1
|
Xue L, Yu J, Zhou K, Zhong Y, Li C, Zhu H, Sun H, Yang K, Hu YJ. Metal-Free C-S Bond Formation: Enabling a Wide Array of Sulfides for DEL Synthesis. Org Lett 2025. [PMID: 40375658 DOI: 10.1021/acs.orglett.5c01363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2025]
Abstract
Sulfur-containing compounds are prevalent in pharmaceuticals, yet traditional synthesis methods face limitations regarding the substrate scope and yield. We introduce a novel metal-free photochemical method for producing unsymmetrical sulfides using readily available thiols or disulfides and common aryl or alkyl iodides. This versatile technique enables the formation of diverse sulfide structures, thereby expanding opportunities for drug discovery through DNA-encoded libraries (DELs).
Collapse
Affiliation(s)
- Lijun Xue
- Pharmaron (Ningbo) Technology Development Company, Ltd., No. 800 Bin-Hai 4th Road, Hangzhou Bay New Zone, Ningbo 315336, China
| | - Jiaqing Yu
- Pharmaron (Ningbo) Technology Development Company, Ltd., No. 800 Bin-Hai 4th Road, Hangzhou Bay New Zone, Ningbo 315336, China
| | - Kehan Zhou
- Pharmaron (Ningbo) Technology Development Company, Ltd., No. 800 Bin-Hai 4th Road, Hangzhou Bay New Zone, Ningbo 315336, China
| | - Ying Zhong
- Pharmaron (Ningbo) Technology Development Company, Ltd., No. 800 Bin-Hai 4th Road, Hangzhou Bay New Zone, Ningbo 315336, China
| | - Chao Li
- Pharmaron (Ningbo) Technology Development Company, Ltd., No. 800 Bin-Hai 4th Road, Hangzhou Bay New Zone, Ningbo 315336, China
| | - Haiqian Zhu
- Pharmaron (Ningbo) Technology Development Company, Ltd., No. 800 Bin-Hai 4th Road, Hangzhou Bay New Zone, Ningbo 315336, China
| | - Huimin Sun
- Pharmaron (Ningbo) Technology Development Company, Ltd., No. 800 Bin-Hai 4th Road, Hangzhou Bay New Zone, Ningbo 315336, China
| | - Kexin Yang
- Pharmaron Beijing Company, Ltd., 6 Taihe Road, BDA, Beijing 100176, P. R. China
| | - Yun Jin Hu
- Pharmaron (Ningbo) Technology Development Company, Ltd., No. 800 Bin-Hai 4th Road, Hangzhou Bay New Zone, Ningbo 315336, China
| |
Collapse
|
2
|
Kim KS, Ra J, Hari Babu M, Jang E, Kang S, Yoo M, Bui TTM, Moon K, Sim J. Photoinduced Site-Selective Alkylation Enabling Synthesis of C-3-Alkylated Quinoxalinone on DNA. Org Lett 2025; 27:4777-4781. [PMID: 40305327 DOI: 10.1021/acs.orglett.5c01236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2025]
Abstract
A mild and biocompatible strategy for the site-selective alkylation of quinoxalinones via photoinduced dehydrogenative alkylation has been developed. This protocol enables the functionalization of both unprotected quinoxalinone and nonreactive dihydroquinoxalinone under DNA-compatible conditions. The optimized reaction proceeds efficiently while tolerating a diverse range of alkyl donors from various radical precursors. Given its simplicity and DNA compatibility, this methodology offers a platform for the construction of DNA-encoded libraries incorporating a privileged quinoxalinone scaffold.
Collapse
Affiliation(s)
- Kyeong Seop Kim
- College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Regulatory Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
- Institute of Regulatory Innovation through Science, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Junseok Ra
- College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Regulatory Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
- Institute of Regulatory Innovation through Science, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Madala Hari Babu
- College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Regulatory Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
- Institute of Regulatory Innovation through Science, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Eunbin Jang
- College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Regulatory Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
- Institute of Regulatory Innovation through Science, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Seohyeon Kang
- College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Regulatory Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
- Institute of Regulatory Innovation through Science, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Minhyeok Yoo
- College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Regulatory Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
- Institute of Regulatory Innovation through Science, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Thinh T M Bui
- College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Kyuho Moon
- College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Jaehoon Sim
- College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Regulatory Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
- Institute of Regulatory Innovation through Science, Kyung Hee University, Seoul 02447, Republic of Korea
| |
Collapse
|
3
|
Wang G, Zhang X, Zhu H, Shi X, Wen Z, Zhang Q, Satz AL, Su W, Kuai L, Dai D. DNA-Compatible Huisgen [3 + 2] Cycloaddition of In Situ Formed Nitrile Oxides with Alkenes or Alkynes to Synthesize Isoxazolines or Isoxazoles. J Org Chem 2025; 90:5460-5468. [PMID: 40221916 DOI: 10.1021/acs.joc.5c00078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/15/2025]
Abstract
DNA-encoded chemical library (DECL) technology is recognized as a robust screening platform for drug discovery. Developing new DNA-compatible reactions is crucial for expanding the chemical space of DECLs. Cyclization reactions, particularly those involving the formation of heterocycles, offer unique and efficient methods for accessing privileged scaffolds or lead-like small molecules. In this study, we introduce two new methods that utilize readily accessible aldehydes to create substituted isoxazolines and isoxazoles by the 1,3-dipolar cycloaddition reaction. These methods demonstrate high conversion efficiency and can be applied to a wide range of substrates. The reactions are DNA-compatible and do not cause significant DNA degradation.
Collapse
Affiliation(s)
- Gaonan Wang
- WuXi AppTec, 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, China
| | - Xiaona Zhang
- WuXi AppTec, 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, China
| | - Hui Zhu
- WuXi AppTec, 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, China
| | - Xiaodong Shi
- WuXi AppTec, 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, China
| | - Zhuo Wen
- WuXi AppTec, 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, China
| | - Qi Zhang
- WuXi AppTec, 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, China
| | | | - Wenji Su
- WuXi AppTec, 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, China
| | - Letian Kuai
- WuXi AppTec, 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, China
| | - Dongcheng Dai
- WuXi AppTec, 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, China
| |
Collapse
|
4
|
Lee KJ, Wang HM, Kim M, Park JH, Kim J, Jang S, Im D, Goh B, Shin MH, Shim JH, Kim S, Seo J, Lim HS. Encoded Display of Chemical Libraries on Nanoparticles as a Versatile Selection Tool To Discover Protein Ligands. J Am Chem Soc 2025; 147:11726-11740. [PMID: 40011448 DOI: 10.1021/jacs.4c13487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2025]
Abstract
DNA-encoded library (DEL) technology is a powerful tool for discovering potent ligands for biological targets but constrained by limitations, including the insolubility of DNA in organic solvents and its instability under various reaction conditions, which restrict the reactivity scope and structural diversity achievable in library synthesis. Here, we present a new strategy called nanoDEL, where library molecules and DNA tags are displayed on the surface of nanoparticles. Since nanoparticles disperse well in both organic solvents and aqueous solutions, DEL synthesis can be accomplished using well-established organic solvent-based conditions, eliminating the need for aqueous conditions. Moreover, nanoDEL enables air-sensitive reactions that are inaccessible with conventional DEL methods relying on aqueous conditions. Notably, in nanoDEL, multiple copies of a DNA tag are attached to an individual nanoparticle to encode a single compound, significantly enhancing tolerance to DNA-damaging conditions. Even when most DNA tags are damaged, sequence analysis remains feasible via amplification of intact tags. Consequently, nanoDEL facilitates the convenient use of existing organic reactions without the necessity to develop DNA-compatible reactions. The potential of nanoDEL was validated by affinity selection against streptavidin as a model system and successfully applied to the discovery of potent small-molecule inhibitors for a kinase and stapled peptide inhibitors targeting a protein-protein interaction, exhibiting dissociation constants in the nanomolar range. Furthermore, we demonstrated that a large combinatorial library can be efficiently synthesized on nanoparticles using a synthetic scheme including moisture-sensitive reaction steps, which are not feasible with conventional DELs.
Collapse
Affiliation(s)
- Kang Ju Lee
- Department of Chemistry and Division of Advanced Materials Science, Pohang University of Science and Technology (POSTECH), Pohang 37673, South Korea
| | - Hee Myeong Wang
- Department of Chemistry and Division of Advanced Materials Science, Pohang University of Science and Technology (POSTECH), Pohang 37673, South Korea
| | - Minkyung Kim
- Department of Chemistry and Division of Advanced Materials Science, Pohang University of Science and Technology (POSTECH), Pohang 37673, South Korea
| | - Jun Hyung Park
- Department of Chemistry and Division of Advanced Materials Science, Pohang University of Science and Technology (POSTECH), Pohang 37673, South Korea
| | - Jungyeon Kim
- Department of Chemistry and Division of Advanced Materials Science, Pohang University of Science and Technology (POSTECH), Pohang 37673, South Korea
| | - Seungyoon Jang
- Department of Chemistry and Division of Advanced Materials Science, Pohang University of Science and Technology (POSTECH), Pohang 37673, South Korea
| | - Dahye Im
- Department of Chemistry and Division of Advanced Materials Science, Pohang University of Science and Technology (POSTECH), Pohang 37673, South Korea
| | - Beomjoon Goh
- Department of Chemistry and Division of Advanced Materials Science, Pohang University of Science and Technology (POSTECH), Pohang 37673, South Korea
| | - Min Hyeon Shin
- Department of Chemistry and Division of Advanced Materials Science, Pohang University of Science and Technology (POSTECH), Pohang 37673, South Korea
| | - Ji Hoon Shim
- Department of Chemistry and Division of Advanced Materials Science, Pohang University of Science and Technology (POSTECH), Pohang 37673, South Korea
| | - Sungjee Kim
- Department of Chemistry and Division of Advanced Materials Science, Pohang University of Science and Technology (POSTECH), Pohang 37673, South Korea
| | - Jongcheol Seo
- Department of Chemistry and Division of Advanced Materials Science, Pohang University of Science and Technology (POSTECH), Pohang 37673, South Korea
| | - Hyun-Suk Lim
- Department of Chemistry and Division of Advanced Materials Science, Pohang University of Science and Technology (POSTECH), Pohang 37673, South Korea
- Institute for Convergence Research and Education in Advanced Technology, Yonsei University, Seoul 03722, South Korea
- Carmel Biosciences, Pohang 37673, South Korea
| |
Collapse
|
5
|
Lee MA, Brown JS, Farquhar CE, Loas A, Pentelute BL. Affinity selection-mass spectrometry with linearizable macrocyclic peptide libraries. SCIENCE ADVANCES 2025; 11:eadr1018. [PMID: 40106557 PMCID: PMC11922053 DOI: 10.1126/sciadv.adr1018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 02/11/2025] [Indexed: 03/22/2025]
Abstract
Despite their potential, the preparation of large synthetic macrocyclic libraries for ligand discovery and development has been limited. Here, we produce 100-million-membered macrocyclic libraries containing natural and nonnatural amino acids. Near-quantitative intramolecular disulfide formation is facilitated by rapid oxidation with iodine in solution. After use in affinity selection, treatment with dithiothreitol enables near-quantitative reduction, rendering linear peptide analogs for standard tandem mass spectrometry. We use these libraries to discover macrocyclic binders to cadherin-2 and anti-hemagglutinin antibody clone 12ca5. Structure-activity relationship studies of an initial cadherin-binding peptide [CBP; apparent dissociation constant (Kd) = 53 nanomolar] reveal residues responsible for driving affinity (hotspots) and mutation-tolerant residues (coldspots). Two original macrocyclic libraries are prepared in which these hotspots and coldspots are derivatized with nonnatural amino acids. Following discovery and validation, high-affinity ligands are discovered from the coldspot library, with NCBP-4 demonstrating improved affinity (Kd = 29 nanomolar). Overall, we expect that this work will improve the use of macrocyclic libraries in therapeutic peptide development.
Collapse
Affiliation(s)
- Michael A. Lee
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Joseph S. Brown
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Charlotte E. Farquhar
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Andrei Loas
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Bradley L. Pentelute
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- The Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
- Center for Environmental Health Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| |
Collapse
|
6
|
Gui Y, Hou R, Huang Y, Zhou Y, Liu S, Meng L, Li Y, Sang Lam F, Ding R, Cao Y, Li G, Lu X, Li X. Discovering Cell-Targeting Ligands and Cell-Surface Receptors by Selection of DNA-Encoded Chemical Libraries against Cancer Cells without Predefined Targets. Angew Chem Int Ed Engl 2025; 64:e202421172. [PMID: 39794292 DOI: 10.1002/anie.202421172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 12/26/2024] [Accepted: 01/10/2025] [Indexed: 01/13/2025]
Abstract
Small molecules that can bind to specific cells have broad application in cancer diagnosis and treatment. Screening large chemical libraries against live cells is an effective strategy for discovering cell-targeting ligands. The DNA-encoded chemical library (DEL or DECL) technology has emerged as a robust tool in drug discovery and has been successfully utilized in identifying ligands for biological targets. However, nearly all DEL selections have predefined targets, while target-agnostic DEL selections interrogating the entire cell surface remain underexplored. Herein, we systematically optimized a cell-based DEL selection method against cancer cells without predefined targets. A 104.96-million-member DEL was selected against MDA-MB-231 and MCF-7 breast cancer cells, representing high and low metastatic properties, respectively, which led to the identification of cell-specific small molecules. We further demonstrated cell-targeting applications of these ligands in cancer photodynamic therapy and targeted drug delivery. Finally, leveraging the DNA tag of DEL compounds, we identified α-enolase (ENO1) as the cell surface receptor of one of the ligands targeting the more aggressive MDA-MB-231 cells. Overall, this work offers an efficient approach for discovering cell-targeting small molecule ligands by using DELs and demonstrates that DELs can be a useful tool to identify specific surface receptors on cancer cells.
