1
|
Al-Medhtiy MH, Mohammed MT, M Raouf MMH, Al-Qaaneh AM, Jabbar AAJ, Abdullah FO, Mothana RA, Alanzi AR, Hassan RR, Abdulla MA, Saleh MI, Hasson S. A triterpenoid (corosolic acid) ameliorated AOM-mediated aberrant crypt foci in rats: modulation of Bax/PCNA, antioxidant and inflammatory mechanisms. J Mol Histol 2024; 55:765-783. [PMID: 39122895 DOI: 10.1007/s10735-024-10229-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 07/17/2024] [Indexed: 08/12/2024]
Abstract
Corosolic acid (CA) is a well-known natural pentacyclic triterpene found in numerous therapeutic plants that can exhibit many bioactivities including anti-inflammatory and anti-tumor actions. The current investigation explores the chemoprotective roles of CA against azoxymethane (AOM)-induced colonic aberrant crypt foci (ACF) in rats. Thirty Sprague Dawley rats were grouped in 5 cages; Group A, normal control rats inoculated subcutaneously (sc) with two doses of normal saline and fed orally on 10% tween 20; Groups B-E received two doses (sc) of azoxymethane in two weeks and treated with either 10% tween 20 (group B) or two intraperitoneal injections of 35 mg/kg 5-fluorouracil each week for one month (group C), while group D and E treated with 30 and 60 mg/kg, respectively, for 2 months. The toxicity results showed lack of any behavioral abnormalities or mortality in rats ingested with up-to 500 mg/kg of CA. The present AOM induction caused a significant initiation of ACF characterized by an increased number, larger in size, and well-matured tissue clusters in cancer controls. AOM inoculation created a bizarrely elongated nucleus, and strained cells, and significantly lowered the submucosal glands in colon tissues of cancer controls compared to 5-FU or CA-treated rats. CA treatment led to significant suppression of ACF incidence, which could be mediated by its modulatory effects on the immunohistochemical proteins (pro-apoptotic (Bax) and reduced PCNA protein expressions in colon tissues). Moreover, CA-treated rats had improved oxidative stress-mediated cytotoxicity indicated by increased endogenous antioxidants (SOD and CAT) and reduced lipid peroxidation indicators (MDA). In addition, CA ingestion (30 and 60 mg/kg) suppressed the inflammatory cascades, indicated by decreased serum TNF-α and IL-6 cytokines and increased anti-inflammatory (IL-10) cytokines consequently preventing further tumor development. CA treatment maintained liver and kidney functions in rats exposed to AOM cytotoxicity. CA could be a viable alternative for the treatment of oxidative-related human disorders including ACF.
Collapse
Affiliation(s)
- Morteta H Al-Medhtiy
- Department of Anatomy and Histology, Faculty of Veterinary Medicine, University of Kufa, Kufa, Najaf Region, 540011, Iraq
| | - Mohammed T Mohammed
- Department of Microbiology, Faculty of veterinary medicine, University of Kufa, Kufa, Iraq
| | - Mohammed M Hussein M Raouf
- Department of Biomedical Sciences, College of Applied Science, Cihan University-Erbil, Erbil, Kurdistan Region, 44001, Iraq
| | - Ayman M Al-Qaaneh
- Department of Allied Health Sciences, Al-Balqa Applied University (BAU), Al-Salt, 19117, Jordan
| | - Ahmed A J Jabbar
- Department of Medical Laboratory Technology, Erbil Technical Health and Medical College, Erbil Polytechnic University, Erbil, 44001, Iraq.
| | - Fuad Othman Abdullah
- Department of Chemistry, College of Science, Salahaddin University-Erbil, Erbil, Kurdistan Region, Iraq
| | - Ramzi A Mothana
- Department of Pharmacognosy, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh, 11451, Saudi Arabia
| | - Abdullah R Alanzi
- Department of Pharmacognosy, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh, 11451, Saudi Arabia
| | - Rawaz Rizgar Hassan
- Department of Medical Laboratory Science, College of Science, Knowledge University, Kirkuk Road, Erbil, 44001, Iraq
| | - Mahmood Ameen Abdulla
- Department of Medical Analysis, Faculty of Applied Science, Tishk International University, Erbil, Iraq
| | - Musher Ismail Saleh
- Department of Chemistry, Faculty of Science and Health, Koya University, Koya KOY45, Kurdistan Region, Erbil, 44001, Iraq
| | - Sidgi Hasson
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, L3 3AF, UK
| |
Collapse
|
2
|
Spivak AY, Kuzmina US, Nedopekina DA, Dubinin MV, Khalitova RR, Davletshin EV, Vakhitova YV, Belosludtsev KN, Vakhitov VA. Synthesis and comparative analysis of the cytotoxicity and mitochondrial effects of triphenylphosphonium and F16 maslinic and corosolic acid hybrid derivatives. Steroids 2024; 209:109471. [PMID: 39002922 DOI: 10.1016/j.steroids.2024.109471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/09/2024] [Accepted: 07/10/2024] [Indexed: 07/15/2024]
Abstract
The cytotoxic profile and antiproliferative and mitochondrial effects of triterpene acid conjugates with mitochondriotropic lipophilic triphenylphosphonium (TPP+) and F16 cations were evaluated. Maslinic and corosolic acids chosen as the investigation objects were synthesized from commercially available oleanolic and ursolic acids. Study of the cytotoxic activity of TPP+ and F16 triterpenoid derivatives against six tumor cell lines demonstrated a comparable synergistic effect in the anticancer activity, which was most pronounced in the case of MCF-7 mammary adenocarcinoma cells and Jurkat and THP-1 leukemia cells. The corosolic and maslinic acid hybrid derivatives caused changes in the progression of tumor cell cycle phases when present in much lower doses than their natural triterpene acid precursors. The treatment of tumor cell lines with the conjugates resulted in the cell cycle arrest in the G1 phase and increase in the cell population in the subG1 phase. The cationic derivatives of the acids were markedly superior to their precursors as inducers of hyperproduction of reactive oxygen species and more effectively decreased the mitochondrial potential in isolated rat liver mitochondria. We concluded that the observed cytotoxic effect of TPP+ and F16 triterpenoid conjugates is attributable to the ability of these compounds to initiate mitochondrial dysfunctions. Their cytotoxicity, antiproliferative action, and mitochondrial effects depend little on the type of cationic groups used.
