1
|
Vagenas G, Palaiothodorou D. Impact loading exercise induced osteogenesis from childhood to early adulthood in tennis players aged 8-30 years. Eur J Appl Physiol 2025; 125:909-936. [PMID: 39827423 DOI: 10.1007/s00421-024-05681-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 11/24/2024] [Indexed: 01/22/2025]
Abstract
Osteogenesis with impact-loading exercise is often assessed by the extra bone growth induced in the loaded arm of tennis players. We used PRISMA to explore % bone mineral content (BMC) and area (BA) asymmetry in players 8-30 years according to weekly training hours, age, sex, maturity, and bone segment. Proper statistics for 70 groups were extracted by two reviewers from 18 eligible studies of low risk of bias (< 35, STROBE) and good quality (> 70%). The quality of the review was high (AMSTAR, 81%). Using "random effects" we tested moderation-specific meta-comparisons and meta-regressions. The loaded bones % hypertrophy was higher in BMC (19%) than BA (10%), and, with BMC and BA merged, in boys (17%) than girls (13%), in humerus (19%) than radius-ulna (14%), and in pubertal (19%) players. Weekly training hours were more important (43%) than sex (17%), puberty (14%) and bone (15%) in BMC, and puberty (48%) was more important than weekly training hours (19%), sex (12%), and radius-ulna (5%) in BA. The loaded bones % hypertrophy correlated with weekly training hours highly (> 0.60) in all maturity groups for BMC and BA, and moderately (0.41) in early adults for BA; it also correlated with age (≥ 0.60) in children and peripubertal players, but not (0.037) with starting age. Impact loading exercise favors mineralization twice than bone expansion, while puberty favors bone expansion about three times more than mineralization. The bone gains are higher for boys than girls, and for peripubertal than older players. The bone growth implications are discussed considering limitations and future research.
Collapse
Affiliation(s)
- George Vagenas
- School of Physical Education and Sport Science, National and Kapodistrian University of Athens, Athens, Greece.
| | - Dimitria Palaiothodorou
- School of Physical Education and Sport Science, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
2
|
Brudecki J, Rydzik Ł, Wąsacz W, Ruzbarsky P, Czarny W, Warowna M, Ambroży T. Somatic Structure and Ultrasound Parameters of the Calcaneus Bone in Combat Sports Athletes in Relation to Vitamin D 3 Levels. J Clin Med 2024; 13:4960. [PMID: 39201101 PMCID: PMC11355900 DOI: 10.3390/jcm13164960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 08/19/2024] [Accepted: 08/21/2024] [Indexed: 09/02/2024] Open
Abstract
Background/Objectives: Physical activity is widely recognized for its beneficial effects on bone density during adolescence, which could lead to enhanced bone density in later life, thus acting as a health-promoting activity with long-lasting implications. However, not all studies are conclusive regarding the type, intensity, duration, and frequency of the most effective physical activities. This study focuses on combat sports athletes and examines the relationship between their somatic build and heel bone parameters using ultrasound (USG) and their vitamin D3 levels. Methods: The study included 40 male athletes specializing in various combat sports. The measurements of body height, body mass, skinfold thickness, and bone widths at multiple sites were performed to estimate the somatic build. The USG parameters of the heel bone and the blood levels of vitamin D3 were also recorded. Statistical significance was determined using one-way ANOVA, with differences among sports disciplines also examined. Results: The study found significant differences in the body composition and USG bone parameters among athletes from different combat sports (p ≤ 0.05). The calcaneus stiffness index (SI) and speed of sound (SOS) were significantly higher in athletes with normal vitamin D3 levels compared to those with below-normal levels (p = 0.0015 and p = 0.001, respectively). These findings suggest that vitamin D3 may influence bone stiffness and density. Conclusions: The study underscores the importance of maintaining adequate vitamin D3 levels to support bone mineralization in athletes, particularly those training indoors with limited exposure to sunlight. It also highlights the potential of using USG as a non-invasive method to assess bone health, aiding in the optimization of training programs to prevent injuries and improve performance.
Collapse
Affiliation(s)
- Janusz Brudecki
- Department of Anthropology, Institute of Biomedical Sciences, University of Physical Education, 31-571 Kraków, Poland;
| | - Łukasz Rydzik
- Institute of Sports Sciences, Faculty of Physical Education and Sport, University of Physical Education, 31-571 Kraków, Poland; (W.W.); (T.A.)
| | - Wojciech Wąsacz
- Institute of Sports Sciences, Faculty of Physical Education and Sport, University of Physical Education, 31-571 Kraków, Poland; (W.W.); (T.A.)
| | - Pavel Ruzbarsky
- Department of Sports Kinanthropology, Faculty of Sports, Universtiy of Presov, 08001 Prešov, Slovakia;
| | - Wojciech Czarny
- Institute of Physical Culture Studies, College of Medical Sciences, University of Rzeszow, 35-310 Rzeszow, Poland;
| | - Marlena Warowna
- Faculty of Health Sciences, Department of Beauty Sciences, Vincent Pol University in Lublin, 20-816 Lublin, Poland;
| | - Tadeusz Ambroży
- Institute of Sports Sciences, Faculty of Physical Education and Sport, University of Physical Education, 31-571 Kraków, Poland; (W.W.); (T.A.)
| |
Collapse
|
3
|
Oteo-Gómez D, Castellar-Otín C, Moreno-Azze A, Pradas de la Fuente F. Bone Mineral Density in Field Hockey Players: A Systematic Review. Life (Basel) 2024; 14:455. [PMID: 38672726 PMCID: PMC11051433 DOI: 10.3390/life14040455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 03/21/2024] [Accepted: 03/25/2024] [Indexed: 04/28/2024] Open
Abstract
The aim of this study was to carry out a systematic review to compare and analyse the bone mineral density of field hockey players of both sexes and of different ages, with other sports and with a sedentary population. The search process was carried out using the PubMed, SPORTDiscus, Web of Science and Scopus databases. The search ended on 18 March 2024. We selected articles in which a comparison was made of bone mineral density of the whole body, lumbar spine, femoral neck, arms and legs, among field hockey players, and/or with other sports and/or with a sedentary population. The systematic review followed the guidelines described in the 2020 PRISMA statement. The initial search identified 220 articles. After applying the inclusion and exclusion criteria, the search was narrowed down to seven articles in total. It was observed that the field hockey group had better bone mineral density values than sedentary population and the low-impact sports population. Basketball players had better whole body and leg bone mineral density values than field hockey players. Causality could not be established due to the cross-sectional nature of the included studies. The better bone mineral density values in field hockey players compared to the sedentary population may be because people who participate in impact sports have a better bone mineral density. The differences in bone mineral density between field hockey and low-impact sports could be related to a lower impact during their practice in these disciplines.
Collapse
Affiliation(s)
- David Oteo-Gómez
- Faculty of Health and Sports Sciences, University of Zaragoza, 22001 Huesca, Spain; (D.O.-G.); (C.C.-O.); (F.P.d.l.F.)
| | - Carlos Castellar-Otín
- Faculty of Health and Sports Sciences, University of Zaragoza, 22001 Huesca, Spain; (D.O.-G.); (C.C.-O.); (F.P.d.l.F.)
- ENFYRED Research Group, Faculty of Health and Sports Sciences, University of Zaragoza, 22001 Huesca, Spain
| | - Alejandro Moreno-Azze
- Faculty of Health and Sports Sciences, University of Zaragoza, 22001 Huesca, Spain; (D.O.-G.); (C.C.-O.); (F.P.d.l.F.)
- ENFYRED Research Group, Faculty of Health and Sports Sciences, University of Zaragoza, 22001 Huesca, Spain
| | - Francisco Pradas de la Fuente
- Faculty of Health and Sports Sciences, University of Zaragoza, 22001 Huesca, Spain; (D.O.-G.); (C.C.-O.); (F.P.d.l.F.)
- ENFYRED Research Group, Faculty of Health and Sports Sciences, University of Zaragoza, 22001 Huesca, Spain
| |
Collapse
|
4
|
Brzezinski ET, Hubbe M, Hunter RL, Agnew AM. Sex differences in workload in medieval Poland: Patterns of asymmetry and biomechanical adaptation in the upper limb at Giecz. AMERICAN JOURNAL OF BIOLOGICAL ANTHROPOLOGY 2024; 183:e24886. [PMID: 38130087 DOI: 10.1002/ajpa.24886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 09/29/2023] [Accepted: 11/28/2023] [Indexed: 12/23/2023]
Abstract
OBJECTIVES This study characterizes sexual dimorphism in skeletal markers of upper limb mechanical loading due to lateralization as evidence of division of labor in medieval Giecz, Poland. METHODS Twenty-six dimensions for paired humeri, clavicles, and radii representing adult males (n = 89) and females (n = 53) were collected from a skeletal sample from the cemetery site Gz4. Percent directional asymmetry (DA) and absolute asymmetry (AA) for each dimension were compared among bones, osteometric subcategories, and sex. Additionally, side bias and sex differences were assessed in degenerative joint disease (DJD) and entheseal changes (ECs). RESULTS Nearly all measurements revealed significant asymmetry favoring the right side. Asymmetry was most pronounced in midshaft dimensions with few sex differences. There were more correlations among dimensions within elements than between elements, mainly in the midshaft. No laterality in DJD frequencies was noted for either sex, but females demonstrated significantly lower odds of having DJD than males in most joints. Most ECs demonstrated a right-bias and association with DA with no sex-specific patterns except the biceps brachii insertion, where females were ~5 times more likely to be scored "right" than males. DISCUSSION The general lack of sex differences in asymmetry and ECs suggests similarly demanding workloads for females and males, with the exception of sex-specific functional loading differences in the forearm. Further, DJD data suggest males engaged in more intensive activities involving the upper limb. These results enhance understanding of workload in this important historical period and provide a comparison for asymmetry in past populations.
Collapse
Affiliation(s)
- Emma T Brzezinski
- Department of Anthropology, The Ohio State University, Columbus, Ohio, USA
- Skeletal Biology Research Lab, The Ohio State University, Columbus, Ohio, USA
| | - Mark Hubbe
- Department of Anthropology, The Ohio State University, Columbus, Ohio, USA
| | - Randee L Hunter
- Department of Anthropology, The Ohio State University, Columbus, Ohio, USA
- Skeletal Biology Research Lab, The Ohio State University, Columbus, Ohio, USA
| | - Amanda M Agnew
- Department of Anthropology, The Ohio State University, Columbus, Ohio, USA
- Skeletal Biology Research Lab, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
5
|
Bordoni B, Escher AR, Castellini F, Vale J, Tobbi F, Pianese L, Musorrofiti M, Mattia E. Fascial Nomenclature: Update 2024. Cureus 2024; 16:e53995. [PMID: 38343702 PMCID: PMC10858998 DOI: 10.7759/cureus.53995] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/11/2024] [Indexed: 04/24/2025] Open
Abstract
The fascial system is the focus of multiple scientific disciplines, and its nomenclature is debated. What tissue should fall under the definition of fascia? Considering university anatomy books where what is considered connective tissue is described as a fact, and through the science of embryology, which allows us to identify the origin of different body tissues, the article reviews and updates the fascial nomenclature. The text is not a point of arrival but rather a basis from which to start again, with the aim of understanding the function of the fascial continuum in the living. The history of fascial nomenclature in historical and modern contexts is reviewed, including the scientific perspective of the Foundation of Osteopathic Research and Clinical Endorsement (FORCE) organization. The latter has no profit-making purposes and does not hold any copyright.
