1
|
Barakat K, Ragheb MA, Soliman MH, Abdelmoniem AM, Abdelhamid IA. Novel thiazole-based cyanoacrylamide derivatives: DNA cleavage, DNA/BSA binding properties and their anticancer behaviour against colon and breast cancer cells. BMC Chem 2024; 18:183. [PMID: 39304938 DOI: 10.1186/s13065-024-01284-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 08/30/2024] [Indexed: 09/22/2024] Open
Abstract
A novel series of 2-cyano-3-(pyrazol-4-yl)-N-(thiazol-2-yl)acrylamide derivatives (3a-f) were synthesized using Knoevenagel condensation and characterized using various spectral tools. The weak nuclease activity of compounds (3a-f) against pBR322 plasmid DNA was greatly enhanced by irradiation at 365 nm. Compounds 3b and 3c, incorporating thienyl and pyridyl moieties, respectively, exhibited the utmost nuclease activity in degrading pBR322 plasmid DNA through singlet oxygen and superoxide free radicals' species. Furthermore, compounds 3b and 3c affinities towards calf thymus DNA (CT-DNA) and bovine serum albumin (BSA) were investigated using UV-Vis and fluorescence spectroscopic analysis. They revealed good binding characteristics towards CT-DNA with Kb values of 6.68 × 104 M-1 and 1.19 × 104 M-1 for 3b and 3c, respectively. In addition, compounds 3b and 3c ability to release free radicals on radiation were targeted to be used as cytotoxic compounds in vitro for colon (HCT116) and breast cancer (MDA-MB-231) cells. A significant reduction in the cell viability on illumination at 365 nm was observed, with IC50 values of 23 and 25 µM against HCT116 cells, and 30 and 9 µM against MDA-MB-231 cells for compounds 3b and 3c, respectively. In conclusion, compounds 3b and 3c exhibited remarkable DNA cleavage and cytotoxic activity on illumination at 365 nm which might be associated with free radicals' production in addition to having a good affinity for interacting with CT-DNA and BSA.
Collapse
Affiliation(s)
- Karim Barakat
- Department of Chemistry (Biochemistry Division), Faculty of Science, Cairo University, Giza, 12613, Egypt
| | - Mohamed A Ragheb
- Department of Chemistry (Biochemistry Division), Faculty of Science, Cairo University, Giza, 12613, Egypt.
| | - Marwa H Soliman
- Department of Chemistry (Biochemistry Division), Faculty of Science, Cairo University, Giza, 12613, Egypt
| | - Amr M Abdelmoniem
- Department of Chemistry, Faculty of Science, Cairo University, Giza, 12613, Egypt
| | - Ismail A Abdelhamid
- Department of Chemistry, Faculty of Science, Cairo University, Giza, 12613, Egypt.
| |
Collapse
|
2
|
Urmi UL, Vijay AK, Willcox MDP, Attard S, Enninful G, Kumar N, Islam S, Kuppusamy R. Exploring the Efficacy of Peptides and Mimics against Influenza A Virus, Adenovirus, and Murine Norovirus. Int J Mol Sci 2024; 25:7030. [PMID: 39000138 PMCID: PMC11240954 DOI: 10.3390/ijms25137030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/21/2024] [Accepted: 06/25/2024] [Indexed: 07/16/2024] Open
Abstract
The ongoing battle against viral pandemics continues, with the possibility of future outbreaks. The search for effective antiviral compounds that can combat a diverse range of viruses continues to be a focal point of research. This study investigated the efficacy of two natural antimicrobial peptides (AMPs) (lactoferricin and LL-37), two synthetic AMPs (melimine and Mel4), and nine AMP mimics (758, 1091, 1096, 1083, 610, NAPL, 3-BIPL, 4-BIPL, and Sau-22) against influenza A virus strains H1N1 and H3N2, human adenovirus 5 (HAdV-5), and murine norovirus 1 (MNV-1). These compounds were tested using virus pre-treatment, cell pre-treatment, or post-cell entry treatment assays, electron microscopy, and circular dichroism (CD), alongside evaluations of cytotoxicity against the host cells. After virus pre-treatment, the AMP mimics 610 and Sau-22 had relatively low IC50 values for influenza strains H1N1 (2.35 and 6.93 µM, respectively) and H3N2 (3.7 and 5.34 µM, respectively). Conversely, natural and synthetic AMPs were not active against these strains. For the non-enveloped viruses, the AMP Mel4 and mimic 1083 had moderate activity against HAdV-5 (Mel4 IC50 = 47.4 µM; 1083 IC50 = 47.2 µM), whereas all AMPs, but none of the mimics, were active against norovirus (LL-37 IC50 = 4.2 µM; lactoferricin IC50 = 23.18 µM; melimine IC50 = 4.8 µM; Mel4 IC50 = 8.6 µM). Transmission electron microscopy demonstrated that the mimics targeted the outer envelope of influenza viruses, while the AMPs targeted the capsid of non-enveloped viruses. CD showed that Mel4 adopted an α-helical structure in a membrane mimetic environment, but mimic 758 remained unstructured. The diverse activity against different virus groups is probably influenced by charge, hydrophobicity, size, and, in the case of natural and synthetic AMPs, their secondary structure. These findings underscore the potential of peptides and mimics as promising candidates for antiviral therapeutics against both enveloped and non-enveloped viruses.