Collapse
Affiliation(s)
- Anna Yu Spivak
- Institute of Petrochemistry and Catalysis, Ufa Federal Research Center, Russian Academy of Sciences, Prospekt Oktyabrya 141, 450075 Ufa, Russia
| | - Ulyana Sh Kuzmina
- Institute of Biochemistry and Genetics, Ufa Federal Research Center, Russian Academy of Sciences, Prospekt Oktyabrya 71, 450054 Ufa, Russia
| | - Darya A Nedopekina
- Institute of Petrochemistry and Catalysis, Ufa Federal Research Center, Russian Academy of Sciences, Prospekt Oktyabrya 141, 450075 Ufa, Russia
| | - Mikhail V Dubinin
- Department of Biochemistry, Cell Biology and Microbiology, Mari State University, pl. Lenina 1, Yoshkar-Ola 424001, Russia.
| | - Rezeda R Khalitova
- Institute of Petrochemistry and Catalysis, Ufa Federal Research Center, Russian Academy of Sciences, Prospekt Oktyabrya 141, 450075 Ufa, Russia
| | - Eldar V Davletshin
- Institute of Petrochemistry and Catalysis, Ufa Federal Research Center, Russian Academy of Sciences, Prospekt Oktyabrya 141, 450075 Ufa, Russia
| | - Yulia V Vakhitova
- Institute of Biochemistry and Genetics, Ufa Federal Research Center, Russian Academy of Sciences, Prospekt Oktyabrya 71, 450054 Ufa, Russia
| | - Konstantin N Belosludtsev
- Department of Biochemistry, Cell Biology and Microbiology, Mari State University, pl. Lenina 1, Yoshkar-Ola 424001, Russia; Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Institutskaya 3, 142290 Pushchino, Russia
| | - Vener A Vakhitov
- Institute of Biochemistry and Genetics, Ufa Federal Research Center, Russian Academy of Sciences, Prospekt Oktyabrya 71, 450054 Ufa, Russia
| |
Collapse
|
3
|
Triaa N, Znati M, Ben Jannet H, Bouajila J. Biological Activities of Novel Oleanolic Acid Derivatives from Bioconversion and Semi-Synthesis. Molecules 2024; 29:3091. [PMID: 38999041 PMCID: PMC11243203 DOI: 10.3390/molecules29133091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 06/17/2024] [Accepted: 06/26/2024] [Indexed: 07/14/2024] Open
Abstract
Oleanolic acid (OA) is a vegetable chemical that is present naturally in a number of edible and medicinal botanicals. It has been extensively studied by medicinal chemists and scientific researchers due to its biological activity against a wide range of diseases. A significant number of researchers have synthesized a variety of analogues of OA by modifying its structure with the intention of creating more potent biological agents and improving its pharmaceutical properties. In recent years, chemical and enzymatic techniques have been employed extensively to investigate and modify the chemical structure of OA. This review presents recent advancements in medical chemistry for the structural modification of OA, with a special focus on the biotransformation, semi-synthesis and relationship between the modified structures and their biopharmaceutical properties.
Collapse
Affiliation(s)
- Nahla Triaa
- Medicinal Chemistry and Natural Products Team, Laboratory of Heterocyclic Chemistry, Natural Products and Reactivity (LR11ES39), Faculty of Science of Monastir, University of Monastir, Avenue of Environment, Monastir 5019, Tunisia; (N.T.); (M.Z.)
- Laboratoire de Génie Chimique, Université Paul Sabatier, CNRS, INPT, UPS, 31062 Toulouse, France
| | - Mansour Znati
- Medicinal Chemistry and Natural Products Team, Laboratory of Heterocyclic Chemistry, Natural Products and Reactivity (LR11ES39), Faculty of Science of Monastir, University of Monastir, Avenue of Environment, Monastir 5019, Tunisia; (N.T.); (M.Z.)
| | - Hichem Ben Jannet
- Medicinal Chemistry and Natural Products Team, Laboratory of Heterocyclic Chemistry, Natural Products and Reactivity (LR11ES39), Faculty of Science of Monastir, University of Monastir, Avenue of Environment, Monastir 5019, Tunisia; (N.T.); (M.Z.)
| | - Jalloul Bouajila
- Laboratoire de Génie Chimique, Université Paul Sabatier, CNRS, INPT, UPS, 31062 Toulouse, France
| |
Collapse
|
4
|
Surendran K, Pradeep S, Pillai PP. Comparative transcriptome and metabolite profiling reveal diverse pattern of CYP-TS gene expression during corosolic acid biosynthesis in Lagerstroemia speciosa (L.) Pers. PLANT CELL REPORTS 2024; 43:122. [PMID: 38642121 DOI: 10.1007/s00299-024-03203-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 03/19/2024] [Indexed: 04/22/2024]
Abstract
KEY MESSAGE Extensive leaf transcriptome profiling and differential gene expression analysis of field grown and elicited shoot cultures of L. speciosa suggest that differential synthesis of CRA is mediated primarily by CYP and TS genes, showing functional diversity. Lagerstroemia speciosa L. is a tree species with medicinal and horticultural attributes. The pentacyclic triterpene, Corosolic acid (CRA) obtained from this species is widely used for the management of diabetes mellitus in traditional medicine. The high mercantile value of the compound and limited availability of innate resources entail exploration of alternative sources for CRA production. Metabolic pathway engineering for enhanced bioproduction of plant secondary metabolites is an attractive proposition for which, candidate genes in the pathway need to be identified and characterized. Therefore, in the present investigation, we focused on the identification of cytochrome P450 (CYP450) and oxidosqualene cyclases (OSC) genes and their differential expression during biosynthesis of CRA. The pattern of differential expression of these genes in the shoot cultures of L. speciosa, elicited with different epigenetic modifiers (azacytidine (AzaC), sodium butyrate (NaBu) and anacardic acid (AA)), was studied in comparison with field grown plant. Further, in vitro cultures with varying (low to high) concentrations of CRA were systematically assessed for the expression of CYP-TS and associated genes involved in CRA biosynthesis by transcriptome sequencing. The sequenced samples were de novo assembled into 180,290 transcripts of which, 92,983 transcripts were further annotated by UniProt. The results are collectively given in co-occurrence heat maps to identify the differentially expressed genes. The combined transcript and metabolite profiles along with RT-qPCR analysis resulted in the identification of CYP-TS genes with high sequence variation. Further, instances of concordant/discordant relation between CRA biosynthesis and CYP-TS gene expression were observed, indicating functional diversity in genes.
Collapse
Affiliation(s)
- Karuna Surendran
- Department of Genomic Science, Central University of Kerala, Kasaragod, 671320, India
| | - Siya Pradeep
- Department of Genomic Science, Central University of Kerala, Kasaragod, 671320, India
| | | |
Collapse
|
5
|
Liu G, Qin P, Cheng X, Wu L, Wang R, Gao W. Ursolic acid: biological functions and application in animal husbandry. Front Vet Sci 2023; 10:1251248. [PMID: 37964910 PMCID: PMC10642196 DOI: 10.3389/fvets.2023.1251248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 10/09/2023] [Indexed: 11/16/2023] Open
Abstract
Ursolic acid (UA) is a plant-derived pentacyclic triterpenoid with 30 carbon atoms. UA has anti-inflammatory, antioxidative, antimicrobial, hepato-protective, anticancer, and other biological activities. Most studies on the biological functions of UA have been performed in mammalian cell (in vitro) and rodent (in vivo) models. UA is used in animal husbandry as an anti-inflammatory and antiviral agent, as well as for enhancing the integrity of the intestinal barrier. Although UA has been shown to have significant in vitro bacteriostatic effects, it is rarely used in animal nutrition. The use of UA as a substitute for oral antibiotics or as a novel feed additive in animal husbandry should be considered. This review summarizes the available data on the biological functions of UA and its applications in animal husbandry.