Collapse
Grants
- 2023A1515010711 Basic and Applied Basic Research Foundation of Guangdong Province
- AoE/P-705/16, 17301118, 17111319, 17303220, 17300321, 17300423, C7005-20G, C7016-22G, C7035-23G, N_HKU702/23, and T12-705-24-R Research Grants Council, University Grants Committee
- SZBL2020090501008 Shenzhen Bay Laboratory
- 91953203, 22377139 National Natural Science Foundation of China
- Major Project Science and Technology Commission of Shanghai Municipality
- Laboratory for Synthetic Chemistry and Chemical Biology Innovation and Technology Commission
Collapse
Affiliation(s)
- Yuhan Gui
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
- Laboratory for Synthetic Chemistry and Chemical Biology Limited, Health@InnoHK, Innovation and Technology Commission, Units, 1503-1511, 15/F., Building 17 W, Hong Kong SAR, China
| | - Rui Hou
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
- Laboratory for Synthetic Chemistry and Chemical Biology Limited, Health@InnoHK, Innovation and Technology Commission, Units, 1503-1511, 15/F., Building 17 W, Hong Kong SAR, China
| | - Yuchen Huang
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen, China
| | - Yu Zhou
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
- Laboratory for Synthetic Chemistry and Chemical Biology Limited, Health@InnoHK, Innovation and Technology Commission, Units, 1503-1511, 15/F., Building 17 W, Hong Kong SAR, China
- Present address: Institute of Translational Medicine & School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China, 211198
| | - Shihao Liu
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
| | - Ling Meng
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
- Laboratory for Synthetic Chemistry and Chemical Biology Limited, Health@InnoHK, Innovation and Technology Commission, Units, 1503-1511, 15/F., Building 17 W, Hong Kong SAR, China
| | - Ying Li
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
| | - Fong Sang Lam
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
- Laboratory for Synthetic Chemistry and Chemical Biology Limited, Health@InnoHK, Innovation and Technology Commission, Units, 1503-1511, 15/F., Building 17 W, Hong Kong SAR, China
| | - Ruoyun Ding
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
| | - Yan Cao
- School of Pharmacy, Naval Medical University, Shanghai, 200433, China
| | - Gang Li
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen, China
| | - Xiaojie Lu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Zhang Jiang Hi-Tech Park, Pudong, Shanghai, 201203, P. R. China
| | - Xiaoyu Li
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
- Laboratory for Synthetic Chemistry and Chemical Biology Limited, Health@InnoHK, Innovation and Technology Commission, Units, 1503-1511, 15/F., Building 17 W, Hong Kong SAR, China
| |
Collapse
|
7
|
Zaki YH, Gomha SM, Farag B, Zaki ME, Hussein AM. Synthesis, characterization, and in silico studies of substituted 2,3-dihydro-1,3,4-thiadiazole derivatives. RESULTS IN CHEMISTRY 2025; 13:101977. [DOI: 10.1016/j.rechem.2024.101977] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2025] Open
|
8
|
Ryzhikh D, Seo H, Lee J, Lee J, Nam MH, Song M, Hwang GT. On-DNA Mannich Reaction for DNA-Encoded Library Synthesis. J Org Chem 2024; 89:16957-16963. [PMID: 39482967 DOI: 10.1021/acs.joc.4c02098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
The β-amino ketones produced through the Mannich reaction hold significant potential as candidates for various drugs. In this study, we optimized on-DNA Mannich reaction conditions and applied them to investigate the reactions of DNA-conjugated aldehydes with various amine and ketone building blocks. The developed on-DNA Mannich reaction preserved the DNA integrity and established viable routes for library production. These results underscore the potential of the Mannich reaction in DNA-encoded library (DEL) synthesis.
Collapse
Affiliation(s)
- Danila Ryzhikh
- KNU G-LAMP Project Group, KNU Institute of Basic Sciences, Department of Chemistry, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Hyewon Seo
- New Drug Development Center (NDDC), Daegu-Gyeongbuk Medical Innovation Foundation (K-MEDI hub), Daegu 41061, Republic of Korea
| | - Jihoon Lee
- New Drug Development Center (NDDC), Daegu-Gyeongbuk Medical Innovation Foundation (K-MEDI hub), Daegu 41061, Republic of Korea
| | - Jieon Lee
- New Drug Development Center (NDDC), Daegu-Gyeongbuk Medical Innovation Foundation (K-MEDI hub), Daegu 41061, Republic of Korea
| | - Myung Hee Nam
- Metropolitan Seoul Center, Korea Basic Science Institute (KBSI), Seoul 02841, Republic of Korea
| | - Minsoo Song
- New Drug Development Center (NDDC), Daegu-Gyeongbuk Medical Innovation Foundation (K-MEDI hub), Daegu 41061, Republic of Korea
| | - Gil Tae Hwang
- KNU G-LAMP Project Group, KNU Institute of Basic Sciences, Department of Chemistry, Kyungpook National University, Daegu 41566, Republic of Korea
| |
Collapse
|
9
|
Chheda PR, Simmons N, Shi Z. Oxoammonium Salt-Mediated On-DNA Alcohol Oxidation for DEL Synthesis. Org Lett 2024; 26:6754-6759. [PMID: 39077878 DOI: 10.1021/acs.orglett.4c02474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/31/2024]
Abstract
On-DNA carboxylic acids are important synthetic intermediates in the synthesis of DNA-encoded library (DEL) structures. Herein, we report an oxoammonium salt-mediated, room temperature, solution-phase oxidation of DNA-linked primary alcohols into carboxylic acids. This method exhibits a wide substrate scope, encompassing aliphatic, benzylic, and heterobenzylic alcohols, and is compatible with DEL encoding strategies. This advancement facilitates a DEL strategy to utilize unprotected alcohols as inert, masked carboxylic acids and enables access to noncommercial bifunctional carboxyl intermediates to enhance the accessible chemical diversity within DELs.
Collapse
Affiliation(s)
- Pratik R Chheda
- Discovery Chemistry, Janssen Research & Development, LLC, San Diego, California 92121, United States
| | - Nicholas Simmons
- Discovery Chemistry, Janssen Research & Development, LLC, San Diego, California 92121, United States
| | - Zhicai Shi
- Discovery Chemistry, Janssen Research & Development, LLC, Spring House, Pennsylvania 19477, United States
| |
Collapse
|
10
|
Gasparetto M, Fődi B, Sipos G. Negishi-coupling-enabled synthesis of α-heteroaryl-α-amino acid building blocks for DNA-encoded chemical library applications. Beilstein J Org Chem 2024; 20:1922-1932. [PMID: 39135657 PMCID: PMC11318629 DOI: 10.3762/bjoc.20.168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 07/26/2024] [Indexed: 08/15/2024] Open
Abstract
Amino acids are vital motifs in the domain of biochemistry, serving as the foundational unit for peptides and proteins, while also holding a crucial function in many biological processes. Due to their bifunctional character, they have been also used for combinatorial chemistry purposes, such as the preparation of DNA-encoded chemical libraries. We developed a practical synthesis for α-heteroaryl-α-amino acids starting from an array of small heteroaromatic halides. The reaction sequence utilizes a photochemically enhanced Negishi cross-coupling as a key step, followed by oximation and reduction. The prepared amino esters were validated for on-DNA reactivity via a reverse amidation-hydrolysis-reverse amidation protocol.
Collapse
Affiliation(s)
- Matteo Gasparetto
- X-Chem Zrt., Záhony u. 7, DA Building, Graphisoft Park, Budapest, 1031, Hungary
| | - Balázs Fődi
- X-Chem Zrt., Záhony u. 7, DA Building, Graphisoft Park, Budapest, 1031, Hungary
| | - Gellért Sipos
- X-Chem Zrt., Záhony u. 7, DA Building, Graphisoft Park, Budapest, 1031, Hungary
| |
Collapse
|
11
|
Xue L, Yu J, Zhong Y, Chen J, Li C, Yang K, Duchemin N, Hu YJ. Light-induced β-hydroxy sulfone synthesis in DNA-encoded libraries. Chem Commun (Camb) 2024; 60:6885-6888. [PMID: 38888137 DOI: 10.1039/d4cc02193b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
We here describe a visible-light photooxidation of sulfinate salts with common alkenes to yield β-hydroxy sulfones on DNA. This process demonstrates a broad substrate compatibility and achieves conversion rates ranging from moderate to excellent. Most importantly, it presents a straightforward, efficient, and metal-free approach for synthesizing Csp3-rich DNA-encoded libraries.
Collapse
Affiliation(s)
- Lijun Xue
- Pharmaron (Ningbo) Technology Development Co., Ltd, No. 800 Bin-Hai 4th Road, Hangzhou Bay New Zone, Ningbo, 315336, China.
| | - Jiaqing Yu
- Pharmaron (Ningbo) Technology Development Co., Ltd, No. 800 Bin-Hai 4th Road, Hangzhou Bay New Zone, Ningbo, 315336, China.
| | - Ying Zhong
- Pharmaron (Ningbo) Technology Development Co., Ltd, No. 800 Bin-Hai 4th Road, Hangzhou Bay New Zone, Ningbo, 315336, China.
| | - Junyun Chen
- Pharmaron (Ningbo) Technology Development Co., Ltd, No. 800 Bin-Hai 4th Road, Hangzhou Bay New Zone, Ningbo, 315336, China.
| | - Chao Li
- Pharmaron (Ningbo) Technology Development Co., Ltd, No. 800 Bin-Hai 4th Road, Hangzhou Bay New Zone, Ningbo, 315336, China.
| | - Kexin Yang
- Pharmaron Beijing Co., Ltd, 6 Taihe Road, BDA, Beijing, 100176, P. R. China
| | - Nicolas Duchemin
- Pharmaron UK, Ltd, Innovation Park, West Cl, Hertford Rd, Hoddesdon EN11 9FH, UK.
| | - Yun Jin Hu
- Pharmaron (Ningbo) Technology Development Co., Ltd, No. 800 Bin-Hai 4th Road, Hangzhou Bay New Zone, Ningbo, 315336, China.
| |
Collapse
|
12
|
Fitzgerald P, Dixit A, Zhang C, Mobley DL, Paegel BM. Building Block-Centric Approach to DNA-Encoded Library Design. J Chem Inf Model 2024; 64:4661-4672. [PMID: 38860710 PMCID: PMC11200258 DOI: 10.1021/acs.jcim.4c00232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 06/02/2024] [Accepted: 06/03/2024] [Indexed: 06/12/2024]
Abstract
DNA-encoded library technology grants access to nearly infinite opportunities to explore the chemical structure space for drug discovery. Successful navigation depends on the design and synthesis of libraries with appropriate physicochemical properties (PCPs) and structural diversity while aligning with practical considerations. To this end, we analyze combinatorial library design constraints including the number of chemistry cycles, bond construction strategies, and building block (BB) class selection in pursuit of ideal library designs. We compare two-cycle library designs (amino acid + carboxylic acid, primary amine + carboxylic acid) in the context of PCPs and chemical space coverage, given different BB selection strategies and constraints. We find that broad availability of amines and acids is essential for enabling the widest exploration of chemical space. Surprisingly, cost is not a driving factor, and virtually, the same chemical space can be explored with "budget" BBs.
Collapse
Affiliation(s)
- Patrick
R. Fitzgerald
- Skaggs
Doctoral Program in the Chemical and Biological Sciences, Scripps Research, La Jolla, California 92037, United States
| | - Anjali Dixit
- Department
of Pharmaceutical Sciences, University of
California, Irvine, California 92697, United States
| | - Chris Zhang
- Department
of Chemistry, University of California, Irvine, California 92697, United States
| | - David L. Mobley
- Department
of Pharmaceutical Sciences, University of
California, Irvine, California 92697, United States
- Department
of Chemistry, University of California, Irvine, California 92697, United States
| | - Brian M. Paegel
- Department
of Pharmaceutical Sciences, University of
California, Irvine, California 92697, United States
- Department
of Chemistry, University of California, Irvine, California 92697, United States
| |
Collapse
|
13
|
Schreiber SL. Molecular glues and bifunctional compounds: Therapeutic modalities based on induced proximity. Cell Chem Biol 2024; 31:1050-1063. [PMID: 38861986 DOI: 10.1016/j.chembiol.2024.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/16/2024] [Accepted: 05/20/2024] [Indexed: 06/13/2024]
Abstract
This Perspective explores molecular glues and bifunctional compounds-proximity-inducing compounds-and offers a framework to understand and exploit their similarity to hotspots, missense mutations, and posttranslational modifications (PTMs). This view is also shown to be relevant to intramolecular glues, where compounds induce contacts between distinct domains of the same protein. A historical perspective of these compounds is presented that shows the field has come full circle from molecular glues targeting native proteins, to bifunctionals targeting fusion proteins, and back to molecular glues and bifunctionals targeting native proteins. Modern screening methods and data analyses with pre-selected target proteins are shown to yield either cooperative molecular glues or bifunctional compounds that induce proximity, thereby enabling novel functional outcomes.
Collapse
Affiliation(s)
- Stuart L Schreiber
- Arena BioWorks, Broad Institute, Harvard University, Cambridge, MA, USA.
| |
Collapse
|
14
|
Chheda PR, Simmons N, Shi Z. Hydrophobic Surfactant-DNA Complex (Surf-DNA) Enables DNA-Encoded-Library-Compatible Decarboxylative Arylation under Anhydrous Conditions. Org Lett 2024; 26:4365-4370. [PMID: 38743933 DOI: 10.1021/acs.orglett.4c01398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
DNA-encoded libraries (DELs) are a key technology for identifying small-molecule hits in both the pharmaceutical industry and academia, but their chemical diversity is largely limited to water-compatible reactions to aid in the solubility and integrity of encoding DNA tags. To broaden the DEL chemical space, we present a workflow utilizing DNA-cationic surfactant complexation that enables dissolution and reactions on-DNA in anhydrous organic solvents. We demonstrate its utility by developing DEL-compatible photoredox decarboxylative C(sp2)-C(sp3) coupling under water-free conditions. The workflow is optimized for the 96-well format necessary for large-scale DEL productions, and it enables screening and optimization of DEL-compatible reactions in organic solvents.
Collapse
Affiliation(s)
- Pratik R Chheda
- Discovery Chemistry, Janssen Research & Development, LLC, San Diego, California 92121, United States
| | - Nicholas Simmons
- Discovery Chemistry, Janssen Research & Development, LLC, San Diego, California 92121, United States
| | - Zhicai Shi
- Discovery Chemistry, Janssen Research & Development, LLC, Spring House, Pennsylvania 19477, United States
| |
Collapse
|
15
|
Sun Z, Zhong Y, Chen Y, Xiao L, Wang J, Zeng F, Yang K, Duchemin N, Hu YJ. Innovative On-DNA Synthesis of Sulfides and Sulfoximines: Enriching the DEL Synthesis Toolbox. Org Lett 2024; 26:4082-4087. [PMID: 38717253 DOI: 10.1021/acs.orglett.4c01138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
DNA-encoded library (DEL) technologies enable the fast exploration of gigantic chemical space to identify ligands for the target protein of interest and have become a powerful hit finding tool for drug discovery projects. However, amenable DEL chemistry is restricted to a handful of reactions, limiting the creativity of drug hunters. Here, we describe a new on-DNA synthetic pathway to access sulfides and sulfoximines. These moieties, usually contemplated as challenging to achieve through alkylation and oxidation, can now be leveraged in routine DEL selection campaigns.