Collapse
Affiliation(s)
- Bruno Bordoni
- Physical Medicine and Rehabilitation, Foundation Don Carlo Gnocchi, Milan, ITA
| | - Allan R Escher
- Anesthesiology/Pain Medicine, Houston Lee Moffitt Cancer Center and Research Institute, Tampa, USA
| | | | - Joanna Vale
- Osteopathy, Body Lab Clinica di Osteopatia, Milano, ITA
| | - Filippo Tobbi
- Osteopathy, Post-Graduate Osteopathic Institute, Lesignano de' Bagni, ITA
| | - Luigi Pianese
- Physical Medicine and Rehabilitation, 3C+A Health and Rehabilitation, Roma, ITA
| | | | - Enricomaria Mattia
- Physical Medicine and Rehabilitation, Centro di Rilievi Nazionale di Diagnosi e Fisioterapia, Caserta, ITA
| |
Collapse
|
6
|
Wang S, Feng C, Chen X, Shan M, Niu W. A biomechanical evaluation of firefighters' musculoskeletal loads when carrying self-contained breathing apparatus in walking and running. JOURNAL OF SAFETY RESEARCH 2023; 87:1-14. [PMID: 38081685 DOI: 10.1016/j.jsr.2023.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 04/24/2023] [Accepted: 08/03/2023] [Indexed: 12/18/2023]
Abstract
INTRODUCTION Musculoskeletal loading data are needed to design ergonomic intervention for firefighters. This study aimed to quantify the firefighters' musculoskeletal loads during self-contained breathing apparatus (SCBA) carriage and evaluate the effectiveness of shoulder strap length variation for the prevention of SCBA-related injuries. METHOD Twelve firefighters (height: 174.6 ± 2.4 cm, mass: 67 ± 3.5 kg, BMI = 22 ± 1 kg/m2) participated the walking and running protocols with no SCBA equipped and three varying-strapped SCBAs conditions. Joint range of motion and surface electromyography (sEMG) were synchronously measured. Subsequently, joint kinematics was inputted for subject-specific musculoskeletal modeling to estimate muscle forces and joint reaction forces, while the sEMG was used to validate the model. Repeated measures analysis of variance was used for the main effects (p < 0.05). Independent samples t-test was performed to determine differences between walking and running. RESULTS Walking with SCBA increased the rectus femoris force and hip reaction force by 34.92% [F = 53.629; p < 0.001; η2 = 0.317] and 34.71% [F = 53.653; p < 0.001; η2 = 0.517], the growth rate was 54.2% [F = 76.487; p < 0.001; η2 = 0.418] and 51.19% [F = 69.201; p < 0.001; η2 = 0.652] during running, respectively. Running with SCBA significantly increased the knee reaction force by 63.04% [F = 83.960; p < 0.001; η2 = 0.797], while only 18.49% increase during walking. Adjusting SCBA shoulder strap length significantly altered the rectus abdominis force and L4/L5 reaction force during walking and running. CONCLUSIONS Results revealed that rectus femoris activity, hip and knee exertion was sensitive to SCBA carriage. The variation of shoulder strap length has potential to influence the risk of low back pain (LBP). PRACTICAL APPLICATIONS The findings suggest that fire services promote targeting physical training at firefighters' hip and knee regions. Test firefighters in this study were not advisable to adjust their shoulder strap at loose-fitting condition. The compatibility design of the trunk morphology and SCBA back-mounted frame was suggested for the management of LBP.
Collapse
Affiliation(s)
- Shitan Wang
- Shanghai Yangzhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of Medicine, Tongji University, Shanghai 201619, China; Laboratory of Biomechanics and Rehabilitation Engineering, School of Medicine, Tongji University, Shanghai 200092, China
| | - Chenglong Feng
- Shanghai Yangzhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of Medicine, Tongji University, Shanghai 201619, China; Laboratory of Biomechanics and Rehabilitation Engineering, School of Medicine, Tongji University, Shanghai 200092, China
| | - Xinpeng Chen
- Shanghai Yangzhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of Medicine, Tongji University, Shanghai 201619, China
| | - Mianjia Shan
- Shanghai Yangzhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of Medicine, Tongji University, Shanghai 201619, China; Laboratory of Biomechanics and Rehabilitation Engineering, School of Medicine, Tongji University, Shanghai 200092, China
| | - Wenxin Niu
- Shanghai Yangzhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of Medicine, Tongji University, Shanghai 201619, China; Laboratory of Biomechanics and Rehabilitation Engineering, School of Medicine, Tongji University, Shanghai 200092, China.
| |
Collapse
|
7
|
Le Solliec T, Blache Y, Rogowski I. Effects of an 8-week multimodal program on thoracic posture, glenohumeral range of motion and serve performance in competitive young tennis players. Front Sports Act Living 2023; 5:1128075. [PMID: 36935884 PMCID: PMC10020231 DOI: 10.3389/fspor.2023.1128075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 02/13/2023] [Indexed: 03/06/2023] Open
Abstract
Introduction Intensive tennis practice is known to generate sport-specific adaptations at the shoulder region and influence the sagittal spinal curvature. However, increased thoracic kyphosis decreases the shoulder functional capacity, which could limit tennis performance. Therefore, the aim of this study was to investigate the effects of an 8-week multimodal program on thoracic posture, glenohumeral range of motion, and serve performance in competitive young tennis players. Methods Eighteen male and four female players (age: 16.0 ± 2.4 years, height: 170.7 ± 11.0 cm; mass: 62.1 ± 11.5 kg; International Tennis Number: 3-4) performed their regular training during 8 weeks, which was used as a reference period, and implemented a multimodal program including stretching, strengthening, and myofascial release exercises, four times per week during 8 additional weeks, which corresponded to the intervention period. The thoracic curvature angle and mobility, the biacromial and interscapular distances, the glenohumeral range of motion and the tennis serve performance were assessed three times, i.e., before and after the regular training and after the 8-week multimodal program. Results The results showed that the 8-week regular training had no significant effects on thoracic curvature angle [effect size (ES) = 0.02-0.36, p = 0.06-0.46] and mobility (ES = 0.05-0.26, p = 0.13-0.42), biacromial (ES = 0.05, p = 0.18) and interscapular distances (ES = 0.03, p = 0.45), ranges of motion in glenohumeral internal (ES = 0.04, p = 0.43) and external rotation (ES = 0.43, p = 0.06), and tennis serve accuracy (ES = 0.33, p = 0.07) and velocity (ES = 0.09, p = 0.35). The 8-week multimodal program increased moderately the thoracic mobility (ES = 0.55, p = 0.01), moderately to strongly the serve accuracy and velocity (ES = 0.65, p = 0.003, for both), strongly decreased the interscapular distance (ES = 1.02, p < 0.001), and strongly increased the range of motion in glenohumeral internal (ES = 0.90, p < 0.001) and external rotation (ES = 1.49, p < 0.001). Discussion These findings indicated that an 8-week multimodal program, including spine and glenohumeral mobility and shoulder girdle strength exercises, performed four times per week during 8 weeks, is moderately relevant to rectify the sagittal thoracic curvature in competitive tennis players, while such a program may help regain the range of motion in glenohumeral rotation without tennis serve performance impairment.
Collapse
|
8
|
Effect of resistance exercise on bone health of old aged individuals: Review. Sci Sports 2022. [DOI: 10.1016/j.scispo.2022.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
9
|
Mechanical Disturbance of Osteoclasts Induces ATP Release That Leads to Protein Synthesis in Skeletal Muscle through an Akt-mTOR Signaling Pathway. Int J Mol Sci 2022; 23:ijms23169444. [PMID: 36012713 PMCID: PMC9408906 DOI: 10.3390/ijms23169444] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/10/2022] [Accepted: 08/17/2022] [Indexed: 11/17/2022] Open
Abstract
Muscle and bone are tightly integrated through mechanical and biochemical signals. Osteoclasts are cells mostly related to pathological bone loss; however, they also start physiological bone remodeling. Therefore, osteoclast signals released during bone remodeling could improve both bone and skeletal muscle mass. Extracellular ATP is an autocrine/paracrine signaling molecule released by bone and muscle cells. Then, in the present work, it was hypothesized that ATP is a paracrine mediator released by osteoclasts and leads to skeletal muscle protein synthesis. RAW264.7-derived osteoclasts were co-cultured in Transwell® chambers with flexor digitorum brevis (FDB) muscle isolated from adult BalbC mice. The osteoclasts at the upper chamber were mechanically stimulated by controlled culture medium perturbation, resulting in a two-fold increase in protein synthesis in FDB muscle at the lower chamber. Osteoclasts released ATP to the extracellular medium in response to mechanical stimulation, proportional to the magnitude of the stimulus and partly dependent on the P2X7 receptor. On the other hand, exogenous ATP promoted Akt phosphorylation (S473) in isolated FDB muscle in a time- and concentration-dependent manner. ATP also induced phosphorylation of proteins downstream Akt: mTOR (S2448), p70S6K (T389) and 4E-BP1 (T37/46). Exogenous ATP increased the protein synthesis rate in FDB muscle 2.2-fold; this effect was blocked by Suramin (general P2X/P2Y antagonist), LY294002 (phosphatidylinositol 3 kinase inhibitor) and Rapamycin (mTOR inhibitor). These blockers, as well as apyrase (ATP metabolizing enzyme), also abolished the induction of FDB protein synthesis evoked by mechanical stimulation of osteoclasts in the co-culture model. Therefore, the present findings suggest that mechanically stimulated osteoclasts release ATP, leading to protein synthesis in isolated FDB muscle, by activating the P2-PI3K-Akt-mTOR pathway. These results open a new area for research and clinical interest in bone-to-muscle crosstalk in adaptive processes related to muscle use/disuse or in musculoskeletal pathologies.
Collapse
|
10
|
Anthropometric fluctuating asymmetries in living humans through the eyes of an anthropologist. Emerg Top Life Sci 2022; 6:323-331. [PMID: 35916213 DOI: 10.1042/etls20210276] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 07/21/2022] [Accepted: 07/25/2022] [Indexed: 11/17/2022]
Abstract
There are many environmental and genetic factors that disrupt the stable structure of development in organisms. Although the strength of these vary, they leave certain signs in the body structure. Fluctuating asymmetry is a widely used population-level index of developmental instability, developmental noise, and robustness. Many bilateral traits are used in fluctuating asymmetry studies in humans. These traits include dermatoglyphics, limb lengths and widths, bilateral facial characters, and teeth. In this review, I evaluate the measurement methods of many bilateral anthropometric characters, taken from the bodies of living individuals with classical digital calipers.
Collapse
|
11
|
Analysis of the Contact Area for Three Types of Upper Limb Strikes. J Funct Morphol Kinesiol 2022; 7:jfmk7020050. [PMID: 35736021 PMCID: PMC9224799 DOI: 10.3390/jfmk7020050] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/13/2022] [Accepted: 06/13/2022] [Indexed: 11/17/2022] Open
Abstract
Performance in strike combat sports is mostly evaluated through the values of the net force, acceleration, or speed to improve efficient training procedures and/or to assess the injury. There are limited data on the upper limb striking area, which can be a useful variable for contact pressure assessment. Therefore, the aim of this study was to determine the contact area of the upper limb in three different strike technique positions. A total of 38 men and 38 women (n = 76, 27.3 ± 8.5 years of age, 73.9 ± 13.8 kg of body weight, 173.3 ± 8.4 cm of body height) performed a static simulation of punch with a fist, palm strike, and elbow strike, where three segments of the right upper limb were scanned. The analysis of 684 images showed a correlation (r = 0.634) between weight and punch technique position in men and significant differences in elbow strike (p < 0.001) and palm strike (p < 0.0001) between women and men. In both groups, the palm demonstrated the largest area and the elbow the smallest one. These data may be used to evaluate strike contact pressure in future studies in forensic biomechanics and assessment of injury in combat sports and self-defense.
Collapse
|
12
|
Gudziunas V, Domeika A, Puodžiukynas L, Gustiene R. Quantitative assessment of the level of instability of a single-plane balance platform. Technol Health Care 2021; 30:291-307. [PMID: 34806641 DOI: 10.3233/thc-219011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Balance training on unstable surfaces is widely used in medicine and sports. The main disadvantage of balance platforms is weakly definable assessment of the level of instability (IL) they create. OBJECTIVE To evaluate the mechanical characteristics of a suspended single-plane instability balance platform which determines quantitative instability characteristics. METHODS Three criteria influencing the IL were evaluated: 1. The displacement of the platform board by changing the position of the object on the board; 2. Amount of force required for board displacement; 3. The vibration damping of the platform. RESULTS 1. 1IL the displacement of the object on the board affected 0.66 cm. the displacement of the board relative to the platform frame; 2IL - 0.79 cm; 3IL - 0.91 cm.; 2. A force of 2.64 is required for a board displacement of 1IL compared to 2IL and 5.76 times that of 3IL. 3. Damping factor 1IL - 0.015, 2IL - 0.006, 3IL - 0.003. CONCLUSIONS 1. The longer the suspension, the change in the position of the object on the board affects the greater movement of the board relative to the platform. 2. Different IL can be compared with each other depending on how different the force required to cause the board to move. 3. The platform dampens vibrations weakly, but the damping between 1 and 3 IL differs about 5 times.