Collapse
Affiliation(s)
- Guanhui Liu
- School of Life Sciences and Food Engineering, Hebei University of Engineering, Handan, China
| | - Peng Qin
- Chenguang Biotechnology Group Handan Co., Ltd., Handan, China
| | - Xinying Cheng
- Chenguang Biotechnology Group Handan Co., Ltd., Handan, China
| | - Lifei Wu
- Hebei Plant Extraction Innovation Center Co., Ltd., Handan, China
- Hebei Province Plant Source Animal Health Products Technology Innovation Center, Handan, China
| | - Ruoning Wang
- School of Life Sciences and Food Engineering, Hebei University of Engineering, Handan, China
| | - Wei Gao
- Hebei Plant Extraction Innovation Center Co., Ltd., Handan, China
- Hebei Province Plant Source Animal Health Products Technology Innovation Center, Handan, China
| |
Collapse
|
6
|
Dubinin MV, Nedopekina DA, Ilzorkina AI, Semenova AA, Sharapov VA, Davletshin EV, Mikina NV, Belsky YP, Spivak AY, Akatov VS, Belosludtseva NV, Liu J, Belosludtsev KN. Conjugation of Triterpenic Acids of Ursane and Oleanane Types with Mitochondria-Targeting Cation F16 Synergistically Enhanced Their Cytotoxicity against Tumor Cells. MEMBRANES 2023; 13:563. [PMID: 37367767 PMCID: PMC10303159 DOI: 10.3390/membranes13060563] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 05/25/2023] [Accepted: 05/29/2023] [Indexed: 06/28/2023]
Abstract
The present work shows the cytotoxic effects of novel conjugates of ursolic, oleanolic, maslinic, and corosolic acids with the penetrating cation F16 on cancer cells (lung adenocarcinoma A549 and H1299, breast cancer cell lines MCF-7 and BT474) and non-tumor human fibroblasts. It has been established that the conjugates have a significantly enhanced toxicity against tumor-derived cells compared to native acids and also demonstrate selectivity to some cancer cells. The toxic effect of the conjugates is shown to be due to ROS hyperproduction in cells, induced by the effect on mitochondria. The conjugates caused dysfunction of isolated rat liver mitochondria and, in particular, a decrease in the efficiency of oxidative phosphorylation, a decrease in the membrane potential, and also an overproduction of ROS by organelles. The paper discusses how the membranotropic- and mitochondria-targeted effects of the conjugates may be related to their toxic effects.
Collapse
Affiliation(s)
- Mikhail V. Dubinin
- Department of Biochemistry, Cell Biology and Microbiology, Mari State University, pl. Lenina 1, Yoshkar-Ola 424001, Russia; (A.A.S.); (V.A.S.); (N.V.M.); (N.V.B.); (K.N.B.)
| | - Darya A. Nedopekina
- Institute of Petrochemistry and Catalysis, Russian Academy of Sciences, Prospekt Oktyabrya 141, Ufa 450075, Russia; (D.A.N.); (E.V.D.); (A.Y.S.)
| | - Anna I. Ilzorkina
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Institutskaya 3, Pushchino 142290, Russia; (A.I.I.); (V.S.A.)
| | - Alena A. Semenova
- Department of Biochemistry, Cell Biology and Microbiology, Mari State University, pl. Lenina 1, Yoshkar-Ola 424001, Russia; (A.A.S.); (V.A.S.); (N.V.M.); (N.V.B.); (K.N.B.)
| | - Vyacheslav A. Sharapov
- Department of Biochemistry, Cell Biology and Microbiology, Mari State University, pl. Lenina 1, Yoshkar-Ola 424001, Russia; (A.A.S.); (V.A.S.); (N.V.M.); (N.V.B.); (K.N.B.)
| | - Eldar V. Davletshin
- Institute of Petrochemistry and Catalysis, Russian Academy of Sciences, Prospekt Oktyabrya 141, Ufa 450075, Russia; (D.A.N.); (E.V.D.); (A.Y.S.)
| | - Natalia V. Mikina
- Department of Biochemistry, Cell Biology and Microbiology, Mari State University, pl. Lenina 1, Yoshkar-Ola 424001, Russia; (A.A.S.); (V.A.S.); (N.V.M.); (N.V.B.); (K.N.B.)
| | - Yuri P. Belsky
- Centre of Preclinical Translational Research, Almazov National Medical Research Centre, St. Petersburg 197371, Russia;
| | - Anna Yu. Spivak
- Institute of Petrochemistry and Catalysis, Russian Academy of Sciences, Prospekt Oktyabrya 141, Ufa 450075, Russia; (D.A.N.); (E.V.D.); (A.Y.S.)
| | - Vladimir S. Akatov
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Institutskaya 3, Pushchino 142290, Russia; (A.I.I.); (V.S.A.)
| | - Natalia V. Belosludtseva
- Department of Biochemistry, Cell Biology and Microbiology, Mari State University, pl. Lenina 1, Yoshkar-Ola 424001, Russia; (A.A.S.); (V.A.S.); (N.V.M.); (N.V.B.); (K.N.B.)
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Institutskaya 3, Pushchino 142290, Russia; (A.I.I.); (V.S.A.)
| | - Jiankang Liu
- School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao 266071, China;
| | - Konstantin N. Belosludtsev
- Department of Biochemistry, Cell Biology and Microbiology, Mari State University, pl. Lenina 1, Yoshkar-Ola 424001, Russia; (A.A.S.); (V.A.S.); (N.V.M.); (N.V.B.); (K.N.B.)
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Institutskaya 3, Pushchino 142290, Russia; (A.I.I.); (V.S.A.)
| |
Collapse
|
7
|
Isolation of Bioactive Pentacyclic Triterpenoid Acids from Olive Tree Leaves with Flash Chromatography. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12030996] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The present study reports on the use of the flash chromatography for the isolation and purification of oleanolic and maslinic acids from olive leaf extracts. Although the separation and identification of these acids is considered challenging due to the similarity in their structure, oleanolic and maslinic acids were detected, identified, and separated. Solubility prediction was used to help to match compatibility of extraction solvent with targeted triterpenoid acids. Aqueous washing was used, to first selectively remove unwanted interferents from the extraction solvent. The extracts obtained with different solvents and solvent mixtures were fractionated using flash chromatography and then analyzed. HPTLC chromatography was used to assess collected fractions as either semi-pure or pure, and to identify the fractions containing oleanolic and maslinic acids. The yields of oleanolic and maslinic acids reported here are significantly higher than yields obtained in previously reported isolations. The presence and purity of oleanolic and maslinic acid in collected fractions was confirmed by ATR-FTIR and NMR spectrometry.