Collapse
Affiliation(s)
- Zhaomei Sun
- Pharmaron (Ningbo) Technology Development Company, Ltd., No. 800 Bin-Hai 4th Road, Hangzhou Bay New Zone, Ningbo 315336, China
| | - Ying Zhong
- Pharmaron (Ningbo) Technology Development Company, Ltd., No. 800 Bin-Hai 4th Road, Hangzhou Bay New Zone, Ningbo 315336, China
| | - Yahui Chen
- Pharmaron (Ningbo) Technology Development Company, Ltd., No. 800 Bin-Hai 4th Road, Hangzhou Bay New Zone, Ningbo 315336, China
| | - Lingqian Xiao
- Pharmaron (Ningbo) Technology Development Company, Ltd., No. 800 Bin-Hai 4th Road, Hangzhou Bay New Zone, Ningbo 315336, China
| | - Jiangying Wang
- Pharmaron (Ningbo) Technology Development Company, Ltd., No. 800 Bin-Hai 4th Road, Hangzhou Bay New Zone, Ningbo 315336, China
| | - Fanming Zeng
- Pharmaron (Ningbo) Technology Development Company, Ltd., No. 800 Bin-Hai 4th Road, Hangzhou Bay New Zone, Ningbo 315336, China
| | - Kexin Yang
- Pharmaron Beijing Company, Ltd., 6 Taihe Road, BDA, Beijing 100176, P. R. China
| | - Nicolas Duchemin
- Pharmaron U.K., Ltd., Innovation Park, West Cl, Hertford Road, Hoddesdon EN11 9FH, U.K
| | - Yun Jin Hu
- Pharmaron (Ningbo) Technology Development Company, Ltd., No. 800 Bin-Hai 4th Road, Hangzhou Bay New Zone, Ningbo 315336, China
| |
Collapse
|
16
|
Zhou Y, Shen W, Gao Y, Peng J, Li Q, Wei X, Liu S, Lam FS, Mayol-Llinàs J, Zhao G, Li G, Li Y, Sun H, Cao Y, Li X. Protein-templated ligand discovery via the selection of DNA-encoded dynamic libraries. Nat Chem 2024; 16:543-555. [PMID: 38326646 DOI: 10.1038/s41557-024-01442-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 01/04/2024] [Indexed: 02/09/2024]
Abstract
DNA-encoded chemical libraries (DELs) have become a powerful technology platform in drug discovery. Dual-pharmacophore DELs display two sets of small molecules at the termini of DNA duplexes, thereby enabling the identification of synergistic binders against biological targets, and have been successfully applied in fragment-based ligand discovery and affinity maturation of known ligands. However, dual-pharmacophore DELs identify separate binders that require subsequent linking to obtain the full ligands, which is often challenging. Here we report a protein-templated DEL selection approach that can identify full ligand/inhibitor structures from DNA-encoded dynamic libraries (DEDLs) without the need for subsequent fragment linking. Our approach is based on dynamic DNA hybridization and target-templated in situ ligand synthesis, and it incorporates and encodes the linker structures in the library, along with the building blocks, to be sampled by the target protein. To demonstrate the performance of this method, 4.35-million- and 3.00-million-member DEDLs with different library architectures were prepared, and hit selection was achieved against four therapeutically relevant target proteins.
Collapse
Grants
- AoE/P-705/16, 17301118, 17111319, 17303220, 17300321, 17318322, C7005-20G, C7016-22G, and 2122-7S04 Research Grants Council, University Grants Committee (RGC, UGC)
- 21877093, 22222702, and 91953119 National Science Foundation of China | National Natural Science Foundation of China-Yunnan Joint Fund (NSFC-Yunnan Joint Fund)
- Health@InnoHK Innovation and Technology Commission (ITF)
Collapse
Affiliation(s)
- Yu Zhou
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Hong Kong SAR, China
- Laboratory for Synthetic Chemistry and Chemical Biology Limited, Health@InnoHK, Innovation and Technology Commission, Hong Kong SAR, China
| | - Wenyin Shen
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Hong Kong SAR, China
| | - Ying Gao
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Hong Kong SAR, China
| | - Jianzhao Peng
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Hong Kong SAR, China
| | - Qingrong Li
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Hong Kong SAR, China
| | - Xueying Wei
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Hong Kong SAR, China
| | - Shihao Liu
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Hong Kong SAR, China
| | - Fong Sang Lam
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Hong Kong SAR, China
| | - Joan Mayol-Llinàs
- Laboratory for Synthetic Chemistry and Chemical Biology Limited, Health@InnoHK, Innovation and Technology Commission, Hong Kong SAR, China
| | - Guixian Zhao
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences; Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
| | - Gang Li
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen, China
| | - Yizhou Li
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences; Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
| | - Hongzhe Sun
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Hong Kong SAR, China.
| | - Yan Cao
- School of Pharmacy, Naval Medical University, Shanghai, China.
| | - Xiaoyu Li
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Hong Kong SAR, China.
- Laboratory for Synthetic Chemistry and Chemical Biology Limited, Health@InnoHK, Innovation and Technology Commission, Hong Kong SAR, China.
| |
Collapse
|
17
|
Zhu WF, Empel C, Pelliccia S, Koenigs RM, Proschak E, Hernandez-Olmos V. Photochemistry in Medicinal Chemistry and Chemical Biology. J Med Chem 2024; 67:4322-4345. [PMID: 38457829 DOI: 10.1021/acs.jmedchem.3c02109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/10/2024]
Abstract
Photochemistry has emerged as a transformative force in organic chemistry, significantly expanding the chemical space accessible for medicinal chemistry. Light-induced reactions enable the efficient synthesis of intricate organic structures and have found applications throughout the different stages of the drug discovery and development processes. Moreover, photochemical techniques provide innovative solutions in chemical biology, allowing precise spatiotemporal drug activation and targeted delivery. In this Perspective, we highlight the already numerous remarkable applications and the even more promising future of photochemistry in medicinal chemistry and chemical biology.
Collapse
Affiliation(s)
- W Felix Zhu
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt am Main, Germany
| | - Claire Empel
- RWTH Aachen University, Institute of Organic Chemistry, Landoltweg 1, D-52074 Aachen, Germany
| | - Sveva Pelliccia
- Department of Pharmacy (DoE 2023-2027), University of Naples Federico II, via D. Montesano 49, 80131 Naples, Italy
| | - Rene M Koenigs
- RWTH Aachen University, Institute of Organic Chemistry, Landoltweg 1, D-52074 Aachen, Germany
| | - Ewgenij Proschak
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt am Main, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Theodor-Stern-Kai 7, 60596 Frankfurt am Main, Germany
| | - Victor Hernandez-Olmos
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Theodor-Stern-Kai 7, 60596 Frankfurt am Main, Germany
| |
Collapse
|
18
|
Gruber F, McDonagh AW, Rose V, Hunter J, Guasch L, Martin RE, Geigle SN, Britton R. sp 3 -Rich Heterocycle Synthesis on DNA: Application to DNA-Encoded Library Production. Angew Chem Int Ed Engl 2024; 63:e202319836. [PMID: 38330151 DOI: 10.1002/anie.202319836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/26/2024] [Accepted: 01/30/2024] [Indexed: 02/10/2024]
Abstract
DNA encoded library (DEL) synthesis represents a convenient means to produce, annotate and store large collections of compounds in a small volume. While DELs are well suited for drug discovery campaigns, the chemistry used in their production must be compatible with the DNA tag, which can limit compound class accessibility. As a result, most DELs are heavily populated with peptidomimetic and sp2 -rich molecules. Herein, we show that sp3 -rich mono- and bicyclic heterocycles can be made on DNA from ketochlorohydrin aldol products through a reductive amination and cyclization process. The resulting hydroxypyrrolidines possess structural features that are desirable for DELs and target a distinct region of pharmaceutically relevant chemical space.
Collapse
Affiliation(s)
- Felix Gruber
- Roche Pharma Research and Early Development (pRED), Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, 4070, Basel, Switzerland
| | - Anthony W McDonagh
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia, V5A 1S6, Canada
| | - Victoria Rose
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia, V5A 1S6, Canada
| | - James Hunter
- Roche Pharma Research and Early Development (pRED), Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, 4070, Basel, Switzerland
| | - Laura Guasch
- Roche Pharma Research and Early Development (pRED), Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, 4070, Basel, Switzerland
| | - Rainer E Martin
- Roche Pharma Research and Early Development (pRED), Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, 4070, Basel, Switzerland
| | - Stefanie N Geigle
- Roche Pharma Research and Early Development (pRED), Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, 4070, Basel, Switzerland
| | - Robert Britton
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia, V5A 1S6, Canada
| |
Collapse
|
19
|
Wang G, Tan Y, Zou H, Sui X, Wang Z, Satz AL, Kuai L, Su W, Zhang Q. DNA-Compatible Cyclization Reaction to Access 1,3,4-Oxadiazoles and 1,2,4-Triazoles. Org Lett 2024; 26:1353-1357. [PMID: 38335275 DOI: 10.1021/acs.orglett.3c04240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2024]
Abstract
DNA-encoded chemical library (DECL) technology is a commonly employed screening platform in both the pharmaceutical industry and academia. To expand the chemical space of DECLs, new and robust DNA-compatible reactions are sought after. In particular, DNA-compatible cyclization reactions are highly valued, as these reactions tend to be atom economical and thus may provide lead- and drug-like molecules. Herein, we report two new methodologies employing DNA-conjugated thiosemicarbazides as a common precursor, yielding highly substituted 1,3,4-oxadiazoles and 1,2,4-triazoles. These two novel DNA-compatible reactions feature a high conversion efficiency and broad substrate scope under mild conditions that do not observably degrade DNA.
Collapse
Affiliation(s)
- Gaonan Wang
- WuXi AppTec, 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, China
| | - Yu Tan
- WuXi AppTec, 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, China
| | - Hanzhi Zou
- WuXi AppTec, 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, China
| | - Xihang Sui
- WuXi AppTec, 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, China
| | - Zhanlong Wang
- WuXi AppTec, 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, China
| | | | - Letian Kuai
- WuXi AppTec, 55 Cambridge Parkway, 8th Floor, Cambridge, Massachusetts 02142, United States
| | - Wenji Su
- WuXi AppTec, 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, China
| | - Qi Zhang
- WuXi AppTec, 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, China
| |
Collapse
|
20
|
Rama-Garda R, Martin-Ortega MD, Sánchez ADJ, Priego J, de Blas J, Torrado A, Domínguez E, Haro R, Rivera-Sagredo A, Román JP, Lorite MJ, Johansson HE, Loza MI, Amigo J, Sobrino B, Lallena MJ, Toledo MÁ. Design, synthesis and validation of a new Crimped Head-Piece for DNA-Encoded libraries generation. Bioorg Med Chem 2024; 99:117596. [PMID: 38232459 DOI: 10.1016/j.bmc.2024.117596] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 01/03/2024] [Accepted: 01/10/2024] [Indexed: 01/19/2024]
Abstract
Codification of DNA Encoded Libraries (DELs) is critical for successful ligand identification of molecules that bind a protein of interest (POI). There are different encoding strategies that permit, for instance, the customization of a DEL for testing single or dual pharmacophores (single strand DNA) or for producing and screening large diversity libraries of small molecules (double strand DNA). Both approaches challenges, either from the synthetic and encoding point of view, or from the selection methodology to be utilized for the screening. The Head-Piece contains the DNA sequence that is attached to a chemical compound, allowing the encoding of each molecule with a unique DNA tag. Designing the Head-Piece for a DNA-encoded library involves careful consideration of several key aspects including DNA barcode identity, sequence length and attachment chemistry. Here we describe a double stranded DNA versatile Head-Piece that can be used for the generation of single or dual pharmacophore libraries, but also shows other advanced DEL functionalities, stability and enlarged encoding capacity.
Collapse
Affiliation(s)
- Ramón Rama-Garda
- Discovery Chemistry Research & Technologies, Lilly Research Laboratories, Eli Lilly and Company, Alcobendas, Madrid 28108, Spain; BioFarma, Universidad de Santiago de Compostela (USC), Centro Singular de Investigación en Medicina Molecular y Enfermedades Crónicas (CIMUS), A Coruña 15782, Spain.
| | - María Dolores Martin-Ortega
- Discovery Chemistry Research & Technologies, Lilly Research Laboratories, Eli Lilly and Company, Alcobendas, Madrid 28108, Spain
| | | | - Julián Priego
- Discovery Chemistry Research & Technologies, Lilly Research Laboratories, Eli Lilly and Company, Alcobendas, Madrid 28108, Spain
| | - Jesús de Blas
- Discovery Chemistry Research & Technologies, Lilly Research Laboratories, Eli Lilly and Company, Alcobendas, Madrid 28108, Spain
| | - Alicia Torrado
- Discovery Chemistry Research & Technologies, Lilly Research Laboratories, Eli Lilly and Company, Alcobendas, Madrid 28108, Spain
| | - Eduardo Domínguez
- Genomic Medicine, Universidad de Santiago de Compostela (USC), Centro Singular de Investigación en Medicina Molecular y Enfermedades Crónicas (CIMUS), A Coruña, Spain
| | - Rubén Haro
- Discovery Chemistry Research & Technologies, Lilly Research Laboratories, Eli Lilly and Company, Alcobendas, Madrid 28108, Spain
| | - Alfonso Rivera-Sagredo
- Discovery Chemistry Research & Technologies, Lilly Research Laboratories, Eli Lilly and Company, Alcobendas, Madrid 28108, Spain
| | - José Pablo Román
- Discovery Chemistry Research & Technologies, Lilly Research Laboratories, Eli Lilly and Company, Alcobendas, Madrid 28108, Spain
| | - María José Lorite
- Discovery Chemistry Research & Technologies, Lilly Research Laboratories, Eli Lilly and Company, Alcobendas, Madrid 28108, Spain
| | | | - María Isabel Loza
- BioFarma, Universidad de Santiago de Compostela (USC), Centro Singular de Investigación en Medicina Molecular y Enfermedades Crónicas (CIMUS), A Coruña 15782, Spain
| | - Jorge Amigo
- Fundación Pública Galega de Medicina Xenómica (FPGMX), Servizo Galego de Saúde (SERGAS), Instituto de Investigaciones Sanitarias (IDIS), A Coruña 15706, Spain
| | - Beatriz Sobrino
- Fundación Pública Galega de Medicina Xenómica (FPGMX), Servizo Galego de Saúde (SERGAS), Instituto de Investigaciones Sanitarias (IDIS), A Coruña 15706, Spain
| | - María José Lallena
- Discovery Chemistry Research & Technologies, Lilly Research Laboratories, Eli Lilly and Company, Alcobendas, Madrid 28108, Spain
| | - Miguel Ángel Toledo
- Discovery Chemistry Research & Technologies, Lilly Research Laboratories, Eli Lilly and Company, Alcobendas, Madrid 28108, Spain
| |
Collapse
|
21
|
Zhang S, Zhang H, Liu X, Qi P, Tan T, Wang S, Gao H, Xu H, Zhou Z, Yi W. Mask and Release Strategy-Enabled Diversity-Oriented Synthesis for DNA-Encoded Library. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2307049. [PMID: 38044314 PMCID: PMC10853742 DOI: 10.1002/advs.202307049] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/13/2023] [Indexed: 12/05/2023]
Abstract
An ideal DNA-encoded library (DEL) selection requires the library to consist of diverse core skeletons and cover chemical space as much as possible. However, the lack of efficient on-DNA synthetic approaches toward core skeletons has greatly restricted the diversity of DEL. To mitigate this issue, this work disclosed a "Mask & Release" strategy to streamline the challenging on-DNA core skeleton synthesis. N-phenoxyacetamide is used as a masked phenol and versatile directing group to mediate diversified DNA-compatible C-H functionalization, introducing the 1st-dimensional diversity at a defined site, and simultaneously releasing the phenol functionality, which can facilitate the introduction of the 2nd diversity. This work not only provides a set of efficient syntheses toward DNA-conjugated drug-like core skeletons such as ortho-alkenyl/sulfiliminyl/cyclopropyl phenol, benzofuran, dihydrobenzofuran but also provides a paradigm for on-DNA core skeleton synthetic method development.