Collapse
Affiliation(s)
- Umme Laila Urmi
- School of Optometry and Vision Science, University of New South Wales, Sydney, NSW 2052, Australia
| | - Ajay Kumar Vijay
- School of Optometry and Vision Science, University of New South Wales, Sydney, NSW 2052, Australia
| | - Mark D P Willcox
- School of Optometry and Vision Science, University of New South Wales, Sydney, NSW 2052, Australia
| | - Samuel Attard
- School of Chemistry, University of New South Wales, Sydney, NSW 2052, Australia
| | - George Enninful
- School of Optometry and Vision Science, University of New South Wales, Sydney, NSW 2052, Australia
| | - Naresh Kumar
- School of Chemistry, University of New South Wales, Sydney, NSW 2052, Australia
| | - Salequl Islam
- School of Optometry and Vision Science, University of New South Wales, Sydney, NSW 2052, Australia
- Department of Microbiology, Jahangirnagar University, Savar 1342, Bangladesh
| | - Rajesh Kuppusamy
- School of Optometry and Vision Science, University of New South Wales, Sydney, NSW 2052, Australia
- School of Chemistry, University of New South Wales, Sydney, NSW 2052, Australia
- The Drug Discovery Initiative, University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
3
|
Amblard F, LeCher JC, De R, Zhou S, Liu P, Goh SL, Tao S, Patel D, Downs-Bowen J, Zandi K, Zhang H, Chaudhry G, McBrayer T, Muczynski M, Al-Homoudi A, Engel J, Lan S, Sarafianos SG, Kovari LC, Schinazi RF. Synthesis and biological evaluation of novel peptidomimetic inhibitors of the coronavirus 3C-like protease. Eur J Med Chem 2024; 268:116263. [PMID: 38432056 PMCID: PMC11188152 DOI: 10.1016/j.ejmech.2024.116263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 02/13/2024] [Accepted: 02/17/2024] [Indexed: 03/05/2024]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), and related variants, are responsible for the devastating coronavirus disease 2019 (COVID-19) pandemic. The SARS-CoV-2 main protease (Mpro) plays a central role in the replication of the virus and represents an attractive drug target. Herein, we report the discovery of novel SARS-CoV-2 Mpro covalent inhibitors, including highly effective compound NIP-22c which displays high potency against several key variants and clinically relevant nirmatrelvir Mpro E166V mutants.
Collapse
Affiliation(s)
- Franck Amblard
- Center for ViroScience and Cure, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, and Children's Healthcare of Atlanta, Atlanta, GA, 30322, USA.
| | - Julia C LeCher
- Center for ViroScience and Cure, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, and Children's Healthcare of Atlanta, Atlanta, GA, 30322, USA
| | - Ramyani De
- Center for ViroScience and Cure, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, and Children's Healthcare of Atlanta, Atlanta, GA, 30322, USA
| | - Shaoman Zhou
- Center for ViroScience and Cure, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, and Children's Healthcare of Atlanta, Atlanta, GA, 30322, USA
| | - Peng Liu
- Center for ViroScience and Cure, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, and Children's Healthcare of Atlanta, Atlanta, GA, 30322, USA
| | - Shu Ling Goh
- Center for ViroScience and Cure, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, and Children's Healthcare of Atlanta, Atlanta, GA, 30322, USA
| | - Sijia Tao
- Center for ViroScience and Cure, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, and Children's Healthcare of Atlanta, Atlanta, GA, 30322, USA
| | - Dharmeshkumar Patel
- Center for ViroScience and Cure, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, and Children's Healthcare of Atlanta, Atlanta, GA, 30322, USA
| | - Jessica Downs-Bowen
- Center for ViroScience and Cure, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, and Children's Healthcare of Atlanta, Atlanta, GA, 30322, USA
| | - Keivan Zandi
- Center for ViroScience and Cure, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, and Children's Healthcare of Atlanta, Atlanta, GA, 30322, USA
| | - Huanchun Zhang
- Center for ViroScience and Cure, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, and Children's Healthcare of Atlanta, Atlanta, GA, 30322, USA
| | - Gitika Chaudhry
- Center for ViroScience and Cure, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, and Children's Healthcare of Atlanta, Atlanta, GA, 30322, USA
| | - Tamara McBrayer
- Center for ViroScience and Cure, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, and Children's Healthcare of Atlanta, Atlanta, GA, 30322, USA
| | - Michael Muczynski
- Department of Biochemistry, Microbiology, and Immunology, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Abdullah Al-Homoudi
- Department of Biochemistry, Microbiology, and Immunology, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Joseph Engel
- Department of Biochemistry, Microbiology, and Immunology, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Shuiyun Lan
- Center for ViroScience and Cure, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, and Children's Healthcare of Atlanta, Atlanta, GA, 30322, USA
| | - Stefan G Sarafianos
- Center for ViroScience and Cure, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, and Children's Healthcare of Atlanta, Atlanta, GA, 30322, USA
| | - Ladislau C Kovari
- Department of Biochemistry, Microbiology, and Immunology, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Raymond F Schinazi
- Center for ViroScience and Cure, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, and Children's Healthcare of Atlanta, Atlanta, GA, 30322, USA.