Collapse
|
8
|
Zhao J, Zhou H, An Y, Shen K, Yu L. Biological effects of corosolic acid as an anti-inflammatory, anti-metabolic syndrome and anti-neoplasic natural compound. Oncol Lett 2021; 21:84. [PMID: 33363621 PMCID: PMC7723172 DOI: 10.3892/ol.2020.12345] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Accepted: 09/16/2020] [Indexed: 12/23/2022] Open
Abstract
Accumulating evidence has indicated that corosolic acid exerts anti-diabetic, anti-obesity, anti-inflammatory, anti-hyperlipidemic and anti-viral effects. More importantly, corosolic acid has recently attracted much attention due to its anticancer properties and innocuous effects on normal cells. Furthermore, the increasing proportion of obese and/or diabetic populations has led to an epidemic of non-alcoholic fatty liver disease (NAFLD), which frequently progresses to hepatocellular carcinoma (HCC). Evidence has indicated that NAFLD is closely associated with the development of HCC and comprises a high risk factor. The present review summarizes the anticancer effects of corosolic acid in vitro and in vivo, and its related molecular mechanisms. It also describes the inhibitory effects of corosolic acid on the progression of NAFLD and its associated molecular mechanisms, providing guidance for future research on corosolic acid in NAFLD-related HCC prevention and treatment. To the best of our knowledge, a review of corosolic acid as an anticancer agent has not yet been reported. Due to its multitargeted activity in cancer cells, corosolic acid exerts anticancer effects when administered alone, and acts synergistically when administered with chemotherapeutic drugs, even in drug-resistant cells. In addition, as a novel tool to treat metabolic syndromes, corosolic acid uses the same mechanism in its action against cancer as that used in the progression of NAFLD-related HCC. Therefore, corosolic acid has been suggested as an agent for the prevention and treatment of NAFLD-related HCC.
Collapse
Affiliation(s)
- Jinwei Zhao
- Key Laboratory for Zoonosis Research, Department of Hepatopancreatobiliary Surgery, Institute of Zoonosis, The Second Hospital of Jilin University, Ministry of Education, College of Veterinary Medicine Jilin University, Changchun, Jilin 130062, P.R. China
| | - Hong Zhou
- Key Laboratory for Zoonosis Research, Department of Hepatopancreatobiliary Surgery, Institute of Zoonosis, The Second Hospital of Jilin University, Ministry of Education, College of Veterinary Medicine Jilin University, Changchun, Jilin 130062, P.R. China
| | - Yanan An
- Key Laboratory for Zoonosis Research, Department of Hepatopancreatobiliary Surgery, Institute of Zoonosis, The Second Hospital of Jilin University, Ministry of Education, College of Veterinary Medicine Jilin University, Changchun, Jilin 130062, P.R. China
| | - Keshu Shen
- Department of Hepatobiliary Medicine of Jilin Hepatobiliary Hospital, Changchun, Jilin 130062, P.R. China
| | - Lu Yu
- Key Laboratory for Zoonosis Research, Department of Hepatopancreatobiliary Surgery, Institute of Zoonosis, The Second Hospital of Jilin University, Ministry of Education, College of Veterinary Medicine Jilin University, Changchun, Jilin 130062, P.R. China
| |
Collapse
|
9
|
Liu G, Li J, Shi L, Liu M, Cai B. Advances in the Study of Structural Modification and Biological Activities of Ursolic Acid. CHINESE J ORG CHEM 2021. [DOI: 10.6023/cjoc202102032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
10
|
Luo W, Ip FCF, Fu G, Cheung K, Tian Y, Hu Y, Sinha A, Cheng EYL, Wu X, Bustos V, Greengard P, Li YM, Sinha SC, Ip NY. A Pentacyclic Triterpene from Ligustrum lucidum Targets γ-Secretase. ACS Chem Neurosci 2020; 11:2827-2835. [PMID: 32786303 PMCID: PMC8325170 DOI: 10.1021/acschemneuro.0c00389] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Amyloid-beta peptides generated by β-secretase- and γ-secretase-mediated successive cleavage of amyloid precursor protein are believed to play a causative role in Alzheimer's disease. Thus, reducing amyloid-beta generation by modulating γ-secretase remains a promising approach for Alzheimer's disease therapeutic development. Here, we screened fruit extracts of Ligustrum lucidum Ait. (Oleaceae) and identified active fractions that increase the C-terminal fragment of amyloid precursor protein and reduce amyloid-beta production in a neuronal cell line. These fractions contain a mixture of two isomeric pentacyclic triterpene natural products, 3-O-cis- or 3-O-trans-p-coumaroyl maslinic acid (OCMA), in different ratios. We further demonstrated that trans-OCMA specifically inhibits γ-secretase and decreases amyloid-beta levels without influencing cleavage of Notch. By using photoactivatable probes targeting the subsites residing in the γ-secretase active site, we demonstrated that trans-OCMA selectively affects the S1 subsite of the active site in this protease. Treatment of Alzheimer's disease transgenic model mice with trans-OCMA or an analogous carbamate derivative of a related pentacyclic triterpene natural product, oleanolic acid, rescued the impairment of synaptic plasticity. This work indicates that the naturally occurring compound trans-OCMA and its analogues could become a promising class of small molecules for Alzheimer's disease treatment.