Collapse
Affiliation(s)
- Vaidotas Gudziunas
- Institute of Mechatronics, Kaunas University of Technology, Kaunas, Lithuania
| | - Aurelijus Domeika
- Institute of Mechatronics, Kaunas University of Technology, Kaunas, Lithuania
| | - Linas Puodžiukynas
- Department of Physics, Faculty of Mathematics And Natural Sciences, Kaunas University of Technology, Kaunas, Lithuania
| | - Renata Gustiene
- Institute of Mechatronics, Kaunas University of Technology, Kaunas, Lithuania
| |
Collapse
|
13
|
Tumkur Anil Kumar N, Oliver JL, Lloyd RS, Pedley JS, Radnor JM. The Influence of Growth, Maturation and Resistance Training on Muscle-Tendon and Neuromuscular Adaptations: A Narrative Review. Sports (Basel) 2021; 9:59. [PMID: 34066778 PMCID: PMC8150311 DOI: 10.3390/sports9050059] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 04/30/2021] [Accepted: 05/04/2021] [Indexed: 11/16/2022] Open
Abstract
The purpose of this article is to provide an overview of the growth, maturation and resistance training-related changes in muscle-tendon and neuromuscular mechanisms in youth, and the subsequent effect on performance. Sprinting, jumping, kicking, and throwing are common movements in sport that have been shown to develop naturally with age, with improvements in performance being attributed to growth and maturity-related changes in neuromuscular mechanisms. These changes include moderate to very large increases in muscle physiological cross-sectional area (CSA), muscle volume and thickness, tendon CSA and stiffness, fascicle length, muscle activation, pre-activation, stretch reflex control accompanied by large reductions in electro-mechanical delay and co-contraction. Furthermore, a limited number of training studies examining neuromuscular changes following four to 20 weeks of resistance training have reported trivial to moderate differences in tendon stiffness, muscle CSA, muscle thickness, and motor unit activation accompanied by reductions in electromechanical delay (EMD) in pre-pubertal children. However, the interaction of maturity- and training-related neuromuscular adaptions remains unclear. An understanding of how different neuromuscular mechanisms adapt in response to growth, maturation and training is important in order to optimise training responsiveness in youth populations. Additionally, the impact that these muscle-tendon and neuromuscular changes have on force producing capabilities underpinning performance is unclear.
Collapse
Affiliation(s)
- Nakul Tumkur Anil Kumar
- Youth Physical Development Centre, Cardiff School of Sport and Health Sciences, Cardiff Metropolitan University, Cardiff CF23 6XD, UK; (J.L.O.); (R.S.L.); (J.S.P.); (J.M.R.)
| | - Jon L. Oliver
- Youth Physical Development Centre, Cardiff School of Sport and Health Sciences, Cardiff Metropolitan University, Cardiff CF23 6XD, UK; (J.L.O.); (R.S.L.); (J.S.P.); (J.M.R.)
- Sport Performance Research Institute New Zealand, Auckland University of Technology, 1010 Auckland, New Zealand
| | - Rhodri S. Lloyd
- Youth Physical Development Centre, Cardiff School of Sport and Health Sciences, Cardiff Metropolitan University, Cardiff CF23 6XD, UK; (J.L.O.); (R.S.L.); (J.S.P.); (J.M.R.)
- Sport Performance Research Institute New Zealand, Auckland University of Technology, 1010 Auckland, New Zealand
- Centre for Sport Science and Human Performance, Waikato Institute of Technology, 3200 Hamilton, New Zealand
| | - Jason S. Pedley
- Youth Physical Development Centre, Cardiff School of Sport and Health Sciences, Cardiff Metropolitan University, Cardiff CF23 6XD, UK; (J.L.O.); (R.S.L.); (J.S.P.); (J.M.R.)
| | - John M. Radnor
- Youth Physical Development Centre, Cardiff School of Sport and Health Sciences, Cardiff Metropolitan University, Cardiff CF23 6XD, UK; (J.L.O.); (R.S.L.); (J.S.P.); (J.M.R.)
| |
Collapse
|
14
|
Shanazari Z, Hemati Farsani Z, Faramarzi M, Banitalebi E. MyomiR-OsteomiR crosstalk induced by different modes and intensities of exercise training and its role in controlling osteogenic differentiation in old male Wistar rats. Exp Gerontol 2021; 149:111305. [PMID: 33713736 DOI: 10.1016/j.exger.2021.111305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Revised: 02/20/2021] [Accepted: 03/04/2021] [Indexed: 11/26/2022]
Abstract
The crosstalk between skeletal muscles and other tissues such as bones is typically established via the secretion of myokines and myomiRs induced by exercise training (ET). The present study aimed at evaluating the relationship between changes made by different ET modes and intensities in myomiRs, osteomiRs, and other myogenic and osteogenic biomarkers in old male Wistar rats. To this end, a total number of 50 old (23 months of age) male Wistar rats were randomly assigned to four experimental groups, namely, moderate-intensity endurance training (MIET), high-intensity endurance training (HIET), moderate-intensity resistance training (MIRT), high-intensity resistance training (HIRT), and control (CON), each one comprised of 10 subjects. The study findings revealed positive correlations between myomiRs (i.e., miR-1) and myomiR-204a (r = 0.725; p = 0.042), myomiR-1, and runt-related transcription factor 2 (RUNX2) osteogenic marker (r = 0.869; p = 0.025) in the HIET group, myomiR-206 and peroxisome proliferator-activated receptor gamma (PPARγ) (r = 0.908; p = 0.012) in the MIRT group, myomiR-133a and osteomiR-133a (r = 0.971; p = 0.005) in the MIET group, myomiR-133a and osteomiR-204a in the MIRT group (r = 0.971; p = 0.004), and myomiR-133a and RUNX2 gene expression in the HIET group (r = 0.861; p = 0.027). It was concluded that myomiRs involved in myoblast-osteoblast differentiation might not alone regulate the myogenic and osteogenic targets in response to different modes and intensities of ET treatments.
Collapse
Affiliation(s)
- Zohreh Shanazari
- Department of Sport Sciences, Shahrekord University, Shahrekord, Iran
| | | | - Mohammad Faramarzi
- Department of Exercise Physiology, Faculty of Sport Sciences, University of Isfahan, Isfahan, Iran
| | | |
Collapse
|
15
|
Strength Asymmetries in Young Elite Sailors: Windsurfing, Optimist, Laser and 420 Classes. Symmetry (Basel) 2021. [DOI: 10.3390/sym13030427] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Strength asymmetries in the upper and lower limbs may affect the body movements of the joints or limbs. Although asymmetries in the upper limbs have been studied in sailors, those in lower limbs have not been evaluated in this sport population. The aims of this study were: (i) to analyze lower limb asymmetries in young elite sailors in order to quantify the magnitude of asymmetry between limbs for variables that were established as reliable in a healthy population, and (ii) to evaluate the presence of differences between classes and sexes in inter-limb asymmetries in elite youth sailors. Sixty-eight young Spanish elite sailors (9–19 years of age) participated voluntarily in our study. Single-leg vertical countermovement jump (VCJ), single-leg horizontal countermovement jump and hand dynamometry tests were used to evaluate the strength of the upper and lower limbs. More than 50% of the sailors presented asymmetries in the lower limbs. The boys’ group and Optimist class presented a greater percentage of strength asymmetry.
Collapse
|
16
|
Pentidis N, Mersmann F, Bohm S, Giannakou E, Aggelousis N, Arampatzis A. Effects of long-term athletic training on muscle morphology and tendon stiffness in preadolescence: association with jump performance. Eur J Appl Physiol 2020; 120:2715-2727. [PMID: 32930859 PMCID: PMC7674345 DOI: 10.1007/s00421-020-04490-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 09/03/2020] [Indexed: 11/24/2022]
Abstract
Purpose Evidence on training-induced muscle hypertrophy during preadolescence is limited and inconsistent. Possible associations of muscle strength and tendon stiffness with jumping performance are also not investigated. We investigated the thickness and pennation angle of the gastrocnemius medialis muscle (GM), as indicators for potential muscle hypertrophy in preadolescent athletes. Further, we examined the association of triceps surae muscle–tendon properties with jumping performance. Methods Eleven untrained children (9 years) and 21 similar-aged artistic gymnastic athletes participated in the study. Muscle thickness and pennation angle of the GM were measured at rest and muscle strength of the plantar flexors and Achilles tendon stiffness during maximum isometric contractions. Jumping height in squat (SJ) and countermovement jumps (CMJ) was examined using a force plate. We evaluated the influence of normalised muscle strength and tendon stiffness on jumping performance with a linear regression model. Results Muscle thickness and pennation angle did not differ significantly between athletes and non-athletes. In athletes, muscle strength was greater by 25% and jumping heights by 36% (SJ) and 43% (CMJ), but Achilles tendon stiffness did not differ between the two groups. The significant predictor for both jump heights was tendon stiffness in athletes and normalised muscle strength for the CMJ height in non-athletes. Conclusion Long-term artistic gymnastics training during preadolescence seems to be associated with increased muscle strength and jumping performance but not with training-induced muscle hypertrophy or altered tendon stiffness in the plantar flexors. Athletes benefit more from tendon stiffness and non-athletes more from muscle strength for increased jumping performance.
Collapse
Affiliation(s)
- Nikolaos Pentidis
- Department of Training and Movement Sciences, Humboldt-Universität zu Berlin, Berlin, Germany.,Berlin School of Movement Science, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Falk Mersmann
- Department of Training and Movement Sciences, Humboldt-Universität zu Berlin, Berlin, Germany.,Berlin School of Movement Science, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Sebastian Bohm
- Department of Training and Movement Sciences, Humboldt-Universität zu Berlin, Berlin, Germany.,Berlin School of Movement Science, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Erasmia Giannakou
- Department of Physical Education and Sports Science, Democritus University of Thrace, Komotini, Greece
| | - Nickos Aggelousis
- Department of Physical Education and Sports Science, Democritus University of Thrace, Komotini, Greece
| | - Adamantios Arampatzis
- Department of Training and Movement Sciences, Humboldt-Universität zu Berlin, Berlin, Germany. .,Berlin School of Movement Science, Humboldt-Universität zu Berlin, Berlin, Germany.
| |
Collapse
|
17
|
Mersmann F, Laube G, Bohm S, Arampatzis A. Muscle and Tendon Morphology in Early-Adolescent Athletes and Untrained Peers. Front Physiol 2020; 11:1029. [PMID: 32973557 PMCID: PMC7472460 DOI: 10.3389/fphys.2020.01029] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 07/28/2020] [Indexed: 11/13/2022] Open
Abstract
Adolescent athletes can feature significantly greater muscle strength and tendon stiffness compared to untrained peers. However, to date, it is widely unclear if radial muscle and tendon hypertrophy may contribute to loading-induced adaptation at this stage of maturation. The present study compares the morphology of the vastus lateralis (VL) and the patellar tendon between early-adolescent athletes and untrained peers. In 14 male elite athletes (A) and 10 untrained controls (UC; 12–14 years of age), the VL was reconstructed from full muscle segmentations of magnetic resonance imaging (MRI) sequences and ultrasound imaging was used to measure VL fascicle length and pennation angle. The physiological cross-sectional area (PCSA) of the VL was calculated by dividing muscle volume by fascicle length. The cross-sectional area (CSA) of the patellar tendon was measured over its length based on MRI segmentations as well. Considering body mass as covariate in the analysis, there were no significant differences between groups considering the VL anatomical cross-sectional area (ACSA) over its length or maximum ACSA (UC: 24.0 ± 8.3 cm2, A: 28.1 ± 5.3 cm2, p > 0.05), yet athletes had significantly greater VL volume (UC: 440 ± 147 cm3, A: 589 ± 121 cm3), PCSA (UC: 31 ± 9 cm2, A: 46 ± 9 cm2), pennation angle (UC: 8.2 ± 1.4°, A: 10.1 ± 1.3°), and average patellar tendon CSA (UC: 1.01 ± 0.18 cm2, A: 1.21 ± 0.18 cm2) compared to the untrained peers (p < 0.05). However, the ratio of average tendon CSA to VL PCSA was significantly lower in athletes (UC: 3.4 ± 0.1%, A: 2.7 ± 0.5%; p < 0.05). When inferring effects of athletic training based on the observed differences between groups, these results suggest that both muscle and tendon of the knee extensors respond to athletic training with radial growth. However, the effect seems to be stronger in the muscle compared to the tendon, with an increase of pennation angle contributing to the marked increase of muscle PCSA. A disproportionate response to athletic training might be associated with imbalances of muscle strength and tendon stiffness and could have implications for the disposition towards tendon overuse injury.