| |
Collapse
|
4
|
Eruera AR, McSweeney AM, McKenzie-Goldsmith GM, Opel-Reading HK, Thomas SX, Campbell AC, Stubbing L, Siow A, Hubert JG, Brimble MA, Ward VK, Krause KL. Crystal Structure of Inhibitor-Bound GII.4 Sydney 2012 Norovirus 3C-Like Protease. Viruses 2023; 15:2202. [PMID: 38005879 PMCID: PMC10674469 DOI: 10.3390/v15112202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/26/2023] [Accepted: 10/30/2023] [Indexed: 11/26/2023] Open
Abstract
Norovirus is the leading cause of viral gastroenteritis worldwide, and there are no approved vaccines or therapeutic treatments for chronic or severe norovirus infections. The structural characterisation of the norovirus protease and drug development has predominantly focused upon GI.1 noroviruses, despite most global outbreaks being caused by GII.4 noroviruses. Here, we determined the crystal structures of the GII.4 Sydney 2012 ligand-free norovirus protease at 2.79 Å and at 1.83 Å with a covalently bound high-affinity (IC50 = 0.37 µM) protease inhibitor (NV-004). We show that the active sites of the ligand-free protease structure are present in both open and closed conformations, as determined by their Arg112 side chain orientation. A comparative analysis of the ligand-free and ligand-bound protease structures reveals significant structural differences in the active site cleft and substrate-binding pockets when an inhibitor is covalently bound. We also report a second molecule of NV-004 non-covalently bound within the S4 substrate binding pocket via hydrophobic contacts and a water-mediated hydrogen bond. These new insights can guide structure-aided drug design against the GII.4 genogroup of noroviruses.
Collapse
Affiliation(s)
- Alice-Roza Eruera
- Department of Microbiology and Immunology, School of Biomedical Sciences, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand; (A.-R.E.); (A.M.M.); (G.M.M.-G.); (S.X.T.)
- Department of Biochemistry, School of Biomedical Sciences, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand; (H.K.O.-R.); (A.C.C.)
| | - Alice M. McSweeney
- Department of Microbiology and Immunology, School of Biomedical Sciences, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand; (A.-R.E.); (A.M.M.); (G.M.M.-G.); (S.X.T.)
| | - Geena M. McKenzie-Goldsmith
- Department of Microbiology and Immunology, School of Biomedical Sciences, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand; (A.-R.E.); (A.M.M.); (G.M.M.-G.); (S.X.T.)
| | - Helen K. Opel-Reading
- Department of Biochemistry, School of Biomedical Sciences, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand; (H.K.O.-R.); (A.C.C.)
| | - Simone X. Thomas
- Department of Microbiology and Immunology, School of Biomedical Sciences, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand; (A.-R.E.); (A.M.M.); (G.M.M.-G.); (S.X.T.)
| | - Ashley C. Campbell
- Department of Biochemistry, School of Biomedical Sciences, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand; (H.K.O.-R.); (A.C.C.)
| | - Louise Stubbing
- School of Chemical Sciences, The University of Auckland, 23 Symonds Street and 3b Symonds Street, Auckland 1142, New Zealand; (L.S.); (A.S.); (J.G.H.); (M.A.B.)
| | - Andrew Siow
- School of Chemical Sciences, The University of Auckland, 23 Symonds Street and 3b Symonds Street, Auckland 1142, New Zealand; (L.S.); (A.S.); (J.G.H.); (M.A.B.)
| | - Jonathan G. Hubert
- School of Chemical Sciences, The University of Auckland, 23 Symonds Street and 3b Symonds Street, Auckland 1142, New Zealand; (L.S.); (A.S.); (J.G.H.); (M.A.B.)
| | - Margaret A. Brimble
- School of Chemical Sciences, The University of Auckland, 23 Symonds Street and 3b Symonds Street, Auckland 1142, New Zealand; (L.S.); (A.S.); (J.G.H.); (M.A.B.)
| | - Vernon K. Ward
- Department of Microbiology and Immunology, School of Biomedical Sciences, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand; (A.-R.E.); (A.M.M.); (G.M.M.-G.); (S.X.T.)
| | - Kurt L. Krause
- Department of Biochemistry, School of Biomedical Sciences, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand; (H.K.O.-R.); (A.C.C.)