Collapse
Affiliation(s)
- Wenjie Luo
- Laboratory of Molecular and Cellular Neuroscience, The Rockefeller University, New York, New York 10065, United States
| | - Fanny C F Ip
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, and Molecular Neuroscience Center, The Hong Kong University of Science and Technology, Clear Water Bay Road, Kowloon, Hong Kong, China
- Hong Kong Center for Neurodegenerative Diseases, Hong Kong Science Park, Hong Kong, China
- Guangdong Provincial Key Laboratory of Brain Science, Disease and Drug Development, Shenzhen-Hong Kong Institute of Brain Science, HKUST Shenzhen Research Institute, Shenzhen, Guangdong, China 518057
| | - Guangmiao Fu
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, and Molecular Neuroscience Center, The Hong Kong University of Science and Technology, Clear Water Bay Road, Kowloon, Hong Kong, China
| | - Kit Cheung
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, and Molecular Neuroscience Center, The Hong Kong University of Science and Technology, Clear Water Bay Road, Kowloon, Hong Kong, China
| | - Yuan Tian
- Laboratory of Molecular and Cellular Neuroscience, The Rockefeller University, New York, New York 10065, United States
| | - Yueqing Hu
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, and Molecular Neuroscience Center, The Hong Kong University of Science and Technology, Clear Water Bay Road, Kowloon, Hong Kong, China
| | - Anjana Sinha
- Laboratory of Molecular and Cellular Neuroscience, The Rockefeller University, New York, New York 10065, United States
| | - Elaine Y L Cheng
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, and Molecular Neuroscience Center, The Hong Kong University of Science and Technology, Clear Water Bay Road, Kowloon, Hong Kong, China
| | - Xianzhong Wu
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065, United States
| | - Victor Bustos
- Laboratory of Molecular and Cellular Neuroscience, The Rockefeller University, New York, New York 10065, United States
| | - Paul Greengard
- Laboratory of Molecular and Cellular Neuroscience, The Rockefeller University, New York, New York 10065, United States
| | - Yue-Ming Li
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065, United States
| | - Subhash C Sinha
- Laboratory of Molecular and Cellular Neuroscience, The Rockefeller University, New York, New York 10065, United States
| | - Nancy Y Ip
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, and Molecular Neuroscience Center, The Hong Kong University of Science and Technology, Clear Water Bay Road, Kowloon, Hong Kong, China
- Hong Kong Center for Neurodegenerative Diseases, Hong Kong Science Park, Hong Kong, China
- Guangdong Provincial Key Laboratory of Brain Science, Disease and Drug Development, Shenzhen-Hong Kong Institute of Brain Science, HKUST Shenzhen Research Institute, Shenzhen, Guangdong, China 518057
| |
Collapse
|
11
|
Lei Y, Yuan H, Gai L, Wu X, Luo Z. Uncovering Active Ingredients and Mechanisms of Spica Prunellae in the Treatment of Colon Adenocarcinoma: A Study Based on Network Pharmacology and Bioinformatics. Comb Chem High Throughput Screen 2020; 24:306-318. [PMID: 32748741 DOI: 10.2174/1386207323999200730210536] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 06/26/2020] [Accepted: 07/16/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND As a well-known herb used in the treatment of colon adenocarcinoma (COAD), Spica Prunellae (SP) shows favorable clinical effect and safety in China for many years, but its active ingredients and therapeutic mechanisms against COAD remain poorly understood. Therefore, this study aims to uncover active ingredients and mechanisms of SP in the treatment of COAD using a combined approach of network pharmacology and bioinformatics. METHODS A comprehensive approach mainly comprised of target prediction, network construction, pathway and functional enrichment analysis, and hub genes verification was adopted in the current study. RESULTS We collected 102 compounds-related genes and 3549 differently expressed genes (DEGs) following treatment with SP, and 64 disease-drug target genes between them were recognized. In addition, a total of 25 active ingredients in SP were identified. Pathway and functional enrichment analyses suggested that the mechanisms of SP against COAD might be to induce apoptosis of colon cancer cells by regulating PI3K-Akt and TNF signaling pathways. Recognition of hub genes and core functional modules was performed by constructing protein-protein interaction (PPI) network, from which TP53, MYC, MAPK8 and CASP3 were found as the hub target genes that might play an important part in therapy for COAD. Subsequently we further compared the differential expression level and assessed the prognostic value of these four hub genes. These result of verification suggested that SP exerted therapeutic effects against COAD via a PPI network involving TP53, MYC, MAPK8 and CASP3. CONCLUSION In this study, active ingredients and mechanisms of SP in the treatment of COAD were systematically discussed, which provided the foundation for further experimental studies and might act to promote its appropriate clinical application.
Collapse
Affiliation(s)
- Yan Lei
- Department of Otorhinolaryngology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Hao Yuan
- BGI Education Center, University of Chinese Academy of Sciences, Shenzhen, 518083, China
| | - Liyue Gai
- College of Medical Science, China Three Gorges University, Yichang 443002, China
| | - Xuelian Wu
- College of Medical Science, China Three Gorges University, Yichang 443002, China
| | - Zhixiao Luo
- Health Management Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| |
Collapse
|
12
|
Sen A. Prophylactic and therapeutic roles of oleanolic acid and its derivatives in several diseases. World J Clin Cases 2020; 8:1767-1792. [PMID: 32518769 PMCID: PMC7262697 DOI: 10.12998/wjcc.v8.i10.1767] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 03/27/2020] [Accepted: 05/01/2020] [Indexed: 02/05/2023] Open
Abstract
Oleanolic acid (OA) and its derivatives are widely found in diverse plants and are naturally effective pentacyclic triterpenoid compounds with broad prophylactic and therapeutic roles in various diseases such as ulcerative colitis, multiple sclerosis, metabolic disorders, diabetes, hepatitis and different cancers. This review assembles and presents the latest in vivo reports on the impacts of OA and OA derivatives from various plant sources and the biological mechanisms of OA activities. Thus, this review presents sufficient data proposing that OA and its derivatives are potential alternative and complementary therapies for the treatment and management of several diseases.
Collapse
Affiliation(s)
- Alaattin Sen
- Department of Molecular Biology and Genetics, Faculty of Life and Natural Sciences, Abdullah Gul University, Kayseri 38080, Turkey
| |
Collapse
|
13
|
Molecular Docking and Molecular Dynamics Studies on Selective Synthesis of α-Amyrin and β-Amyrin by Oxidosqualene Cyclases from Ilex Asprella. Int J Mol Sci 2019; 20:ijms20143469. [PMID: 31311103 PMCID: PMC6678101 DOI: 10.3390/ijms20143469] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 07/02/2019] [Accepted: 07/02/2019] [Indexed: 11/22/2022] Open
Abstract
Amyrins are the immediate precursors of many pharmaceutically important pentacyclic triterpenoids. Although various amyrin synthases have been identified, little is known about the relationship between protein structures and the constituent and content of the products. IaAS1 and IaAS2 identified from Ilex asprella in our previous work belong to multifunctional oxidosqualene cyclases and can produce α-amyrin and β-amyrin at different ratios. More than 80% of total production of IaAS1 is α-amyrin; while IaAS2 mainly produces β-amyrin with a yield of 95%. Here, we present a molecular modeling approach to explore the underlying mechanism for selective synthesis. The structures of IaAS1 and IaAS2 were constructed by homology modeling, and were evaluated by Ramachandran Plot and Verify 3D program. The enzyme-product conformations generated by molecular docking indicated that ASP484 residue plays an important role in the catalytic process; and TRP611 residue of IaAS2 had interaction with β-amyrin through π–σ interaction. MM/GBSA binding free energy calculations and free energy decomposition after 50 ns molecular dynamics simulations were performed. The binding affinity between the main product and corresponding enzyme was higher than that of the by-product. Conserved amino acid residues such as TRP257; TYR259; PHE47; TRP534; TRP612; and TYR728 for IaAS1 (TRP257; TYR259; PHE473; TRP533; TRP611; and TYR727 for IaAS2) had strong interactions with both products. GLN450 and LYS372 had negative contribution to binding affinity between α-amyrin or β-amyrin and IaAS1. LYS372 and ARG261 had strong repulsive effects for the binding of α-amyrin with IaAS2. The importance of Lys372 and TRP612 of IaAS1, and Lys372 and TRP611 of IaAS2, for synthesizing amyrins were confirmed by site-directed mutagenesis. The different patterns of residue–product interactions is the cause for the difference in the yields of two products.
