of Nicotine and 6-Hydroxy-L-nicotine, a Bacterial Nicotine Derivative: A Systematic Review. Biomolecules 2023; 14:23. [PMID: 38254623 PMCID: PMC10813004 DOI: 10.3390/biom14010023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/13/2023] [Accepted: 12/20/2023] [Indexed: 01/24/2024] Open
Abstract
The purported cognitive benefits associated with nicotine and its metabolites in the brain are a matter of debate. In this review, the impact of the pharmacologically active metabolite of a nicotine derivative produced by bacteria named 6-hydroxy-L-nicotine (6HLN) on memory, oxidative stress, and the activity of the cholinergic system in the brain was examined. A search in the PubMed, Science Direct, Web of Science, and Google Scholar databases, limiting entries to those published between 1992 and 2023, was conducted. The search focused specifically on articles about nicotine metabolites, memory, oxidative stress, and cholinergic system activity, as well as enzymes or pathways related to nicotine degradation in bacteria. The preliminary search resulted in 696 articles, and following the application of exclusion criteria, 212 articles were deemed eligible for inclusion. This review focuses on experimental studies supporting nicotine catabolism in bacteria, and the chemical and pharmacological activities of nicotine and its metabolite 6HLN.
Collapse
Affiliation(s)
| | | | | | - Marius Mihasan
- BioActive Research Group, Department of Biology, Faculty of Biology, Alexandru Ioan Cuza University of Iasi, 700506 Iasi, Romania; (R.S.B.); (I.B.); (I.H.)
| | - Lucian Hritcu
- BioActive Research Group, Department of Biology, Faculty of Biology, Alexandru Ioan Cuza University of Iasi, 700506 Iasi, Romania; (R.S.B.); (I.B.); (I.H.)
| |
Collapse
|
4
|
Ivanova E, Osipova M, Vasilieva T, Eremkin A, Markova S, Zazhivihina E, Smirnova S, Mitrasov Y, Nasakin O. The Recycling of Substandard Rocket Fuel N,N-Dimethylhydrazine via the Involvement of Its Hydrazones Derived from Glyoxal, Acrolein, Metacrolein, Crotonaldehyde, and Formaldehyde in Organic Synthesis. Int J Mol Sci 2023; 24:17196. [PMID: 38139025 PMCID: PMC10742919 DOI: 10.3390/ijms242417196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/05/2023] [Accepted: 12/01/2023] [Indexed: 12/24/2023] Open
Abstract
"Heptil" (unsymmetrical dimethylhydrazine-UDMH) is extensively employed worldwide as a propellant for rocket engines. However, UDMH constantly loses its properties as a result of its continuous and uncontrolled absorption of moisture, which cannot be rectified. This situation threatens its long-term usability. UDMH is an exceedingly toxic compound (Hazard Class 1), which complicates its transportation and disposal. Incineration is currently the only method used for its disposal, but this process generates oxidation by-products that are even more toxic than the original UDMH. A more benign approach involves its immediate reaction with a formalin solution to form 1,1-dimethyl-2-methylene hydrazone (MDH), which is significantly less toxic by an order of magnitude. MDH can then be polymerized under acidic conditions, and the resulting product can be burned, yielding substantial amounts of nitrogen oxides. This review seeks to shift the focus of MDH from incineration towards its application in the synthesis of relatively non-toxic and readily available analogs of various pharmaceutical substances. We aim to bring the attention of the international chemical community to the distinctive properties of MDH, as well as other hydrazones (such as glyoxal, acrolein, crotonal, and meta-crolyl), wherein each structural fragment can initiate unique transformations that have potential applications in molecular design, pharmaceutical research, and medicinal chemistry.
Collapse
Affiliation(s)
- Elizaveta Ivanova
- Organic and Pharmaceutical Chemistry Department, Ulyanov Chuvash State University, Moskovsky Prospect, 15, 428015 Cheboksary, Russia; (E.I.); (M.O.); (T.V.); (A.E.); (S.M.); (E.Z.); (S.S.)
| | - Margarita Osipova
- Organic and Pharmaceutical Chemistry Department, Ulyanov Chuvash State University, Moskovsky Prospect, 15, 428015 Cheboksary, Russia; (E.I.); (M.O.); (T.V.); (A.E.); (S.M.); (E.Z.); (S.S.)
| | - Tatyana Vasilieva
- Organic and Pharmaceutical Chemistry Department, Ulyanov Chuvash State University, Moskovsky Prospect, 15, 428015 Cheboksary, Russia; (E.I.); (M.O.); (T.V.); (A.E.); (S.M.); (E.Z.); (S.S.)
| | - Alexey Eremkin
- Organic and Pharmaceutical Chemistry Department, Ulyanov Chuvash State University, Moskovsky Prospect, 15, 428015 Cheboksary, Russia; (E.I.); (M.O.); (T.V.); (A.E.); (S.M.); (E.Z.); (S.S.)
| | - Svetlana Markova
- Organic and Pharmaceutical Chemistry Department, Ulyanov Chuvash State University, Moskovsky Prospect, 15, 428015 Cheboksary, Russia; (E.I.); (M.O.); (T.V.); (A.E.); (S.M.); (E.Z.); (S.S.)
| | - Ekaterina Zazhivihina
- Organic and Pharmaceutical Chemistry Department, Ulyanov Chuvash State University, Moskovsky Prospect, 15, 428015 Cheboksary, Russia; (E.I.); (M.O.); (T.V.); (A.E.); (S.M.); (E.Z.); (S.S.)
| | - Svetlana Smirnova
- Organic and Pharmaceutical Chemistry Department, Ulyanov Chuvash State University, Moskovsky Prospect, 15, 428015 Cheboksary, Russia; (E.I.); (M.O.); (T.V.); (A.E.); (S.M.); (E.Z.); (S.S.)
| | - Yurii Mitrasov
- Organic and Pharmaceutical Chemistry Department, Yakovlev Chuvash State Pedagogical University, K. Marx Street, 38, 428000 Cheboksary, Russia;
| | - Oleg Nasakin
- Organic and Pharmaceutical Chemistry Department, Ulyanov Chuvash State University, Moskovsky Prospect, 15, 428015 Cheboksary, Russia; (E.I.); (M.O.); (T.V.); (A.E.); (S.M.); (E.Z.); (S.S.)
| |
Collapse
|
5
|
Bratu AM, Bojan M, Banita S, Petrus M, Popa C. NIR and THz spectroscopy: An experimental investigation toward nicotine-related devices. JOURNAL OF BIOPHOTONICS 2023; 16:e202300120. [PMID: 37260323 DOI: 10.1002/jbio.202300120] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/15/2023] [Accepted: 05/24/2023] [Indexed: 06/02/2023]
Abstract
This study examined the content of nicotine-delivery products using terahertz time-domain spectroscopy (THz-TDS) and breath ethylene investigated with CO2 laser photoacoustic spectroscopy (CO2 LPAS) system as a biomarker of oxidative stress after smoking. The THz-TDS method provided valuable information on the transmission spectra of tobacco and nicotine in smoking products. From the CO2 LPAS data it was observed that in cigarette (TC) smoking the mean breath ethylene was 687 parts per billion (ppb), while in electronic cigarettes and tobacco heating devices smoking the mean ethylene was 56 ppb and 48 ppb, respectively. The main finding was that TC showed higher transmission in the THz region producing a higher oxidative stress on the body.
Collapse
Affiliation(s)
- Ana-Maria Bratu
- National Institute for Laser, Plasma and Radiation Physics, Bucharest, PO, Romania
| | - Mihaela Bojan
- National Institute for Laser, Plasma and Radiation Physics, Bucharest, PO, Romania
| | - Stefan Banita
- National Institute for Laser, Plasma and Radiation Physics, Bucharest, PO, Romania
| | - Mioara Petrus
- National Institute for Laser, Plasma and Radiation Physics, Bucharest, PO, Romania
| | - Cristina Popa
- National Institute for Laser, Plasma and Radiation Physics, Bucharest, PO, Romania
| |
Collapse
|
6
|
Fernandes TP, Oliveira MEC, Silva GM, Santos NA. Improvement in visual performance after nicotine gum administration in tobacco use disorder: a case report. J Addict Dis 2022; 40:568-576. [PMID: 35264083 DOI: 10.1080/10550887.2021.2020045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Chronic tobacco consumption, identified as Tobacco Use Disorder (TUD), is a public health problem. We present a case report of a 37-year-old Brazilian male diagnosed with TUD at age 26, with no comorbidities, that presented visual improvements (i.e., lower thresholds and better discrimination) after nicotine gum administration. Here, we assessed contrast sensitivity and chromatic discrimination using the Metropsis and the Cambridge Colour Test, respectively. Results showed lower thresholds for both visual tasks after the use of nicotine gum. Even considering this is a single case report, our intent is to open new avenues for research involving smoking, addiction and the use of nicotine gum as a replacement tool or adjuvant tool for improvement of visual and/or cognitive processing. It is well known that nicotine gum has protective effects for some diseases, and improves some cognitive functions. However, unclear were its effects on visual processing of people with TUD.
Collapse
Affiliation(s)
- Thiago P Fernandes
- Perception, Neuroscience and Behaviour Lab, Federal University of Paraiba, Joao Pessoa, Brazil.,Department of Psychology, Federal University of Paraiba, Joao Pessoa, Brazil
| | - Milena E C Oliveira
- Perception, Neuroscience and Behaviour Lab, Federal University of Paraiba, Joao Pessoa, Brazil.,Department of Psychology, Federal University of Paraiba, Joao Pessoa, Brazil
| | - Gabriella M Silva
- Perception, Neuroscience and Behaviour Lab, Federal University of Paraiba, Joao Pessoa, Brazil.,Department of Psychology, Federal University of Paraiba, Joao Pessoa, Brazil
| | - Natanael A Santos
- Perception, Neuroscience and Behaviour Lab, Federal University of Paraiba, Joao Pessoa, Brazil.,Department of Psychology, Federal University of Paraiba, Joao Pessoa, Brazil
| |
Collapse
|
7
|
Tan X, Vrana K, Ding ZM. Cotinine: Pharmacologically Active Metabolite of Nicotine and Neural Mechanisms for Its Actions. Front Behav Neurosci 2021; 15:758252. [PMID: 34744656 PMCID: PMC8568040 DOI: 10.3389/fnbeh.2021.758252] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 09/27/2021] [Indexed: 11/17/2022] Open
Abstract
Tobacco use disorder continues to be a leading public health issue and cause of premature death in the United States. Nicotine is considered as the major tobacco alkaloid causing addiction through its actions on nicotinic acetylcholine receptors (nAChRs). Current pharmacotherapies targeting nicotine's effects produce only modest effectiveness in promoting cessation, highlighting the critical need for a better understanding of mechanisms of nicotine addiction to inform future treatments. There is growing interest in identifying potential contributions of non-nicotine components to tobacco reinforcement. Cotinine is a minor alkaloid, but the major metabolite of nicotine that can act as a weak agonist of nAChRs. Accumulating evidence indicates that cotinine produces diverse effects and may contribute to effects of nicotine. In this review, we summarize findings implicating cotinine as a neuroactive metabolite of nicotine and discuss available evidence regarding potential mechanisms underlying its effects. Preclinical findings reveal that cotinine crosses the blood brain barrier and interacts with both nAChRs and non-nAChRs in the nervous system, and produces neuropharmacological and behavioral effects. Clinical studies suggest that cotinine is psychoactive in humans. However, reviewing evidence regarding mechanisms underlying effects of cotinine provides a mixed picture with a lack of consensus. Therefore, more research is warranted in order to provide better insight into the actions of cotinine and its contribution to tobacco addiction.