| |
Collapse
|
5
|
Stubbing LA, Hubert JG, Bell-Tyrer J, Hermant YO, Yang SH, McSweeney AM, McKenzie-Goldsmith GM, Ward VK, Furkert DP, Brimble MA. P 1 Glutamine isosteres in the design of inhibitors of 3C/3CL protease of human viruses of the Pisoniviricetes class. RSC Chem Biol 2023; 4:533-547. [PMID: 37547456 PMCID: PMC10398354 DOI: 10.1039/d3cb00075c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 06/19/2023] [Indexed: 08/08/2023] Open
Abstract
Viral infections are one of the leading causes of acute morbidity in humans and much endeavour has been made by the synthetic community for the development of drugs to treat associated diseases. Peptide-based enzyme inhibitors, usually short sequences of three or four residues, are one of the classes of compounds currently under development for enhancement of their activity and pharmaceutical properties. This review reports the advances made in the design of inhibitors targeting the family of highly conserved viral proteases 3C/3CLpro, which play a key role in viral replication and present minimal homology with mammalian proteases. Particular focus is put on the reported development of P1 glutamine isosteres to generate potent inhibitors mimicking the natural substrate sequence at the site of recognition.'
Collapse
Affiliation(s)
- Louise A Stubbing
- School of Chemical Sciences, The University of Auckland 23 Symonds Street and 3b Symonds Street Auckland 1142 New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland 3b Symonds Street Auckland 1142 New Zealand
| | - Jonathan G Hubert
- School of Chemical Sciences, The University of Auckland 23 Symonds Street and 3b Symonds Street Auckland 1142 New Zealand
| | - Joseph Bell-Tyrer
- School of Chemical Sciences, The University of Auckland 23 Symonds Street and 3b Symonds Street Auckland 1142 New Zealand
| | - Yann O Hermant
- School of Chemical Sciences, The University of Auckland 23 Symonds Street and 3b Symonds Street Auckland 1142 New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland 3b Symonds Street Auckland 1142 New Zealand
| | - Sung Hyun Yang
- School of Chemical Sciences, The University of Auckland 23 Symonds Street and 3b Symonds Street Auckland 1142 New Zealand
| | - Alice M McSweeney
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland 3b Symonds Street Auckland 1142 New Zealand
- Department of Microbiology and Immunology, School of Biomedical Sciences, University of Otago PO Box 56, 720 Cumberland Street Dunedin 9054 New Zealand
| | - Geena M McKenzie-Goldsmith
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland 3b Symonds Street Auckland 1142 New Zealand
- Department of Microbiology and Immunology, School of Biomedical Sciences, University of Otago PO Box 56, 720 Cumberland Street Dunedin 9054 New Zealand
| | - Vernon K Ward
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland 3b Symonds Street Auckland 1142 New Zealand
- Department of Microbiology and Immunology, School of Biomedical Sciences, University of Otago PO Box 56, 720 Cumberland Street Dunedin 9054 New Zealand
| | - Daniel P Furkert
- School of Chemical Sciences, The University of Auckland 23 Symonds Street and 3b Symonds Street Auckland 1142 New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland 3b Symonds Street Auckland 1142 New Zealand
| | - Margaret A Brimble
- School of Chemical Sciences, The University of Auckland 23 Symonds Street and 3b Symonds Street Auckland 1142 New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland 3b Symonds Street Auckland 1142 New Zealand
| |
Collapse
|
6
|
Schuurs ZP, McDonald JP, Croft LV, Richard DJ, Woodgate R, Gandhi NS. Integration of molecular modelling and in vitro studies to inhibit LexA proteolysis. Front Cell Infect Microbiol 2023; 13:1051602. [PMID: 36936756 PMCID: PMC10020695 DOI: 10.3389/fcimb.2023.1051602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 02/14/2023] [Indexed: 03/06/2023] Open
Abstract
Introduction As antibiotic resistance has become more prevalent, the social and economic impacts are increasingly pressing. Indeed, bacteria have developed the SOS response which facilitates the evolution of resistance under genotoxic stress. The transcriptional repressor, LexA, plays a key role in this response. Mutation of LexA to a non-cleavable form that prevents the induction of the SOS response sensitizes bacteria to antibiotics. Achieving the same inhibition of proteolysis with small molecules also increases antibiotic susceptibility and reduces drug resistance acquisition. The availability of multiple LexA crystal structures, and the unique Ser-119 and Lys-156 catalytic dyad in the protein enables the rational design of inhibitors. Methods We pursued a binary approach to inhibit proteolysis; we first investigated β-turn mimetics, and in the second approach we tested covalent warheads targeting the Ser-119 residue. We found that the cleavage site region (CSR) of the LexA protein is a classical Type II β-turn, and that published 1,2,3-triazole compounds mimic the β-turn. Generic covalent molecule libraries and a β-turn mimetic library were docked to the LexA C-terminal domain using molecular modelling methods in FlexX and CovDock respectively. The 133 highest-scoring molecules were screened for their ability to inhibit LexA cleavage under alkaline conditions. The top molecules were then tested using a RecA-mediated cleavage assay. Results The β-turn library screen did not produce any hit compounds that inhibited RecA-mediated cleavage. The covalent screen discovered an electrophilic serine warhead that can inhibit LexA proteolysis, reacting with Ser-119 via a nitrile moiety. Discussion This research presents a starting point for hit-to-lead optimisation, which could lead to inhibition of the SOS response and prevent the acquisition of antibiotic resistance.