Collapse
Affiliation(s)
- Falk Mersmann
- Department of Training and Movement Sciences, Humboldt-Universität zu Berlin, Berlin, Germany.,Berlin School of Movement Science, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Gunnar Laube
- Department of Training and Movement Sciences, Humboldt-Universität zu Berlin, Berlin, Germany.,Berlin School of Movement Science, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Sebastian Bohm
- Department of Training and Movement Sciences, Humboldt-Universität zu Berlin, Berlin, Germany.,Berlin School of Movement Science, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Adamantios Arampatzis
- Department of Training and Movement Sciences, Humboldt-Universität zu Berlin, Berlin, Germany.,Berlin School of Movement Science, Humboldt-Universität zu Berlin, Berlin, Germany
| |
Collapse
|
18
|
Burdukiewicz A, Pietraszewska J, Andrzejewska J, Chromik K, Stachoń A. Asymmetry of Musculature and Hand Grip Strength in Bodybuilders and Martial Artists. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17134695. [PMID: 32629826 PMCID: PMC7370066 DOI: 10.3390/ijerph17134695] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 06/25/2020] [Accepted: 06/27/2020] [Indexed: 11/16/2022]
Abstract
The functional preference for the upper limb influences the occurrence of bilateral differences in other segments of the human body. The aim of the study is to assess the influence of the applied fighting technique and targeted physical effort on the occurrence of asymmetry in body musculature and isometric strength in bodybuilders and competitors of selected martial arts. Academic athletes practicing judo (J), jiu-jitsu (JJ), and bodybuilding (BB) were examined. The control group (C) consisted of students who do not practice any sports. The assessment of the body structure was conducted through segmental bioelectrical impedance analysis. Moreover, the study took into account the measurements of left- and right-hand grip strength. In judo, the uneven physical exertion of the right and left sides of the body further increases both directional and absolute asymmetry. Bilateral asymmetry of musculature in jiu-jitsu competitors and bodybuilders occurs to a lesser extent. The control group was characterized by cross-asymmetry. So as to avoid the risk of injury of sportsmen, it is important to consistently supervise and correct their body structure, which also includes the symmetrical participation of the active muscle mass in particular segments. The symmetrisation process should be individualized since each particular sportsman has their own side-to-side body morphology.
Collapse
|
19
|
Osteoarthritis – a problematic skeletal trait in past human populations. Osteoarthritic changes vs. entheseal changes in the late medieval and early modern population form Łekno. ANTHROPOLOGICAL REVIEW 2020. [DOI: 10.2478/anre-2020-0011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Abstract
According to medical knowledge, physical activity plays a role in osteoarthritic changes formation. The impact of occupation on osteoarthritic changes development in past human populations is not clear enough, causing problems with interpretation. The aim of the current study is to examine the relationship between osteoarthritis and entheseal changes. Skeletal material comes from the late medieval, early modern population from Łekno (Poland). The sample consists of 110 males and 56 females (adults only). Osteophytes, porosity and eburnation were analyzed in the shoulder, elbow, wrist, hip, knee, and ankle. Entheses on the humerus, radius, femur, and tibia were examined. Standard ranked categorical scoring systems were used for the osteoarthritic and entheseal changes examination.
Males with more developed osteophytes in the shoulder have more “muscular” upper limbs (higher values of muscle markers). Males with more developed osteophytes in the hip and knee are predicted to have more “muscular” lower limbs. Males with more developed osteoarthritis in the shoulder, wrist, hip, and knee exhibit more developed entheseal changes. Males with more developed entheses tend to yield more developed osteophytes (all joints taken together) and general osteoarthritis (all changes and all joints taken together). Females with more developed entheses have more developed osteoarthritis in the elbow, wrist, and hip. Individuals with more developed entheses have much more developed osteophytes. When all the three types of changes are taken together, more “muscular” females exhibit more developed osteoarthritis. The lack of uniformity of the results, wild discussions on the usage of entheses in activity patterns reconstruction and other limitations do not allow to draw unambiguous conclusions about the impact of physical activity on the osteoarthritis in past populations and further studies are needed.
Collapse
|
20
|
Picasso MBJ, Monti A, Mosto MC, Morgan CC. Ontogenetic shape changes in the pelvis of the Greater Rhea (Aves, Palaeognathae) and their relationships with cursorial locomotion: a geometric morphometric approach. J Anat 2020; 236:1137-1145. [PMID: 31972872 PMCID: PMC7219624 DOI: 10.1111/joa.13158] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 11/25/2019] [Accepted: 01/07/2020] [Indexed: 12/14/2022] Open
Abstract
Knowledge of the ontogenetic pattern of morphological features is essential to improve biological interpretations. The study of morphological features of the pelvic girdle and hind limb apparatus throughout growth is an excellent approach to understand how the skeletal morphology and muscles are interrelated during growth in a bird with a specialized mode of locomotion. The Greater Rhea (Rhea americana) is a large cursorial palaeognathous bird with long legs and powerful musculature. The postnatal shape changes of the pelvis of this bird were studied with geometric morphometric techniques, using landmarks and semilandmarks. In addition, regression analyses were used to explore the association between pelvic shape changes with muscle and body mass. The pelvises of 16 specimens of Rhea americana from 1 month old to adulthood were studied in dorsal and lateral views. Noticeable differences in pelvic shape were noted between ages, particularly in lateral view. In young birds, the pre- and post-acetabular ilium was subequal in length, whereas in adults the pre-acetabular ilium became shorter. In dorsal view, the main shape changes observed were the progressive thinning of both ilium portions and the elongation of the vertex craniolateralis ilii from chicks to adulthood. In this view, the only clear differentiation was between young and adult birds. Shape differences were influenced by body mass and pelvic muscles; the post-acetabular muscle mass explained the highest percentage of the variation. The specialized locomotion of Greater Rhea is reflected in their pelvic musculoskeletal system, in which the change to a longer post-acetabular ilium correlates with the growth of the powerful post-acetabular muscles. The actions of these muscles provide the necessary strength to support the body mass, minimize the body swinging movements and propel the body forward during locomotion. Bone morphology is affected by the forces produced by body mass and the muscle activity, demonstrating the presence of common growth mechanisms, which are primordial and gave rise to a functional and properly proportioned adult.
Collapse
Affiliation(s)
- Mariana B. J. Picasso
- División Paleontología VertebradosMuseo de La Plata‐Facultad de Ciencias Naturales y MuseoUNLPBuenos AiresArgentina
- CONICETBuenos AiresArgentina
| | - Ailin Monti
- División Paleontología VertebradosMuseo de La Plata‐Facultad de Ciencias Naturales y MuseoUNLPBuenos AiresArgentina
| | - Maria C. Mosto
- División Paleontología VertebradosMuseo de La Plata‐Facultad de Ciencias Naturales y MuseoUNLPBuenos AiresArgentina
- CONICETBuenos AiresArgentina
| | - Cecilia C. Morgan
- CONICETBuenos AiresArgentina
- Sección MastozoologíaDivisión Zoología VertebradosMuseo de La Plata‐Facultad de Ciencias Naturales y MuseoUNLPBuenos AiresArgentina
| |
Collapse
|
21
|
Sagayama H, Kondo E, Tanabe Y, Ohnishi T, Yamada Y, Takahashi H. Bone mineral density in male weight-classified athletes is higher than that in male endurance-athletes and non-athletes. Clin Nutr ESPEN 2020; 36:106-110. [DOI: 10.1016/j.clnesp.2020.01.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 12/27/2019] [Accepted: 01/13/2020] [Indexed: 01/26/2023]
|
22
|
Prevalence and association of single nucleotide polymorphisms with sarcopenia in older women depends on definition. Sci Rep 2020; 10:2913. [PMID: 32076017 PMCID: PMC7031370 DOI: 10.1038/s41598-020-59722-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 01/27/2020] [Indexed: 12/29/2022] Open
Abstract
The prevalence of sarcopenia depends on the definition used. There are, however, consistent sarcopenic characteristics, including a low muscle mass and muscle strength. Few studies have investigated the relationship between sarcopenia and genotype. A cross-sectional study was conducted with 307 community-dwelling ≥60-year-old women in South Cheshire, UK. Handgrip strength was assessed with a handgrip dynamometer and skeletal muscle mass was estimated using bioelectrical impedance. DNA was extracted from saliva (∼38%) or blood (∼62%) and 24 single-nucleotide polymorphisms (SNPs) were genotyped. Three established sarcopenia definitions - %Skeletal Muscle Mass (%SMM), Skeletal Muscle Mass Index (SMI) and European Working Group on Sarcopenia in Older People (EWGSOP) - were used to assess sarcopenia prevalence. Binary logistic regression with age as covariate was used to identify SNPs associated with sarcopenia. The prevalence of sarcopenia was: %SMM 14.7%, SMI 60.6% and EWGSOP 1.3%. Four SNPs were associated with the %SMM and SMI definitions of sarcopenia; FTO rs9939609, ESR1 rs4870044, NOS3 rs1799983 and TRHR rs7832552. The first three were associated with the %SMM definition, and TRHR rs7832552 with the SMI definition, but none were common to both sarcopenia definitions. The gene variants associated with sarcopenia may help proper counselling and interventions to prevent individuals from developing sarcopenia.
Collapse
|
23
|
Barbe MF, Popoff SN. Occupational Activities: Factors That Tip the Balance From Bone Accrual to Bone Loss. Exerc Sport Sci Rev 2020; 48:59-66. [PMID: 32004169 PMCID: PMC7077966 DOI: 10.1249/jes.0000000000000217] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Bone adaptation to persistent overloading can be counteracted by superimposed inflammatory and loading-induced damage that can tip the balance from bone accrual to loss. Supplemental digital content is available in the text. It is commonly assumed that beneficial adaptations in bone occur with vigorous exercise, yet any adaptive re/modeling in bone undergoing persistent overloading can be counteracted by superimposed inflammatory, compressive, and tensile loading–induced damage responses above thresholds of tissue fatigue failure and repair. This leads to a tenuous balance between achieving bone accrual and loss.
Collapse
Affiliation(s)
- Mary F Barbe
- Department of Anatomy and Cell Biology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA
| | | |
Collapse
|
24
|
Myszka A, Krenz-Niedbała M, Tomczyk J, Zalewska M. Osteoarthritis: A problematic disease in past human populations. A dependence between entheseal changes, body size, age, sex, and osteoarthritic changes development. Anat Rec (Hoboken) 2019; 303:2357-2371. [PMID: 31680482 DOI: 10.1002/ar.24316] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 09/23/2019] [Indexed: 12/31/2022]
Abstract
Osteoarthritis is a problematic trait in terms of etiology and interpretation in past human populations. The relationships between osteoarthritic changes (osteophytes, porosity, and eburnation) and entheseal changes, body mass, stature, bone massiveness, sex, and age on the basis of skeletal material from Łekno (Poland) are analyzed here. Entheses were the strongest contributor to the prediction of osteophyte expression and when all types of changes and all joints were taken together. Stature demonstrates a negative dependence on porosity. When each joint was analyzed separately, entheses were the strongest contributor to the prediction of arthritis expression in the wrist and hip. Age was the strongest contributor to the prediction of arthritis expression in the elbow. Body mass, stature, bone massiveness, and sex had no effect on osteoarthritic changes in any of the examined joints. The results of the present study suggest an important dependence between entheses and osteoarthritic changes. Other factors had little to no effect on differences in OA severity. These results do not dispel all doubts but enrich knowledge about the effect of etiological factors on osteoarthritic change formation. This knowledge is essential for proper, reliable interpretation of osteoarthritic changes in the context of past human biology, ecology, and behavior.