Collapse
Affiliation(s)
- Xiaoying Tan
- Department of Anesthesiology & Perioperative Medicine, and Pharmacology, Pennsylvania State University College of Medicine, Hershey, PA, United States
| | - Kent Vrana
- Department of Pharmacology, Pennsylvania State University College of Medicine, Hershey, PA, United States
| | - Zheng-Ming Ding
- Department of Anesthesiology & Perioperative Medicine, and Pharmacology, Pennsylvania State University College of Medicine, Hershey, PA, United States
| |
Collapse
|
8
|
Iarkov A, Mendoza C, Echeverria V. Cholinergic Receptor Modulation as a Target for Preventing Dementia in Parkinson's Disease. Front Neurosci 2021; 15:665820. [PMID: 34616271 PMCID: PMC8488354 DOI: 10.3389/fnins.2021.665820] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 08/26/2021] [Indexed: 12/20/2022] Open
Abstract
Parkinson’s disease (PD) is a neurodegenerative condition characterized by the loss of dopaminergic neurons in the substantia nigra pars compacta (SNpc) in the midbrain resulting in progressive impairment in cognitive and motor abilities. The physiological and molecular mechanisms triggering dopaminergic neuronal loss are not entirely defined. PD occurrence is associated with various genetic and environmental factors causing inflammation and mitochondrial dysfunction in the brain, leading to oxidative stress, proteinopathy, and reduced viability of dopaminergic neurons. Oxidative stress affects the conformation and function of ions, proteins, and lipids, provoking mitochondrial DNA (mtDNA) mutation and dysfunction. The disruption of protein homeostasis induces the aggregation of alpha-synuclein (α-SYN) and parkin and a deficit in proteasome degradation. Also, oxidative stress affects dopamine release by activating ATP-sensitive potassium channels. The cholinergic system is essential in modulating the striatal cells regulating cognitive and motor functions. Several muscarinic acetylcholine receptors (mAChR) and nicotinic acetylcholine receptors (nAChRs) are expressed in the striatum. The nAChRs signaling reduces neuroinflammation and facilitates neuronal survival, neurotransmitter release, and synaptic plasticity. Since there is a deficit in the nAChRs in PD, inhibiting nAChRs loss in the striatum may help prevent dopaminergic neurons loss in the striatum and its pathological consequences. The nAChRs can also stimulate other brain cells supporting cognitive and motor functions. This review discusses the cholinergic system as a therapeutic target of cotinine to prevent cognitive symptoms and transition to dementia in PD.
Collapse
Affiliation(s)
- Alexandre Iarkov
- Laboratorio de Neurobiología, Facultad de Ciencias de la Salud, Universidad San Sebastián, Concepción, Chile
| | - Cristhian Mendoza
- Laboratorio de Neurobiología, Facultad de Ciencias de la Salud, Universidad San Sebastián, Concepción, Chile
| | - Valentina Echeverria
- Laboratorio de Neurobiología, Facultad de Ciencias de la Salud, Universidad San Sebastián, Concepción, Chile.,Research & Development Service, Bay Pines VA Healthcare System, Bay Pines, FL, United States
| |
Collapse
|
9
|
Fernandes TP, Almeida NL, Silva GM, Santos NA. Nicotine gum enhances visual processing in healthy nonsmokers. Brain Imaging Behav 2021; 15:2593-2605. [PMID: 33675460 DOI: 10.1007/s11682-021-00461-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/04/2021] [Indexed: 10/22/2022]
Abstract
OBJECTIVE The main purpose of this study was to investigate the isolated effects of nicotine on visual processing, namely contrast processing. METHODS Thirteen participants, aged 18-40 years, were enrolled in this double blind, randomized and pilot controlled trial involving nicotine gum administration (placebo, 2-mg and 4-mg doses). The participants' instruction was to detect the location of vertical gratings (0.2; 1.0; 3.3; 5.7; 8.8; 13.2 and 15.9 cycles per degree) when it was presented either left or right on the monitor screen. A repeated multivariate analysis of variance was conducted to analyse the results for the visual processing tasks. Bayesian analyses were also carried out considering maximum robustness to avoid bias. RESULTS The findings that nicotine gum administration resulted in better contrast discrimination when compared to placebo gum (p < .001). More specifically, the 4-mg resulted in better visual sensitivity when compared to the 2-mg (p < .01) and the placebo (p < .001) gum. Demographic data were not related to the outcomes. CONCLUSIONS These data bring the need for support the findings. If proved, it is possible that nicotine, in small doses, can have a potential therapeutic use for those populations with low vision. TRIAL REGISTRATION NUMBER RBR-46tjy3.
Collapse
Affiliation(s)
- Thiago P Fernandes
- Federal University of Paraiba, Joao Pessoa, Brazil. .,Perception, Neuroscience and Behaviour Laboratory, Federal University of Paraiba, Joao Pessoa, Brazil.
| | - Natalia L Almeida
- Federal University of Paraiba, Joao Pessoa, Brazil. .,Perception, Neuroscience and Behaviour Laboratory, Federal University of Paraiba, Joao Pessoa, Brazil.
| | - Gabriella M Silva
- Federal University of Paraiba, Joao Pessoa, Brazil.,Perception, Neuroscience and Behaviour Laboratory, Federal University of Paraiba, Joao Pessoa, Brazil
| | - Natanael A Santos
- Federal University of Paraiba, Joao Pessoa, Brazil.,Perception, Neuroscience and Behaviour Laboratory, Federal University of Paraiba, Joao Pessoa, Brazil
| |
Collapse
|
10
|
Boiangiu RS, Mihasan M, Gorgan DL, Stache BA, Hritcu L. Anxiolytic, Promnesic, Anti-Acetylcholinesterase and Antioxidant Effects of Cotinine and 6-Hydroxy-L-Nicotine in Scopolamine-Induced Zebrafish ( Danio rerio) Model of Alzheimer's Disease. Antioxidants (Basel) 2021; 10:212. [PMID: 33535660 PMCID: PMC7912787 DOI: 10.3390/antiox10020212] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/18/2021] [Accepted: 01/27/2021] [Indexed: 12/20/2022] Open
Abstract
Cotinine (COT) and 6-hydroxy-L-nicotine (6HLN) are two nicotinic derivatives that possess cognitive-improving abilities and antioxidant properties in different rodent models of Alzheimer's disease (AD), eluding the side-effects of nicotine (NIC), the parent molecule. In the current study, we evaluated the impact of COT and 6HLN on memory deterioration, anxiety, and oxidative stress in the scopolamine (SCOP)-induced zebrafish model of AD. For this, COT and 6HLN were acutely administered by immersion to zebrafish that were treated with SCOP before testing. The memory performances were assessed in Y-maze and object discrimination (NOR) tasks, while the anxiety-like behavior was evaluated in the novel tank diving test (NTT). The acetylcholinesterase (AChE) activity and oxidative stress were measured from brain samples. The RT-qPCR analysis was used to evaluate the npy, egr1, bdnf, and nrf2a gene expression. Our data indicated that both COT and 6HLN attenuated the SCOP-induced anxiety-like behavior and memory impairment and reduced the oxidative stress and AChE activity in the brain of zebrafish. Finally, RT-qPCR analysis indicated that COT and 6HLN increased the npy, egr1, bdnf, and nrf2a gene expression. Therefore, COT and 6HLN could be used as tools for improving AD conditions.
Collapse
Affiliation(s)
- Razvan Stefan Boiangiu
- Department of Biology, Faculty of Biology, Alexandru Ioan Cuza University of Iasi, 700506 Iasi, Romania; (M.M.); (D.L.G.); (B.A.S.)
| | | | | | | | - Lucian Hritcu
- Department of Biology, Faculty of Biology, Alexandru Ioan Cuza University of Iasi, 700506 Iasi, Romania; (M.M.); (D.L.G.); (B.A.S.)
| |
Collapse
|
11
|
Brooks AC, Henderson BJ. Systematic Review of Nicotine Exposure's Effects on Neural Stem and Progenitor Cells. Brain Sci 2021; 11:172. [PMID: 33573081 PMCID: PMC7912116 DOI: 10.3390/brainsci11020172] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 01/22/2021] [Accepted: 01/24/2021] [Indexed: 12/24/2022] Open
Abstract
While various modalities of chronic nicotine use have been associated with numerous negative consequences to human health, one possible benefit of nicotine exposure has been uncovered. The discovery of an inverse correlation between smoking and Parkinson's disease, and later Alzheimer's disease as well, motivated investigation of nicotine as a neuroprotective agent. Some studies have demonstrated that nicotine elicits improvements in cognitive function. The hippocampus, along with the subventricular zone (SVZ), is a distinct brain region that allow for ongoing postnatal neurogenesis throughout adulthood and plays a major role in certain cognitive behaviors like learning and memory. Therefore, one hypothesis underlying nicotine-induced neuroprotection is possible effects on neural stem cells and neural precursor cells. On the other hand, nicotine withdrawal frequently leads to cognitive impairments, particularly in hippocampal-dependent behaviors, possibly suggesting an impairment of hippocampal neurogenesis with nicotine exposure. This review discusses the current body of evidence on nicotine's effects on neural stem cells and neural progenitors. Changes in neural stem cell proliferation, survival, intracellular dynamics, and differentiation following acute and chronic nicotine exposure are examined.
Collapse
Affiliation(s)
- Arrin C. Brooks
- Department of Biomedical Science, Joan C Edwards School of Medicine, Marshall University, Huntington, WV 25545, USA;
| | | |
Collapse
|
12
|
Developmental impaired Akt signaling in the Shank1 and Shank3 double knock-out mice. Mol Psychiatry 2021; 26:1928-1944. [PMID: 33402706 PMCID: PMC8440179 DOI: 10.1038/s41380-020-00979-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 11/23/2020] [Accepted: 12/01/2020] [Indexed: 01/30/2023]
Abstract
Human mutations and haploinsufficiency of the SHANK family genes are associated with autism spectrum disorders (ASD) and intellectual disability (ID). Complex phenotypes have been also described in all mouse models of Shank mutations and deletions, consistent with the heterogeneity of the human phenotypes. However, the specific role of Shank proteins in synapse and neuronal functions remain to be elucidated. Here, we generated a new mouse model to investigate how simultaneously deletion of Shank1 and Shank3 affects brain development and behavior in mice. Shank1-Shank3 DKO mice showed a low survival rate, a developmental strong reduction in the activation of intracellular signaling pathways involving Akt, S6, ERK1/2, and eEF2 during development and a severe behavioral impairments. Our study suggests that Shank1 and Shank3 proteins are essential to developmentally regulate the activation of Akt and correlated intracellular pathways crucial for mammalian postnatal brain development and synaptic plasticity. Therefore, Akt function might represent a new therapeutic target for enhancing cognitive abilities of syndromic ASD patients.