Collapse
|
14
|
Wang R, Yang W, Fan Y, Dehaen W, Li Y, Li H, Wang W, Zheng Q, Huai Q. Design and synthesis of the novel oleanolic acid-cinnamic acid ester derivatives and glycyrrhetinic acid-cinnamic acid ester derivatives with cytotoxic properties. Bioorg Chem 2019; 88:102951. [PMID: 31054427 DOI: 10.1016/j.bioorg.2019.102951] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Revised: 04/23/2019] [Accepted: 04/23/2019] [Indexed: 12/12/2022]
Abstract
Oleanolic acid (OA) and glycyrrhetinic acid (GA) are natural products with anticancer effects. Cinnamic acid (CA) and its derivatives also exhibited certain anticancer activity. In order to improve the anticancer activity of OA and GA, we designed and synthesized a series of novel OA-CA ester derivatives and GA-CA ester derivatives by using molecular hybridization approach. The 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) assay was used to assess their in vitro cytotoxicity on three cell lines (HeLa (cervical cancer), MCF-7 (breast cancer) and L-O2 (a normal hepatic cell)). Among the evaluated compounds, 3o presented the strongest selective cytotoxicity on HeLa cells (IC50 = 1.35 μM) and showed no inhibitory activity against MCF-7 cells (IC50 > 100 μM) and L-O2 cells (IC50 > 100 μM), and 3e presented the strongest selective inhibition of the MCF-7 cells (IC50 = 1.79 μM). What's more, compound 2d also showed very strong selective inhibitory activity against HeLa cells (IC50 = 1.55 μM). The further research using Hoechst 33342, AO/EB dual-staining, flow cytometric analysis and DCFH-DA fluorescent dye staining assay presented that 2d and 3o could induce HeLa cells apoptosis and autophagy.
Collapse
Affiliation(s)
- Rui Wang
- Marine College, Shandong University, Weihai 264209, China; Molecular Design and Synthesis, Department of Chemistry, KU Leuven, Celestijnenlaan 200F, B-3001 Heverlee, Belgium
| | - Wei Yang
- Marine College, Shandong University, Weihai 264209, China
| | - Yiqing Fan
- Marine College, Shandong University, Weihai 264209, China
| | - Wim Dehaen
- Molecular Design and Synthesis, Department of Chemistry, KU Leuven, Celestijnenlaan 200F, B-3001 Heverlee, Belgium
| | - Yang Li
- Zhong Yuan Academy of Biological Medicine, Liaocheng People's Hospital/Affiliated Liaocheng Hospital, Taishan Medical University, Liaocheng, China
| | - Huijing Li
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai 264209, China.
| | - Wei Wang
- Marine College, Shandong University, Weihai 264209, China
| | - Qingxuan Zheng
- Marine College, Shandong University, Weihai 264209, China
| | - Qiyong Huai
- Marine College, Shandong University, Weihai 264209, China.
| |
Collapse
|
15
|
Itoh T, Katsurayama K, Efdi M, Ninomiya M, Koketsu M. Sentulic acid isolated from Sandoricum koetjape Merr attenuates lipopolysaccharide and interferon gamma co-stimulated nitric oxide production in murine macrophage RAW264 cells. Bioorg Med Chem Lett 2018; 28:3496-3501. [DOI: 10.1016/j.bmcl.2018.10.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 09/22/2018] [Accepted: 10/09/2018] [Indexed: 02/06/2023]
|
16
|
Wang EM, Fan QL, Yue Y, Xu L. Ursolic Acid Attenuates High Glucose-Mediated Mesangial Cell Injury by Inhibiting the Phosphatidylinositol 3-Kinase/Akt/Mammalian Target of Rapamycin (PI3K/Akt/mTOR) Signaling Pathway. Med Sci Monit 2018; 24:846-854. [PMID: 29428962 PMCID: PMC5817901 DOI: 10.12659/msm.907814] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 01/16/2018] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND To investigate the protective effect of ursolic acid (UA) on high glucose (HG)-induced human glomerular mesangial cell injury and to determine whether UA inhibits cell proliferation and reactive oxygen species (ROS) production by suppressing PI3K/Akt/mTOR pathway activation. MATERIAL AND METHODS Human mesangial cells were cultured with normal glucose (NG group), high glucose (HG group), mannitol (mannitol hypertonic control group), or high glucose with different concentrations (0.5, 1.0, and 2.0 mmol/L) of UA (HG+UA groups). Cell proliferation and intracellular ROS levels were assessed by methyl thiazolyl tetrazolium (MTT) and dichloro-dihydro-fluorescein diacetate (DCFH-DA) flow cytometry assays, respectively. Western blotting was used to detect mesangial cell expression of PI3K/Akt/mTOR pathway components, including Akt, p-Akt, mTOR, and p-mTOR, and proteins related to cell injury, including TGF-β1 and fibronectin (FN). mRNA expression of TGF-β1 and FN were evaluated using real-time quantitative polymerase chain reaction (PCR). RESULTS Abnormal proliferation was observed in human glomerular mesangial cells at 48 h after treatment with HG, and UA suppressed the HG-induced proliferation of mesangial cells in a dose-dependent manner. UA inhibited ROS generation and oxidative stress in mesangial cells and mitigated mesangial cell injury. Treatment with UA reduced Akt and mTOR phosphorylation levels in mesangial cells exposed to HG (p<0.05 vs. HG) and downregulated protein and mRNA expression of TGF-β1 and FN in these cells (p<0.05 vs. HG). CONCLUSIONS UA attenuated mesangial cell proliferation and ROS generation by inhibiting HG-mediated PI3K/Akt/mTOR pathway activation, thereby ameliorating mesangial cell damage.