Collapse
Affiliation(s)
- Anna Myszka
- Institute of Biological Sciences, Cardinal Stefan Wyszynski University, Warsaw, Poland
| | | | - Jacek Tomczyk
- Institute of Biological Sciences, Cardinal Stefan Wyszynski University, Warsaw, Poland
| | - Marta Zalewska
- Department of the Prevention of Environmental Hazards and Allergology, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
25
|
Zbrojkiewicz D, Scholes C, Zhong E, Holt M, Bell C. Anatomical Variability of Intercondylar Fossa Geometry in Patients Diagnosed with Primary Anterior Cruciate Ligament Rupture. Clin Anat 2019; 33:610-618. [PMID: 31503350 DOI: 10.1002/ca.23465] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 08/19/2019] [Accepted: 09/02/2019] [Indexed: 01/12/2023]
Abstract
The aims of this study were to (1) describe the three-dimensional characteristics and sources of anatomical variability in the geometry of the intercondylar fossa ("notch") in an anterior cruciate ligament (ACL)-injured sample and (2) assess the relationship between patient factors and anatomical variability of the fossa in the context of impingement risk. A retrospective analysis of preoperative magnetic resonance imaging (MRI) for 49 patients with ACL rupture was performed. Scans were examined in the axial plane using an online picture archiving and communication system (PACS) viewer and fossa width and angle assessed at multiple slices, as well as anteroposterior depth, fossa height, and calculated total volume. Principal component analysis was performed to prioritize the sources of variability. A multivariate linear regression was performed to assess relationships between different patient factors, controlling for imaging parameters and principal component loadings. Geometric properties were normally distributed for all but fossa volume, height, and distal angle. Three principal components (PCs) were identified explaining 80% of total variance, shape (PC1), size in the coronal plane (PC2), and size in the sagittal plane (PC3). Patient factors were significantly (P < 0.05) related to PC loadings; however, a substantial amount of variance in each model remained unexplained. Intercondylar fossa characteristics vary considerably within ACL-injury patients with shape and size in coronal and axial planes, explaining most of the variance. Although patient factors are associated with anatomical characteristics, further work is required to identify the correct combination of factors accurately predicting geometry of the fossa for planning ACL reconstruction. Clin. Anat. 33:610-618, 2020. © 2019 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- David Zbrojkiewicz
- Department of Orthopaedics, Queen Elizabeth II Jubilee Hospital, Brisbane, Australia
| | | | | | - Matthew Holt
- Department of Orthopaedics, Queen Elizabeth II Jubilee Hospital, Brisbane, Australia.,School of Medicine, Griffith University, Brisbane, Australia
| | - Christopher Bell
- Department of Orthopaedics, Queen Elizabeth II Jubilee Hospital, Brisbane, Australia
| |
Collapse
|
26
|
Kirk B, Al Saedi A, Duque G. Osteosarcopenia: A case of geroscience. Aging Med (Milton) 2019; 2:147-156. [PMID: 31942528 PMCID: PMC6880711 DOI: 10.1002/agm2.12080] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 08/19/2019] [Indexed: 12/12/2022] Open
Abstract
Many older persons lose their mobility and independence due to multiple diseases occurring simultaneously. Geroscience is aimed at developing innovative approaches to better identify relationships among the biological processes of aging. Osteoporosis and sarcopenia are two of the most prevalent chronic diseases in older people, with both conditions sharing overlapping risk factors and pathogenesis. When occurring together, these diseases form a geriatric syndrome termed "osteosarcopenia," which increases the risk of frailty, hospitalizations, and death. Findings from basic and clinical sciences aiming to understand osteosarcopenia have provided evidence of this syndrome as a case of geroscience. Genetic, endocrine, and mechanical stimuli, in addition to fat infiltration, sedentarism, and nutritional deficiencies, affect muscle and bone homeostasis to characterize this syndrome. However, research is in its infancy regarding accurate diagnostic markers and effective treatments with dual effects on muscle and bone. To date, resistance exercise remains the most promising strategy to increase muscle and bone mass, while sufficient quantities of protein, vitamin D, calcium, and creatine may preserve these tissues with aging. More recent findings, from rodent models, suggest treating ectopic fat in muscle and bone marrow as a possible avenue to curb osteosarcopenia, although this needs testing in human clinical trials.
Collapse
Affiliation(s)
- Ben Kirk
- Department of MedicineWestern HealthMelbourne Medical SchoolUniversity of MelbourneMelbourneVic.Australia
- Australian Institute for Musculoskeletal Science (AIMSS)University of Melbourne and Western HealthMelbourneVic.Australia
| | - Ahmed Al Saedi
- Department of MedicineWestern HealthMelbourne Medical SchoolUniversity of MelbourneMelbourneVic.Australia
- Australian Institute for Musculoskeletal Science (AIMSS)University of Melbourne and Western HealthMelbourneVic.Australia
| | - Gustavo Duque
- Department of MedicineWestern HealthMelbourne Medical SchoolUniversity of MelbourneMelbourneVic.Australia
- Australian Institute for Musculoskeletal Science (AIMSS)University of Melbourne and Western HealthMelbourneVic.Australia
| |
Collapse
|
27
|
Schlecht SH, Martin CT, Ochocki DN, Nolan BT, Wojtys EM, Ashton-Miller JA. Morphology of Mouse Anterior Cruciate Ligament-Complex Changes Following Exercise During Pubertal Growth. J Orthop Res 2019; 37:1910-1919. [PMID: 31042312 PMCID: PMC6700741 DOI: 10.1002/jor.24328] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 04/08/2019] [Indexed: 02/04/2023]
Abstract
Postnatal development and the physiological loading response of the anterior cruciate ligament (ACL) complex (ACL proper, entheses, and bony morphology) is not well understood. We tested whether the ACL-complex of two inbred mouse strains that collectively encompass the musculoskeletal variation observed in humans would demonstrate significant morphological differences following voluntary cage-wheel running during puberty compared with normal cage activity controls. Female A/J and C57BL/6J (B6) 6-week-old mice were provided unrestricted access to a standard cage-wheel for 4 weeks. A/J-exercise mice showed a 6.3% narrower ACL (p = 0.64), and a 20.1% more stenotic femoral notch (p < 0.01) while B6-exercise mice showed a 12.3% wider ACL (p = 0.10), compared with their respective controls. Additionally, A/J-exercise mice showed a 5.3% less steep posterior medial tibial slope (p = 0.07) and an 8.8% less steep posterior lateral tibial slope (p = 0.07), while B6-exercise mice showed a 9.8% more steep posterior medial tibial slope (p < 0.01) than their respective controls. A/J-exercise mice also showed more reinforcement of the ACL tibial enthesis with a 20.4% larger area (p < 0.01) of calcified fibrocartilage distributed at a 29.2% greater depth (p = 0.02) within the tibial enthesis, compared with their controls. These outcomes suggest exercise during puberty significantly influences ACL-complex morphology and that inherent morphological differences between these mice, as observed in their less active genetically similar control groups, resulted in a divergent phenotypic outcome between mouse strains. © 2019 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 37:1910-1919, 2019.
Collapse
Affiliation(s)
- Stephen H. Schlecht
- Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, Michigan
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, Michigan
| | - Colin T. Martin
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan
| | | | - Bonnie T. Nolan
- Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, Michigan
| | - Edward M. Wojtys
- Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, Michigan
| | | |
Collapse
|
28
|
Morphofunctional upper limb asymmetries in young tennis players: the role of maturity status. GERMAN JOURNAL OF EXERCISE AND SPORT RESEARCH 2019. [DOI: 10.1007/s12662-019-00607-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
29
|
Niinimäki S, Narra N, Härkönen L, Abe S, Nikander R, Hyttinen J, Knüsel CJ, Sievänen H. Do bone geometric properties of the proximal femoral diaphysis reflect loading history, muscle properties, or body dimensions? Am J Hum Biol 2019; 31:e23246. [PMID: 31004392 DOI: 10.1002/ajhb.23246] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 02/12/2019] [Accepted: 03/31/2019] [Indexed: 01/24/2023] Open
Abstract
OBJECTIVES The aim of this study was to investigate activity-induced effects from bone geometric properties of the proximal femur in athletic vs nonathletic healthy females by statistically controlling for variation in body size, lower limb isometric, and dynamic muscle strength, and cross-sectional area of Musculus gluteus maximus. METHODS The material consists of hip and proximal thigh magnetic resonance images of Finnish female athletes (N = 91) engaged in either high jump, triple jump, soccer, squash, powerlifting, endurance running or swimming, and a group of physically active nonathletic women (N = 20). Cross-sectional bone geometric properties were calculated for the lesser trochanter, sub-trochanter, and mid-shaft of the femur regions. Bone geometric properties were analyzed using a general linear model that included body size, muscle size, and muscle strength as covariates. RESULTS Body size and isometric muscle strength were positively associated with bone geometric properties at all three cross-sectional levels of the femur, while muscle size was positively associated with bone properties only at the femur mid-shaft. When athletes were compared to nonathletic females, triple jump, soccer, and squash resulted in greater values in all studied cross-sections; high jump and endurance running resulted in greater values at the femoral mid-shaft cross-section; and swimming resulted in lower values at sub-trochanter and femur mid-shaft cross-sections. CONCLUSIONS Activity effects from ground impact loading were associated with higher bone geometric values, especially at the femur mid-shaft, but also at lesser and sub-trochanter cross-sections. Bone geometric properties along the femur can be used to assess the mechanical stimuli experienced, where ground impact loading seems to be more important than muscle loading.
Collapse
Affiliation(s)
| | - Nathaniel Narra
- Department of Electronics and Communications Engineering, BioMediTech, Tampere University of Technology, Tampere, Finland
| | - Laura Härkönen
- Aquatic population dynamics Natural Resources Institute Finland (Luke), Oulu, Finland
| | - Shinya Abe
- Laboratory of Civil Engineering, Tampere University of Technology, Tampere, Finland
| | - Riku Nikander
- Department of Health Sciences, University of Jyväskylä, Jyväskylä, Finland.,GeroCenter Foundation for Aging Research and Development, Jyväskylä, Finland.,Jyväskylä Central Hospital, Jyväskylä, Finland
| | - Jari Hyttinen
- Department of Electronics and Communications Engineering, BioMediTech, Tampere University of Technology, Tampere, Finland
| | - Christopher J Knüsel
- De la Préhistoire à l'Actuel: Culture, Environnement, et Anthropologie (PACEA), Université de Bordeaux, Bordeaux, France
| | - Harri Sievänen
- The UKK Institute for Health Promotion Research, Tampere, Finland
| |
Collapse
|
30
|
Higgins S, Sokolowski CM, Vishwanathan M, Anderson JG, Schmidt MD, Lewis RD, Evans EM. Predicting Diaphyseal Cortical Bone Status Using Measures of Muscle Force Capacity. Med Sci Sports Exerc 2019; 50:1433-1441. [PMID: 29462101 DOI: 10.1249/mss.0000000000001581] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
PURPOSE Muscle cross-sectional area (MCSA) is often used as a surrogate for the forces applied to bones during physical activity. Although MCSA is a strong predictor of cortical bone status, its use makes assumptions about the relationship between muscle size and force that are inaccurate. Furthermore, to measure MCSA and other muscle force surrogates typically requires expensive and/or radiative laboratory equipment. Thus, this study aimed to determine whether clinical laboratory- and field-based methodologies for measuring muscular force capacity accounted for similar variance in diaphyseal cortical bone status as a commonly used muscular force surrogate, MCSA, at the midtibia in young men and women. METHODS Healthy young adults (n = 142, 19.7 ± 0.7 yr old, 52.8% female) were assessed via peripheral quantitative computed tomography at the midtibia for cortical bone status and MCSA. Muscle force capacity was measured via Biodex dynamometer, Nottingham leg extensor power rig, and Vertec vertical jump. Regression analysis compared the independent variance predicted by each muscle force measure with that of MCSA, accounting for relevant confounders. RESULTS MCSA, knee extension peak torque, and peak anaerobic power from vertical jump were independent predictors of select cortical structural outcomes (cortical thickness and area, periosteal and endosteal circumference, and estimated strength) accounting for up to 78.4% of the variance explained (all P < 0.05). However, cortical volumetric bone mineral density was unrelated to any measure or surrogate of muscle force capacity. CONCLUSIONS MCSA is a strong independent predictor of cortical bone structure; however, both laboratory- and field-based measures of peak torque and/or peak anaerobic power are promising alternatives, explaining similar and sometimes greater variance than MCSA.
Collapse
Affiliation(s)
- Simon Higgins
- Department of Kinesiology, University of Georgia, Athens, GA.,Department of Exercise Science, Elon University, Elon, NC
| | | | | | | | | | - Richard D Lewis
- Department of Foods and Nutrition, University of Georgia, Athens, GA
| | - Ellen M Evans
- Department of Kinesiology, University of Georgia, Athens, GA
| |
Collapse
|
31
|
Effects of Zumba ® and Aquagym on Bone Mass in Inactive Middle-Aged Women. ACTA ACUST UNITED AC 2019; 55:medicina55010023. [PMID: 30669665 PMCID: PMC6358983 DOI: 10.3390/medicina55010023] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 12/22/2018] [Accepted: 12/22/2018] [Indexed: 02/04/2023]
Abstract
Background and objectives: Regular exercise may stimulate bone formation and reduce the loss of bone mass in premenopausal women. This study aims to evaluate the effect of high-impact physical activity (Zumba®) and low-impact physical activity (Aquagym) on bone mass in inactive middle-aged women. Materials and methods: Fifty-five healthy inactive women (30⁻50 years old) were recruited in Spain in 2016 and were randomly allocated into one of three groups: High impact group (HIG: n = 15), low impact group (LIG: n = 12) and control group (CG: n = 28). HIG and LIG were recruited from Madrid and the CG from Toledo. HIG and LIG completed a 12-week intervention program with three 40' sessions per week of Zumba® or Aquagym; respectively. Dual energy X-ray absorptiometry (DXA) measured bone mineral content (BMC) and areal bone mineral density (aBMD) at total body less head (TBLH), lumbar spine and right hip. Results: Post-intervention adjusted data showed no significant differences in BMC between any of the groups nor in aBMD between HIG and LIG. Interestingly; significant differences for the HIG vs. CG were found in the change in total hip aBMD (1.76% vs. -0.44%), femoral neck aBMD (1.80% vs. -2.71%), and intertrochanter aBMD (2.03% vs. -0.50%). Moreover, significant differences for the LIG vs. CG were also found in the change in femoral neck aBMD (-0.54% vs. -2.71%). Conclusions: The regular practice of Zumba® and Aquagym might reduce the progressive deterioration of bone mass in inactive middle-aged women.