Collapse
|
13
|
Lin SX, Curtis MA, Sperry J. Pyridine alkaloids with activity in the central nervous system. Bioorg Med Chem 2020; 28:115820. [PMID: 33120080 PMCID: PMC7561606 DOI: 10.1016/j.bmc.2020.115820] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 09/27/2020] [Accepted: 10/05/2020] [Indexed: 12/29/2022]
Abstract
This review discusses all pyridine alkaloids with CNS activity, their therapeutic potential, and the interesting array of sources whence they originate.
Collapse
Affiliation(s)
- Simon X Lin
- School of Chemical Sciences, University of Auckland, Auckland, New Zealand
| | - Maurice A Curtis
- Centre for Brain Research, University of Auckland, Auckland, New Zealand; Department of Anatomy and Medical Imaging, University of Auckland, Auckland, New Zealand
| | - Jonathan Sperry
- School of Chemical Sciences, University of Auckland, Auckland, New Zealand.
| |
Collapse
|
14
|
Does a hypoxic injury from a non-fatal overdose lead to an Alzheimer Disease? Neurochem Int 2020; 143:104936. [PMID: 33309980 DOI: 10.1016/j.neuint.2020.104936] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 11/21/2020] [Accepted: 12/07/2020] [Indexed: 12/12/2022]
Abstract
Long term consequence of non-fatal overdose in people who use opioids are not well understood. The intermittent exposure to non-fatal overdose leads to a tauopathy that is often accompanied by abrogated neuroprotective response, abnormal amyloid processing and other pathologies. The scope and limitations of available literature are discussed including neuropathologies associated with opioid and overdose exposures, contributing comorbidities and proteinopathies. Contrasting postmortem data of overdose victims with animal models of opioid neuropathologies and hypoxic injury paints a picture distinct from other proteinopathies as well as effects of moderate opioid exposure. Furthermore the reported biochemical changes and potential targets for therapeutic intervention were mapped pointing to underlying imbalance between tau kinases and phosphatases that is characteristic of Alzheimer Disease.
Collapse
|
15
|
Boiangiu RS, Mihasan M, Gorgan DL, Stache BA, Petre BA, Hritcu L. Cotinine and 6-Hydroxy-L-Nicotine Reverses Memory Deficits and Reduces Oxidative Stress in Aβ 25-35-Induced Rat Model of Alzheimer's Disease. Antioxidants (Basel) 2020; 9:E768. [PMID: 32824768 PMCID: PMC7465470 DOI: 10.3390/antiox9080768] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 08/08/2020] [Accepted: 08/13/2020] [Indexed: 12/15/2022] Open
Abstract
The nicotinic derivatives, cotinine (COT), and 6-hydroxy-L-nicotine (6HLN), showed promising cognitive-improving effects without exhibiting the nicotine's side-effects. Here, we investigated the impact of COT and 6HLN on memory impairment and the oxidative stress in the Aβ25-35-induced rat model of Alzheimer's disease (AD). COT and 6HLN were chronically administered to Aβ25-35-treated rats, and their memory performances were assessed using in vivo tasks (Y-maze, novel object recognition, and radial arm maze). By using in silico tools, we attempted to associate the behavioral outcomes with the calculated binding potential of these nicotinic compounds in the allosteric sites of α7 and α4β2 subtypes of the nicotinic acetylcholine receptors (nAChRs). The oxidative status and acetylcholinesterase (AChE) activity were determined from the hippocampal tissues. RT-qPCR assessed bdnf, arc, and il-1β mRNA levels. Our data revealed that COT and 6HLN could bind to α7 and α4β2 nAChRs with similar or even higher affinity than nicotine. Consequently, the treatment exhibited a pro-cognitive, antioxidant, and anti-AChE profile in the Aβ25-35-induced rat model of AD. Finally, RT-qPCR analysis revealed that COT and 6HLN positively modulated the bdnf, arc, and il-1β genes expression. Therefore, these nicotinic derivatives that act on the cholinergic system might represent a promising choice to ameliorate AD conditions.
Collapse
Affiliation(s)
- Razvan Stefan Boiangiu
- Department of Biology, Faculty of Biology, Alexandru Ioan Cuza University of Iasi, 700506 Iasi, Romania; (R.S.B.); (M.M.); (D.L.G.); (B.A.S.)
| | - Marius Mihasan
- Department of Biology, Faculty of Biology, Alexandru Ioan Cuza University of Iasi, 700506 Iasi, Romania; (R.S.B.); (M.M.); (D.L.G.); (B.A.S.)
| | - Dragos Lucian Gorgan
- Department of Biology, Faculty of Biology, Alexandru Ioan Cuza University of Iasi, 700506 Iasi, Romania; (R.S.B.); (M.M.); (D.L.G.); (B.A.S.)
| | - Bogdan Alexandru Stache
- Department of Biology, Faculty of Biology, Alexandru Ioan Cuza University of Iasi, 700506 Iasi, Romania; (R.S.B.); (M.M.); (D.L.G.); (B.A.S.)
- Center for Fundamental Research and Experimental Development in Translation Medicine—TRANSCEND, Regional Institute of Oncology, 700483 Iasi, Romania;
| | - Brindusa Alina Petre
- Center for Fundamental Research and Experimental Development in Translation Medicine—TRANSCEND, Regional Institute of Oncology, 700483 Iasi, Romania;
- Department of Chemistry, Faculty of Chemistry, Alexandru Ioan Cuza University of Iasi, 700506 Iasi, Romania
| | - Lucian Hritcu
- Department of Biology, Faculty of Biology, Alexandru Ioan Cuza University of Iasi, 700506 Iasi, Romania; (R.S.B.); (M.M.); (D.L.G.); (B.A.S.)
| |
Collapse
|
16
|
Sadigh-Eteghad S, Vatandoust SM, Mahmoudi J, Rahigh Aghsan S, Majdi A. Cotinine ameliorates memory and learning impairment in senescent mice. Brain Res Bull 2020; 164:65-74. [PMID: 32818583 DOI: 10.1016/j.brainresbull.2020.08.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 07/29/2020] [Accepted: 08/10/2020] [Indexed: 10/23/2022]
Abstract
This study aimed to assess the effects of cotinine on age-induced memory and learning impairment and related downstream pathways in mice. Thirty aged (18-month old) and 10 young mice (8-week old) were randomly divided into 4 groups (n = 10 each) and subjected to cotinine at 5 mg/kg dose and/or methyllycaconitine (MLA) at 1 mg/kg, i.p. dose (α7 nAChRs antagonist) for 4 weeks. Morris water maze (MWM) and novel object recognition (NOR) tasks were used to assess spatial and recognition learning and memories of the mice, respectively. Levels of oxidative stress, apoptosis, neuroinflammation, and structural synaptic plasticity, and also neurotrophic factors and α7 nAChRs were assessed in the hippocampus using either ELISA or Western blotting. Aging was associated with learning and memory disabilities and dysregulation of the assessed pathways in the hippocampus of mice. Chronic cotinine treatment improved learning and memory in aged animals, indicated by decreased latency time, and increased time spent in the target quadrant and discrimination index (DI) in the MWM and NOR tasks. Also, chronic cotinine injection increased total antioxidant capacity (TAC), SOD and GSH-px activity, PSD-95, GAP-43, SYN, brain-derived neurotrophic factor, and neural growth factor levels and decreased malondialdehyde, TNF-α, and IL-1β in the hippocampus of aged mice. Conversely, MLA treatment reversed most of the mentioned effects via the blockade of α7 nAChRs. Cotinine improves age-induced memory and learning impairment via its modulatory effects on α7 nAChRs and subsequent activation/deactivation of the mentioned pathways in the hippocampus of aged mice.
Collapse
Affiliation(s)
- Saeed Sadigh-Eteghad
- Neurosciences Research Center (NSRC), Tabriz University of Medical Sciences, Tabriz, Iran
| | - Seyed Mehdi Vatandoust
- Neurosciences Research Center (NSRC), Tabriz University of Medical Sciences, Tabriz, Iran
| | - Javad Mahmoudi
- Neurosciences Research Center (NSRC), Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sepideh Rahigh Aghsan
- Department of Clinical Pharmacy, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Alireza Majdi
- Neurosciences Research Center (NSRC), Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
17
|
Elsonbaty SM, Ismail AFM. Nicotine encourages oxidative stress and impairment of rats' brain mitigated by Spirulina platensis lipopolysaccharides and low-dose ionizing radiation. Arch Biochem Biophys 2020; 689:108382. [PMID: 32343976 DOI: 10.1016/j.abb.2020.108382] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Revised: 04/04/2020] [Accepted: 04/17/2020] [Indexed: 12/20/2022]
Abstract
Nicotine is a psychoactive alkaloid of tobacco, which is ingested during cigarettes or electronic cigarette smoking. Extensive consumption of nicotine induced oxidative stress. Accordingly, it is implicated in many pathophysiology brain disorders and triggers neurodegeneration. In this study, we investigated the protective role of Spirulina platensis-lipopolysaccharides (S.LPS) and the low dose-ionizing radiation (LD-IR) against the induced neurotoxicity in the rats' brain due to the prolonged administration of high nicotine levels. Rats treated with nicotine for two months showed alterations in the oxidative stress markers (malondialdehyde (MDA), reduced glutathione (GSH) and oxidized glutathione disulfide (GSSG)), antioxidant enzymes (superoxide dismutase (SOD), catalase (Cat), glutathione enzymes (GPx and GST)) as well as several pro-inflammatory markers (Tumor Necrosis Factor-alpha (TNF-α), Interleukin-17 (IL-17), and Nuclear Factor-kappa B (NF-κB)), and induced apoptosis through Caspase-3 activity. Nicotine also upregulated the mRNA gene expression of cytochrome P450 enzymes (CYP2B1 and CYP2E1), Cyclin-dependent kinase 5 (CDK5), Toll-Like Receptor 4 (TLR4), and phospho-Tau (p-Tau) protein expression. Besides, it downregulated the alpha-7 nicotinic receptor (α7nAChR) mRNA gene expression accompanied by a decline in the calcium (Ca2+) level. S.LPS exhibited antioxidant, anti-inflammatory, anti-apoptotic and neuroprotective activities, which counteracting the detrimental effects of chronic nicotine administration. LD-IR demonstrated comparable effects to S.LPS. Exposure of rats to LD-IR enhanced the neuroprotective effects of S.LPS against nicotine toxicity. The light microscopic examination of the brain tissues was in agreement with the biochemical investigations. These findings display that S.LPS and LD-IR mitigated the oxidative stress and the impairment of rats' brain induced by nicotine, due to regulation of the mRNA gene expression of cytochrome P450 enzymes (CYP2B1 and CYP2E1) and the signaling pathway of Tau protein phosphorylation.