Collapse
Affiliation(s)
- Silin Zhang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical PharmacologyThe NMPA and State Key Laboratory of Respiratory DiseaseSchool of Pharmaceutical Sciences and the Fifth Affiliated HospitalGuangzhou Medical UniversityGuangzhou511436China
| | - Haiman Zhang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical PharmacologyThe NMPA and State Key Laboratory of Respiratory DiseaseSchool of Pharmaceutical Sciences and the Fifth Affiliated HospitalGuangzhou Medical UniversityGuangzhou511436China
| | - Xiawen Liu
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical PharmacologyThe NMPA and State Key Laboratory of Respiratory DiseaseSchool of Pharmaceutical Sciences and the Fifth Affiliated HospitalGuangzhou Medical UniversityGuangzhou511436China
| | - Ping Qi
- Guangzhou Institute for Food InspectionGuangzhou511400China
| | - Tingting Tan
- Shanghai Institute for Advanced Immunochemical Studies & School of Life Science and TechnologyShanghaiTech UniversityShanghai201210China
| | - Shengdong Wang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical PharmacologyThe NMPA and State Key Laboratory of Respiratory DiseaseSchool of Pharmaceutical Sciences and the Fifth Affiliated HospitalGuangzhou Medical UniversityGuangzhou511436China
| | - Hui Gao
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical PharmacologyThe NMPA and State Key Laboratory of Respiratory DiseaseSchool of Pharmaceutical Sciences and the Fifth Affiliated HospitalGuangzhou Medical UniversityGuangzhou511436China
| | - Hongtao Xu
- Shanghai Institute for Advanced Immunochemical Studies & School of Life Science and TechnologyShanghaiTech UniversityShanghai201210China
| | - Zhi Zhou
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical PharmacologyThe NMPA and State Key Laboratory of Respiratory DiseaseSchool of Pharmaceutical Sciences and the Fifth Affiliated HospitalGuangzhou Medical UniversityGuangzhou511436China
| | - Wei Yi
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical PharmacologyThe NMPA and State Key Laboratory of Respiratory DiseaseSchool of Pharmaceutical Sciences and the Fifth Affiliated HospitalGuangzhou Medical UniversityGuangzhou511436China
| |
Collapse
|
22
|
Ma H, Sun Z, Xue L, Zhao X, Zhang J, Zhang H, Yang K, Hu YJ. Simple and Practical DNA Quantification Method for DNA-Encoded Library Synthesis. ACS OMEGA 2023; 8:48050-48055. [PMID: 38144051 PMCID: PMC10733999 DOI: 10.1021/acsomega.3c06768] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 11/09/2023] [Accepted: 11/15/2023] [Indexed: 12/26/2023]
Abstract
Over the past three decades, DNA-encoded library (DEL) technologies have become one of the most relevant strategies for hit-finding. Recent advances in synthetic methodologies for DNA-encoded libraries rendered the increased chemical space available, but it is unknown how every variety of chemistry affects DNA's integrity. Available assays to quantify DNA damage are restricted to electrophoresis, ligation efficiency, and mostly qPCR quantification and sequencing, which may contain predisposition and inconsistency. We developed an external standard method through LC-MS analysis to accurately quantify DNA damage throughout the chemical transformations. An assessment was conducted on on-DNA chemical reactions that are frequently employed in DEL synthesis, and these results were compared to traditional qPCR measurements. Our study provides a simple, practicable, and accurate measurement for DNA degradation during DEL synthesis. Our finding reveals substantial disagreement among the usual DNA-damaging assessment methods, which have been largely neglected so far.
Collapse
Affiliation(s)
- Hangke Ma
- Pharmaron
(Ningbo) Technology Development Co., Ltd., No. 800 Bin-Hai Fourth Road, Hangzhou Bay New Zone, Ningbo 315336, China
| | - Zhaomei Sun
- Pharmaron
(Ningbo) Technology Development Co., Ltd., No. 800 Bin-Hai Fourth Road, Hangzhou Bay New Zone, Ningbo 315336, China
| | - Lijun Xue
- Pharmaron
(Ningbo) Technology Development Co., Ltd., No. 800 Bin-Hai Fourth Road, Hangzhou Bay New Zone, Ningbo 315336, China
| | - Xue Zhao
- Pharmaron
(Ningbo) Technology Development Co., Ltd., No. 800 Bin-Hai Fourth Road, Hangzhou Bay New Zone, Ningbo 315336, China
| | - Jie Zhang
- Pharmaron
(Ningbo) Technology Development Co., Ltd., No. 800 Bin-Hai Fourth Road, Hangzhou Bay New Zone, Ningbo 315336, China
| | - Huanqing Zhang
- Pharmaron
(Ningbo) Technology Development Co., Ltd., No. 800 Bin-Hai Fourth Road, Hangzhou Bay New Zone, Ningbo 315336, China
| | - Kexin Yang
- Pharmaron
Beijing Co., Ltd., 6 Taihe Road, BDA, Beijing 100176, P. R. China
| | - Yun Jin Hu
- Pharmaron
(Ningbo) Technology Development Co., Ltd., No. 800 Bin-Hai Fourth Road, Hangzhou Bay New Zone, Ningbo 315336, China
| |
Collapse
|
23
|
Sharique M, Matsuo B, Granados A, Kim S, Arshad M, Oh H, Wu VE, Huang M, Csakai A, Marcaurelle LA, Molander GA. On-DNA hydroalkylation of N-vinyl heterocycles via photoinduced EDA-complex activation. Chem Sci 2023; 14:14193-14199. [PMID: 38098729 PMCID: PMC10717525 DOI: 10.1039/d3sc03731b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 08/22/2023] [Indexed: 12/17/2023] Open
Abstract
The emergence of DNA-encoded library (DEL) technology has provided a considerable advantage to the pharmaceutical industry in the pursuit of discovering novel therapeutic candidates for their drug development initiatives. This combinatorial technique not only offers a more economical, spatially efficient, and time-saving alternative to the existing ligand discovery methods, but also enables the exploration of additional chemical space by utilizing novel DNA-compatible synthetic transformations to leverage multifunctional building blocks from readily available substructures. In this report, a decarboxylative-based hydroalkylation of DNA-conjugated N-vinyl heterocycles enabled by single-electron transfer (SET) and subsequent hydrogen atom transfer through electron-donor/electron-acceptor (EDA) complex activation is detailed. The simplicity and robustness of this method permits inclusion of a broad array of alkyl radical precursors and DNA-tethered nitrogenous heterocyles to generate medicinally relevant substituted heterocycles with pendant functional groups. Moreover, a successful telescoped route provides the opportunity to access a broad range of intricate structural scaffolds by employing basic carboxylic acid feedstocks.
Collapse
Affiliation(s)
- Mohammed Sharique
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania 231 South 34th Street Philadelphia Pennsylvania 19104-6323 USA
| | - Bianca Matsuo
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania 231 South 34th Street Philadelphia Pennsylvania 19104-6323 USA
| | - Albert Granados
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania 231 South 34th Street Philadelphia Pennsylvania 19104-6323 USA
| | - Saegun Kim
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania 231 South 34th Street Philadelphia Pennsylvania 19104-6323 USA
| | - Mahwish Arshad
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania 231 South 34th Street Philadelphia Pennsylvania 19104-6323 USA
| | - Hyunjung Oh
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania 231 South 34th Street Philadelphia Pennsylvania 19104-6323 USA
| | - Victoria E Wu
- Encoded Library Technologies/NCE Molecular Discovery, R&D Medicinal Science and Technology, GSK 200 Cambridge Park Drive Cambridge MA 02140 USA
| | - Minxue Huang
- Encoded Library Technologies/NCE Molecular Discovery, R&D Medicinal Science and Technology, GSK 200 Cambridge Park Drive Cambridge MA 02140 USA
| | - Adam Csakai
- Encoded Library Technologies/NCE Molecular Discovery, R&D Medicinal Science and Technology, GSK 200 Cambridge Park Drive Cambridge MA 02140 USA
| | - Lisa A Marcaurelle
- Encoded Library Technologies/NCE Molecular Discovery, R&D Medicinal Science and Technology, GSK 200 Cambridge Park Drive Cambridge MA 02140 USA
| | - Gary A Molander
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania 231 South 34th Street Philadelphia Pennsylvania 19104-6323 USA
| |
Collapse
|
24
|
Zhang J, Wang L, Ji Q, Liu F. DNA-Compatible Cyanomethylation of (Hetero)aryl Halides or Triflates under a Tandem Reaction for DNA-Encoded Library Synthesis. Org Lett 2023; 25:6931-6936. [PMID: 37677078 DOI: 10.1021/acs.orglett.3c02850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/09/2023]
Abstract
A DNA-compatible reaction has been developed for the cyanomethylation of (hetero)aryl halides or triflates via a tandem process involving palladium-mediated Suzuki-Miyaura coupling and base-promoted isoxazole fragmentation. This one-pot protocol employs easily accessible starting materials, exhibits a wide substrate scope, and results in no significant DNA damage. Additionally, the resulting (hetero)arylacetonitriles can be converted into the corresponding carboxylic acids, which may be utilized for the synthesis of DNA-encoded chemical libraries.
Collapse
Affiliation(s)
- Jie Zhang
- R&D Institute, Chia Tai Tianqing Pharmaceutical Group Co., Ltd., Nanjing 211122, Jiangsu Province, China
| | - Lu Wang
- R&D Institute, Chia Tai Tianqing Pharmaceutical Group Co., Ltd., Nanjing 211122, Jiangsu Province, China
| | - Qian Ji
- R&D Institute, Chia Tai Tianqing Pharmaceutical Group Co., Ltd., Nanjing 211122, Jiangsu Province, China
| | - Fei Liu
- R&D Institute, Chia Tai Tianqing Pharmaceutical Group Co., Ltd., Nanjing 211122, Jiangsu Province, China
| |
Collapse
|
25
|
Ding Z, Wu Y, Li F, Jia S, Qi B, Peng Z. DNA-Conjugated Cyclopropane Derivatives Constructed from Sulfonium Ylides with α,β-Unsaturated Ketones. Bioconjug Chem 2023; 34:1523-1527. [PMID: 37589429 DOI: 10.1021/acs.bioconjchem.3c00291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/18/2023]
Abstract
Here, we report a DNA-compatible reaction for the generation of cyclopropane derivatives using thiolides with α,β-unsaturated ketones in the absence of transition metal and N2 protection, which is convenient for DNA encoded library (DEL) construction. This approach allows the rapid and efficient production of a series of DEL libraries of potentially biologically active cyclopropanes and spirocyclopropyl oxindole derivatives.
Collapse
Affiliation(s)
- Zhaobing Ding
- PharmaBlock Sciences (Nanjing), INC., Nanjing 210032, Jiangsu Province, China
| | - Yizhou Wu
- PharmaBlock Sciences (Nanjing), INC., Nanjing 210032, Jiangsu Province, China
| | - Feifei Li
- PharmaBlock Sciences (Nanjing), INC., Nanjing 210032, Jiangsu Province, China
| | - Siyu Jia
- PharmaBlock Sciences (Nanjing), INC., Nanjing 210032, Jiangsu Province, China
| | - Bing Qi
- PharmaBlock Sciences (Nanjing), INC., Nanjing 210032, Jiangsu Province, China
| | - Zuozhong Peng
- PharmaBlock Sciences (Nanjing), INC., Nanjing 210032, Jiangsu Province, China
| |
Collapse
|
26
|
Xue L, Zhou S, Wu J, Duchemin N, Chen B, Zhang J, Zhang H, Yang K, Hu YJ. Development of On-DNA Cyclic Imide Synthesis for DNA Encoded Library Construction. Chembiochem 2023; 24:e202300206. [PMID: 37380609 DOI: 10.1002/cbic.202300206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 06/26/2023] [Accepted: 06/26/2023] [Indexed: 06/30/2023]
Abstract
Here, we describe a novel method for the on-DNA synthesis of cyclic imides, an important class of molecules that includes several well-known medications. Significantly, the new method enabled on-DNA synthesis under mild conditions with high conversions and a broad functional group tolerance, utilizing ubiquitous bifunctional amines and bis-carboxylic acid, or alkyl halides, and therefore served as the linchpin for DNA encoded library (DEL) synthesis. The mechanism study of off-DNA and on-DNA chemical transformations revealed unique insights in contrast to conventional chemical transformation.