Collapse
|
32
|
Carretero JM, Rodríguez L, García-González R, Quam RM, Arsuaga JL. Exploring bone volume and skeletal weight in the Middle Pleistocene humans from the Sima de los Huesos site (Sierra de Atapuerca, Spain). J Anat 2018; 233:740-754. [PMID: 30280382 DOI: 10.1111/joa.12886] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/20/2018] [Indexed: 11/26/2022] Open
Abstract
Body mass estimation in fossil human species is a crucial topic in paleoanthropology as it yields information about ecologically relevant characteristics. Nevertheless, variables crucial to body mass estimation such as bone volume and skeletal weight have never before been calculated in a fossil human species. The exceptional state of preservation of several fossil human long bones from the Sima de los Huesos (SH) Middle Pleistocene site, in the Sierra de Atapuerca, makes it possible to calculate for the first time the absolute bone volume in five complete long bones (two femora and three humeri) of a fossil human species, an approach not possible in fragmentary or poorly preserved fossils. We have relied on computed tomography scans and 3D reconstructions to calculate bone volume. A sample of 62 complete bones of robust recent humans was also used for comparative purposes. The male SH femora (weight-bearing bones) and humeri (non-weight-bearing bones) have, relative to their size, greater bone volume (volume of bone tissue over total bone volume) than the equivalent bones in our recent human sample. As mass is volume × density, and bone tissue density (as a material) is similar across mammals, we calculate bone mass, and our results show that the SH hominins had on average heavier long bones than extant humans of the same size. From the femoral weight at hand, we have estimated the total skeletal weight in two SH individuals, which is about 36% heavier than in the recent humans of the equivalent body size. Using different methods and skeletal variables, including skeletal weight, to estimate body mass in these two SH humans, we highlight the considerable differences in body mass estimates we obtained, and that the largest body mass estimate is the one based on the skeletal weight. Our results suggest that we cannot assume the same relative proportion of bone volume and bone and skeletal weight characterized the entire genus Homo. Given that skeletal weight has a significant influence on body mass, current body mass estimates of fossil Homo specimens could be systematically underestimated. Thus, the significantly larger bone volume and heavier bones, probably throughout the entire skeleton, of SH humans could have had consequences for many biological parameters in this Pleistocene population and considerable importance for studies focusing on adaptive and ecologically relevant characteristics. Although more recent human samples should be analyzed, in our view, the high skeletal robusticity of the SH sample, including larger bone volume and skeletal weight, is part of their adaptive body type selected for throughout the Pleistocene to support different mechanical and activity regimes and formed under tight genetic control, including control over bone formative and regulatory processes.
Collapse
Affiliation(s)
- José-Miguel Carretero
- Laboratorio de Evolución Humana, Universidad de Burgos, Edificio I+D+i, Burgos, Spain.,Centro UCM-ISCIII de Investigación sobre Evolución y Comportamiento Humanos, Madrid, Spain
| | - Laura Rodríguez
- Laboratorio de Evolución Humana, Universidad de Burgos, Edificio I+D+i, Burgos, Spain
| | | | - Rolf-Michael Quam
- Centro UCM-ISCIII de Investigación sobre Evolución y Comportamiento Humanos, Madrid, Spain.,Department of Anthropology, Binghamton University (SUNY), Binghamton, New York, USA.,Division of Anthropology, American Museum of Natural History, New York, New York, USA
| | - Juan-Luis Arsuaga
- Centro UCM-ISCIII de Investigación sobre Evolución y Comportamiento Humanos, Madrid, Spain.,Facultad de Ciencias Geológicas, Departamento de Paleontología, Universidad Complutense de Madrid, Madrid, Spain
| |
Collapse
|
33
|
Correa-Rodríguez M, Schmidt-Rio Valle J, de la Fuente-Vílchez ÁM, Rueda-Medina B. Analysis of lifestyle and bone mineralization in a population of Spanish young adults. Colomb Med (Cali) 2018; 49:213-218. [PMID: 30410195 PMCID: PMC6220484 DOI: 10.25100/cm.v49i2.2056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Revised: 09/07/2018] [Accepted: 09/18/2018] [Indexed: 11/25/2022] Open
Abstract
OBJECTIVE To analyze the environmental factors (nutritional status, levels of physical activity and nutritional habits) and their possible association with bone mass in a population of young adults. METHODS The study population consisted of 200 subjects (117 women and 83 men) aged between 18 and 25 years (mean age 20.4 years ±2.2 years). Body composition parameters were measured by an electronic balance (TANITA BC-418MA), nutritional habits were estimated by 72-h dietary recall, level of physical activity was assessed by the International Physical Activity Questionnaire (IPAQ) and bone mass was measured by ultrasonography at the calcaneus. RESULTS There were significant differences in bone mass values according to gender (p= 0.013). Despite the fact that 70% of the subjects had a body mass index (BMI) within the normal range, 20% had overweight or obesity. 49% of the individuals had a moderate level of physical activity, although women had lower levels of physical activity than men (17.9% vs 8.4%). Most diets among young adults were hyperprotic, hyperlipidic and low-carbohydrates, with low-calcium and fiber intakes and high-phosphorus. Analysis of bone mass according to BMI showed higher values as the weight category rises, with significant differences in women. Higher values of bone mass were shown as the level of physical activity was higher, showing significant differences in males. CONCLUSION Our results show that BMI and level of physical activity are significantly associated with bone health in a population of young adults, suggesting the relevance of promoting healthy lifestyles as a strategy for the early prevention of osteoporosis.
Collapse
Affiliation(s)
- María Correa-Rodríguez
- Departamento de Enfermería. Facultad de Ciencias de la Salud. Universidad de Granada, Granada, España
| | | | | | - Blanca Rueda-Medina
- Departamento de Enfermería. Facultad de Ciencias de la Salud. Universidad de Granada, Granada, España
| |
Collapse
|
34
|
miRNAs regulate acute transcriptional changes in broiler embryos in response to modification of incubation temperature. Sci Rep 2018; 8:11371. [PMID: 30054505 PMCID: PMC6063901 DOI: 10.1038/s41598-018-29316-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 07/04/2018] [Indexed: 01/29/2023] Open
Abstract
MicroRNAs are post-transcriptional regulators that play critical roles in diverse biological processes. We hypothesize that miRNAs may be involved in regulating transcriptome responses to changes in embryonic incubation temperature in chickens affecting differentiation and proliferation processes during tissue development. Therefore, we conducted comparative transcriptome profiling of miRNAs to examine altered expression in breast and hind muscle of embryos and day 35 chickens experiencing high (38.8 °C), control (37.8 °C), or low (36.8 °C) embryonic incubation temperature during embryonic day (ED) 7–10 or ED10–13. The results revealed differential expression of miRNAs due to modification of embryonic incubation temperature in a muscle type-specific and a developmental stage-specific manner. The immediate effects of thermal change observed in embryos were substantial compared to the subtle long-term effects in chickens at day 35 post-hatch. Upregulation of miR-133 in breast muscle and downregulation of miR-199a-5p, miR-1915, and miR-638 in hind muscle post ED7–10 high-temperature treatment are functionally associated with myogenesis and body size. ED10–13 low-temperature treatment led to downregulation of let-7, miR-93, and miR-130c that are related to proliferation and differentiation. The results provide insight into the dynamics of miRNA expression at variable embryonic incubation temperatures during developmental processes and indicate a major regulatory role of miRNAs in acute responses to modified environmental conditions that affect remodelling of cells and tissues.
Collapse
|
35
|
Patel HP, Dawson A, Westbury LD, Hasnaoui G, Syddall HE, Shaw S, Sayer AA, Cooper C, Dennison EM. Muscle Mass, Muscle Morphology and Bone Health Among Community-Dwelling Older Men: Findings from the Hertfordshire Sarcopenia Study (HSS). Calcif Tissue Int 2018; 103:35-43. [PMID: 29372275 PMCID: PMC6010484 DOI: 10.1007/s00223-018-0388-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 01/04/2018] [Indexed: 12/21/2022]
Abstract
Sarcopenia and osteoporosis are associated with poor health outcomes in older people. Relationships between muscle and bone have typically been reported at a functional or macroscopic level. The aims of this study were to describe the relationships between muscle morphology and bone health among participants of the Hertfordshire Sarcopenia Study (HSS). 105 older men, mean age 72.5 (SD 2.5) years, were recruited into the HSS. Whole body lean mass as well as appendicular lean mass, lumbar spine and femoral neck bone mineral content (BMC) and bone mineral density (BMD) were obtained through dual-energy X-ray absorptiometry scanning. Percutaneous biopsy of the vastus lateralis was performed successfully in 99 participants. Image analysis was used to determine the muscle morphology variables of slow-twitch (type I) and fast-twitch (type II) myofibre area, myofibre density, capillary and satellite cell (SC) density. There were strong relationships between whole and appendicular lean body mass in relation to femoral neck BMC and BMD (r ≥ 0.43, p < 0.001). Type II fibre area was associated with both femoral neck BMC (r = 0.27, p = 0.01) and BMD (r = 0.26, p = 0.01) with relationships robust to adjustment for age and height. In unadjusted analysis, SC density was associated with whole body area (r = 0.30, p = 0.011) and both BMC (r = 0.26, p = 0.031) and area (r = 0.29, p = 0.017) of the femoral neck. We have demonstrated associations between BMC and changes in muscle at a cellular level predominantly involving type II myofibres. Interventions targeted at improving muscle mass, function and quality may improve overall musculoskeletal health. Larger studies that include women are needed to explore these relationships further.