Collapse
Affiliation(s)
- Sawsan M Elsonbaty
- Radiation Microbiology Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Ahmed El-Zomor St. 3, El-Zohoor Dist., Nasr City, 11787, Cairo, Egypt
| | - Amel F M Ismail
- Drug Radiation Research Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Ahmed El-Zomor St. 3, El-Zohoor Dist., Nasr City, 11787, Cairo, Egypt.
| |
Collapse
|
18
|
Rojas-Rodríguez F, Morantes C, Pinzón A, Barreto GE, Cabezas R, Mariño-Ramírez L, González J. Machine Learning Neuroprotective Strategy Reveals a Unique Set of Parkinson Therapeutic Nicotine Analogs. THE OPEN BIOINFORMATICS JOURNAL 2020; 13:1-14. [PMID: 33927788 PMCID: PMC8081347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
AIMS Present a novel machine learning computational strategy to predict the neuroprotection potential of nicotine analogs acting over the behavior of unpaired signaling pathways in Parkinson's disease. BACKGROUND Dopaminergic replacement has been used for Parkinson's Disease (PD) treatment with positive effects on motor symptomatology but low progression and prevention effects. Epidemiological studies have shown that nicotine consumption decreases PD prevalence through neuroprotective mechanisms activation associated with the overstimulation of signaling pathways (SP) such as PI3K/AKT through nicotinic acetylcholine receptors (e.g α7 nAChRs) and over-expression of anti-apoptotic genes such as Bcl-2. Nicotine analogs with similar neuroprotective activity but decreased secondary effects remain as a promissory field. OBJECTIVE The objective of this study is to develop an interdisciplinary computational strategy predicting the neuroprotective activity of a series of 8 novel nicotine analogs over Parkinson's disease. METHODS We present a computational strategy integrating structural bioinformatics, SP manual reconstruction, and deep learning to predict the potential neuroprotective activity of 8 novel nicotine analogs over the behavior of PI3K/AKT. We performed a protein-ligand analysis between nicotine analogs and α7 nAChRs receptor using geometrical conformers, physicochemical characterization of the analogs and developed manually curated neuroprotective datasets to analyze their potential activity. Additionally, we developed a predictive machine-learning model for neuroprotection in PD through the integration of Markov Chain Monte-Carlo transition matrix for the 2 SP with synthetic training datasets of the physicochemical properties and structural dataset. RESULTS Our model was able to predict the potential neuroprotective activity of seven new nicotine analogs based on the binomial Bcl-2 response regulated by the activation of PI3K/AKT. CONCLUSION Hereby, we present a robust novel strategy to assess the neuroprotective potential of biomolecules based on SP architecture. Our theoretical strategy can be further applied to the study of new treatments related to SP deregulation and may ultimately offer new opportunities for therapeutic interventions in neurodegenerative diseases.
Collapse
Affiliation(s)
- Felipe Rojas-Rodríguez
- Departamento de Nutrición y Bioquímica, Pontificia Universidad Javeriana. Bogotá D.C, Republic of Colombia
| | - Carlos Morantes
- Departamento de Biología, Universidad Nacional de Colombia. Bogotá, Republic of Colombia
| | - Andrés Pinzón
- Instituto de Genética, Universidad Nacional de Colombia, Bogotá, Republic of Colombia
| | - George E. Barreto
- Department of Biological Sciences, University of Limerick, Limerick, Ireland
| | - Ricardo Cabezas
- Departamento de Nutrición y Bioquímica, Pontificia Universidad Javeriana. Bogotá D.C, Republic of Colombia
| | - Leonardo Mariño-Ramírez
- National Center for Biotechnology Information, National Library of Medicine, National Institute of Health, 8600 Rockville Pike, Bethesda, MD 20894, USA
| | - Janneth González
- Departamento de Nutrición y Bioquímica, Pontificia Universidad Javeriana. Bogotá D.C, Republic of Colombia
| |
Collapse
|
19
|
Iarkov A, Barreto GE, Grizzell JA, Echeverria V. Strategies for the Treatment of Parkinson's Disease: Beyond Dopamine. Front Aging Neurosci 2020; 12:4. [PMID: 32076403 PMCID: PMC7006457 DOI: 10.3389/fnagi.2020.00004] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 01/09/2020] [Indexed: 12/11/2022] Open
Abstract
Parkinson’s disease (PD) is the second-leading cause of dementia and is characterized by a progressive loss of dopaminergic neurons in the substantia nigra alongside the presence of intraneuronal α-synuclein-positive inclusions. Therapies to date have been directed to the restoration of the dopaminergic system, and the prevention of dopaminergic neuronal cell death in the midbrain. This review discusses the physiological mechanisms involved in PD as well as new and prospective therapies for the disease. The current data suggest that prevention or early treatment of PD may be the most effective therapeutic strategy. New advances in the understanding of the underlying mechanisms of PD predict the development of more personalized and integral therapies in the years to come. Thus, the development of more reliable biomarkers at asymptomatic stages of the disease, and the use of genetic profiling of patients will surely permit a more effective treatment of PD.
Collapse
Affiliation(s)
- Alexandre Iarkov
- Laboratorio de Neurobiología, Facultad de Ciencias de la Salud, Universidad San Sebastián, Concepción, Chile
| | - George E Barreto
- Department of Biological Sciences, University of Limerick, Limerick, Ireland.,Health Research Institute, University of Limerick, Limerick, Ireland
| | - J Alex Grizzell
- Department of Psychology and Neuroscience, Center for Neuroscience, University of Colorado, Boulder, CO, United States
| | - Valentina Echeverria
- Laboratorio de Neurobiología, Facultad de Ciencias de la Salud, Universidad San Sebastián, Concepción, Chile.,Research & Development Service, Bay Pines VA Healthcare System, Bay Pines, FL, United States
| |
Collapse
|
20
|
Phelps BJ, Miller TM, Arens H, Hutchinson T, Lang KA, Muckey LM, Thompson N, Stanage S, Rahman S, Rawls SM. Preliminary evidence from planarians that cotinine establishes a conditioned place preference. Neurosci Lett 2019. [DOI: https://doi.org/10.1016/j.neulet.2019.03.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
21
|
Phelps BJ, Miller TM, Arens H, Hutchinson T, Lang KA, Muckey LM, Thompson N, Stanage S, Rahman S, Rawls SM. Preliminary evidence from planarians that cotinine establishes a conditioned place preference. Neurosci Lett 2019; 703:145-148. [PMID: 30890472 DOI: 10.1016/j.neulet.2019.03.024] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 03/12/2019] [Accepted: 03/13/2019] [Indexed: 02/03/2023]
Abstract
While the psychoactive stimulant nicotine has been the subject of extensive research, considerably less attention has focused on other compounds found in either tobacco smoke or that are nicotine metabolites. Recent papers have suggested that some of the compounds in question may either alter nicotine's effects or have reinforcing properties themselves, although they would only be experienced after consumption of tobacco. The potential for these compounds to function as reinforcers or to potentiate the reinforcing properties of nicotine merits investigation. To pursue this line of inquiry, we examined cotinine in a planarian model of environmental place preference. In the present study, planarians demonstrated that the compound cotinine, which is present in tobacco smoke, and is also the principal nicotine metabolite, establishes a conditioned place preference. These data represent the first ever demonstration that cotinine will establish a conditioned place preference in planarians and possibly contribute to the addictive properties of nicotine.
Collapse
Affiliation(s)
- Brady J Phelps
- Department of Psychology, Hansen Hall 029, 670A, South Dakota State University, Brookings, SD, 57007, United States.
| | - Tyler M Miller
- Department of Psychology, Hansen Hall 029, 670A, South Dakota State University, Brookings, SD, 57007, United States.
| | - Heath Arens
- Department of Psychology, Hansen Hall 029, 670A, South Dakota State University, Brookings, SD, 57007, United States
| | - Tayler Hutchinson
- Department of Psychology, Hansen Hall 029, 670A, South Dakota State University, Brookings, SD, 57007, United States
| | - Kaitlyn A Lang
- Department of Psychology, Hansen Hall 029, 670A, South Dakota State University, Brookings, SD, 57007, United States
| | - Linda M Muckey
- Department of Behavior Analysis and Therapy, Rehabilitation Institute, Southern Illinois University in Carbondale, Rehn Hall 1025 Lincoln Drive, Mail Code 4609, Carbondale, IL, 62901, United States.
| | - Nicholas Thompson
- Department of Psychology, Hansen Hall 029, 670A, South Dakota State University, Brookings, SD, 57007, United States
| | - Steven Stanage
- Department of Psychology, Hansen Hall 029, 670A, South Dakota State University, Brookings, SD, 57007, United States
| | - Shafiqur Rahman
- Department of Pharmaceutical Sciences, South Dakota State University SAV 265, Box 2202C, Brookings, SD, 57007, United States.
| | - Scott M Rawls
- Department of Pharmaceutical Sciences, Temple University, Lewis Katz School of Medicine, Medicine Education and Research Building, 3500 N. Broad Street, Philadelphia, PA, 19140, United States.
| |
Collapse
|
22
|
Alkadhi KA. Neuroprotective Effects of Nicotine on Hippocampal Long-Term Potentiation in Brain Disorders. J Pharmacol Exp Ther 2018; 366:498-508. [PMID: 29914875 DOI: 10.1124/jpet.118.247841] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2018] [Accepted: 05/23/2018] [Indexed: 08/30/2023] Open
Abstract
Long-term potentiation (LTP) is commonly considered the cellular correlate of learning and memory. In learning and memory impairments, LTP is invariably diminished in the hippocampus, the brain region responsible for memory formation. LTP is measured electrophysiologically in various areas of the hippocampus. Two mechanistically distinct phases of LTP have been identified: early phase LTP, related to short-term memory; and late-phase LTP, related to long-term memory. These two forms can be severely reduced in a variety of conditions but can be rescued by treatment with nicotine. This report reviews the literature on the beneficial effect of nicotine on LTP in conditions that compromise learning and memory.
Collapse
Affiliation(s)
- Karim A Alkadhi
- Professor of Pharmacology, Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas
| |
Collapse
|
23
|
Kim H, Han H. Computer-Aided Multi-Target Management of Emergent Alzheimer's Disease. Bioinformation 2018; 14:167-180. [PMID: 29983487 PMCID: PMC6016757 DOI: 10.6026/97320630014167] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 04/29/2018] [Accepted: 04/30/2018] [Indexed: 12/13/2022] Open
Abstract
Alzheimer's disease (AD) represents an enormous global health burden in terms of human suffering and economic cost. AD management requires a shift from the prevailing paradigm targeting pathogenesis to design and develop effective drugs with adequate success in clinical trials. Therefore, it is of interest to report a review on amyloid beta (Aβ) effects and other multi-targets including cholinesterase, NFTs, tau protein and TNF associated with brain cell death to be neuro-protective from AD. It should be noted that these molecules have been generated either by target-based or phenotypic methods. Hence, the use of recent advancements in nanomedicine and other natural compounds screening tools as a feasible alternative for circumventing specific liabilities is realized. We review recent developments in the design and identification of neuro-degenerative compounds against AD generated using current advancements in computational multi-target modeling algorithms reflected by theragnosis (combination of diagnostic tests and therapy) concern.