Collapse
Affiliation(s)
- Lijun Xue
- Pharmaron (Ningbo) Technology Development Co., Ltd., No. 800 Bin-Hai 4th Road, Hangzhou Bay New Zone, Ningbo, 315336, China
| | - Sufang Zhou
- Pharmaron (Ningbo) Technology Development Co., Ltd., No. 800 Bin-Hai 4th Road, Hangzhou Bay New Zone, Ningbo, 315336, China
| | - Jing Wu
- Pharmaron (Ningbo) Technology Development Co., Ltd., No. 800 Bin-Hai 4th Road, Hangzhou Bay New Zone, Ningbo, 315336, China
| | - Nicolas Duchemin
- Pharmaron UK, Ltd., Innovation Park, West Cl, Hertford Rd, Hoddesdon, EN11 9FH, UK
| | - Bingxin Chen
- Pharmaron (Ningbo) Technology Development Co., Ltd., No. 800 Bin-Hai 4th Road, Hangzhou Bay New Zone, Ningbo, 315336, China
| | - Jie Zhang
- Pharmaron (Ningbo) Technology Development Co., Ltd., No. 800 Bin-Hai 4th Road, Hangzhou Bay New Zone, Ningbo, 315336, China
| | - Huanqing Zhang
- Pharmaron (Ningbo) Technology Development Co., Ltd., No. 800 Bin-Hai 4th Road, Hangzhou Bay New Zone, Ningbo, 315336, China
| | - Kexin Yang
- Pharmaron Beijing Co., Ltd., 6 Taihe Road, BDA, Beijing, 100176, China
| | - Yun Jin Hu
- Pharmaron (Ningbo) Technology Development Co., Ltd., No. 800 Bin-Hai 4th Road, Hangzhou Bay New Zone, Ningbo, 315336, China
| |
Collapse
|
27
|
Wen X, Zhang M, Duan Z, Suo Y, Lu W, Jin R, Mu B, Li K, Zhang X, Meng L, Hong Y, Wang X, Hu H, Zhu J, Song W, Shen A, Lu X. Discovery, SAR Study of GST Inhibitors from a Novel Quinazolin-4(1 H)-one Focused DNA-Encoded Library. J Med Chem 2023; 66:11118-11132. [PMID: 37552553 DOI: 10.1021/acs.jmedchem.2c02129] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2023]
Abstract
The DNA-encoded library (DEL) is a powerful hit-generation tool in drug discovery. This study describes a new DEL with a privileged scaffold quinazolin-4(3H)-one developed by a robust DNA-compatible multicomponent reaction and a series of novel glutathione S-transferase (GST) inhibitors that were identified through affinity-mediated DEL selection. A novel inhibitor 16 was subsequently verified with an inhibitory potency value of 1.55 ± 0.02 μM against SjGST and 2.02 ± 0.20 μM against hGSTM2. Further optimization was carried out via various structure-activity relationship studies. And especially, the co-crystal structure of the compound 16 with the SjGST was unveiled, which clearly demonstrated its binding mode was quite different from the known GSH-like compounds. This new type of probe is likely to play a different role compared with the GSH, which may provide new opportunities to discover more potent GST inhibitors.
Collapse
Affiliation(s)
- Xin Wen
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Zhang Jiang Hi-Tech Park, Pudong, Shanghai 201203, P. R. China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Minmin Zhang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Zhang Jiang Hi-Tech Park, Pudong, Shanghai 201203, P. R. China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Zhiqiang Duan
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Zhang Jiang Hi-Tech Park, Pudong, Shanghai 201203, P. R. China
| | - Yanrui Suo
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Zhang Jiang Hi-Tech Park, Pudong, Shanghai 201203, P. R. China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Weiwei Lu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Zhang Jiang Hi-Tech Park, Pudong, Shanghai 201203, P. R. China
| | - Rui Jin
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Zhang Jiang Hi-Tech Park, Pudong, Shanghai 201203, P. R. China
| | - Baiyang Mu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Zhang Jiang Hi-Tech Park, Pudong, Shanghai 201203, P. R. China
| | - Kaige Li
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Zhang Jiang Hi-Tech Park, Pudong, Shanghai 201203, P. R. China
| | - Xu Zhang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Zhang Jiang Hi-Tech Park, Pudong, Shanghai 201203, P. R. China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Linghua Meng
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Zhang Jiang Hi-Tech Park, Pudong, Shanghai 201203, P. R. China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Yu Hong
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Zhang Jiang Hi-Tech Park, Pudong, Shanghai 201203, P. R. China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Xingyu Wang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Zhang Jiang Hi-Tech Park, Pudong, Shanghai 201203, P. R. China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Hangchen Hu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Zhang Jiang Hi-Tech Park, Pudong, Shanghai 201203, P. R. China
| | - Jian Zhu
- Protein Crystallography Platform, WuXi AppTec (Suzhou) Co., Ltd., 1318 Wuzhong Avenue, Wuzhong District, Suzhou 215104, China
| | - Weixiao Song
- Protein Crystallography Platform, WuXi AppTec (Suzhou) Co., Ltd., 1318 Wuzhong Avenue, Wuzhong District, Suzhou 215104, China
| | - Aijun Shen
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Zhang Jiang Hi-Tech Park, Pudong, Shanghai 201203, P. R. China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
- Lingang Laboratory, Shanghai 200031, China
| | - Xiaojie Lu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Zhang Jiang Hi-Tech Park, Pudong, Shanghai 201203, P. R. China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| |
Collapse
|
28
|
Merrifield JL, Pimentel EB, Peters-Clarke TM, Nesbitt DJ, Coon JJ, Martell JD. DNA-Compatible Copper/TEMPO Oxidation for DNA-Encoded Libraries. Bioconjug Chem 2023; 34:1380-1386. [PMID: 37540561 PMCID: PMC10831869 DOI: 10.1021/acs.bioconjchem.3c00254] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/06/2023]
Abstract
Aldehydes are important synthons for DNA-encoded library (DEL) construction, but the development of a DNA-compatible method for the oxidation of alcohols to aldehydes remains a significant challenge in the field of DEL chemistry. We report that a copper/TEMPO catalyst system enables the solution-phase DNA-compatible oxidation of DNA-linked primary activated alcohols to aldehydes. The semiaqueous, room-temperature reaction conditions afford oxidation of benzylic, heterobenzylic, and allylic alcohols in high yield, with DNA compatibility verified by mass spectrometry, qPCR, Sanger sequencing, and ligation assays. Subsequent transformations of the resulting aldehydes demonstrate the potential of this method for robust library diversification.
Collapse
Affiliation(s)
- Justice L. Merrifield
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Edward B. Pimentel
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Trenton M. Peters-Clarke
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Daniel J. Nesbitt
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Joshua J. Coon
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
- National Center for Quantitative Biology of Complex Systems, Madison, Wisconsin 53706, United States
- Morgridge Institute for Research, Madison, Wisconsin 53515, United States
| | - Jeffrey D. Martell
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
- Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin 53705, United States
| |
Collapse
|
29
|
Xue L, Liu W, Li S, Duchemin N, Lou M, Yuan J, Zhang H, Chen J, Yu W, Yang K, Hu YJ. On-DNA Morita-Baylis-Hillman Reaction: Accessing Targeted Covalent Inhibitor Motifs in DNA-Encoded Libraries. Bioconjug Chem 2023; 34:1366-1373. [PMID: 37418679 DOI: 10.1021/acs.bioconjchem.3c00138] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/09/2023]
Abstract
We herein present the first application of the on-DNA Morita-Baylis-Hillman (MBH) reaction for the creation of pharmaceutically relevant targeted covalent inhibitors (TCIs) with an α-hydroxyl Michael acceptor motif. Adapting a DNA-compatible organocatalytic process, this MBH reaction for covalent selection-capable DNA encoded library (DEL) synthesis grants access to densely functionalized and versatile precursors to explore novel chemical space for molecule recognition in drug discovery. Most importantly, this methodology sheds light on potentially unexpected reaction outcomes of the MBH reaction.
Collapse
Affiliation(s)
- Lijun Xue
- Pharmaron (Ningbo) Technology Development Co., Ltd. No. 800 Bin-Hai 4th Road, Hangzhou Bay New Zone, Ningbo, 315336, P.R. China
| | - Weijie Liu
- Pharmaron (Ningbo) Technology Development Co., Ltd. No. 800 Bin-Hai 4th Road, Hangzhou Bay New Zone, Ningbo, 315336, P.R. China
| | - Shu Li
- Pharmaron (Ningbo) Technology Development Co., Ltd. No. 800 Bin-Hai 4th Road, Hangzhou Bay New Zone, Ningbo, 315336, P.R. China
| | - Nicolas Duchemin
- Pharmaron U.K., Ltd., Innovation Park, West Cl, Hertford Rd, Hoddesdon EN11 9FH, United Kingdom
| | - Mengjia Lou
- Pharmaron (Ningbo) Technology Development Co., Ltd. No. 800 Bin-Hai 4th Road, Hangzhou Bay New Zone, Ningbo, 315336, P.R. China
| | - Jingyu Yuan
- Pharmaron (Ningbo) Technology Development Co., Ltd. No. 800 Bin-Hai 4th Road, Hangzhou Bay New Zone, Ningbo, 315336, P.R. China
| | - Huanqing Zhang
- Pharmaron (Ningbo) Technology Development Co., Ltd. No. 800 Bin-Hai 4th Road, Hangzhou Bay New Zone, Ningbo, 315336, P.R. China
| | - Junyun Chen
- Pharmaron (Ningbo) Technology Development Co., Ltd. No. 800 Bin-Hai 4th Road, Hangzhou Bay New Zone, Ningbo, 315336, P.R. China
| | - Weina Yu
- Pharmaron (Ningbo) Technology Development Co., Ltd. No. 800 Bin-Hai 4th Road, Hangzhou Bay New Zone, Ningbo, 315336, P.R. China
| | - Kexin Yang
- Pharmaron Beijing Co., Ltd., 6 Taihe Road, BDA, Beijing 100176, P.R. China
| | - Yun Jin Hu
- Pharmaron (Ningbo) Technology Development Co., Ltd. No. 800 Bin-Hai 4th Road, Hangzhou Bay New Zone, Ningbo, 315336, P.R. China
| |
Collapse
|
30
|
Schulz AK, Shriver C, Stathatos S, Seleb B, Weigel EG, Chang YH, Saad Bhamla M, Hu DL, Mendelson JR. Conservation tools: the next generation of engineering-biology collaborations. J R Soc Interface 2023; 20:20230232. [PMID: 37582407 PMCID: PMC10427197 DOI: 10.1098/rsif.2023.0232] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 07/21/2023] [Indexed: 08/17/2023] Open
Abstract
The recent increase in public and academic interest in preserving biodiversity has led to the growth of the field of conservation technology. This field involves designing and constructing tools that use technology to aid in the conservation of wildlife. In this review, we present five case studies and infer a framework for designing conservation tools (CT) based on human-wildlife interaction. Successful CT range in complexity from cat collars to machine learning and game theory methodologies and do not require technological expertise to contribute to conservation tool creation. Our goal is to introduce researchers to the field of conservation technology and provide references for guiding the next generation of conservation technologists. Conservation technology not only has the potential to benefit biodiversity but also has broader impacts on fields such as sustainability and environmental protection. By using innovative technologies to address conservation challenges, we can find more effective and efficient solutions to protect and preserve our planet's resources.
Collapse
Affiliation(s)
- Andrew K. Schulz
- Haptic Ingelligence Department, Max Planck Institute for Intelligent Systems, Stuttgart 70569, Germany
- Schools of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Cassie Shriver
- Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Suzanne Stathatos
- Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA 91125, USA
| | - Benjamin Seleb
- Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Emily G. Weigel
- Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Young-Hui Chang
- Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - M. Saad Bhamla
- Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - David L. Hu
- Schools of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
- Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Joseph R. Mendelson
- Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
- Zoo Atlanta, Atlanta, GA 30315, USA
| |
Collapse
|
31
|
Luo A, Duchemin N, Wang X, Zhou H, Zeng F, Zhao X, Yu W, Yang K, Jin Hu Y. Development of On-DNA Thiophene Synthesis for DEL Construction. Chem Asian J 2023; 18:e202300458. [PMID: 37339942 DOI: 10.1002/asia.202300458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/15/2023] [Accepted: 06/20/2023] [Indexed: 06/22/2023]
Abstract
Thiophene and its substituted derivatives are a highly important class of heterocyclic compounds, with noteworthy applications in pharmaceutical ingredients. In this study, we leverage the unique reactivity of alkynes to generate thiophenes on-DNA, using a cascade iodination, Cadiot-Chodkiewicz coupling and heterocyclization. This approach, tackling on-DNA thiophene synthesis for the first time, generates diverse, and unprecedented structural and chemical features, which could be significant motifs in DEL screening as molecular recognition agents for drug discovery.
Collapse
Affiliation(s)
- Ayun Luo
- Pharmaron (Ningbo) Technology Development Co., Ltd., No. 800 Bin-Hai 4th Road, Hangzhou Bay New Zone, Ningbo, 315336, P. R. China
| | - Nicolas Duchemin
- Pharmaron UK, Ltd., Innovation Park, West Cl, Hertford Rd, Hoddesdon, EN11 9FH, UK
| | - Xiuming Wang
- Pharmaron (Ningbo) Technology Development Co., Ltd., No. 800 Bin-Hai 4th Road, Hangzhou Bay New Zone, Ningbo, 315336, P. R. China
| | - Hongxia Zhou
- Pharmaron (Ningbo) Technology Development Co., Ltd., No. 800 Bin-Hai 4th Road, Hangzhou Bay New Zone, Ningbo, 315336, P. R. China
| | - Fanming Zeng
- Pharmaron (Ningbo) Technology Development Co., Ltd., No. 800 Bin-Hai 4th Road, Hangzhou Bay New Zone, Ningbo, 315336, P. R. China
| | - Xue Zhao
- Pharmaron (Ningbo) Technology Development Co., Ltd., No. 800 Bin-Hai 4th Road, Hangzhou Bay New Zone, Ningbo, 315336, P. R. China
| | - Weina Yu
- Pharmaron (Ningbo) Technology Development Co., Ltd., No. 800 Bin-Hai 4th Road, Hangzhou Bay New Zone, Ningbo, 315336, P. R. China
| | - Kexin Yang
- Pharmaron Beijing Co., Ltd, 6 Taihe Road, BDA, Beijing, 100176, P. R. China
| | - Yun Jin Hu
- Pharmaron (Ningbo) Technology Development Co., Ltd., No. 800 Bin-Hai 4th Road, Hangzhou Bay New Zone, Ningbo, 315336, P. R. China
| |
Collapse
|
32
|
An Y, Lee J, Seo H, Bae S, Kang J, Lee J, Kim J, Nam MH, Song M, Hwang GT. Groebke-Blackburn-Bienaymé Reaction for DNA-Encoded Library Technology. Org Lett 2023; 25:4445-4450. [PMID: 37310879 DOI: 10.1021/acs.orglett.3c01366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
This study presents a DNA-compatible synthesis of diverse 5-arylimidazo[1,2-a]pyridin-3-amine derivatives using the Suzuki-Miyaura reaction, followed by a Groebke-Blackburn-Bienaymé (GBB) reaction. The GBB reaction demonstrates a wide substrate scope, mild one-pot reaction conditions, and compatibility with subsequent enzymatic ligation, highlighting its potential in DNA-encoded library technology.