Collapse
Affiliation(s)
- Zachariah P. Schuurs
- Cancer and Ageing Research Program, Centre for Genomics and Personalised Health, Queensland University of Technology (QUT), Translational Research Institute (TRI), Brisbane, QLD, Australia
- School of Chemistry and Physics, Queensland University of Technology (QUT), Brisbane, QLD, Australia
| | - John P. McDonald
- Laboratory of Genomic Integrity, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States
| | - Laura V. Croft
- Cancer and Ageing Research Program, Centre for Genomics and Personalised Health, Queensland University of Technology (QUT), Translational Research Institute (TRI), Brisbane, QLD, Australia
| | - Derek J. Richard
- Cancer and Ageing Research Program, Centre for Genomics and Personalised Health, Queensland University of Technology (QUT), Translational Research Institute (TRI), Brisbane, QLD, Australia
| | - Roger Woodgate
- Laboratory of Genomic Integrity, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States
- *Correspondence: Neha S. Gandhi, ; Roger Woodgate,
| | - Neha S. Gandhi
- Cancer and Ageing Research Program, Centre for Genomics and Personalised Health, Queensland University of Technology (QUT), Translational Research Institute (TRI), Brisbane, QLD, Australia
- School of Chemistry and Physics, Queensland University of Technology (QUT), Brisbane, QLD, Australia
- *Correspondence: Neha S. Gandhi, ; Roger Woodgate,
| |
Collapse
|
7
|
Singh MK, Lakshman MK. Recent developments in the utility of saturated azaheterocycles in peptidomimetics. Org Biomol Chem 2022; 20:963-979. [PMID: 35018952 DOI: 10.1039/d1ob01329g] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
To a large extent, the physical and chemical properties of peptidomimetic molecules are dictated by the integrated heterocyclic scaffolds they contain. Heterocyclic moieties are introduced into a majority of peptide-mimicking molecules to modulate conformational flexibility, improve bioavailability, and fine-tune electronics, and in order to achieve potency similar to or better than that of the natural peptide ligand. This mini-review delineates recent developments, limited to the past five years, in the utility of selected saturated 3- to 6-membered heterocyclic moieties in peptidomimetic design. Also discussed is the chemistry involved in the synthesis of the azaheterocyclic scaffolds and the structural implications of the introduction of these azaheterocycles in peptide backbones as well as side chains of the peptide mimics.
Collapse
Affiliation(s)
- Manish K Singh
- Department of Science, Technology, and Mathematics, Lincoln University, 820 Chestnut Street, Jefferson City, Missouri 65101, USA.
| | - Mahesh K Lakshman
- Department of Chemistry and Biochemistry, The City College of New York, 160 Convent Avenue, New York, New York 10031, USA.,The Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, New York, NY 10016, USA
| |
Collapse
|
8
|
Zarei O, Kleine-Weber H, Hoffmann M, Hamzeh-Mivehroud M. Development and evaluation of peptidomimetic compounds against SARS-CoV-2 spike protein: an in silico and in vitro study. Mol Inform 2022; 41:e2100231. [PMID: 35068079 PMCID: PMC9015386 DOI: 10.1002/minf.202100231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 01/16/2022] [Indexed: 11/08/2022]
Abstract
Background: Coronavirus disease 2019 (COVID‐19) as global pandemic disease has been adversely affecting public health and social life with considerable loss of human life worldwide. Therefore, there is an urgent need for developing novel therapeutics to combat COVID‐19. The causative agent of COVID‐19 is SARS‐CoV‐2 which targets human angiotensin converting enzyme 2 (ACE2) as cellular receptor via its spike (S) protein. In this context, interfering with the binding of SARS‐CoV‐2 S protein to target molecules could provide a promising strategy to find novel therapeutic agents against SARS‐CoV‐2. The purpose of the current study was to identify potential peptidomimetics against S protein with a combination of structure‐based virtual screening methods and in vitro assays. Methods: The candidates were inspected in terms of ADME properties, drug‐likeness, as well as toxicity profiles. Additionally, molecular docking and dynamics simulations were performed to predict binding of the studied ligands to spike protein. Results: Biological evaluation of the compounds revealed that PM2 molecule exhibits some antiviral activity. Conclusion: In summary, this study highlights the importance of combining in silico and in vitro techniques in order to identify antiviral compound to tackle COVID‐19 and presents a new scaffold that may be structurally optimized for improved antiviral activity.