Collapse
Affiliation(s)
- Hyunjo Kim
- Department of Medical Informatics, Ajou Medical University Hospital, Suwon, Kyeounggido province, South Korea
| | - Hyunwook Han
- Department of Informatics, School of Medicine, CHA University, Seongnam, South Korea
- Institute of Basic Medical Sciences, School of Medicine, CHA University, Seongnam, South Korea
| |
Collapse
|
24
|
Mendoza C, Barreto GE, Iarkov A, Tarasov VV, Aliev G, Echeverria V. Cotinine: A Therapy for Memory Extinction in Post-traumatic Stress Disorder. Mol Neurobiol 2018; 55:6700-6711. [PMID: 29335846 DOI: 10.1007/s12035-018-0869-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Accepted: 01/07/2018] [Indexed: 12/14/2022]
Abstract
Post-traumatic stress disorder (PTSD) is a mental disorder that may develop after exposure to exceptionally threatening or unescapable horrifying events. Actual therapies fail to alleviate the emotional suffering and cognitive impairment associated with this disorder, mostly because they are ineffective in treating the failure to extinguish trauma memories in a great percentage of those affected. In this review, current behavioral, cellular, and molecular evidence supporting the use of cotinine for treating PTSD are reviewed. The role of the positive modulation by cotinine of the nicotinic acetylcholine receptors (nAChRs) and their downstream effectors, the protection of astroglia, and the inhibition of microglia in the PTSD brain are also discussed.
Collapse
Affiliation(s)
- Cristhian Mendoza
- Facultad de Ciencias de la Salud, Universidad San Sebastián, Lientur 1457, 4030000, Concepción, Chile
| | - George E Barreto
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá D.C., Colombia.,Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, Santiago, Chile
| | - Alexandre Iarkov
- Facultad de Ciencias de la Salud, Universidad San Sebastián, Lientur 1457, 4030000, Concepción, Chile
| | - Vadim V Tarasov
- Institute of Pharmacy and Translational Medicine, Sechenov First Moscow State Medical University, 119991, Moscow, Russia
| | - Gjumrakch Aliev
- Institute of Physiologically Active Compounds of the Russian Academy of Sciences, Severniy Proezd, Chernogolovka, Moscow Region, 1142432, Russia. .,"GALLY" International Biomedical Research Consulting LLC, San Antonio, TX, 78229, USA. .,School of Health Sciences and Healthcare Administration, University of Atlanta, Johns Creek, GA, 30097, USA.
| | - Valentina Echeverria
- Facultad de Ciencias de la Salud, Universidad San Sebastián, Lientur 1457, 4030000, Concepción, Chile. .,Bay Pines VA Healthcare System, Research and Development, Bay Pines, FL, 33744, USA.
| |
Collapse
|
25
|
Wallin C, Sholts SB, Österlund N, Luo J, Jarvet J, Roos PM, Ilag L, Gräslund A, Wärmländer SKTS. Alzheimer's disease and cigarette smoke components: effects of nicotine, PAHs, and Cd(II), Cr(III), Pb(II), Pb(IV) ions on amyloid-β peptide aggregation. Sci Rep 2017; 7:14423. [PMID: 29089568 PMCID: PMC5663743 DOI: 10.1038/s41598-017-13759-5] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 09/05/2017] [Indexed: 12/14/2022] Open
Abstract
Cigarette smoking is a significant risk factor for Alzheimer's disease (AD), which is associated with extracellular brain deposits of amyloid plaques containing aggregated amyloid-β (Aβ) peptides. Aβ aggregation occurs via multiple pathways that can be influenced by various compounds. Here, we used AFM imaging and NMR, fluorescence, and mass spectrometry to monitor in vitro how Aβ aggregation is affected by the cigarette-related compounds nicotine, polycyclic aromatic hydrocarbons (PAHs) with one to five aromatic rings, and the metal ions Cd(II), Cr(III), Pb(II), and Pb(IV). All PAHs and metal ions modulated the Aβ aggregation process. Cd(II), Cr(III), and Pb(II) ions displayed general electrostatic interactions with Aβ, whereas Pb(IV) ions showed specific transient binding coordination to the N-terminal Aβ segment. Thus, Pb(IV) ions are especially prone to interact with Aβ and affect its aggregation. While Pb(IV) ions affected mainly Aβ dimer and trimer formation, hydrophobic toluene mainly affected formation of larger aggregates such as tetramers. The uncharged and hydrophilic nicotine molecule showed no direct interactions with Aβ, nor did it affect Aβ aggregation. Our Aβ interaction results suggest a molecular rationale for the higher AD prevalence among smokers, and indicate that certain forms of lead in particular may constitute an environmental risk factor for AD.
Collapse
Affiliation(s)
- Cecilia Wallin
- Department of Biochemistry and Biophysics, Arrhenius Laboratories, Stockholm University, 106 91, Stockholm, Sweden
| | - Sabrina B Sholts
- Department of Anthropology, National Museum of Natural History, Smithsonian Institution, Washington, DC, USA
| | - Nicklas Österlund
- Department of Biochemistry and Biophysics, Arrhenius Laboratories, Stockholm University, 106 91, Stockholm, Sweden
- Department of Environmental Science and Analytical Chemistry, Arrhenius Laboratories, Stockholm University, 106 91, Stockholm, Sweden
| | - Jinghui Luo
- Chemical Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford Ox, 1 3TA, UK
| | - Jüri Jarvet
- Department of Biochemistry and Biophysics, Arrhenius Laboratories, Stockholm University, 106 91, Stockholm, Sweden
- The National Institute of Chemical Physics and Biophysics, Tallinn, Estonia
| | - Per M Roos
- Institute of Environmental Medicine, Karolinska Institutet, Nobels väg 13, 171 77, Stockholm, Sweden
- Department of Clinical Physiology, Capio St.Göran Hospital, St.Göransplan 1, 112 19, Stockholm, Sweden
| | - Leopold Ilag
- Department of Environmental Science and Analytical Chemistry, Arrhenius Laboratories, Stockholm University, 106 91, Stockholm, Sweden
| | - Astrid Gräslund
- Department of Biochemistry and Biophysics, Arrhenius Laboratories, Stockholm University, 106 91, Stockholm, Sweden
| | - Sebastian K T S Wärmländer
- Department of Biochemistry and Biophysics, Arrhenius Laboratories, Stockholm University, 106 91, Stockholm, Sweden.
| |
Collapse
|
26
|
Perez-Urrutia N, Mendoza C, Alvarez-Ricartes N, Oliveros-Matus P, Echeverria F, Grizzell JA, Barreto GE, Iarkov A, Echeverria V. Intranasal cotinine improves memory, and reduces depressive-like behavior, and GFAP + cells loss induced by restraint stress in mice. Exp Neurol 2017. [DOI: 10.1016/j.expneurol.2017.06.016] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
27
|
Gao J, Naughton SX, Beck WD, Hernandez CM, Wu G, Wei Z, Yang X, Bartlett MG, Terry AV. Chlorpyrifos and chlorpyrifos oxon impair the transport of membrane bound organelles in rat cortical axons. Neurotoxicology 2017; 62:111-123. [PMID: 28600141 DOI: 10.1016/j.neuro.2017.06.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Revised: 06/02/2017] [Accepted: 06/02/2017] [Indexed: 01/13/2023]
Abstract
Chlorpyrifos (CPF) is an extensively used organophosphorus pesticide that has recently come under increasing scrutiny due to environmental health concerns particularly its association with neurodevelopmental defects. While the insecticidal actions and acute toxicity of CPF are attributed to its oxon metabolite (CPO) which potently inhibits the cholinergic enzyme acetylcholinesterase (AChE), there is significant evidence that CPF, CPO, and other organophosphates may affect a variety of neuronal targets and processes that are not directly related to AChE. Previously, in adult rat sciatic nerves ex vivo and postnatal neurons from rats in vitro we observed that CPF and CPO impaired the movements of vesicles and mitochondria in axons. Here, in embryonic neurons from rats in culture, we evaluated 24h exposures to CPF and CPO across picomolar to micromolar concentrations for effects on fast axonal transport of membrane bound organelles (MBOs) that contained the amyloid precursor protein (APP) tagged with the fluorescent marker, Dendra2 (APPDendra2). The most notable observations of this study were concentration-dependent decreases in the velocity and percentage of MBOs moving in the anterograde direction, an increase in the number of stationary MBOs, and an increased frequency of pauses associated with both CPF and CPO. These effects occurred at concentrations that did not significantly inhibit AChE activity, they were not blocked by cholinergic receptor antagonists, and they were not associated with compromised cell viability. These effects of CPF and CPO may be significant given the importance of axonal transport to neuronal development as well the function of fully developed neurons.
Collapse
Affiliation(s)
- Jie Gao
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, 30912, Georgia
| | - Sean X Naughton
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, 30912, Georgia
| | - Wayne D Beck
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, 30912, Georgia
| | - Caterina M Hernandez
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, 30912, Georgia
| | - Guangyu Wu
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, 30912, Georgia
| | - Zhe Wei
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, 30912, Georgia
| | - Xiangkun Yang
- Department of Pharmaceutical and Biomedical Sciences, The University of Georgia College of Pharmacy, 250 W. Green Street, Athens, 30602, Georgia
| | - Michael G Bartlett
- Department of Pharmaceutical and Biomedical Sciences, The University of Georgia College of Pharmacy, 250 W. Green Street, Athens, 30602, Georgia
| | - Alvin V Terry
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, 30912, Georgia.
| |
Collapse
|
28
|
Ardura-Fabregat A, Boddeke EWGM, Boza-Serrano A, Brioschi S, Castro-Gomez S, Ceyzériat K, Dansokho C, Dierkes T, Gelders G, Heneka MT, Hoeijmakers L, Hoffmann A, Iaccarino L, Jahnert S, Kuhbandner K, Landreth G, Lonnemann N, Löschmann PA, McManus RM, Paulus A, Reemst K, Sanchez-Caro JM, Tiberi A, Van der Perren A, Vautheny A, Venegas C, Webers A, Weydt P, Wijasa TS, Xiang X, Yang Y. Targeting Neuroinflammation to Treat Alzheimer's Disease. CNS Drugs 2017; 31:1057-1082. [PMID: 29260466 PMCID: PMC5747579 DOI: 10.1007/s40263-017-0483-3] [Citation(s) in RCA: 167] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Over the past few decades, research on Alzheimer's disease (AD) has focused on pathomechanisms linked to two of the major pathological hallmarks of extracellular deposition of beta-amyloid peptides and intra-neuronal formation of neurofibrils. Recently, a third disease component, the neuroinflammatory reaction mediated by cerebral innate immune cells, has entered the spotlight, prompted by findings from genetic, pre-clinical, and clinical studies. Various proteins that arise during neurodegeneration, including beta-amyloid, tau, heat shock proteins, and chromogranin, among others, act as danger-associated molecular patterns, that-upon engagement of pattern recognition receptors-induce inflammatory signaling pathways and ultimately lead to the production and release of immune mediators. These may have beneficial effects but ultimately compromise neuronal function and cause cell death. The current review, assembled by participants of the Chiclana Summer School on Neuroinflammation 2016, provides an overview of our current understanding of AD-related immune processes. We describe the principal cellular and molecular players in inflammation as they pertain to AD, examine modifying factors, and discuss potential future therapeutic targets.