Collapse
Affiliation(s)
- H. P. Patel
- 0000 0004 1936 9297grid.5491.9MRC Lifecourse Epidemiology Unit, University Hospital Southampton, University of Southampton, Tremona Road, Mail point 95, Southampton, SO16 6YD UK
- 0000 0004 1936 9297grid.5491.9Academic Geriatric Medicine, University of Southampton, Tremona Road, Southampton, SO16 6YD UK
- grid.430506.4National Institute for Health Research Southampton Biomedical Research Centre, University of Southampton and University Hospital Southampton NHS Foundation Trust, Southampton, SO16 6YD UK
| | - A. Dawson
- 0000 0004 1936 9297grid.5491.9MRC Lifecourse Epidemiology Unit, University Hospital Southampton, University of Southampton, Tremona Road, Mail point 95, Southampton, SO16 6YD UK
| | - L. D. Westbury
- 0000 0004 1936 9297grid.5491.9MRC Lifecourse Epidemiology Unit, University Hospital Southampton, University of Southampton, Tremona Road, Mail point 95, Southampton, SO16 6YD UK
| | - G. Hasnaoui
- 0000 0004 1936 9297grid.5491.9Academic Geriatric Medicine, University of Southampton, Tremona Road, Southampton, SO16 6YD UK
| | - H. E. Syddall
- 0000 0004 1936 9297grid.5491.9MRC Lifecourse Epidemiology Unit, University Hospital Southampton, University of Southampton, Tremona Road, Mail point 95, Southampton, SO16 6YD UK
| | - S. Shaw
- 0000 0004 1936 9297grid.5491.9MRC Lifecourse Epidemiology Unit, University Hospital Southampton, University of Southampton, Tremona Road, Mail point 95, Southampton, SO16 6YD UK
| | - A. A. Sayer
- 0000 0004 1936 9297grid.5491.9Academic Geriatric Medicine, University of Southampton, Tremona Road, Southampton, SO16 6YD UK
- AGE Research Group, Institute of Neuroscience, Newcastle, UK
- 0000 0001 0462 7212grid.1006.7NIHR Newcastle Biomedical Research Centre, Newcastle upon-Tyne NHS Foundation Trust and Newcastle University, Newcastle, UK
| | - C. Cooper
- 0000 0004 1936 9297grid.5491.9MRC Lifecourse Epidemiology Unit, University Hospital Southampton, University of Southampton, Tremona Road, Mail point 95, Southampton, SO16 6YD UK
- 0000 0004 1936 8948grid.4991.5National Institute for Health Research Musculoskeletal Biomedical Research Unit, University of Oxford, Oxford, UK
| | - E. M. Dennison
- 0000 0004 1936 9297grid.5491.9MRC Lifecourse Epidemiology Unit, University Hospital Southampton, University of Southampton, Tremona Road, Mail point 95, Southampton, SO16 6YD UK
| |
Collapse
|
36
|
Agostini G, Holt BM, Relethford JH. Bone functional adaptation does not erase neutral evolutionary information. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2018; 166:708-729. [DOI: 10.1002/ajpa.23460] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 02/26/2018] [Accepted: 03/01/2018] [Indexed: 12/15/2022]
Affiliation(s)
- Gina Agostini
- Mayo Clinic/ASU Obesity Solutions, School of Human Evolution and Social ChangeArizona State UniversityTempe Arizona
| | - Brigitte M. Holt
- Department of AnthropologyUniversity of Massachusetts AmherstAmherst Massachusetts
| | - John H. Relethford
- Department of AnthropologyState University of New York at OneontaOneonta New York
| |
Collapse
|
37
|
Human Bodily Asymmetry Relates to Behavioral Lateralization and May not Reliably Reflect Developmental Instability. Symmetry (Basel) 2018. [DOI: 10.3390/sym10040117] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
38
|
Mersmann F, Charcharis G, Bohm S, Arampatzis A. Muscle and Tendon Adaptation in Adolescence: Elite Volleyball Athletes Compared to Untrained Boys and Girls. Front Physiol 2017; 8:417. [PMID: 28670285 PMCID: PMC5472702 DOI: 10.3389/fphys.2017.00417] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 05/30/2017] [Indexed: 11/17/2022] Open
Abstract
Though the plasticity of human tendons is well explored in adults, it is still unknown how superimposed mechanical loading by means of athletic training affects the properties of tendons during maturation. Due to the increased responsiveness of muscle to mechanical loading, adolescence is an important phase to investigate the effects of training on the mechanical properties of tendons. Hence, in the present study we compared vastus lateralis (VL) architecture, muscle strength of the knee extensor muscles and patellar tendon mechanical properties of male and female adolescent elite athletes to untrained boys and girls. Twenty-one adolescent volleyball athletes (A; 16.7 ± 1 years; 12 boys, 9 girls) and 24 similar-aged controls (C; 16.7 ± 1 years; 12 boys and girls, respectively) performed maximum isometric contractions on a dynamometer for the assessment of muscle strength and, by integrating ultrasound imaging, patellar tendon mechanical properties. Respective joint moments were calculated using an inverse dynamics approach and an electromyography-based estimation of antagonistic contribution. Additionally, the VL pennation angle, fascicle length and muscle-thickness were determined in the inactive state by means of ultrasound. Adolescent athletes produced significantly greater knee extension moments (normalized to body mass) compared to controls (A: 4.23 ± 0.80 Nm/kg, C: 3.57 ± 0.67 Nm/kg; p = 0.004), and showed greater VL thickness and pennation angle (+38% and +27%; p < 0.001). Tendon stiffness (normalized to rest length) was also significantly higher in athletes (A: 86.0 ± 27.1 kN/strain, C: 70.2 ± 18.8 kN/strain; p = 0.04), yet less pronounced compared to tendon force (A: 5785 ± 1146 N, C: 4335 ± 1015 N; p < 0.001), which resulted in higher levels of tendon strain during maximum contractions in athletes (A: 8.0 ± 1.9%, C: 6.4 ± 1.8%; p = 0.008). We conclude that athletic volleyball training provides a more efficient stimulus for muscle compared to tendon adaptation, which results in an increased demand placed upon the tendon by the working muscle in adolescent volleyball athletes. Besides implications for sport performance, these findings might have important consequences for the risk of tendon overuse injury.
Collapse
Affiliation(s)
- Falk Mersmann
- Department of Training and Movement Sciences, Humboldt-Universität zu BerlinBerlin, Germany.,Berlin School of Movement ScienceBerlin, Germany
| | - Georgios Charcharis
- Department of Training and Movement Sciences, Humboldt-Universität zu BerlinBerlin, Germany.,Berlin School of Movement ScienceBerlin, Germany
| | - Sebastian Bohm
- Department of Training and Movement Sciences, Humboldt-Universität zu BerlinBerlin, Germany.,Berlin School of Movement ScienceBerlin, Germany
| | - Adamantios Arampatzis
- Department of Training and Movement Sciences, Humboldt-Universität zu BerlinBerlin, Germany.,Berlin School of Movement ScienceBerlin, Germany
| |
Collapse
|
39
|
Ludwa IA, Falk B, Ward WE, Gammage KL, Klentrou P. Mechanical, biochemical, and dietary determinants of the functional model of bone development of the radius in children and adolescents. Appl Physiol Nutr Metab 2017; 42:780-787. [PMID: 28273428 DOI: 10.1139/apnm-2016-0666] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
This study examined the degree to which various mechanical, biochemical, and dietary factors are related to nonweight bearing bone properties in 172 healthy peri-pubertal children (age, 11.7 ± 2.0 years). Dominant radial speed of sound (rSOS) was measured by transaxial quantitative ultrasound at distal radius. Potential modulating factors included somatic maturity offset (years from age of peak height velocity), grip strength, forearm lean cross-sectional area (CSA), physical activity, nutritional intake, and amino-terminal cross-linking propeptide (NTx), reflecting bone resorption. In a hierarchical regression, grip strength adjusted for CSA was the second most important predictor of rSOS after the maturity offset (β = 0.22 and β = 0.33, respectively; R2 = 0.16). When relative grip strength was added to the model the contribution of sex was no longer significant. Calcium intake was a significant predictor of rSOS only after NTx was accounted for in the model (β = 0.17, R2 = 0.21). This may suggest that calcium's effects on the muscle-bone unit may be modulated through bone resorption. In the final model, relative grip strength together with maturity offset, dietary calcium, and NTx explained up to 21% of the variance in rSOS in this cohort of children. Therefore, during the peri-pubertal stage, size-adjusted forearm muscle strength is related to radial bone strength after controlling for maturity, with calcium intake having a potential indirect association through NTx.
Collapse
Affiliation(s)
- Izabella A Ludwa
- Department of Kinesiology, Brock University, St. Catharines, ON L2S 3A1, Canada.,Department of Kinesiology, Brock University, St. Catharines, ON L2S 3A1, Canada
| | - Bareket Falk
- Department of Kinesiology, Brock University, St. Catharines, ON L2S 3A1, Canada.,Department of Kinesiology, Brock University, St. Catharines, ON L2S 3A1, Canada
| | - Wendy E Ward
- Department of Kinesiology, Brock University, St. Catharines, ON L2S 3A1, Canada.,Department of Kinesiology, Brock University, St. Catharines, ON L2S 3A1, Canada
| | - Kimberley L Gammage
- Department of Kinesiology, Brock University, St. Catharines, ON L2S 3A1, Canada.,Department of Kinesiology, Brock University, St. Catharines, ON L2S 3A1, Canada
| | - Panagiota Klentrou
- Department of Kinesiology, Brock University, St. Catharines, ON L2S 3A1, Canada.,Department of Kinesiology, Brock University, St. Catharines, ON L2S 3A1, Canada
| |
Collapse
|
40
|
Nilsson M, Sundh D, Mellström D, Lorentzon M. Current Physical Activity Is Independently Associated With Cortical Bone Size and Bone Strength in Elderly Swedish Women. J Bone Miner Res 2017; 32:473-485. [PMID: 27676223 DOI: 10.1002/jbmr.3006] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Revised: 09/19/2016] [Accepted: 09/25/2016] [Indexed: 12/31/2022]
Abstract
Physical activity is believed to have the greatest effect on the skeleton if exerted early in life, but whether or not possible benefits of physical activity on bone microstructure or geometry remain at old age has not been investigated in women. The aim of this study was to investigate if physical activity during skeletal growth and young adulthood or at old age was associated with cortical geometry and trabecular microarchitecture in weight-bearing and non-weight-bearing bone, and areal bone mineral density (aBMD) in elderly women. In this population-based cross-sectional study 1013 women, 78.2 ± 1.6 (mean ± SD) years old, were included. Using high-resolution 3D pQCT (XtremeCT), cortical cross-sectional area (Ct.CSA), cortical thickness (Ct.Th), cortical periosteal perimeter (Ct.Pm), volumetric cortical bone density (D.Ct), trabecular bone volume fraction (BV/TV), trabecular number (Tb.N), trabecular thickness (Tb.Th), and trabecular separation (Tb.Sp) were measured at the distal (14% level) and ultra-distal tibia and radius, respectively. aBMD was assessed using DXA (Hologic Discovery A) of the spine and hip. A standardized questionnaire was used to collect information about previous exercise and the Physical Activity Scale for the Elderly (PASE) was used for current physical activity. A linear regression model (including levels of exercise during skeletal growth and young adulthood [10 to 30 years of age], PASE score, and covariates) revealed that level of current physical activity was independently associated with Ct.CSA (β = 0.18, p < 0.001) and Ct.Th (β = 0.15, p < 0.001) at the distal tibia, Tb.Th (β = 0.11, p < 0.001) and BV/TV (β = 0.10, p = 0.001) at the ultra-distal tibia, and total hip aBMD (β = 0.10, p < 0.001). Current physical activity was independently associated with cortical bone size, in terms of thicker cortex but not larger periosteal circumference, and higher bone strength at the distal tibia on elderly women, indicating that physical activity at old age may decrease cortical bone loss in weight-bearing bone in elderly women. © 2016 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Martin Nilsson
- Geriatric Medicine, Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, University of Gothenburg, Sweden
| | - Daniel Sundh
- Geriatric Medicine, Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, University of Gothenburg, Sweden
| | - Dan Mellström
- Geriatric Medicine, Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, University of Gothenburg, Sweden
| | - Mattias Lorentzon
- Geriatric Medicine, Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, University of Gothenburg, Sweden
| |
Collapse
|
41
|
Giangregorio L, El-Kotob R. Exercise, muscle, and the applied load-bone strength balance. Osteoporos Int 2017; 28:21-33. [PMID: 27738713 DOI: 10.1007/s00198-016-3780-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 09/14/2016] [Indexed: 12/01/2022]
Abstract
A fracture occurs when the applied load is greater than the bone can withstand. Clinical practice guidelines for the management of osteoporosis include recommendations for exercise; one of the few therapies where the proposed anti-fracture mechanisms that include effects on both bone strength and applied loads, where applied loads can come in the form of a fall, externally applied loads, body weight, or muscle forces. The aim of this review is to provide an overview of the clinical evidence pertaining to the potential efficacy of exercise for preventing fractures in older adults, including its direct effects on outcomes along the causal pathway to fractures (e.g., falls, posture, bone strength) and the indirect effects on muscle or the muscle-bone relationship. The evidence is examined as it pertains to application in clinical practice. Considerations for future research are discussed, such as the need for trials in individuals with low bone mass or students that evaluate whether changes in muscle mediate changes in bone. Future trials should also consider adequacy of calorie or protein intake, the confounding effect of exercise-induced weight loss, or the most appropriate therapeutic goal (e.g., strength, weight bearing, or hypertrophy) and outcome measures (e.g., fracture, disability, cost-effectiveness).
Collapse
Affiliation(s)
- L Giangregorio
- Department of Kinesiology, University of Waterloo, 200 University Avenue West, Waterloo, ON, N2L 3G1, Canada.
- Toronto Rehabilitation Institute, University Health Network, Toronto, ON, Canada.