Collapse
Affiliation(s)
- Omid Zarei
- Kurdistan University of Medical Sciences, IRAN (THE ISLAMIC REPUBLIC OF)
| | | | - Markus Hoffmann
- German Primate Centre Leibniz Institute for Primate Research, GERMANY
| | | |
Collapse
|
9
|
Zhang Z, Wang Y, Chen X, Song X, Tu Z, Chen Y, Zhang Z, Ding K. Characterization of an aromatic trifluoromethyl ketone as a new warhead for covalently reversible kinase inhibitor design. Bioorg Med Chem 2021; 50:116457. [PMID: 34670167 DOI: 10.1016/j.bmc.2021.116457] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 09/17/2021] [Accepted: 09/29/2021] [Indexed: 12/28/2022]
Abstract
An aromatic trifluoromethyl ketone moiety was characterized as a new warhead for covalently reversible kinase inhibitor design to target the non-catalytic cysteine residue. Potent and selective covalently reversible inhibitors of FGFR4 kinase were successfully designed and synthesized by utilizing this new warhead. The binding mode of a representative inhibitor was fully characterized by using multiple technologies including MALDI-TOF mass spectrometry, dialysis assay and X-ray crystallographic studies etc. This functional group was also successfully applied to discovery of a new JAK3 inhibitor, suggesting its potential application in designing other kinase inhibitors.
Collapse
Affiliation(s)
- Zhen Zhang
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development, Ministry of Education (MOE) of PR China, College of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
| | - Yongjin Wang
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development, Ministry of Education (MOE) of PR China, College of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
| | - Xiaojuan Chen
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics, Laboratory of Structural Biology, National Clinical Research Center for Geriatric Disorder, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Xiaojuan Song
- Drug Discovery Pipeline & Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Guangzhou 510530, China
| | - Zhengchao Tu
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development, Ministry of Education (MOE) of PR China, College of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China; Drug Discovery Pipeline & Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Guangzhou 510530, China
| | - Yongheng Chen
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics, Laboratory of Structural Biology, National Clinical Research Center for Geriatric Disorder, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Zhimin Zhang
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development, Ministry of Education (MOE) of PR China, College of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
| | - Ke Ding
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development, Ministry of Education (MOE) of PR China, College of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China; The First Affiliated Hospital, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China.
| |
Collapse
|
10
|
Zhao B, Hu L, Song Y, Patil K, Ramani S, Atmar RL, Estes MK, Prasad BVV. Norovirus Protease Structure and Antivirals Development. Viruses 2021; 13:v13102069. [PMID: 34696498 PMCID: PMC8537771 DOI: 10.3390/v13102069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/06/2021] [Accepted: 10/09/2021] [Indexed: 11/30/2022] Open
Abstract
Human norovirus (HuNoV) infection is a global health and economic burden. Currently, there are no licensed HuNoV vaccines or antiviral drugs available. The protease encoded by the HuNoV genome plays a critical role in virus replication by cleaving the polyprotein and is an excellent target for developing small-molecule inhibitors. The current strategy for developing HuNoV protease inhibitors is by targeting the enzyme’s active site and designing inhibitors that bind to the substrate-binding pockets located near the active site. However, subtle differential conformational flexibility in response to the different substrates in the polyprotein and structural differences in the active site and substrate-binding pockets across different genogroups, hamper the development of effective broad-spectrum inhibitors. A comparative analysis of the available HuNoV protease structures may provide valuable insight for identifying novel strategies for the design and development of such inhibitors. The goal of this review is to provide such analysis together with an overview of the current status of the design and development of HuNoV protease inhibitors.
Collapse
Affiliation(s)
- Boyang Zhao
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA; (B.Z.); (K.P.); (S.R.); (R.L.A.); (M.K.E.)
| | - Liya Hu
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA;
| | - Yongcheng Song
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, TX 77030, USA;
| | - Ketki Patil
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA; (B.Z.); (K.P.); (S.R.); (R.L.A.); (M.K.E.)
| | - Sasirekha Ramani
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA; (B.Z.); (K.P.); (S.R.); (R.L.A.); (M.K.E.)
| | - Robert L. Atmar
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA; (B.Z.); (K.P.); (S.R.); (R.L.A.); (M.K.E.)
- Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Mary K. Estes
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA; (B.Z.); (K.P.); (S.R.); (R.L.A.); (M.K.E.)
- Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - B. V. Venkataram Prasad
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA; (B.Z.); (K.P.); (S.R.); (R.L.A.); (M.K.E.)