Collapse
Affiliation(s)
- A. Ardura-Fabregat
- grid.5963.9Faculty of Medicine, Institute of Neuropathology, University of Freiburg, Freiburg, Germany
| | - E. W. G. M. Boddeke
- 0000 0004 0407 1981grid.4830.fDepartment of Neuroscience, Section Medical Physiology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - A. Boza-Serrano
- 0000 0001 0930 2361grid.4514.4Experimental Neuroinflammation Laboratory, Department of Experimental Medical Sciences, Biomedical Centrum (BMC), Lund University, Lund, Sweden
| | - S. Brioschi
- grid.5963.9Department of Psychiatry and Psychotherapy, Medical Center University of Freiburg, Faculty of Medicine University of Freiburg, Freiburg, Germany
| | - S. Castro-Gomez
- 0000 0000 8786 803Xgrid.15090.3dDepartment of Neurodegenerative Disease and Gerontopsychiatry/Neurology, University of Bonn Medical Center, Sigmund-Freud Str. 25, 53127 Bonn, Germany
| | - K. Ceyzériat
- grid.457334.2Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA), Département de la Recherche Fondamentale (DRF), Institut de biologie François Jacob, MIRCen, 92260 Fontenay-aux-Roses, France ,0000 0001 2171 2558grid.5842.bNeurodegenerative Diseases Laboratory, Centre National de la Recherche Scientifique (CNRS), Université Paris-Sud, UMR 9199, F-92260 Fontenay-aux-Roses, France
| | - C. Dansokho
- 0000 0004 0438 0426grid.424247.3German Center for Neurodegenerative Diseases (DZNE), Sigmund Freud Str. 27, 53127 Bonn, Germany
| | - T. Dierkes
- 0000 0004 0438 0426grid.424247.3German Center for Neurodegenerative Diseases (DZNE), Sigmund Freud Str. 27, 53127 Bonn, Germany ,0000 0000 8786 803Xgrid.15090.3dBiomedical Centre, Institute of Innate Immunity, University Hospital Bonn, Sigmund-Freud-Str. 25, 53127 Bonn, Germany
| | - G. Gelders
- 0000 0001 0668 7884grid.5596.fDepartment of Neurosciences, Laboratory for Neurobiology and Gene Therapy, KU Leuven, Leuven, Belgium
| | - Michael T. Heneka
- 0000 0004 0438 0426grid.424247.3German Center for Neurodegenerative Diseases (DZNE), Sigmund Freud Str. 27, 53127 Bonn, Germany ,0000 0000 8786 803Xgrid.15090.3dDepartment of Neurodegenerative Disease and Gerontopsychiatry/Neurology, University of Bonn Medical Center, Sigmund-Freud Str. 25, 53127 Bonn, Germany
| | - L. Hoeijmakers
- 0000000084992262grid.7177.6Center for Neuroscience (SILS-CNS), Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - A. Hoffmann
- Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - L. Iaccarino
- grid.15496.3fVita-Salute San Raffaele University, Milan, Italy ,0000000417581884grid.18887.3eIn Vivo Human Molecular and Structural Neuroimaging Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - S. Jahnert
- 0000 0000 8786 803Xgrid.15090.3dDepartment of Neurodegenerative Disease and Gerontopsychiatry/Neurology, University of Bonn Medical Center, Sigmund-Freud Str. 25, 53127 Bonn, Germany
| | - K. Kuhbandner
- Department of Neurology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - G. Landreth
- 0000 0001 2287 3919grid.257413.6Stark Neuroscience Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202 USA
| | - N. Lonnemann
- 0000 0001 1090 0254grid.6738.aDepartment of Cellular Neurobiology, Zoological Institute, Technische Universität Braunschweig, Braunschweig, Germany
| | | | - R. M. McManus
- 0000 0004 0438 0426grid.424247.3German Center for Neurodegenerative Diseases (DZNE), Sigmund Freud Str. 27, 53127 Bonn, Germany
| | - A. Paulus
- 0000 0001 0930 2361grid.4514.4Experimental Neuroinflammation Laboratory, Department of Experimental Medical Sciences, Biomedical Centrum (BMC), Lund University, Lund, Sweden
| | - K. Reemst
- 0000000084992262grid.7177.6Center for Neuroscience (SILS-CNS), Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - J. M. Sanchez-Caro
- 0000 0004 0438 0426grid.424247.3German Center for Neurodegenerative Diseases (DZNE), Sigmund Freud Str. 27, 53127 Bonn, Germany
| | - A. Tiberi
- grid.6093.cBio@SNS Laboratory, Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126 Pisa, Italy
| | - A. Van der Perren
- 0000 0001 0668 7884grid.5596.fDepartment of Neurosciences, Laboratory for Neurobiology and Gene Therapy, KU Leuven, Leuven, Belgium
| | - A. Vautheny
- grid.457334.2Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA), Département de la Recherche Fondamentale (DRF), Institut de biologie François Jacob, MIRCen, 92260 Fontenay-aux-Roses, France ,0000 0001 2171 2558grid.5842.bNeurodegenerative Diseases Laboratory, Centre National de la Recherche Scientifique (CNRS), Université Paris-Sud, UMR 9199, F-92260 Fontenay-aux-Roses, France
| | - C. Venegas
- 0000 0000 8786 803Xgrid.15090.3dDepartment of Neurodegenerative Disease and Gerontopsychiatry/Neurology, University of Bonn Medical Center, Sigmund-Freud Str. 25, 53127 Bonn, Germany
| | - A. Webers
- 0000 0000 8786 803Xgrid.15090.3dDepartment of Neurodegenerative Disease and Gerontopsychiatry/Neurology, University of Bonn Medical Center, Sigmund-Freud Str. 25, 53127 Bonn, Germany
| | - P. Weydt
- 0000 0000 8786 803Xgrid.15090.3dDepartment of Neurodegenerative Disease and Gerontopsychiatry/Neurology, University of Bonn Medical Center, Sigmund-Freud Str. 25, 53127 Bonn, Germany
| | - T. S. Wijasa
- 0000 0004 0438 0426grid.424247.3German Center for Neurodegenerative Diseases (DZNE), Sigmund Freud Str. 27, 53127 Bonn, Germany
| | - X. Xiang
- 0000 0004 1936 973Xgrid.5252.0Biomedical Center (BMC), Biochemistry, Ludwig-Maximilians-University Munich, 81377 Munich, Germany ,0000 0004 1936 973Xgrid.5252.0Graduate School of Systemic Neuroscience, Ludwig-Maximilians-University, Munich, 82152 Munich, Germany
| | - Y. Yang
- 0000 0001 0930 2361grid.4514.4Experimental Neuroinflammation Laboratory, Department of Experimental Medical Sciences, Biomedical Centrum (BMC), Lund University, Lund, Sweden
| |
Collapse
|
29
|
Corsini S, Tortora M, Nistri A. Nicotinic receptor activation contrasts pathophysiological bursting and neurodegeneration evoked by glutamate uptake block on rat hypoglossal motoneurons. J Physiol 2016; 594:6777-6798. [PMID: 27374167 PMCID: PMC5108918 DOI: 10.1113/jp272591] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Accepted: 06/21/2016] [Indexed: 12/11/2022] Open
Abstract
KEY POINTS Impaired uptake of glutamate builds up the extracellular level of this excitatory transmitter to trigger rhythmic neuronal bursting and delayed cell death in the brainstem motor nucleus hypoglossus. This process is the expression of the excitotoxicity that underlies motoneuron degeneration in diseases such as amyotrophic lateral sclerosis affecting bulbar motoneurons. In a model of motoneuron excitotoxicity produced by pharmacological block of glutamate uptake in vitro, rhythmic bursting is suppressed by activation of neuronal nicotinic receptors with their conventional agonist nicotine. Emergence of bursting is facilitated by nicotinic receptor antagonists. Following excitotoxicity, nicotinic receptor activity decreases mitochondrial energy dysfunction, endoplasmic reticulum stress and production of toxic radicals. Globally, these phenomena synergize to provide motoneuron protection. Nicotinic receptors may represent a novel target to contrast pathological overactivity of brainstem motoneurons and therefore to prevent their metabolic distress and death. ABSTRACT Excitotoxicity is thought to be one of the early processes in the onset of amyotrophic lateral sclerosis (ALS) because high levels of glutamate have been detected in the cerebrospinal fluid of such patients due to dysfunctional uptake of this transmitter that gradually damages brainstem and spinal motoneurons. To explore potential mechanisms to arrest ALS onset, we used an established in vitro model of rat brainstem slice preparation in which excitotoxicity is induced by the glutamate uptake blocker dl-threo-β-benzyloxyaspartate (TBOA). Because certain brain neurons may be neuroprotected via activation of nicotinic acetylcholine receptors (nAChRs) by nicotine, we investigated if nicotine could arrest excitotoxic damage to highly ALS-vulnerable hypoglossal motoneurons (HMs). On 50% of patch-clamped HMs, TBOA induced intense network bursts that were inhibited by 1-10 μm nicotine, whereas nAChR antagonists facilitated burst emergence in non-burster cells. Furthermore, nicotine inhibited excitatory transmission and enhanced synaptic inhibition. Strong neuroprotection by nicotine prevented the HM loss observed after 4 h of TBOA exposure. This neuroprotective action was due to suppression of downstream effectors of neurotoxicity such as increased intracellular levels of reactive oxygen species, impaired energy metabolism and upregulated genes involved in endoplasmic reticulum (ER) stress. In addition, HMs surviving TBOA toxicity often expressed UDP-glucose glycoprotein glucosyltransferase, a key element in repair of misfolded proteins: this phenomenon was absent after nicotine application, indicative of ER stress prevention. Our results suggest nAChRs to be potential targets for inhibiting excitotoxic damage of motoneurons at an early stage of the neurodegenerative process.
Collapse
Affiliation(s)
- Silvia Corsini
- Department of NeuroscienceInternational School for Advanced Studies (SISSA)TriesteItaly
| | - Maria Tortora
- Department of NeuroscienceInternational School for Advanced Studies (SISSA)TriesteItaly
| | - Andrea Nistri
- Department of NeuroscienceInternational School for Advanced Studies (SISSA)TriesteItaly
| |
Collapse
|
30
|
Pardo M, Beurel E, Jope RS. Cotinine administration improves impaired cognition in the mouse model of Fragile X syndrome. Eur J Neurosci 2016; 45:490-498. [PMID: 27775852 DOI: 10.1111/ejn.13446] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 10/19/2016] [Accepted: 10/20/2016] [Indexed: 01/15/2023]
Abstract
Cotinine is the major metabolite of nicotine and has displayed some capacity for improving cognition in mouse models following chronic administration. We tested if acute cotinine treatment is capable of improving cognition in the mouse model of Fragile X syndrome, Fmr1-/- knockout mice, and if this is related to inhibition by cotinine treatment of glycogen synthase kinase-3β (GSK3β), which is abnormally active in Fmr1-/- mice. Acute cotinine treatment increased the inhibitory serine-phosphorylation of GSK3β and the activating phosphorylation of AKT, which can mediate serine-phosphorylation of GSK3β, in both wild-type and Fmr1-/- mouse hippocampus. Acute cotinine treatment improved cognitive functions of Fmr1-/- mice in coordinate and categorical spatial processing, novel object recognition, and temporal ordering. However, cotinine failed to restore impaired cognition in GSK3β knockin mice, in which a serine9-to-alanine9 mutation blocks the inhibitory serine phosphorylation of GSK3β, causing GSK3β to be hyperactive. These results indicate that acute cotinine treatment effectively repairs impairments of these four cognitive tasks in Fmr1-/- mice, and suggest that this cognition-enhancing effect of cotinine is linked to its induction of inhibitory serine-phosphorylation of GSK3. Taken together, these results show that nicotinic receptor agonists can act as cognitive enhancers in a mouse model of Fragile X syndrome and highlight the potential role of inhibiting GSK3β in mediating the beneficial effects of cotinine on memory.