Collapse
|
17
|
Fang Y, Zhang L, Feng J, Lin W, Cai Q, Peng J. Spica Prunellae extract suppresses the growth of human colon carcinoma cells by targeting multiple oncogenes via activating miR-34a. Oncol Rep 2017; 38:1895-1901. [PMID: 28713966 DOI: 10.3892/or.2017.5792] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Accepted: 06/19/2017] [Indexed: 11/05/2022] Open
Abstract
Spica Prunellae is the spike of the herb Prunella vulgaris L. in traditional Chinese medicine which is often used for the treatment of various cancers including colorectal cancer. In the present study, we found that a key tumor suppressor, microRNA-34a (miR-34a) is involved in the antitumor activity for Spica Prunellae. Human colon carcinoma HCT-8 cells treated with an ethanol extract of Spica Prunellae (EESP) had significantly decreased cell proliferation and viability, in a dose-dependent manner. Flow cytometry analysis with Annexin V/PI staining analysis revealed that EESP treatment could induce apoptosis of HCT-8 cells. The level of miR-34a was upregulated in HCT-8 cells following EESP treatment, whereas expression levels of its target genes Notch1, Notch2 and Bcl-2 were downregulated. Inhibition of miR-34a rescued the expression of these target genes. These results revealed that Spica Prunellae can suppress the growth of HCT-8 cells by targeting Notch1, Notch2 and Bcl-2 via activation of miR-34a.
Collapse
Affiliation(s)
- Yi Fang
- Academy of Integrative Medicine and Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350108, P.R. China
| | - Ling Zhang
- Academy of Integrative Medicine and Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350108, P.R. China
| | - Jianyu Feng
- Academy of Integrative Medicine and Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350108, P.R. China
| | - Wei Lin
- Academy of Integrative Medicine and Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350108, P.R. China
| | - Qiaoyan Cai
- Academy of Integrative Medicine and Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350108, P.R. China
| | - Jun Peng
- Academy of Integrative Medicine and Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350108, P.R. China
| |
Collapse
|
18
|
Lodi A, Saha A, Lu X, Wang B, Sentandreu E, Collins M, Kolonin MG, DiGiovanni J, Tiziani S. Combinatorial treatment with natural compounds in prostate cancer inhibits prostate tumor growth and leads to key modulations of cancer cell metabolism. NPJ Precis Oncol 2017; 1:18. [PMID: 29202102 PMCID: PMC5705091 DOI: 10.1038/s41698-017-0024-z] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Revised: 04/12/2017] [Accepted: 04/20/2017] [Indexed: 12/22/2022] Open
Abstract
High-throughput screening of a natural compound library was performed to identify the most efficacious combinatorial treatment on prostate cancer. Ursolic acid, curcumin and resveratrol were selected for further analyses and administered in vivo via the diet, either alone or in combination, in a mouse allograft model of prostate cancer. All possible combinations of these natural compounds produced synergistic effects on tumor size and weight, as predicted in the screens. A subsequent untargeted metabolomics and metabolic flux analysis using isotopically labeled glutamine indicated that the compound combinations modulated glutamine metabolism. In addition, ASCT2 levels and STAT3, mTORC1 and AMPK activity were modulated to a greater extent by the combinations compared to the individual compounds. Overall, this approach can be useful for identifying synergistic combinations of natural compounds for chemopreventive and therapeutic interventions.
Collapse
Affiliation(s)
- Alessia Lodi
- Department of Nutritional Sciences, The University of Texas at Austin, Austin, TX USA
| | - Achinto Saha
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, TX USA
| | - Xiyuan Lu
- Department of Nutritional Sciences, The University of Texas at Austin, Austin, TX USA
| | - Bo Wang
- Department of Nutritional Sciences, The University of Texas at Austin, Austin, TX USA
| | - Enrique Sentandreu
- Department of Nutritional Sciences, The University of Texas at Austin, Austin, TX USA
| | - Meghan Collins
- Department of Nutritional Sciences, The University of Texas at Austin, Austin, TX USA
| | - Mikhail G. Kolonin
- The Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX USA
| | - John DiGiovanni
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, TX USA
- Dell Pediatric Research Institute, The University of Texas at Austin, Austin, TX USA
| | - Stefano Tiziani
- Department of Nutritional Sciences, The University of Texas at Austin, Austin, TX USA
- Dell Pediatric Research Institute, The University of Texas at Austin, Austin, TX USA
| |
Collapse
|
19
|
Xu SH, Zhang C, Wang WW, Yu BY, Zhang J. Site-selective biotransformation of ursane triterpenes by Streptomyces griseus ATCC 13273. RSC Adv 2017. [DOI: 10.1039/c7ra01811h] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The oxidization of unactivated C–H bonds of pentacyclic triterpenes (PTs) is of great interest for the structural modification of PTs.
Collapse
Affiliation(s)
- Shao-Hua Xu
- State Key Laboratory of Natural Medicines
- China Pharmaceutical University
- Nanjing
- China
| | - Chao Zhang
- State Key Laboratory of Natural Medicines
- China Pharmaceutical University
- Nanjing
- China
| | - Wei-Wei Wang
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research
- China Pharmaceutical University
- Nanjing
- China
| | - Bo-Yang Yu
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research
- China Pharmaceutical University
- Nanjing
- China
| | - Jian Zhang
- State Key Laboratory of Natural Medicines
- China Pharmaceutical University
- Nanjing
- China
| |
Collapse
|
20
|
Wang WW, Xu SH, Zhao YZ, Zhang C, Zhang YY, Yu BY, Zhang J. Microbial hydroxylation and glycosylation of pentacyclic triterpenes as inhibitors on tissue factor procoagulant activity. Bioorg Med Chem Lett 2016; 27:1026-1030. [PMID: 28109788 DOI: 10.1016/j.bmcl.2016.12.066] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 12/08/2016] [Accepted: 12/27/2016] [Indexed: 11/19/2022]
Abstract
To discover new inhibitors on tissue factor procoagulant activity, 20 pentacyclic triterpenes were semi-synthetized through microbial transformation and assayed on the model of human THP-1 cells stimulated by lipopolysaccharide. In the biotransformation two types of reactions were observed, regio-selective hydroxylation and glycosylation. The bioassay results showed that most of tested compounds were significant effective on this model and two of the biotransformation products 23-hydroxy-28-O-β-d-glucopyranosyl betulinic acid (3d) and 28-O-β-d-glucopyranosyl oleanic acid (1a) exhibited most potential activities with the IC50 values of 0.028, 0.035nM respectively. The preliminary structure and activity relationship analysis revealed that the aglycones with single free hydroxyl group on the skeleton (1, 1j) were less effective than that with more free hydroxyl groups (1d, 1f, 2), mono-glycosylation can significantly enhance their inhibitory effects. Our findings also provide some potential leading compounds for tissue factor-related diseases, such as cancer and cardiovascular diseases.