Collapse
Affiliation(s)
- Yujin An
- Department of Chemistry and Green-Nano Materials Research Center, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Juyeon Lee
- Department of Chemistry and Green-Nano Materials Research Center, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Hyewon Seo
- New Drug Development Center (NDDC), Daegu-Gyeongbuk Medical Innovation Foundation (K-MEDIhub), Daegu 41061, Republic of Korea
| | - Seri Bae
- New Drug Development Center (NDDC), Daegu-Gyeongbuk Medical Innovation Foundation (K-MEDIhub), Daegu 41061, Republic of Korea
| | - Jihee Kang
- New Drug Development Center (NDDC), Daegu-Gyeongbuk Medical Innovation Foundation (K-MEDIhub), Daegu 41061, Republic of Korea
| | - Jieon Lee
- New Drug Development Center (NDDC), Daegu-Gyeongbuk Medical Innovation Foundation (K-MEDIhub), Daegu 41061, Republic of Korea
| | - Jinwoo Kim
- Seoul Center, Korea Basic Science Institute (KBSI), Seoul 02841, Republic of Korea
| | - Myung Hee Nam
- Seoul Center, Korea Basic Science Institute (KBSI), Seoul 02841, Republic of Korea
| | - Minsoo Song
- New Drug Development Center (NDDC), Daegu-Gyeongbuk Medical Innovation Foundation (K-MEDIhub), Daegu 41061, Republic of Korea
| | - Gil Tae Hwang
- Department of Chemistry and Green-Nano Materials Research Center, Kyungpook National University, Daegu 41566, Republic of Korea
| |
Collapse
|
33
|
Sun Z, Xiao L, Chen Y, Wang J, Zeng F, Zhang H, Zhang J, Yang K, Hu YJ. Constructive On-DNA Abramov Reaction and Pudovik Reaction for DEL Synthesis. ACS Med Chem Lett 2023; 14:473-478. [PMID: 37077381 PMCID: PMC10107919 DOI: 10.1021/acsmedchemlett.3c00022] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 03/07/2023] [Indexed: 03/12/2023] Open
Abstract
Organophosphonic compounds are distinctive among natural products in terms of stability and mimicry. Numerous synthetic organophosphonic compounds, including pamidronic acid, fosmidromycin, and zoledronic acid, are approved drugs. DNA encoded library technology (DELT) is a well-established platform for identifying small molecule recognition to target protein of interest (POI). Therefore, it is imperative to create an efficient procedure for the on-DNA synthesis of α-hydroxy phosphonates for DEL builds.
Collapse
Affiliation(s)
- Zhaomei Sun
- Pharmaron
(Ningbo) Technology Development Co., Ltd. No. 800 Bin-Hai fourth Road, Hangzhou Bay New Zone, Ningbo, 315336 China
| | - Lingqian Xiao
- Pharmaron
(Ningbo) Technology Development Co., Ltd. No. 800 Bin-Hai fourth Road, Hangzhou Bay New Zone, Ningbo, 315336 China
| | - Yahui Chen
- Pharmaron
(Ningbo) Technology Development Co., Ltd. No. 800 Bin-Hai fourth Road, Hangzhou Bay New Zone, Ningbo, 315336 China
| | - Jiangying Wang
- Pharmaron
(Ningbo) Technology Development Co., Ltd. No. 800 Bin-Hai fourth Road, Hangzhou Bay New Zone, Ningbo, 315336 China
| | - Fanming Zeng
- Pharmaron
(Ningbo) Technology Development Co., Ltd. No. 800 Bin-Hai fourth Road, Hangzhou Bay New Zone, Ningbo, 315336 China
| | - Huanqing Zhang
- Pharmaron
(Ningbo) Technology Development Co., Ltd. No. 800 Bin-Hai fourth Road, Hangzhou Bay New Zone, Ningbo, 315336 China
| | - Jie Zhang
- Pharmaron
(Ningbo) Technology Development Co., Ltd. No. 800 Bin-Hai fourth Road, Hangzhou Bay New Zone, Ningbo, 315336 China
| | - Kexin Yang
- Pharmaron
Beijing Co., Ltd., 6 Taihe Road, BDA, Beijing, 100176 P. R. China
| | - Yun Jin Hu
- Pharmaron
(Ningbo) Technology Development Co., Ltd. No. 800 Bin-Hai fourth Road, Hangzhou Bay New Zone, Ningbo, 315336 China
| |
Collapse
|
34
|
Luo A, Zhou H, Hua Q, An Y, Ma H, Zhao X, Yang K, Hu YJ. Development of the Inverse Sonogashira Reaction for DEL Synthesis. ACS Med Chem Lett 2023; 14:270-277. [PMID: 36923912 PMCID: PMC10009795 DOI: 10.1021/acsmedchemlett.2c00477] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 02/22/2023] [Indexed: 02/25/2023] Open
Abstract
An efficient approach for aryl acetylene DNA-encoded library (DEL) synthesis was developed in this study by transition-metal-mediated inverse Sonogashira reaction of 1-iodoalkyne with boronic acid under ambient conditions, with moderate to excellent conversions and broad substrate adaptability for the first time. Compared to palladium-phosphine, copper iodide performed better in the on-DNA inverse Sonogashira reaction. Interestingly, substrate diversity can be enhanced by first interrogating coupling reagents under copper-promoted conditions, and then revalidating them under palladium-facilitated conditions for those reagents which failed under the former. This complementary validation strategy is particularly well-fitted to any DEL validation studies.
Collapse
Affiliation(s)
- Ayun Luo
- Pharmaron
(Ningbo) Technology Development Co., Ltd., No. 800 Bin-Hai Fourth Road, Hangzhou Bay New Zone, Ningbo 315336, P. R. China
| | - Hongxia Zhou
- Pharmaron
(Ningbo) Technology Development Co., Ltd., No. 800 Bin-Hai Fourth Road, Hangzhou Bay New Zone, Ningbo 315336, P. R. China
| | - Qini Hua
- Pharmaron
(Ningbo) Technology Development Co., Ltd., No. 800 Bin-Hai Fourth Road, Hangzhou Bay New Zone, Ningbo 315336, P. R. China
| | - Yufang An
- Pharmaron
(Ningbo) Technology Development Co., Ltd., No. 800 Bin-Hai Fourth Road, Hangzhou Bay New Zone, Ningbo 315336, P. R. China
| | - Hangke Ma
- Pharmaron
(Ningbo) Technology Development Co., Ltd., No. 800 Bin-Hai Fourth Road, Hangzhou Bay New Zone, Ningbo 315336, P. R. China
| | - Xue Zhao
- Pharmaron
(Ningbo) Technology Development Co., Ltd., No. 800 Bin-Hai Fourth Road, Hangzhou Bay New Zone, Ningbo 315336, P. R. China
| | - Kexin Yang
- Pharmaron
Beijing Co., Ltd., 6 Taihe Road, BDA, Beijing 100176, P. R. China
| | - Yun Jin Hu
- Pharmaron
(Ningbo) Technology Development Co., Ltd., No. 800 Bin-Hai Fourth Road, Hangzhou Bay New Zone, Ningbo 315336, P. R. China
| |
Collapse
|
35
|
Fang X, Liao H, Fan X, Wang Y, Wang H, Zhang G, Fang W, Li Y, Li Y. Incorporation of viridicatin alkaloid-like scaffolds into DNA-encoded chemical libraries. Org Biomol Chem 2023; 21:2162-2166. [PMID: 36799438 DOI: 10.1039/d2ob02278h] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
Viridicatin alkaloids as natural products have attracted great interest due to their unique core scaffold. To fully exploit their potential application in DNA-encoded chemical libraries that would facilitate drug discovery, we here describe an efficient on-DNA synthesis of viridicatin alkaloid-like scaffolds from isatins and DNA-tagged aldehydes. Promoted by benzenesulfonyl hydrazide, this reaction provided the corresponding DNA-conjugated viridicatin alkaloid-like products in moderate-to-excellent conversion yields, and DNA compatibility validated by enzymatic ligation and qPCR evaluation exhibited the feasible utility of this methodology in DEL synthesis. Cross substrate scope study, together with subsequent on-DNA chemical diversification, further showed the competence of this approach in focused natural product-like encoded library construction.
Collapse
Affiliation(s)
- Xianfu Fang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, 401331 Chongqing, P. R. China.
| | - Huilin Liao
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, 401331 Chongqing, P. R. China.
| | - Xiaohong Fan
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, 401331 Chongqing, P. R. China. .,Pharmaceutical Department of Chongqing Three Gorges Central Hospital, Chongqing University Three Gorges Hospital, 404100 Chongqing, P. R. China.
| | - Yiting Wang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, 401331 Chongqing, P. R. China.
| | - Huihong Wang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, 401331 Chongqing, P. R. China. .,Pharmaceutical Department of Chongqing Three Gorges Central Hospital, Chongqing University Three Gorges Hospital, 404100 Chongqing, P. R. China.
| | - Gong Zhang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, 401331 Chongqing, P. R. China. .,Chemical Biology Research Center, School of Pharmaceutical Sciences, Chongqing University, 401331 Chongqing, P. R. China
| | - Wei Fang
- Pharmaceutical Department of Chongqing Three Gorges Central Hospital, Chongqing University Three Gorges Hospital, 404100 Chongqing, P. R. China.
| | - Yangfeng Li
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, 401331 Chongqing, P. R. China. .,Chemical Biology Research Center, School of Pharmaceutical Sciences, Chongqing University, 401331 Chongqing, P. R. China
| | - Yizhou Li
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, 401331 Chongqing, P. R. China. .,Chemical Biology Research Center, School of Pharmaceutical Sciences, Chongqing University, 401331 Chongqing, P. R. China.,Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, 400044 Chongqing, P. R. China.,Beijing National Laboratory for Molecular Sciences, 100190 Beijing, P. R. China
| |
Collapse
|
36
|
Stanway-Gordon H, Odger JA, Waring MJ. Development of a Micellar-Promoted Heck Reaction for the Synthesis of DNA-Encoded Libraries. Bioconjug Chem 2023; 34. [PMID: 36883323 PMCID: PMC10119937 DOI: 10.1021/acs.bioconjchem.3c00051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 02/22/2023] [Indexed: 03/09/2023]
Abstract
The capability of DNA encoded libraries (DELs) as a method of small molecule hit identification is becoming widely established in drug discovery. While their selection method offers advantages over more traditional means, DELs are limited by the chemistry that can be utilized to construct them. Significant advances in DNA compatible chemistry have been made over the past five years; however such procedures are still often burdened by substrate specificity and/or incomplete conversions, reducing the fidelity of the resulting libraries. One such reaction is the Heck coupling, for which current DNA-compatible protocols are somewhat unreliable. Utilizing micellar technology, we have developed a highly efficient DNA-compatible Heck reaction that proceeds on average to 95% conversion to product across a broad variety of structurally significant building blocks and multiple DNA conjugates. This work continues the application of micellar catalysis to the development of widely applicable, effective DNA-compatible reactions for use in DELs.
Collapse
Affiliation(s)
- Harriet
A. Stanway-Gordon
- Cancer Research Horizons
Therapeutic Innovation, Chemistry, School of Natural and Environmental
Sciences, Bedson Building, Newcastle University, Newcastle upon Tyne, NE1
7RU, United Kingdom
| | - Jake A. Odger
- Cancer Research Horizons
Therapeutic Innovation, Chemistry, School of Natural and Environmental
Sciences, Bedson Building, Newcastle University, Newcastle upon Tyne, NE1
7RU, United Kingdom
| | - Michael J. Waring
- Cancer Research Horizons
Therapeutic Innovation, Chemistry, School of Natural and Environmental
Sciences, Bedson Building, Newcastle University, Newcastle upon Tyne, NE1
7RU, United Kingdom
| |
Collapse
|
37
|
Li L, Matsuo B, Levitre G, McClain EJ, Voight EA, Crane EA, Molander GA. Dearomative intermolecular [2 + 2] photocycloaddition for construction of C(sp 3)-rich heterospirocycles on-DNA. Chem Sci 2023; 14:2713-2720. [PMID: 36908969 PMCID: PMC9993886 DOI: 10.1039/d3sc00144j] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 02/08/2023] [Indexed: 02/11/2023] Open
Abstract
DNA-encoded library (DEL) screens have significantly impacted new lead compound identification efforts within drug discovery. An advantage of DELs compared to traditional screening methods is that an exponentially broader chemical space can be effectively screened using only nmol quantities of billions of DNA-tagged, drug-like molecules. The synthesis of DELs containing diverse, sp3-rich spirocycles, an important class of molecules in drug discovery, has not been previously reported. Herein, we demonstrate the synthesis of complex and novel spirocyclic cores via an on-DNA, visible light-mediated intermolecular [2 + 2] cycloaddition of olefins with heterocycles, including indoles, azaindoles, benzofurans, and coumarins. The DNA-tagged exo-methylenecyclobutane substrates were prepared from easily accessible alkyl iodides and styrene derivatives. Broad reactivity with many other DNA-conjugated alkene substrates was observed, including unactivated and activated alkenes, and the process is tolerant of various heterocycles. The cycloaddition was successfully scaled from 10 to 100 nmol without diminished yield, indicative of this reaction's suitability for DNA-encoded library production. Evaluation of DNA compatibility with the developed reaction in a mock-library format showed that the DNA barcode was maintained with high fidelity, with <1% mutated sequences and >99% amplifiable DNA from quantitative polymerase chain reaction (PCR) and next generation sequencing (NGS).
Collapse
Affiliation(s)
- Longbo Li
- Department of Chemistry, Roy and Diana Vagelos Laboratories, University of Pennsylvania 231 South 34th Street Philadelphia Pennsylvania 19104-6323 USA
| | - Bianca Matsuo
- Department of Chemistry, Roy and Diana Vagelos Laboratories, University of Pennsylvania 231 South 34th Street Philadelphia Pennsylvania 19104-6323 USA
| | - Guillaume Levitre
- Department of Chemistry, Roy and Diana Vagelos Laboratories, University of Pennsylvania 231 South 34th Street Philadelphia Pennsylvania 19104-6323 USA
| | - Edward J McClain
- Drug Discovery Science & Technology, Discovery Research & Development, AbbVie, Inc., 1 North Waukegan Rd North Chicago Illinois 60064-1802 USA.,Department of Chemistry, University of Wisconsin-Madison Madison Wisconsin 53706 USA
| | - Eric A Voight
- Drug Discovery Science & Technology, Discovery Research & Development, AbbVie, Inc., 1 North Waukegan Rd North Chicago Illinois 60064-1802 USA
| | - Erika A Crane
- Drug Hunter, Inc. 13203 SE 172nd Ave, Suite 166 PMB 2019 Happy Valley Oregon 97086 USA
| | - Gary A Molander
- Department of Chemistry, Roy and Diana Vagelos Laboratories, University of Pennsylvania 231 South 34th Street Philadelphia Pennsylvania 19104-6323 USA
| |
Collapse
|
38
|
Krishna Sunkari Y, Kumar Siripuram V, Flajolet M. Diversity-Oriented Synthesis (DOS) of On-DNA Peptidomimetics from Acid-Derived Phosphonium Ylides. Chemistry 2023; 29:e202203037. [PMID: 36653313 DOI: 10.1002/chem.202203037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Indexed: 01/20/2023]
Abstract
The DNA-encoded library (DEL) technology represents a revolutionary drug-discovery tool with unprecedented screening power originating from the association of combinatorial chemistry and DNA barcoding. The chemical diversity of DELs and its chemical space will be further expanded as new DNA-compatible reactions are introduced. This work introduces the use of DOS in the context of on-DNA peptidomimetics. Wittig olefination of aspartic acid-derived on-DNA Wittig ylide, combined with a broad substrate scope of aldehydes, led to formation of on-DNA α ${\alpha }$ , β ${\beta }$ -unsaturated ketones. The synthesis of on-DNA multi-peptidyl-ylides was performed by incorporating sequential amino acids onto a monomeric ylide. Di-, tri- and tetrameric peptidyl-ylides were validated for Wittig olefination and led to on-DNA α ${\alpha }$ , β ${\beta }$ -unsaturated-based peptidomimetics, an important class of intermediates. One on-DNA aryl Wittig ylide was also developed and applied to Wittig olefination for synthesis of on-DNA chalcone-based molecules. Furthermore, DOS was used successfully with electron-deficient peptidomimetics and led to the development of different heterocyclic cores containing on-DNA peptidomimetics.