Collapse
Affiliation(s)
- Marta Pardo
- Department of Psychiatry and Behavioral Sciences, Miller School of Medicine, University of Miami, Miami, FL, 33136, USA.,Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Eleonore Beurel
- Department of Psychiatry and Behavioral Sciences, Miller School of Medicine, University of Miami, Miami, FL, 33136, USA.,Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Richard S Jope
- Department of Psychiatry and Behavioral Sciences, Miller School of Medicine, University of Miami, Miami, FL, 33136, USA.,Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL, USA
| |
Collapse
|
31
|
Kaisar MA, Prasad S, Liles T, Cucullo L. A decade of e-cigarettes: Limited research & unresolved safety concerns. Toxicology 2016; 365:67-75. [PMID: 27477296 DOI: 10.1016/j.tox.2016.07.020] [Citation(s) in RCA: 114] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Revised: 07/07/2016] [Accepted: 07/26/2016] [Indexed: 01/21/2023]
Abstract
It is well known that tobacco consumption is a leading cause of preventable deaths worldwide and has been linked to major diseases ranging from cancer to chronic obstructive pulmonary disease, atherosclerosis, stroke and a host of neurological/neurodegenerative disorders. In the past decade a number of alternative vaping products have hit the market, rapidly gaining consumers especially among the younger population. Electronic nicotine delivery systems or e-cigarettes have become the sought-after product due to the belief that they are much safer than traditional cigarettes. However, inadequate research and lack of regulatory guidelines for both the manufacturing process and the content of the vaping solution of the e-cigarette has become a major concern. Highly debated and unresolved questions such as whether e-cigarettes may help smokers quit and whether e-cigarettes will promote the use of nicotine among non-smokers add to the confusion of the safety of e-cigarettes. In this review article, we summarize the current understanding (and lack thereof) of the potential health impacts of e-cigarettes. We will also highlight the most recent studies (in vivo/in vitro) which seem to conflict with the broad safety claims put forward by the manufacturers. Finally, we provide potential solutions to overcome the research gap of the short and long-term health impact of e-cigarettes.
Collapse
Affiliation(s)
- Mohammad Abul Kaisar
- Department of Pharmaceutical Sciences, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA
| | - Shikha Prasad
- Department of Pharmaceutical Sciences, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA
| | - Tylor Liles
- Department of Pharmaceutical Sciences, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA
| | - Luca Cucullo
- Department of Pharmaceutical Sciences, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA; Center for Blood Brain Barrier Research, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA.
| |
Collapse
|
32
|
Gao J, Naughton SX, Wulff H, Singh V, Beck WD, Magrane J, Thomas B, Kaidery NA, Hernandez CM, Terry AV. Diisopropylfluorophosphate Impairs the Transport of Membrane-Bound Organelles in Rat Cortical Axons. J Pharmacol Exp Ther 2016; 356:645-55. [PMID: 26718240 PMCID: PMC4767389 DOI: 10.1124/jpet.115.230839] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Accepted: 12/29/2015] [Indexed: 12/27/2022] Open
Abstract
The extensive use of organophosphates (OPs) is an ongoing environmental health concern due to multiple reports of OP-related neurologic abnormalities. The mechanism of the acute toxicity of OPs has been attributed to inhibition of acetylcholinesterase (AChE), but there is growing evidence that this may not account for all the long-term neurotoxic effects of OPs. In previous experiments (using ex vivo and in vitro model systems) we observed that the insecticide OP chlorpyrifos impaired the movements of vesicles and mitochondria in axons. Here, using a time-lapse imaging technique, we evaluated the OP-nerve agent diisopropylfluorophosphate (DFP) across a wide range of concentrations (subnanomolar to micromolar) for effects on fast axonal transport of membrane-bound organelles (MBOs) that contain the amyloid precursor protein (APP) tagged with the fluorescent marker Dendra2 (APPDendra2). Both 1 and 24 hours of exposure to DFP and a positive control compound, colchicine, resulted in a decrease in the velocity of anterograde and retrograde movements of MBOs and an increase in the number of stationary MBOs. These effects occurred at picomolar (100 pM) to low nanomolar (0.1 nM) concentrations that were not associated with compromised cell viability or cytoskeletal damage. Moreover, the effects of DFP on axonal transport occurred at concentrations that did not inhibit AChE activity, and they were not blocked by cholinergic receptor antagonists. Given the fundamental importance of axonal transport to neuronal function, these observations may explain some of the long-term neurologic deficits that have been observed in humans who have been exposed to OPs.
Collapse
Affiliation(s)
- Jie Gao
- Department of Pharmacology and Toxicology, Georgia Regents University, Augusta, Georgia (J.G., V.S., S.X.N., W.D.B., B.T., N.A.K., C.M.H., A.V.T.); Department of Pharmacology, University of California-Davis, Davis, California (H.W.); Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, New York (J.M.)
| | - Sean X Naughton
- Department of Pharmacology and Toxicology, Georgia Regents University, Augusta, Georgia (J.G., V.S., S.X.N., W.D.B., B.T., N.A.K., C.M.H., A.V.T.); Department of Pharmacology, University of California-Davis, Davis, California (H.W.); Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, New York (J.M.)
| | - Heike Wulff
- Department of Pharmacology and Toxicology, Georgia Regents University, Augusta, Georgia (J.G., V.S., S.X.N., W.D.B., B.T., N.A.K., C.M.H., A.V.T.); Department of Pharmacology, University of California-Davis, Davis, California (H.W.); Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, New York (J.M.)
| | - Vikrant Singh
- Department of Pharmacology and Toxicology, Georgia Regents University, Augusta, Georgia (J.G., V.S., S.X.N., W.D.B., B.T., N.A.K., C.M.H., A.V.T.); Department of Pharmacology, University of California-Davis, Davis, California (H.W.); Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, New York (J.M.)
| | - Wayne D Beck
- Department of Pharmacology and Toxicology, Georgia Regents University, Augusta, Georgia (J.G., V.S., S.X.N., W.D.B., B.T., N.A.K., C.M.H., A.V.T.); Department of Pharmacology, University of California-Davis, Davis, California (H.W.); Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, New York (J.M.)
| | - Jordi Magrane
- Department of Pharmacology and Toxicology, Georgia Regents University, Augusta, Georgia (J.G., V.S., S.X.N., W.D.B., B.T., N.A.K., C.M.H., A.V.T.); Department of Pharmacology, University of California-Davis, Davis, California (H.W.); Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, New York (J.M.)
| | - Bobby Thomas
- Department of Pharmacology and Toxicology, Georgia Regents University, Augusta, Georgia (J.G., V.S., S.X.N., W.D.B., B.T., N.A.K., C.M.H., A.V.T.); Department of Pharmacology, University of California-Davis, Davis, California (H.W.); Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, New York (J.M.)
| | - Navneet Ammal Kaidery
- Department of Pharmacology and Toxicology, Georgia Regents University, Augusta, Georgia (J.G., V.S., S.X.N., W.D.B., B.T., N.A.K., C.M.H., A.V.T.); Department of Pharmacology, University of California-Davis, Davis, California (H.W.); Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, New York (J.M.)
| | - Caterina M Hernandez
- Department of Pharmacology and Toxicology, Georgia Regents University, Augusta, Georgia (J.G., V.S., S.X.N., W.D.B., B.T., N.A.K., C.M.H., A.V.T.); Department of Pharmacology, University of California-Davis, Davis, California (H.W.); Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, New York (J.M.)
| | - Alvin V Terry
- Department of Pharmacology and Toxicology, Georgia Regents University, Augusta, Georgia (J.G., V.S., S.X.N., W.D.B., B.T., N.A.K., C.M.H., A.V.T.); Department of Pharmacology, University of California-Davis, Davis, California (H.W.); Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, New York (J.M.)
| |
Collapse
|
33
|
Malczewska-Jaskóła K, Jasiewicz B, Mrówczyńska L. Nicotine alkaloids as antioxidant and potential protective agents against in vitro oxidative haemolysis. Chem Biol Interact 2015; 243:62-71. [PMID: 26658032 DOI: 10.1016/j.cbi.2015.11.030] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Revised: 10/28/2015] [Accepted: 11/26/2015] [Indexed: 01/01/2023]
Abstract
The capacity of eleven nicotine alkaloids to reduce oxidative stress was investigated. In order to provide a structure-activity relationships analysis, new nicotine derivatives with a substituent introduced into the pyrrolidine ring were synthesized and investigated together with nicotine and its known analogs. All newly synthesized compounds were characterized by (1)H, (13)C NMR and EI-MS technique. The antioxidant properties of nicotine, its known analogs and newly produced derivatives, were evaluated by various antioxidant assays such 1,1-diphenyl-2-picryl-hydrazyl free radical (DPPH(•)) scavenging, ferrous ions (Fe(2+)) chelating activity and total reducing ability determination by Fe(3+) → Fe(2+) transformation assay. The protective effects of all compounds tested against 2,2'-azobis(2-methylpropionamidine) dihydrochloride (AAPH) and tert-butyl hydroperoxide (t-BuOOH)-induced oxidative haemolysis and morphological injury of human erythrocytes, were estimated in vitro. The results showed that nicotine alkaloids exhibited various antiradical efficacy and antioxidant activity in a structure- and a dose-dependent manner. In addition, the capacity of nicotine alkaloids to protect erythrocytes from AAPH- and t-BuOOH-induced oxidative haemolysis, was dependent on its incubation time with cells. Our findings showed that chemical and biological investigations conducted simultaneously can provide comprehensive knowledge concerning the antioxidant potential of nicotine alkaloids. This knowledge can be helpful in better understanding the properties of nicotine alkaloids under oxidative stress conditions.
Collapse
Affiliation(s)
| | - Beata Jasiewicz
- Faculty of Chemistry, Adam Mickiewicz University, Umultowska 89b, 61-614 Poznań, Poland.
| | - Lucyna Mrówczyńska
- Department Cell Biology, Faculty of Biology, Adam Mickiewicz University, Umultowska 89, 61-614 Poznań, Poland.
| |
Collapse
|
34
|
Nicotinic ligands as multifunctional agents for the treatment of neuropsychiatric disorders. Biochem Pharmacol 2015; 97:388-398. [PMID: 26231940 DOI: 10.1016/j.bcp.2015.07.027] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Accepted: 07/24/2015] [Indexed: 02/08/2023]
Abstract
The challenges associated with developing more effective treatments for neurologic and psychiatric illness such as Alzheimer's disease and schizophrenia are considerable. Both the symptoms and the pathophysiology of these conditions are complex and poorly understood and the clinical presentations across different patients can be very heterogeneous. Moreover, it has become apparent that the reductionist approach to drug discovery for these illnesses that has dominated the field for decades (i.e., the development of highly selective compounds or other treatment modalities focused on a very specific pathophysiologic target) has not been widely successful. Accordingly, a variety of new strategies have emerged including the development of "multitarget-directed ligands" (MTDLs), the development and/or identification of compounds that exhibit "multifunctional" activity (e.g., pro-cognitive plus neuroprotective, pro-cognitive plus antipsychotic activity), "repurposing" strategies for existing compounds that have other clinical indications, and novel "adjunctive" treatment strategies that might enhance the efficacy of the currently available treatments. Interestingly, a variety of ligands at nicotinic acetylcholine receptors (nAChRs) appear to have the potential to fulfill one or more of these desirable properties (i.e., multifunctional, repurposing, or adjunctive treatment potential). The purpose of this review (while not all-inclusive) is to provide an overview of a variety of nAChR ligands that demonstrate potential in these categories, particularly, "multifunctional" properties. Due to their densities in the mammalian brain and the amount of literature available, the review will focus on ligands of the high affinity α4β2 nAChR and the low affinity α7 nAChR.