Collapse
Affiliation(s)
- Wei-Wei Wang
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, China Pharmaceutical University, Nanjing, Jiangsu 211198, China
| | - Shao-Hua Xu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu 210009, China
| | - Ya-Zheng Zhao
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, China Pharmaceutical University, Nanjing, Jiangsu 211198, China
| | - Chao Zhang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu 210009, China
| | - Yuan-Yuan Zhang
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, China Pharmaceutical University, Nanjing, Jiangsu 211198, China
| | - Bo-Yang Yu
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, China Pharmaceutical University, Nanjing, Jiangsu 211198, China.
| | - Jian Zhang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu 210009, China.
| |
Collapse
|
21
|
Cho J, Tremmel L, Rho O, Camelio AM, Siegel D, Slaga TJ, DiGiovanni J. Evaluation of pentacyclic triterpenes found in Perilla frutescens for inhibition of skin tumor promotion by 12-O-tetradecanoylphorbol-13-acetate. Oncotarget 2016; 6:39292-306. [PMID: 26513295 PMCID: PMC4770773 DOI: 10.18632/oncotarget.5751] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 10/05/2015] [Indexed: 11/25/2022] Open
Abstract
A series of pentacyclic tritperpenes found in Perilla frutescens (P. frutescens), including ursolic acid (UA), oleanolic acid (OA), corosolic acid (CA), 3-epi-corosolic acid (3-epiCA), maslinic acid (MA), and 3-epi-maslinic acid (3-epiMA) were evaluated for their effects on epidermal cell signaling, proliferation, and skin inflammation in relation to their ability to inhibit skin tumor promotion by 12-O-tetradecanoylphorbol-13-acetate (TPA) and compared to UA as the prototype compound. All compounds were given topically 30 min prior to each TPA application and significantly inhibited skin tumor promotion. 3-epiCA and MA were significantly more effective than UA at inhibiting tumor development. All of these compounds significantly inhibited epidermal proliferation induced by TPA, however, CA, 3-epiCA and MA were more effective than UA. All compounds also reduced skin inflammation (assessed by infiltration of mast cells and T-cells) and inflammatory gene expression induced by TPA, however, 3-epiCA and MA were again more effective than UA. The greater ability of 3-epiCA and MA to inhibit skin tumor promotion was associated with greater reduction of Cox-2 and Twist1 proteins and inhibition of activation (i.e., phosphorylation) of IGF-1R, STAT3 and Src. Further study of these compounds, especially 3-epiCA and MA, for chemopreventive activity in other cancer model systems is warranted.
Collapse
Affiliation(s)
- Jiyoon Cho
- Division of Pharmacology and Toxicology in College of Pharmacy, The University of Texas at Austin, Austin, TX, USA
| | - Lisa Tremmel
- Division of Pharmacology and Toxicology in College of Pharmacy, The University of Texas at Austin, Austin, TX, USA
| | - Okkyung Rho
- Division of Pharmacology and Toxicology in College of Pharmacy, The University of Texas at Austin, Austin, TX, USA
| | - Andrew M Camelio
- Department of Chemistry, The University of Texas at Austin, Austin, TX, USA
| | - Dionicio Siegel
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
| | - Thomas J Slaga
- Department of Pharmacology, The University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - John DiGiovanni
- Division of Pharmacology and Toxicology in College of Pharmacy, The University of Texas at Austin, Austin, TX, USA.,Department of Nutritional Sciences, The University of Texas at Austin, Austin, TX, USA
| |
Collapse
|
22
|
Wu H, Zhong Q, Zhong R, Huang H, Xia Z, Ke Z, Zhang Z, Song J, Jia X. Preparation and antitumor evaluation of self-assembling oleanolic acid-loaded Pluronic P105/d-α-tocopheryl polyethylene glycol succinate mixed micelles for non-small-cell lung cancer treatment. Int J Nanomedicine 2016; 11:6337-6352. [PMID: 27932881 PMCID: PMC5135287 DOI: 10.2147/ijn.s119839] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Oleanolic acid (OA) is a triterpenoid found in various fruits and vegetables and used in traditional Chinese medicine. OA plays a crucial role in the treatment of several cancers, but poor water solubility, low permeability, and significant efflux have limited its widespread clinical use. Vitamin E-d-α-tocopheryl polyethylene glycol succinate (vitamin E-TPGS) and Pluronic P105 were used to improve the solubility and permeability and to decrease the efflux of OA. OA-loaded mixed micelles were prepared by ethanol thin-film hydration. The physicochemical properties of the micelles, including zeta potential, morphology, particle size, solubility, drug loading, and drug entrapment efficiency were characterized. OA release from micelles was slower than that from the free drug system. OA uptake by A549 non-small-cell lung cancer (NSCLC) cells was enhanced by the micelles. A tumor model was established by injecting A549 cells into nude mice. In vivo imaging showed that OA-micelles could accumulate in the tumors of nude mice. Additionally, smaller tumor size and increased expression of pro-apoptotic proteins were observed in OA-micelle-treated mice, indicating that OA-micelles are more effective than free OA in treating cancer. In vitro experiments were performed using two NSCLC cell lines (A549 and PC-9). Cytotoxicity evaluations showed that the half-maximal inhibitory concentrations of free OA and OA-micelles were 36.8±4.8 and 20.9±3.7 μM, respectively, in A549 cells and 82.7±7.8 and 56.7±4.7 μM, respectively, in PC-9 cells. Apoptosis assays revealed that the apoptotic rate of OA-micelle-treated A549 and PC-9 cells was higher than that of cells treated with the same concentration of free OA. Wound healing and transwell assays showed that migration and invasion were significantly suppressed in OA-micelle-treated cells. Immunofluorescence and Western blot analyses confirmed that the epithelial–mesenchymal transition was reversed in OA-micelle-treated cells. Mixed micelles are a promising nano-drug delivery system for lung cancer treatment.
Collapse
Affiliation(s)
- Hao Wu
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine; Key Laboratory of New Drug Delivery System of Chinese Materia Medica, Jiangsu Province Academy of Chinese Medicine, Nanjing, Jiangsu; College of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui
| | - Qingxiang Zhong
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine; Key Laboratory of New Drug Delivery System of Chinese Materia Medica, Jiangsu Province Academy of Chinese Medicine, Nanjing, Jiangsu
| | - Rongling Zhong
- Laboratory Animal Center, Jiangsu Province Academy of Chinese Medicine, Nanjing, Jiangsu
| | - Houcai Huang
- Laboratory Animal Center, Jiangsu Province Academy of Chinese Medicine, Nanjing, Jiangsu
| | - Zhi Xia
- Laboratory Animal Center, Jiangsu Province Academy of Chinese Medicine, Nanjing, Jiangsu
| | - Zhongcheng Ke
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine; College of Chemistry and Chemical Engineering, Huangshan University, Huangshan, Anhui, People's Republic of China
| | - Zhenhai Zhang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine
| | - Jie Song
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine; Key Laboratory of New Drug Delivery System of Chinese Materia Medica, Jiangsu Province Academy of Chinese Medicine, Nanjing, Jiangsu
| | - Xiaobin Jia
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine; Key Laboratory of New Drug Delivery System of Chinese Materia Medica, Jiangsu Province Academy of Chinese Medicine, Nanjing, Jiangsu; College of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui
| |
Collapse
|