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA;
- Correspondence: ; Tel.: +1-713-798-5686
| |
Collapse
|
11
|
Abdildinova A, Kurth MJ, Gong Y. Solid‐Phase Synthesis of Peptidomimetics with Peptide Backbone Modifications. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202100264] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Aizhan Abdildinova
- Innovative Drug Library Research Center Department of Chemistry College of Science Dongguk University 26, 3-ga, Pil-dong, Jung-gu Seoul 04620 Korea
| | - Mark J. Kurth
- Department of Chemistry University of California Davis CA 95616 USA
| | - Young‐Dae Gong
- Innovative Drug Library Research Center Department of Chemistry College of Science Dongguk University 26, 3-ga, Pil-dong, Jung-gu Seoul 04620 Korea
| |
Collapse
|
12
|
Resnick SJ, Iketani S, Hong SJ, Zask A, Liu H, Kim S, Melore S, Nair MS, Huang Y, Tay NE, Rovis T, Yang HW, Stockwell BR, Ho DD, Chavez A. A simplified cell-based assay to identify coronavirus 3CL protease inhibitors. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2020:2020.08.29.272864. [PMID: 32869020 PMCID: PMC7457602 DOI: 10.1101/2020.08.29.272864] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
We describe a mammalian cell-based assay capable of identifying coronavirus 3CL protease (3CLpro) inhibitors without requiring the use of live virus. By enabling the facile testing of compounds across a range of coronavirus 3CLpro enzymes, including the one from SARS-CoV-2, we are able to quickly identify compounds with broad or narrow spectra of activity. We further demonstrate the utility of our approach by performing a curated compound screen along with structure-activity profiling of a series of small molecules to identify compounds with antiviral activity. Throughout these studies, we observed concordance between data emerging from this assay and from live virus assays. By democratizing the testing of 3CL inhibitors to enable screening in the majority of laboratories rather than the few with extensive biosafety infrastructure, we hope to expedite the search for coronavirus 3CL protease inhibitors, to address the current epidemic and future ones that will inevitably arise.
Collapse
Affiliation(s)
- Samuel J. Resnick
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, 10032, USA
- Medical Scientist Training Program, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Sho Iketani
- Aaron Diamond AIDS Research Center, Columbia University Irving Medical Center, New York, NY, 10032, USA
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Seo Jung Hong
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Arie Zask
- Department of Biological Sciences, Columbia University, New York, NY, 10027, USA
| | - Hengrui Liu
- Department of Chemistry, Columbia University, New York, NY, 10027, USA
| | - Sungsoo Kim
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Schuyler Melore
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Manoj S. Nair
- Aaron Diamond AIDS Research Center, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Yaoxing Huang
- Aaron Diamond AIDS Research Center, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Nicholas E.S. Tay
- Department of Chemistry, Columbia University, New York, NY, 10027, USA
| | - Tomislav Rovis
- Department of Chemistry, Columbia University, New York, NY, 10027, USA
| | - Hee Won Yang
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Brent R. Stockwell
- Department of Biological Sciences, Columbia University, New York, NY, 10027, USA
- Department of Chemistry, Columbia University, New York, NY, 10027, USA
| | - David D. Ho
- Aaron Diamond AIDS Research Center, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Alejandro Chavez
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, 10032, USA
| |
Collapse
|
13
|
Fernandes RS, Freire MCLC, Bueno RV, Godoy AS, Gil LHVG, Oliva G. Reporter Replicons for Antiviral Drug Discovery against Positive Single-Stranded RNA Viruses. Viruses 2020; 12:v12060598. [PMID: 32486283 PMCID: PMC7354593 DOI: 10.3390/v12060598] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 05/22/2020] [Accepted: 05/25/2020] [Indexed: 12/25/2022] Open
Abstract
Single-stranded positive RNA ((+) ssRNA) viruses include several important human pathogens. Some members are responsible for large outbreaks, such as Zika virus, West Nile virus, SARS-CoV, and SARS-CoV-2, while others are endemic, causing an enormous global health burden. Since vaccines or specific treatments are not available for most viral infections, the discovery of direct-acting antivirals (DAA) is an urgent need. Still, the low-throughput nature of and biosafety concerns related to traditional antiviral assays hinders the discovery of new inhibitors. With the advances of reverse genetics, reporter replicon systems have become an alternative tool for the screening of DAAs. Herein, we review decades of the use of (+) ssRNA viruses replicon systems for the discovery of antiviral agents. We summarize different strategies used to develop those systems, as well as highlight some of the most promising inhibitors identified by the method. Despite the genetic alterations introduced, reporter replicons have been shown to be reliable systems for screening and identification of viral replication inhibitors and, therefore, an important tool for the discovery of new DAAs.
Collapse
Affiliation(s)
- Rafaela S. Fernandes
- Physics Institute of São Carlos, University of São Paulo, São Carlos 13566-590, SP, Brazil; (R.S.F.); (M.C.L.C.F.); (R.V.B.); (A.S.G.)
| | - Marjorie C. L. C. Freire
- Physics Institute of São Carlos, University of São Paulo, São Carlos 13566-590, SP, Brazil; (R.S.F.); (M.C.L.C.F.); (R.V.B.); (A.S.G.)
| | - Renata V. Bueno
- Physics Institute of São Carlos, University of São Paulo, São Carlos 13566-590, SP, Brazil; (R.S.F.); (M.C.L.C.F.); (R.V.B.); (A.S.G.)
| | - Andre S. Godoy
- Physics Institute of São Carlos, University of São Paulo, São Carlos 13566-590, SP, Brazil; (R.S.F.); (M.C.L.C.F.); (R.V.B.); (A.S.G.)
| | | | - Glaucius Oliva
- Physics Institute of São Carlos, University of São Paulo, São Carlos 13566-590, SP, Brazil; (R.S.F.); (M.C.L.C.F.); (R.V.B.); (A.S.G.)