Collapse
Affiliation(s)
- Yashoda Krishna Sunkari
- Laboratory of Molecular and Cellular Neuroscience, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Vijay Kumar Siripuram
- Laboratory of Molecular and Cellular Neuroscience, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Marc Flajolet
- Laboratory of Molecular and Cellular Neuroscience, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| |
Collapse
|
39
|
Wen X, Wu X, Jin R, Lu X. Privileged heterocycles for DNA-encoded library design and hit-to-lead optimization. Eur J Med Chem 2023; 248:115079. [PMID: 36669370 DOI: 10.1016/j.ejmech.2022.115079] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 12/22/2022] [Accepted: 12/29/2022] [Indexed: 01/15/2023]
Abstract
It is well known that heterocyclic compounds play a key role in improving drug activity, target selectivity, physicochemical properties as well as reducing toxicity. In this review, we summarized the representative heterocyclic structures involved in hit compounds which were obtained from DNA-encoded library from 2013 to 2021. In some examples, the state of the art in heterocycle-based DEL synthesis and hit-to-lead optimization are highlighted. We hope that more and more novel heterocycle-based DEL toolboxes and in-depth pharmaceutical research on these lead compounds can be developed to accelerate the discovery of new drugs.
Collapse
Affiliation(s)
- Xin Wen
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Zhang Jiang Hi-Tech Park, Pudong, Shanghai, 201203, China.
| | - Xinyuan Wu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Zhang Jiang Hi-Tech Park, Pudong, Shanghai, 201203, China; University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, China.
| | - Rui Jin
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Zhang Jiang Hi-Tech Park, Pudong, Shanghai, 201203, China.
| | - Xiaojie Lu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Zhang Jiang Hi-Tech Park, Pudong, Shanghai, 201203, China; University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, China.
| |
Collapse
|
40
|
Mahdavi-Amiri Y, Hu MSJ, Frias N, Movahedi M, Csakai A, Marcaurelle LA, Hili R. Photoredox-catalysed hydroaminoalkylation of on-DNA N-arylamines. Org Biomol Chem 2023; 21:1463-1467. [PMID: 36655521 DOI: 10.1039/d2ob01956f] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
An efficient approach to the photoredox-catalysed hydroaminoalkylation between on-DNA secondary N-substituted (hetero)arylamines and vinylarenes has been developed and explored. The methodology was examined with a broad scope of vinylarenes and secondary arylamines to establish a preferred building block profile for the process. Compatible substrates furnished the desired derivitised amine products in modest to excellent conversions and with minimal or no detectable by-products.
Collapse
Affiliation(s)
- Yasaman Mahdavi-Amiri
- Department of Chemistry and Centre for Research on Biomolecular Interactions, York University, Toronto, ON, M3J 1P3, Canada.
| | - Molly S J Hu
- Department of Chemistry and Centre for Research on Biomolecular Interactions, York University, Toronto, ON, M3J 1P3, Canada.
| | - Nicole Frias
- Department of Chemistry and Centre for Research on Biomolecular Interactions, York University, Toronto, ON, M3J 1P3, Canada.
| | - Matina Movahedi
- Department of Chemistry and Centre for Research on Biomolecular Interactions, York University, Toronto, ON, M3J 1P3, Canada.
| | - Adam Csakai
- Encoded Library Technologies/NCE Molecular Discovery, R&D Medicinal Science and Technology, GSK, 200 Cambridge Park Drive, Cambridge, MA 02140, USA
| | - Lisa A Marcaurelle
- Encoded Library Technologies/NCE Molecular Discovery, R&D Medicinal Science and Technology, GSK, 200 Cambridge Park Drive, Cambridge, MA 02140, USA
| | - Ryan Hili
- Department of Chemistry and Centre for Research on Biomolecular Interactions, York University, Toronto, ON, M3J 1P3, Canada.
| |
Collapse
|
41
|
Matsuo B, Granados A, Levitre G, Molander GA. Photochemical Methods Applied to DNA Encoded Library (DEL) Synthesis. Acc Chem Res 2023; 56:385-401. [PMID: 36656960 PMCID: PMC10415088 DOI: 10.1021/acs.accounts.2c00778] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
DNA-encoded library technology (DELT) is a new screening modality that allows efficient, cost-effective, and rapid identification of small molecules with potential biological activity. This emerging technique represents an enormous advancement that, in combination with other technologies such as high-throughput screening (HTS), fragment-based lead generation, and structure-based drug design, has the potential to transform how drug discovery is carried out. DELT is a hybrid technique in which chemically synthesized compounds are linked to unique genetic tags (or "barcodes") that contain readable information. In this way, millions to billions of building blocks (BBs) attached on-DNA via split-and-pool synthesis can be evaluated against a biological target in a single experiment. Polymerase chain reaction (PCR) amplification and next-generation sequencing (NGS) analysis of the unique sequence of oligonucleotides in the DNA tag are used to identify those ligands with high affinity for the target. This innovative fusion of genetic and chemical technologies was conceived in 1992 by Brenner and Lerner (Proc. Natl. Acad. Sci. 1992, 89, 5381-5383) and is under accelerated development with the implementation of new synthetic techniques and protocols that are compatible with DNA. In fact, reaction compatibility is a key parameter to increasing the chances of identification of a drug target ligand, and a central focus has been the development of new transformations and the transition to robust protocols for on-DNA synthesis. Because the sole use of the DNA tag is as an amplifiable identification barcode, its structural integrity during a new chemical process is mandatory. As such, the use of these sensitive, polyfunctional biological molecules as substrates typically requires aqueous solutions within defined pH and temperature ranges, which is considered a notable challenge in DEL synthesis.Using low-energy visible light as the driving force to promote chemical transformations represents an attractive alternative to classical synthetic methods, and it is an important and well-established synthetic tool for forging chemical bonds in a unique way via radical intermediates. Recent advances in the field of photocatalysis are extraordinary, and this powerful research arena is still under continuous development. Several applications taking advantage of the mild reaction conditions of photoinduced transformations have been directed toward DEL synthesis, allowing the expansion of chemical space available for the evaluation of new building blocks on-DNA. There are no doubts that visible-light-driven reactions have become one of the most powerful approaches for DELT, given the easy way they provide to construct new bonds and the challenges to achieve equal success via classical protocols.Key characteristics of photocatalytic synthesis include the short reaction times and efficiency, which translate into retention of DNA integrity. In this Account, we describe recent advances in the photoinduced diversification of building blocks prepared on-DNA, highlighting the amenability of the techniques employed for preserving the genetic structure of the molecules. We demonstrate with recent research from our group the applicability of photocatalysis to the field and include in the summary a table containing all the photoinduced methods reported to date for DELT, demonstrating their key aspects such as scope, applications, and DNA compatibilities. With this information, practitioners are provided with compelling reasons for developing/choosing photocatalytic methods for DELT applications.
Collapse
Affiliation(s)
- Bianca Matsuo
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania19104-6323, United States
| | - Albert Granados
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania19104-6323, United States
| | - Guillaume Levitre
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania19104-6323, United States
| | - Gary A Molander
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania19104-6323, United States
| |
Collapse
|
42
|
Montoya AL, Glavatskikh M, Halverson BJ, Yuen LH, Schüler H, Kireev D, Franzini RM. Combining pharmacophore models derived from DNA-encoded chemical libraries with structure-based exploration to predict Tankyrase 1 inhibitors. Eur J Med Chem 2023; 246:114980. [PMID: 36495630 PMCID: PMC9805525 DOI: 10.1016/j.ejmech.2022.114980] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/25/2022] [Accepted: 11/25/2022] [Indexed: 12/03/2022]
Abstract
DNA-encoded chemical libraries (DECLs) interrogate the interactions of a target of interest with vast numbers of molecules. DECLs hence provide abundant information about the chemical ligand space for therapeutic targets, and there is considerable interest in methods for exploiting DECL screening data to predict novel ligands. Here we introduce one such approach and demonstrate its feasibility using the cancer-related poly-(ADP-ribose)transferase tankyrase 1 (TNKS1) as a model target. First, DECL affinity selections resulted in structurally diverse TNKS1 inhibitors with high potency including compound 2 with an IC50 value of 0.8 nM. Additionally, TNKS1 hits from four DECLs were translated into pharmacophore models, which were exploited in combination with docking-based screening to identify TNKS1 ligand candidates in databases of commercially available compounds. This computational strategy afforded TNKS1 inhibitors that are outside the chemical space covered by the DECLs and yielded the drug-like lead compound 12 with an IC50 value of 22 nM. The study further provided insights in the reliability of screening data and the effect of library design on hit compounds. In particular, the study revealed that while in general DECL screening data are in good agreement with off-DNA ligand binding, unpredictable interactions of the DNA-attachment linker with the target protein contribute to the noise in the affinity selection data.
Collapse
Affiliation(s)
- Alba L Montoya
- Department of Medicinal Chemistry, Skaggs College of Pharmacy, University of Utah, 30 S 2000 E, Salt Lake City, UT, 84112, USA.
| | - Marta Glavatskikh
- Center for Integrative Chemical Biology and Drug Discovery, UNC Eshelman School of Pharmacy, 301 Pharmacy Lane, University of North Carolina, Chapel Hill, NC, 27599, USA.
| | - Brayden J Halverson
- Department of Medicinal Chemistry, Skaggs College of Pharmacy, University of Utah, 30 S 2000 E, Salt Lake City, UT, 84112, USA.
| | - Lik Hang Yuen
- Department of Medicinal Chemistry, Skaggs College of Pharmacy, University of Utah, 30 S 2000 E, Salt Lake City, UT, 84112, USA
| | - Herwig Schüler
- Center for Molecular Protein Science, Department of Chemistry, Lund University, 22100, Lund, Sweden.
| | - Dmitri Kireev
- Department of Chemistry, 36 Schlundt Hall, University of Missouri, Columbia, MO, 65211, USA.
| | - Raphael M Franzini
- Department of Medicinal Chemistry, Skaggs College of Pharmacy, University of Utah, 30 S 2000 E, Salt Lake City, UT, 84112, USA; Huntsman Cancer Institute, University of Utah, 2000 Circle of Hope Dr., Salt Lake City, UT, 84112, USA.
| |
Collapse
|
43
|
Chheda PR, Simmons N, Schuman DP, Shi Z. Photoredox-Mediated Deoxygenative Alkylation of DNA-Tagged Alkenes with Activated Alcohols. Org Lett 2022; 24:9514-9519. [PMID: 36541781 DOI: 10.1021/acs.orglett.2c03994] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
DNA-encoded library (DEL) screens have become a key technology to find small molecule binders to biological targets for drug discovery applications. The development of new DNA-compatible chemistries to expand the accessible DEL chemical space is imperative to enhance screen success across broad target classes and modalities. Additionally, reactions that use commonly available building blocks as well as those that enable the fsp3 of library members to be increased would have high impact for accessing diverse drug-like structures. Herein, we report a DNA-compatible Giese-type addition of nonstabilized C-centered radicals generated by the deoxygenation of preactivated alcohols into on-DNA olefins. Although alcohols have been historically underused as a building block class within DEL synthesis, their activation to a xanthate enables Csp3-Csp3 coupling to furnish sp3-rich products. This reaction is compatible with multiple classes of functional groups, does not damage the DNA tag, and is suitable for use in DEL productions.
Collapse
Affiliation(s)
- Pratik R Chheda
- Discovery Chemistry, Janssen Research & Development, LLC, San Diego, California 92121, United States
| | - Nicholas Simmons
- Discovery Chemistry, Janssen Research & Development, LLC, San Diego, California 92121, United States
| | - David P Schuman
- Discovery Chemistry, Janssen Research & Development, LLC, San Diego, California 92121, United States
| | - Zhicai Shi
- Discovery Chemistry, Janssen Research & Development, LLC, Spring House, Pennsylvania 19477, United States
| |
Collapse
|
44
|
Luo A, Zhou H, Zhou Q, Hua Q, Zhao X, Yu X, Yang K, Hu YJ. On-DNA Alkyne Iodination and Acetylenic Coupling as a Useful Tool for DEL Synthesis. Bioconjug Chem 2022; 33:2299-2306. [PMID: 36450158 DOI: 10.1021/acs.bioconjchem.2c00471] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
1-Iodoalkynes and 1,3-diynes are versatile chemical intermediates and pharmaceutically valuable ingredients. In this study, copper mediated on-DNA alkyne iodination and Cadiot-Chodkiewicz coupling are developed for the first time. This generates diverse, systematic, and unprecedented topographic structural features, which could be invaluable as molecular recognition agents for drug discovery in DEL screening.