Collapse
|
35
|
Terry AV, Callahan PM, Bertrand D. R-(+) and S-(-) isomers of cotinine augment cholinergic responses in vitro and in vivo. J Pharmacol Exp Ther 2015; 352:405-18. [PMID: 25503389 PMCID: PMC4293431 DOI: 10.1124/jpet.114.219881] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Accepted: 12/10/2014] [Indexed: 12/15/2022] Open
Abstract
The nicotine metabolite cotinine (1-methyl-5-[3-pyridynl]-2-pyrrolidinone), like its precursor, has been found to exhibit procognitive and neuroprotective effects in some model systems; however, the mechanism of these effects is unknown. In this study, both the R-(+) and S-(-) isomers of cotinine were initially evaluated in an extensive profiling screen and found to be relatively inactive across a wide range of potential pharmacologic targets. Electrophysiological studies on human α4β2 and α7 nicotinic acetylcholine receptors (nAChRs) expressed in Xenopus oocytes confirmed the absence of agonistic activity of cotinine at α4β2 or α7 nAChRs. However, a significant increase in the current evoked by a low concentration of acetylcholine was observed at α7 nAChRs exposed to 1.0 μM R-(+)- or S-(-)-cotinine. Based on these results, we used a spontaneous novel object recognition (NOR) procedure for rodents to test the hypothesis that R-(+)- or S-(-)-cotinine might improve recognition memory when administered alone or in combination with the Alzheimer's disease (AD) therapeutic agent donepezil. Although both isomers enhanced NOR performance when they were coadministered with donepezil, neither isomer was active alone. Moreover, the procognitive effects of the drug combinations were blocked by methyllycaconitine and dihydro-β-erythroidine, indicating that both α7 and α4β2 nAChRs contribute to the response. These results indicate that cotinine may sensitize α7 nAChRs to low levels of acetylcholine (a previously uncharacterized mechanism), and that cotinine could be used as an adjunctive agent to improve the effective dose range of cholinergic compounds (e.g., donepezil) in the treatment of AD and other memory disorders.
Collapse
Affiliation(s)
- Alvin V Terry
- Department of Pharmacology and Toxicology, and Small Animal Behavior Core, Georgia Regents University, Augusta, Georgia (A.V.T., P.M.C.); and HiQScreen Sàrl, Geneva, Switzerland (D.B.)
| | - Patrick M Callahan
- Department of Pharmacology and Toxicology, and Small Animal Behavior Core, Georgia Regents University, Augusta, Georgia (A.V.T., P.M.C.); and HiQScreen Sàrl, Geneva, Switzerland (D.B.)
| | - Daniel Bertrand
- Department of Pharmacology and Toxicology, and Small Animal Behavior Core, Georgia Regents University, Augusta, Georgia (A.V.T., P.M.C.); and HiQScreen Sàrl, Geneva, Switzerland (D.B.)
| |
Collapse
|
36
|
Ring Opening of Donor-Acceptor Cyclopropanes with the Azide Ion: A Tool for Construction of N-Heterocycles. Chemistry 2015; 21:4975-87. [DOI: 10.1002/chem.201405551] [Citation(s) in RCA: 118] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Indexed: 12/17/2022]
|
37
|
Polindara-García LA, Montesinos-Miguel D, Vazquez A. An efficient microwave-assisted synthesis of cotinine and iso-cotinine analogs from an Ugi-4CR approach. Org Biomol Chem 2015. [DOI: 10.1039/c5ob01170a] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
A convenient synthesis of cotinine and iso-cotinine analogs featuring an Ugi-4CR/cyclization approach.
Collapse
Affiliation(s)
- Luis A. Polindara-García
- Departamento de Química Orgánica
- Facultad de Química
- Universidad Nacional Autónoma de México
- Ciudad Universitaria
- México
| | - Dario Montesinos-Miguel
- Departamento de Química Orgánica
- Facultad de Química
- Universidad Nacional Autónoma de México
- Ciudad Universitaria
- México
| | - Alfredo Vazquez
- Departamento de Química Orgánica
- Facultad de Química
- Universidad Nacional Autónoma de México
- Ciudad Universitaria
- México
| |
Collapse
|
38
|
Li P, Beck WD, Callahan PM, Terry AV, Bartlett MG. Pharmacokinetics of cotinine in rats: a potential therapeutic agent for disorders of cognitive function. Pharmacol Rep 2014; 67:494-500. [PMID: 25933960 DOI: 10.1016/j.pharep.2014.12.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Revised: 11/24/2014] [Accepted: 12/05/2014] [Indexed: 02/09/2023]
Abstract
BACKGROUND Attention has been paid to cotinine (COT), one of the major metabolites of nicotine (NIC), for its pro-cognitive effects and potential therapeutic activities against Alzheimer's disease (AD) and other types of cognitive impairment. In order to facilitate pharmacological and toxicological studies on COT for its pro-cognitive activities, we conducted a pharmacokinetic (PK) study of COT in rats, providing important oral and intravenously (iv) PK information. METHODS In this study, plasma samples were obtained up to 48 h after COT was dosed to rats orally and iv at a dose of 3mg/kg. Plasma samples were prepared and analyzed using a sensitive liquid chromatography tandem mass spectrometry (LC-MS/MS) bioanalytical method, providing concentration profiles of COT and metabolites after oral and iv administrations. RESULTS The data were fitted into a one-compartment model and a two-compartment model for the oral and iv groups, respectively, providing important PK information for COT including PK profiles, half-life, clearance and bioavailability. The results suggested fast absorption, slow elimination and high bioavailability of COT in rats. CONCLUSIONS Several important facts about the PK properties in rats suggested COT could be a potential pro-cognitive agent. Information about the pharmacokinetics of COT in rats revealed in this study is of great importance for the future studies on COT or potential COT analogs as agents for improving cognition.
Collapse
Affiliation(s)
- Pei Li
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, The University of Georgia, Athens, USA
| | - Wayne D Beck
- Department of Pharmacology and Toxicology, Georgia Regents University, Augusta, USA
| | - Patrick M Callahan
- Department of Pharmacology and Toxicology, Georgia Regents University, Augusta, USA; Small Animal Behavior Core, Georgia Regents University, Augusta, USA
| | - Alvin V Terry
- Department of Pharmacology and Toxicology, Georgia Regents University, Augusta, USA; Small Animal Behavior Core, Georgia Regents University, Augusta, USA
| | - Michael G Bartlett
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, The University of Georgia, Athens, USA.
| |
Collapse
|
39
|
Lombardo S, Maskos U. Role of the nicotinic acetylcholine receptor in Alzheimer's disease pathology and treatment. Neuropharmacology 2014; 96:255-62. [PMID: 25514383 DOI: 10.1016/j.neuropharm.2014.11.018] [Citation(s) in RCA: 174] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Revised: 11/11/2014] [Accepted: 11/24/2014] [Indexed: 11/26/2022]
Abstract
Alzheimer's Disease (AD) is the major form of senile dementia, characterized by neuronal loss, extracellular deposits, and neurofibrillary tangles. It is accompanied by a loss of cholinergic tone, and acetylcholine (ACh) levels in the brain, which were hypothesized to be responsible for the cognitive decline observed in AD. Current medication is restricted to enhancing cholinergic signalling for symptomatic treatment of AD patients. The nicotinic acetylcholine receptor family (nAChR) and the muscarinic acetylcholine receptor family (mAChR) are the target of ACh in the brain. Both families of receptors are affected in AD. It was demonstrated that amyloid beta (Aβ) interacts with nAChRs. Here we discuss how Aβ activates or inhibits nAChRs, and how this interaction contributes to AD pathology. We will discuss the potential role of nAChRs as therapeutic targets. This article is part of the Special Issue entitled 'The Nicotinic Acetylcholine Receptor: From Molecular Biology to Cognition'.
Collapse
Affiliation(s)
- Sylvia Lombardo
- Département de Neuroscience, Institut Pasteur, Unité Neurobiologie Intégrative des Systèmes Cholinergiques, Paris Cedex 15, France; CNRS, UMR 3571, Paris, France.
| | - Uwe Maskos
- Département de Neuroscience, Institut Pasteur, Unité Neurobiologie Intégrative des Systèmes Cholinergiques, Paris Cedex 15, France; CNRS, UMR 3571, Paris, France
| |
Collapse
|
40
|
Grizzell JA, Echeverria V. New Insights into the Mechanisms of Action of Cotinine and its Distinctive Effects from Nicotine. Neurochem Res 2014; 40:2032-46. [PMID: 24970109 DOI: 10.1007/s11064-014-1359-2] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Accepted: 06/10/2014] [Indexed: 12/20/2022]
Abstract
Tobacco consumption is far higher among a number of psychiatric and neurological diseases, supporting the notion that some component(s) of tobacco may underlie the oft-reported reduction in associated symptoms during tobacco use. Popular dogma holds that this component is nicotine. However, increasing evidence support theories that cotinine, the main metabolite of nicotine, may underlie at least some of nicotine's actions in the nervous system, apart from its adverse cardiovascular and habit forming effects. Though similarities exist, disparate and even antagonizing actions between cotinine and nicotine have been described both in terms of behavior and physiology, underscoring the need to further characterize this potentially therapeutic compound. Cotinine has been shown to be psychoactive in humans and animals, facilitating memory, cognition, executive function, and emotional responding. Furthermore, recent research shows that cotinine acts as an antidepressant and reduces cognitive-impairment associated with disease and stress-induced dysfunction. Despite these promising findings, continued focus on this potentially safe alternative to tobacco and nicotine use is lacking. Here, we review the effects of cotinine, including comparisons with nicotine, and discuss potential mechanisms of cotinine-specific actions in the central nervous system which are, to date, still being elucidated.
Collapse
Affiliation(s)
- J Alex Grizzell
- Department of Psychiatry and Behavioral Neurosciences, Morsani College of Medicine, University of South Florida, Tampa, FL, 33611, USA.,Department of Research and Development, Bay Pines VA Healthcare System, 10,000 Bay Pines Blvd., Bldg. 23, Rm. 123, Bay Pines, FL, 33744, USA
| | - Valentina Echeverria
- Department of Research and Development, Bay Pines VA Healthcare System, 10,000 Bay Pines Blvd., Bldg. 23, Rm. 123, Bay Pines, FL, 33744, USA. .,Universidad Autónoma de Chile, Carlos Antúnez 1920, Providencia, Santiago, Chile. .,Department of Molecular Medicine, University of South Florida, Tampa, FL, 33647, USA.
| |
Collapse
|