- Correspondence:
| |
Collapse
|
14
|
Antiviral Drug Discovery: Norovirus Proteases and Development of Inhibitors. Viruses 2019; 11:v11020197. [PMID: 30823509 PMCID: PMC6410195 DOI: 10.3390/v11020197] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 02/20/2019] [Accepted: 02/22/2019] [Indexed: 12/11/2022] Open
Abstract
Proteases are a major enzyme group playing important roles in a wide variety of biological processes in life forms ranging from viruses to mammalians. The aberrant activity of proteases can lead to various diseases; consequently, host proteases have been the focus of intense investigation as potential therapeutic targets. A wide range of viruses encode proteases which play an essential role in viral replication and, therefore, constitute attractive targets for the development of antiviral therapeutics. There are numerous examples of successful drug development targeting cellular and viral proteases, including antivirals against human immunodeficiency virus and hepatitis C virus. Most FDA-approved antiviral agents are peptidomimetics and macrocyclic compounds that interact with the active site of a targeted protease. Norovirus proteases are cysteine proteases that contain a chymotrypsin-like fold in their 3D structures. This review focuses on our group’s efforts related to the development of norovirus protease inhibitors as potential anti-norovirus therapeutics. These protease inhibitors are rationally designed transition-state inhibitors encompassing dipeptidyl, tripeptidyl and macrocyclic compounds. Highly effective inhibitors validated in X-ray co-crystallization, enzyme and cell-based assays, as well as an animal model, were generated by launching an optimization campaign utilizing the initial hit compounds. A prodrug approach was also explored to improve the pharmacokinetics (PK) of the identified inhibitors.
Collapse
|
15
|
Muzzarelli KM, Kuiper B, Spellmon N, Brunzelle J, Hackett J, Amblard F, Zhou S, Liu P, Kovari IA, Yang Z, Schinazi RF, Kovari LC. Structural and Antiviral Studies of the Human Norovirus GII.4 Protease. Biochemistry 2019; 58:900-907. [PMID: 30605321 DOI: 10.1021/acs.biochem.8b01063] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Norovirus is the leading cause of acute gastroenteritis worldwide with a yearly reported 700 million cases driving a $60 billion global socioeconomic burden. With no United States Food and Drug Administration approved therapeutics and the chance for severe chronic infection and life-threatening complications, researchers have identified the protease as a potential target. However, drug development has focused on the norovirus GI.1 strain despite its accounting for less than 5% of all outbreaks. Our lab aims to change focus for norovirus drug design from GI.1 to the highly infective GII.4, responsible for more than 50% of all outbreaks worldwide. With the first published crystal structure of the norovirus GII.4 protease, we have identified several significant differences in the structure and active site that have hindered development of a potent inhibitor targeting the norovirus GII.4 protease. With these new insights, we have begun designing compounds that demonstrate increased inhibition of the clinically most relevant norovirus GII.4 strain.
Collapse
Affiliation(s)
- Kendall M Muzzarelli
- Department of Biochemistry, Microbiology and Immunology , Wayne State University School of Medicine , Detroit , Michigan 48201 , United States
| | - Benjamin Kuiper
- Department of Biochemistry, Microbiology and Immunology , Wayne State University School of Medicine , Detroit , Michigan 48201 , United States
| | - Nicholas Spellmon
- Department of Biochemistry, Microbiology and Immunology , Wayne State University School of Medicine , Detroit , Michigan 48201 , United States
| | - Joseph Brunzelle
- Synchrotron Research Center, Life Science Collaborative Access Team , Northwestern University , Argonne , Illinois United States
| | - Justin Hackett
- Department of Biochemistry, Microbiology and Immunology , Wayne State University School of Medicine , Detroit , Michigan 48201 , United States
| | - Franck Amblard
- Center for AIDS Research, Laboratory of Biochemical Pharmacology, Department of Pediatrics , Emory University School of Medicine , Atlanta , Georgia 30322 , United States
| | - Shaoman Zhou
- Center for AIDS Research, Laboratory of Biochemical Pharmacology, Department of Pediatrics , Emory University School of Medicine , Atlanta , Georgia 30322 , United States
| | - Peng Liu
- Center for AIDS Research, Laboratory of Biochemical Pharmacology, Department of Pediatrics , Emory University School of Medicine , Atlanta , Georgia 30322 , United States
| | - Iulia A Kovari
- Department of Biochemistry, Microbiology and Immunology , Wayne State University School of Medicine , Detroit , Michigan 48201 , United States
| | - Zhe Yang
- Department of Biochemistry, Microbiology and Immunology , Wayne State University School of Medicine , Detroit , Michigan 48201 , United States
| | - Raymond F Schinazi
- Center for AIDS Research, Laboratory of Biochemical Pharmacology, Department of Pediatrics , Emory University School of Medicine , Atlanta , Georgia 30322 , United States
| | - Ladislau C Kovari
- Department of Biochemistry, Microbiology and Immunology , Wayne State University School of Medicine , Detroit , Michigan 48201 , United States
| |
Collapse
|