- Schlegel-University of Waterloo Research Institute for Aging, Waterloo, ON, Canada.
| | - R El-Kotob
- Department of Kinesiology, University of Waterloo, 200 University Avenue West, Waterloo, ON, N2L 3G1, Canada
- Toronto Rehabilitation Institute, University Health Network, Toronto, ON, Canada
| |
Collapse
|
42
|
Zymbal V, Janz KF, Baptista F. Sexual dimorphism in bone–muscle relationship in young adults. J Sports Sci 2016; 35:2433-2438. [DOI: 10.1080/02640414.2016.1273535] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Vera Zymbal
- Exercise and Health Laboratory, CIPER, Faculdade de Motricidade Humana, Universidade de Lisboa, Lisbon, Portugal
| | - Kathleen F. Janz
- Department of Health and Human Physiology and Department of Epidemiology, University of Iowa, Iowa City, IA, USA
| | - Fátima Baptista
- Exercise and Health Laboratory, CIPER, Faculdade de Motricidade Humana, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
43
|
Zhang J, Lin F, Ding X. Maturation Disparity between Hand-Wrist Bones in a Chinese Sample of Normal Children: An Analysis Based on Automatic BoneXpert and Manual Greulich and Pyle Atlas Assessment. Korean J Radiol 2016; 17:435-42. [PMID: 27134531 PMCID: PMC4842862 DOI: 10.3348/kjr.2016.17.3.435] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2015] [Accepted: 02/03/2016] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE To assess the maturation disparity of hand-wrist bones using the BoneXpert system and Greulich and Pyle (GP) atlas in a sample of normal children from China. MATERIALS AND METHODS Our study included 229 boys and 168 girls aged 2-14 years. The bones in the hand and wrist were divided into five groups: distal radius and ulna, metacarpals, proximal phalanges, middle phalanges and distal phalanges. Bone age (BA) was assessed separately using the automatic BoneXpert and GP atlas by two raters. Differences in the BA between the most advanced and retarded individual bones and bone groups were analyzed. RESULTS In 75.8% of children assessed with the BoneXpert and 59.4% of children assessed with the GP atlas, the BA difference between the most advanced and most retarded individual bones exceeded 2.0 years. The BA mean differences between the most advanced and most retarded individual bones were 2.58 and 2.25 years for the BoneXpert and GP atlas methods, respectively. Furthermore, for both methods, the middle phalanges were the most advanced group. The most retarded group was metacarpals for BoneXpert, while metacarpals and the distal radius and ulna were the most retarded groups according to the GP atlas. Overall, the BAs of the proximal and distal phalanges were closer to the chronological ages than those of the other bone groups. CONCLUSION Obvious and regular maturation disparities are common in normal children. Overall, the BAs of the proximal and distal phalanges are more useful for BA estimation than those of the other bone groups.
Collapse
Affiliation(s)
- Ji Zhang
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.; Department of Radiology, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai 200040, China
| | - Fangqin Lin
- Department of Radiology, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai 200040, China
| | - Xiaoyi Ding
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| |
Collapse
|
44
|
Correa-Rodríguez M, Rio-Valle JS, González-Jiménez E, Rueda-Medina B. The Effects of Body Composition, Dietary Intake, and Physical Activity on Calcaneus Quantitative Ultrasound in Spanish Young Adults. Biol Res Nurs 2016; 18:439-44. [PMID: 26933147 DOI: 10.1177/1099800416634884] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Identifying modifiable factors that influence bone gain during early adulthood in order to maximize peak bone mass (PBM) is a potential primary strategy in the prevention of osteoporosis in later life. The present study examined the relationships between body composition, dietary intake and physical activity (PA), and bone health measured by quantitative ultrasound (QUS) at the right calcaneus. The study population consisted of 781 Spanish men and women (age 19.1 ± 3.6). Body composition, dietary intake, PA, and bone strength were assessed. Calcaneus QUS was significantly correlated with age, height, weight, body mass index, lean mass, fat mass, protein intake, and moderate and high PA. No significant correlation between calcium intake and broadband ultrasound attenuation (BUA, dB/MHz) was detected. Linear regression analyses revealed that independent variables accounted for 18.8% of the total variance of calcaneus BUA (p = .000). Lean mass and high PA were significant predictors of BUA variance in young adults (p = .000 and p = .045, respectively). Results indicate that lifestyle choices and their consequences during early adulthood could influence bone mass, particularly PA and lean mass. Furthermore, this study provides novel data about bone mass as indicated by the QUS measurements at the time of PBM acquisition.
Collapse
|
45
|
Belavý DL, Armbrecht G, Blenk T, Bock O, Börst H, Kocakaya E, Luhn F, Rantalainen T, Rawer R, Tomasius F, Willnecker J, Felsenberg D. Greater association of peak neuromuscular performance with cortical bone geometry, bone mass and bone strength than bone density: A study in 417 older women. Bone 2016; 83:119-126. [PMID: 26541093 DOI: 10.1016/j.bone.2015.10.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Revised: 10/27/2015] [Accepted: 10/30/2015] [Indexed: 11/21/2022]
Abstract
BACKGROUND We evaluated which aspects of neuromuscular performance are associated with bone mass, density, strength and geometry. METHODS 417 women aged 60-94years were examined. Countermovement jump, sit-to-stand test, grip strength, forearm and calf muscle cross-sectional area, areal bone mineral content and density (aBMC and aBMD) at the hip and lumbar spine via dual X-ray absorptiometry, and measures of volumetric vBMC and vBMD, bone geometry and section modulus at 4% and 66% of radius length and 4%, 38% and 66% of tibia length via peripheral quantitative computed tomography were performed. The first principal component of the neuromuscular variables was calculated to generate a summary neuromuscular variable. Percentage of total variance in bone parameters explained by the neuromuscular parameters was calculated. Step-wise regression was also performed. RESULTS At all pQCT bone sites (radius, ulna, tibia, fibula), a greater percentage of total variance in measures of bone mass, cortical geometry and/or bone strength was explained by peak neuromuscular performance than for vBMD. Sit-to-stand performance did not relate strongly to bone parameters. No obvious differential in the explanatory power of neuromuscular performance was seen for DXA aBMC versus aBMD. In step-wise regression, bone mass, cortical morphology, and/or strength remained significant in relation to the first principal component of the neuromuscular variables. In no case was vBMD positively related to neuromuscular performance in the final step-wise regression models. CONCLUSION Peak neuromuscular performance has a stronger relationship with leg and forearm bone mass and cortical geometry as well as proximal forearm section modulus than with vBMD.
Collapse
Affiliation(s)
- Daniel L Belavý
- Centre for Muscle and Bone Research, Charité Universitätsmedizin Berlin, Hindenburgdamm 30, 12203, Berlin, Germany; Centre for Physical Activity and Nutrition Research, School of Exercise and Nutrition Sciences, Deakin University, 221 Burwood Highway, Burwood, Victoria 3125, Australia.
| | - Gabriele Armbrecht
- Centre for Muscle and Bone Research, Charité Universitätsmedizin Berlin, Hindenburgdamm 30, 12203, Berlin, Germany.
| | - Tilo Blenk
- Centre for Muscle and Bone Research, Charité Universitätsmedizin Berlin, Hindenburgdamm 30, 12203, Berlin, Germany.
| | - Oliver Bock
- Centre for Muscle and Bone Research, Charité Universitätsmedizin Berlin, Hindenburgdamm 30, 12203, Berlin, Germany.
| | - Hendrikje Börst
- Centre for Muscle and Bone Research, Charité Universitätsmedizin Berlin, Hindenburgdamm 30, 12203, Berlin, Germany.
| | - Emine Kocakaya
- Centre for Muscle and Bone Research, Charité Universitätsmedizin Berlin, Hindenburgdamm 30, 12203, Berlin, Germany.
| | - Franziska Luhn
- Centre for Muscle and Bone Research, Charité Universitätsmedizin Berlin, Hindenburgdamm 30, 12203, Berlin, Germany.
| | - Timo Rantalainen
- Centre for Physical Activity and Nutrition Research, School of Exercise and Nutrition Sciences, Deakin University, 221 Burwood Highway, Burwood, Victoria 3125, Australia.
| | - Rainer Rawer
- Stratec Medizintechnik GmbH, Durlacher Str. 35, 75172 Pforzheim, Germany.
| | - Frederike Tomasius
- Centre for Muscle and Bone Research, Charité Universitätsmedizin Berlin, Hindenburgdamm 30, 12203, Berlin, Germany.
| | | | - Dieter Felsenberg
- Centre for Muscle and Bone Research, Charité Universitätsmedizin Berlin, Hindenburgdamm 30, 12203, Berlin, Germany.
| |
Collapse
|
46
|
Sanchis-Moysi J, Dorado C, Idoate F, González-Henríquez JJ, Serrano-Sanchez JA, Calbet JAL. The asymmetry of pectoralis muscles is greater in male prepubertal than in professional tennis players. Eur J Sport Sci 2016; 16:780-6. [DOI: 10.1080/17461391.2015.1135986] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
47
|
HUELGA-SUAREZ GONZALO, DIEZ-FERNÁNDEZ SILVIA, MOLDOVAN MARIELLA, PARDIÑAS ANTONIOF, LÓPEZ BELÉN, GARCÍA ALONSO JIGNACIO. The quest for the soldier’s rest: combining anthropological and archaeochemical approaches to study social and occupational diversity in the medieval graveyard of San Andrés de Arroyo (Palencia, Spain). ANTHROPOL SCI 2016. [DOI: 10.1537/ase.161005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Affiliation(s)
| | | | - MARIELLA MOLDOVAN
- Department of Physical and Analytical Chemistry, University of Oviedo, Oviedo
| | - ANTONIO F. PARDIÑAS
- Department of Biology of Organisms and Systems, University of Oviedo, Oviedo
| | - BELÉN LÓPEZ
- Department of Biology of Organisms and Systems, University of Oviedo, Oviedo
| | | |
Collapse
|
48
|
Krzykała M, Leszczyński P. Asymmetry in body composition in female hockey players. HOMO-JOURNAL OF COMPARATIVE HUMAN BIOLOGY 2015; 66:379-86. [DOI: 10.1016/j.jchb.2015.02.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Accepted: 02/08/2015] [Indexed: 11/30/2022]
|
49
|
Dufton M, Franz-Odendaal TA. Morphological diversity in the orbital bones of two teleosts with experimental and natural variation in eye size. Dev Dyn 2015; 244:1109-1120. [DOI: 10.1002/dvdy.24278] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Accepted: 03/16/2015] [Indexed: 12/20/2022] Open
|
50
|
Hichijo N, Tanaka E, Kawai N, van Ruijven LJ, Langenbach GEJ. Effects of Decreased Occlusal Loading during Growth on the Mandibular Bone Characteristics. PLoS One 2015; 10:e0129290. [PMID: 26062027 PMCID: PMC4465670 DOI: 10.1371/journal.pone.0129290] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Accepted: 05/06/2015] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Bone mass and mineralization are largely influenced by loading. The purpose of this study was to evaluate the reaction of the entire mandibular bone in response to decreased load during growth. It is hypothesized that decreased muscular loading will lead to bone changes as seen during disuse, i.e. loss of bone mass. METHODS AND FINDINGS Ten 21-day-old Wistar strain male rats were divided into two groups (each n=5) and fed on either a hard- or soft-diet for 11 weeks. Micro-computed tomography was used for the investigation of bone mineralization, bone volume, bone volume fraction (BV/TV) and morphological analysis. Mandibular mineralization patterns were very consistent, showing a lower degree of mineralization in the ramus than in the corpus. In the soft-diet group, mineralization below the molars was significantly increased (p<0.05) compared to the hard diet group. Also, bone volume and BV/TV of the condyle and the masseter attachment were decreased in the soft-diet group (p<0.05). Morphological analysis showed inhibited growth of the ramus in the soft-diet group (p<0.05). CONCLUSION Decreased loading by a soft diet causes significant changes in the mandible. However, these changes are very region-specific, probably depending on the alterations in the local loading regime. The results suggest that muscle activity during growth is very important for bone quality and morphology.
Collapse
Affiliation(s)
- Natsuko Hichijo
- Department of Orthodontics and Dentofacial Orthopedics, Tokushima University Graduate School of Oral Sciences, Tokushima, Japan
| | - Eiji Tanaka
- Department of Orthodontics and Dentofacial Orthopedics, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
- Department of Orthodontics, Faculty of Dentistry, King Abdulaziz University, Jeddah, Saudi Arabia
- * E-mail:
| | - Nobuhiko Kawai
- Department of Orthodontics and Dentofacial Orthopedics, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Leo J. van Ruijven
- Department of Oral Cell Biology and Functional Anatomy, Academic Centre for Dentistry Amsterdam (ACTA), Research Institute MOVE, University of Amsterdam and VU University Amsterdam, Amsterdam, Netherlands
| | - Geerling E. J. Langenbach
- Department of Oral Cell Biology and Functional Anatomy, Academic Centre for Dentistry Amsterdam (ACTA), Research Institute MOVE, University of Amsterdam and VU University Amsterdam, Amsterdam, Netherlands
| |
Collapse
|