Collapse
Affiliation(s)
- Ayun Luo
- Pharmaron (Ningbo) Technology Development Co., Ltd. No. 800 Bin-Hai 4th Road, Hangzhou Bay New Zone, Ningbo, 315336, China
| | - Hongxia Zhou
- Pharmaron (Ningbo) Technology Development Co., Ltd. No. 800 Bin-Hai 4th Road, Hangzhou Bay New Zone, Ningbo, 315336, China
| | - Qi Zhou
- Pharmaron (Ningbo) Technology Development Co., Ltd. No. 800 Bin-Hai 4th Road, Hangzhou Bay New Zone, Ningbo, 315336, China
| | - Qini Hua
- Pharmaron (Ningbo) Technology Development Co., Ltd. No. 800 Bin-Hai 4th Road, Hangzhou Bay New Zone, Ningbo, 315336, China
| | - Xue Zhao
- Pharmaron (Ningbo) Technology Development Co., Ltd. No. 800 Bin-Hai 4th Road, Hangzhou Bay New Zone, Ningbo, 315336, China
| | - Xiaobing Yu
- Pharmaron (Ningbo) Technology Development Co., Ltd. No. 800 Bin-Hai 4th Road, Hangzhou Bay New Zone, Ningbo, 315336, China
| | - Kexin Yang
- Pharmaron Beijing Co., Ltd., 6 Taihe Road, BDA, Beijing, 100176, China
| | - Yun Jin Hu
- Pharmaron (Ningbo) Technology Development Co., Ltd. No. 800 Bin-Hai 4th Road, Hangzhou Bay New Zone, Ningbo, 315336, China
| |
Collapse
|
45
|
Young RJ, Flitsch SL, Grigalunas M, Leeson PD, Quinn RJ, Turner NJ, Waldmann H. The Time and Place for Nature in Drug Discovery. JACS AU 2022; 2:2400-2416. [PMID: 36465532 PMCID: PMC9709949 DOI: 10.1021/jacsau.2c00415] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 10/06/2022] [Accepted: 10/06/2022] [Indexed: 05/31/2023]
Abstract
The case for a renewed focus on Nature in drug discovery is reviewed; not in terms of natural product screening, but how and why biomimetic molecules, especially those produced by natural processes, should deliver in the age of artificial intelligence and screening of vast collections both in vitro and in silico. The declining natural product-likeness of licensed drugs and the consequent physicochemical implications of this trend in the context of current practices are noted. To arrest these trends, the logic of seeking new bioactive agents with enhanced natural mimicry is considered; notably that molecules constructed by proteins (enzymes) are more likely to interact with other proteins (e.g., targets and transporters), a notion validated by natural products. Nature's finite number of building blocks and their interactions necessarily reduce potential numbers of structures, yet these enable expansion of chemical space with their inherent diversity of physical characteristics, pertinent to property-based design. The feasible variations on natural motifs are considered and expanded to encompass pseudo-natural products, leading to the further logical step of harnessing bioprocessing routes to access them. Together, these offer opportunities for enhancing natural mimicry, thereby bringing innovation to drug synthesis exploiting the characteristics of natural recognition processes. The potential for computational guidance to help identifying binding commonalities in the route map is a logical opportunity to enable the design of tailored molecules, with a focus on "organic/biological" rather than purely "synthetic" structures. The design and synthesis of prototype structures should pay dividends in the disposition and efficacy of the molecules, while inherently enabling greener and more sustainable manufacturing techniques.
Collapse
Affiliation(s)
| | - Sabine L. Flitsch
- Department
of Chemistry, University of Manchester,
Manchester Institute of Biotechnology, 131 Princess Street, Manchester M1 7DN, United Kingdom
| | - Michael Grigalunas
- Department
of Chemical Biology, Max-Planck-Institute
of Molecular Physiology, Otto-Hahn Strasse 11, 44227 Dortmund, Germany
| | - Paul D. Leeson
- Paul
Leeson Consulting Limited, The Malt House, Main Street, Congerstone, Nuneaton, Warwickshire CV13 6LZ, U.K.
| | - Ronald J. Quinn
- Griffith
Institute for Drug Discovery, Griffith University, Nathan, Queensland 4111, Australia
| | - Nicholas J. Turner
- Department
of Chemistry, University of Manchester,
Manchester Institute of Biotechnology, 131 Princess Street, Manchester M1 7DN, United Kingdom
| | - Herbert Waldmann
- Department
of Chemical Biology, Max-Planck-Institute
of Molecular Physiology, Otto-Hahn Strasse 11, 44227 Dortmund, Germany
- Faculty of
Chemistry and Chemical Biology, Technical
University of Dortmund, Otto-Hahn-Strasse 6, 44227 Dortmund, Germany
| |
Collapse
|
46
|
Janin YL. On drug discovery against infectious diseases and academic medicinal chemistry contributions. Beilstein J Org Chem 2022; 18:1355-1378. [PMID: 36247982 PMCID: PMC9531561 DOI: 10.3762/bjoc.18.141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Accepted: 09/21/2022] [Indexed: 11/23/2022] Open
Abstract
This perspective is an attempt to document the problems that medicinal chemists are facing in drug discovery. It is also trying to identify relevant/possible, research areas in which academics can have an impact and should thus be the subject of grant calls. Accordingly, it describes how hit discovery happens, how compounds to be screened are selected from available chemicals and the possible reasons for the recurrent paucity of useful/exploitable results reported. This is followed by the successful hit to lead stories leading to recent and original antibacterials which are, or about to be, used in human medicine. Then, illustrated considerations and suggestions are made on the possible inputs of academic medicinal chemists. This starts with the observation that discovering a "good" hit in the course of a screening campaign still rely on a lot of luck - which is within the reach of academics -, that the hit to lead process requires a lot of chemistry and that if public-private partnerships can be important throughout these stages, they are absolute requirements for clinical trials. Concerning suggestions to improve the current hit success rate, one academic input in organic chemistry would be to identify new and pertinent chemical space, design synthetic accesses to reach these and prepare the corresponding chemical libraries. Concerning hit to lead programs on a given target, if no new hits are available, previously reported leads along with new structural data can be pertinent starting points to design, prepare and assay original analogues. In conclusion, this text is an actual plea illustrating that, in many countries, academic research in medicinal chemistry should be more funded, especially in the therapeutic area neglected by the industry. At the least, such funds would provide the intensive to secure series of hopefully relevant chemical entities which appears to often lack when considering the results of academic as well as industrial screening campaigns.
Collapse
Affiliation(s)
- Yves L Janin
- Structure et Instabilité des Génomes (StrInG), Muséum National d'Histoire Naturelle, INSERM, CNRS, Alliance Sorbonne Université, 75005 Paris, France
| |
Collapse
|
47
|
Chines S, Ehrt C, Potowski M, Biesenkamp F, Grützbach L, Brunner S, van den Broek F, Bali S, Ickstadt K, Brunschweiger A. Navigating chemical reaction space - application to DNA-encoded chemistry. Chem Sci 2022; 13:11221-11231. [PMID: 36320474 PMCID: PMC9517168 DOI: 10.1039/d2sc02474h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 08/31/2022] [Indexed: 12/02/2022] Open
Abstract
Databases contain millions of reactions for compound synthesis, rendering selection of reactions for forward synthetic design of small molecule screening libraries, such as DNA-encoded libraries (DELs), a big data challenge. To support reaction space navigation, we developed the computational workflow Reaction Navigator. Reaction files from a large chemistry database were processed using the open-source KNIME Analytics Platform. Initial processing steps included a customizable filtering cascade that removed reactions with a high probability to be incompatible with DEL, as they would e.g. damage the genetic barcode, to arrive at a comprehensive list of transformations for DEL design with applicability potential. These reactions were displayed and clustered by user-defined molecular reaction descriptors which are independent of reaction core substitution patterns. Thanks to clustering, these can be searched manually to identify reactions for DEL synthesis according to desired reaction criteria, such as ring formation or sp3 content. The workflow was initially applied for mapping chemical reaction space for aromatic aldehydes as an exemplary functional group often used in DEL synthesis. Exemplary reactions have been successfully translated to DNA-tagged substrates and can be applied to library synthesis. The versatility of the Reaction Navigator was then shown by mapping reaction space for different reaction conditions, for amines as a second set of starting materials, and for data from a second database.
Collapse
Affiliation(s)
- Silvia Chines
- TU Dortmund University, Department of Chemistry and Chemical Biology Otto-Hahn-Str. 6 44227 Dortmund Germany
| | | | - Marco Potowski
- TU Dortmund University, Department of Chemistry and Chemical Biology Otto-Hahn-Str. 6 44227 Dortmund Germany
| | - Felix Biesenkamp
- TU Dortmund University, Department of Chemistry and Chemical Biology Otto-Hahn-Str. 6 44227 Dortmund Germany
| | - Lars Grützbach
- TU Dortmund University, Department of Chemistry and Chemical Biology Otto-Hahn-Str. 6 44227 Dortmund Germany
| | - Susanne Brunner
- TU Dortmund University, Department of Statistics Vogelpothsweg 87 44227 Dortmund Germany
| | | | - Shilpa Bali
- Elsevier B.V. Radarweg 29 1043 NX Amsterdam The Netherlands
| | - Katja Ickstadt
- TU Dortmund University, Department of Statistics Vogelpothsweg 87 44227 Dortmund Germany
| | - Andreas Brunschweiger
- TU Dortmund University, Department of Chemistry and Chemical Biology Otto-Hahn-Str. 6 44227 Dortmund Germany
| |
Collapse
|
48
|
Yen-Pon E, Li L, Levitre G, Majhi J, McClain EJ, Voight EA, Crane EA, Molander GA. On-DNA Hydroalkylation to Introduce Diverse Bicyclo[1.1.1]pentanes and Abundant Alkyls via Halogen Atom Transfer. J Am Chem Soc 2022; 144:12184-12191. [PMID: 35759692 PMCID: PMC10412002 DOI: 10.1021/jacs.2c03025] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
DNA-encoded libraries have proven their tremendous value in the identification of new lead compounds for drug discovery. To access libraries in new chemical space, many methods have emerged to transpose traditional mol-scale reactivity to nmol-scale, on-DNA chemistry. However, procedures to access libraries with a greater fraction of C(sp3) content are still limited, and the need to "escape from flatland" more readily on-DNA remains. Herein, we report a Giese addition to install highly functionalized bicyclo[1.1.1]pentanes (BCPs) using tricyclo[1.1.1.01,3]pentane (TCP) as a radical linchpin, as well as other diverse alkyl groups, on-DNA from the corresponding organohalides as non-stabilized radical precursors. Telescoped procedures allow extension of the substrate pool by at least an order of magnitude to ubiquitous alcohols and carboxylic acids, allowing us to "upcycle" these abundant feedstocks to afford non-traditional libraries with different physicochemical properties for the small-molecule products (i.e., non-peptide libraries with acids). This approach is amenable to library production, as a DNA damage assessment revealed good PCR amplifiability and only 6% mutated sequences for a full-length DNA tag.
Collapse
Affiliation(s)
- Expédite Yen-Pon
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104-6323, United States
| | - Longbo Li
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104-6323, United States
| | - Guillaume Levitre
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104-6323, United States
| | - Jadab Majhi
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104-6323, United States
| | - Edward J. McClain
- Drug Discovery Science & Technology, Discovery Research & Development, AbbVie, Inc., 1 N. Waukegan Road, North Chicago, Illinois 60064-1802, United States
| | - Eric A. Voight
- Drug Discovery Science & Technology, Discovery Research & Development, AbbVie, Inc., 1 N. Waukegan Road, North Chicago, Illinois 60064-1802, United States
| | - Erika A. Crane
- Drug Discovery Science & Technology, Discovery Research & Development, AbbVie, Inc., 1 N. Waukegan Road, North Chicago, Illinois 60064-1802, United States
| | - Gary A. Molander
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104-6323, United States
| |
Collapse
|
49
|
Chheda PR, Simmons N, Schuman DP, Shi Z. Palladium-Mediated Carbonylative Suzuki Coupling for DNA-Encoded Library Synthesis. Org Lett 2022; 24:5214-5219. [PMID: 35830624 DOI: 10.1021/acs.orglett.2c02113] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Developing new DNA-compatible reactions is key to expanding the accessible chemical space of DNA-encoded library (DEL) technology. Here we disclose the first report of a DNA-compatible carbonylative Suzuki coupling of DNA-conjugated (hetero)aryl iodides with (hetero)aryl boronic acids to access di(hetero)aryl ketones, a valuable structural motif present within several approved or clinically advanced small molecules. The reported DNA-compatible, Pd(OAc)2-mediated system is mild, uses a robust protocol, has a wide substrate scope for both coupling partners, is suitable for large-scale DEL productions, and provides a source of previously unexplored chemical matter for DEL screens.
Collapse
Affiliation(s)
- Pratik R Chheda
- Discovery Chemistry, Janssen Research & Development, LLC, San Diego, California 92121, United States
| | - Nicholas Simmons
- Discovery Chemistry, Janssen Research & Development, LLC, San Diego, California 92121, United States
| | - David P Schuman
- Discovery Chemistry, Janssen Research & Development, LLC, San Diego, California 92121, United States
| | - Zhicai Shi
- Discovery Chemistry, Janssen Research & Development, LLC, Spring House, Pennsylvania 19477, United States
| |
Collapse
|
50
|
Eom S, Kwon T, Lee DY, Park CH, Kim HJ. Copper-Mediated Three-Component Reaction for the Synthesis of N-Acylsulfonamide on DNA. Org Lett 2022; 24:4881-4885. [PMID: 35775977 DOI: 10.1021/acs.orglett.2c01675] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The DNA-encoded library (DEL) technology is a new method for discovering hit compounds for target proteins in the pharmaceutical industry. The N-acylsulfonamide functional group has been reported to exhibit various pharmacological activities, and based on this, the demand for a method that allows its introduction into the DEL platform has increased. In this report, a procedure for synthesizing N-acylsulfonamide functional groups applicable to DEL construction was developed in the presence of a copper reagent and water as a nucleophile from simple alkynes or sulfonyl azides, which are widely commercially available. Furthermore, we prove that a new alternative procedure can be used to construct a DNA-encoded library.
Collapse
Affiliation(s)
- Solji Eom
- Graduate School of New Drug Discovery and Development, Chungnam National University, Daejeon 34134, Korea.,Data Convergence Drug Research Center, Therapeutics and Biotechnology Division, Korea Research Institute of Chemical Technology (KRICT), Daejeon 34114, Korea
| | - Taeyeon Kwon
- College of Pharmacy, Chungnam National University, Daejeon 305-764, Korea.,Data Convergence Drug Research Center, Therapeutics and Biotechnology Division, Korea Research Institute of Chemical Technology (KRICT), Daejeon 34114, Korea
| | - Da Yeon Lee
- College of Pharmacy, Chungnam National University, Daejeon 305-764, Korea.,Data Convergence Drug Research Center, Therapeutics and Biotechnology Division, Korea Research Institute of Chemical Technology (KRICT), Daejeon 34114, Korea
| | - Chi Hoon Park
- Data Convergence Drug Research Center, Therapeutics and Biotechnology Division, Korea Research Institute of Chemical Technology (KRICT), Daejeon 34114, Korea
| | - Hyun Jin Kim
- Graduate School of New Drug Discovery and Development, Chungnam National University, Daejeon 34134, Korea.,Data Convergence Drug Research Center, Therapeutics and Biotechnology Division, Korea Research Institute of Chemical Technology (KRICT), Daejeon 34114, Korea
| |
Collapse
|