1
|
Jahanbin A, Ziya F, Bardideh E, Hafez S, Abtahi M. In vitro physical properties and clinical stability of reused orthodontic miniscrews: A systematic review and meta-analysis. J World Fed Orthod 2025; 14:97-110. [PMID: 39472213 DOI: 10.1016/j.ejwf.2024.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 09/07/2024] [Accepted: 09/07/2024] [Indexed: 04/05/2025]
Abstract
BACKGROUND While orthodontic miniscrews have been widely documented for their successful application, limited research exists on the stability and effectiveness of reused miniscrews. This systematic review aims to evaluate the stability and effectiveness of reused miniscrews in orthodontic treatments. METHODS An electronic search was conducted for studies published up to February 2024 across MEDLINE, Web of Science, EMBASE, Scopus, and Cochrane CENTRAL. Additionally, gray literature sources and manual searches of prominent orthodontic journals from 2010 to 2023, were also examined. Studies that investigated the use of miniscrews after retrieval and sterilization involving both in vitro studies and clinical trials were included. RESULTS From 946 searched studies, 18 were finally included in our review. Thirteen studies investigated retrieved and sterilized miniscrews, while five examined unused and sterilized miniscrews to isolate the effects of sterilization. After performing a meta-analysis on in vitro studies, no significant difference in insertion, removal, or fracture torque between retrieved and unretrieved miniscrews was found, though sterilized miniscrews had a statistically significant increase in insertion torque without affecting fracture resistance. Meta-analysis of clinical studies revealed that retrieved miniscrews exhibited a significantly higher failure rate with a risk ratio of 0.46 (95% confidence interval = 0.24, 0.69), indicating a higher likelihood of failure on reuse. CONCLUSION There were no significant differences in insertion and fracture torque between new and reused miniscrews. However, reused miniscrews were associated with a higher failure rate. This outcome may be influenced by factors such as sterilization methods, insertion technique, and patient-specific anatomical considerations.
Collapse
Affiliation(s)
- Arezoo Jahanbin
- Department of Orthodontics, School of Dentistry, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Farnaz Ziya
- Resident of Orthodontics, School of Dentistry, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Erfan Bardideh
- Orthodontist, Dental Research Center, School of Dentistry, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Sara Hafez
- General Dentist, School of Dentistry, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Mostafa Abtahi
- Department of Orthodontics, School of Dentistry, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
2
|
Burgan J, Rahmati M, Lee M, Saiz AM. Innate immune response to bone fracture healing. Bone 2025; 190:117327. [PMID: 39522707 DOI: 10.1016/j.bone.2024.117327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 11/05/2024] [Accepted: 11/07/2024] [Indexed: 11/16/2024]
Abstract
The field of osteoimmunology has primarily focused on fracture healing in isolated musculoskeletal injuries. The innate immune system is the initial response to fracture, with inflammatory macrophages, cytokines, and neutrophils arriving first at the fracture hematoma, followed by an anti-inflammatory phase to begin the process of new bone formation. This review aims to first discuss the current literature and knowledge gaps on the immune responses governing single fracture healing by encompassing the individual role of macrophages, neutrophils, cytokines, mesenchymal stem cells, bone cells, and other immune cells. This paper discusses the interactive effects of these cellular responses underscoring the field of osteoimmunology. The critical role of the metabolic environment in guiding the immune system properties will be highlighted along with some effective therapeutics for fracture healing in the context of osteoimmunology. However, compared to isolated fractures, which frequently heal well, long bone fractures in over 30 % of polytrauma patients exhibit impaired healing. Clinical evidence suggests there may be distinct physiologic and inflammatory pathways altered in polytrauma resulting in nonunion. Nonunion is associated with worse patient outcomes and increased societal healthcare costs. The dysregulated immunomodulatory/inflammatory response seen in polytrauma may lead to this increased nonunion rate. This paper will investigate the differences in immune response between isolated and polytrauma fractures. Finally, future directions for fracture studies are explored with consideration of the emerging roles of newly discovered immune cell functions in fracture healing, the existing challenges and conflicting results in the field, the translational potential of these studies in clinic, and the more complex nature of polytrauma fractures that can alter cell functions in different tissues.
Collapse
Affiliation(s)
- Jane Burgan
- Department of Orthopaedic Surgery, UC Davis Health, 4860 Y Street, Suite 3800, Sacramento, CA 95817, USA; Renaissance School of Medicine, Stony Brook University, Stony Brook, NY 11794, USA
| | - Maryam Rahmati
- Department of Orthopaedic Surgery, UC Davis Health, 4860 Y Street, Suite 3800, Sacramento, CA 95817, USA; Department of Biomaterials, Institute for Clinical Dentistry, University of Oslo, PO Box 1109, Blindern, NO-0317 Oslo, Norway
| | - Mark Lee
- Department of Orthopaedic Surgery, UC Davis Health, 4860 Y Street, Suite 3800, Sacramento, CA 95817, USA
| | - Augustine Mark Saiz
- Department of Orthopaedic Surgery, UC Davis Health, 4860 Y Street, Suite 3800, Sacramento, CA 95817, USA.
| |
Collapse
|
3
|
Ganse B. Methods to accelerate fracture healing - a narrative review from a clinical perspective. Front Immunol 2024; 15:1384783. [PMID: 38911851 PMCID: PMC11190092 DOI: 10.3389/fimmu.2024.1384783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Accepted: 05/14/2024] [Indexed: 06/25/2024] Open
Abstract
Bone regeneration is a complex pathophysiological process determined by molecular, cellular, and biomechanical factors, including immune cells and growth factors. Fracture healing usually takes several weeks to months, during which patients are frequently immobilized and unable to work. As immobilization is associated with negative health and socioeconomic effects, it would be desirable if fracture healing could be accelerated and the healing time shortened. However, interventions for this purpose are not yet part of current clinical treatment guidelines, and there has never been a comprehensive review specifically on this topic. Therefore, this narrative review provides an overview of the available clinical evidence on methods that accelerate fracture healing, with a focus on clinical applicability in healthy patients without bone disease. The most promising methods identified are the application of axial micromovement, electromagnetic stimulation with electromagnetic fields and direct electric currents, as well as the administration of growth factors and parathyroid hormone. Some interventions have been shown to reduce the healing time by up to 20 to 30%, potentially equivalent to several weeks. As a combination of methods could decrease the healing time even further than one method alone, especially if their mechanisms of action differ, clinical studies in human patients are needed to assess the individual and combined effects on healing progress. Studies are also necessary to determine the ideal settings for the interventions, i.e., optimal frequencies, intensities, and exposure times throughout the separate healing phases. More clinical research is also desirable to create an evidence base for clinical guidelines. To make it easier to conduct these investigations, the development of new methods that allow better quantification of fracture-healing progress and speed in human patients is needed.
Collapse
Affiliation(s)
- Bergita Ganse
- Innovative Implant Development (Fracture Healing), Clinics and Institutes of Surgery, Saarland University, Homburg, Germany
- Department of Trauma, Hand and Reconstructive Surgery, Clinics and Institutes of Surgery, Saarland University, Homburg, Germany
| |
Collapse
|
4
|
Ganesh T. Targeting EP2 Receptor for Drug Discovery: Strengths, Weaknesses, Opportunities, and Threats (SWOT) Analysis. J Med Chem 2023; 66:9313-9324. [PMID: 37458373 PMCID: PMC10388357 DOI: 10.1021/acs.jmedchem.3c00655] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Indexed: 07/28/2023]
Abstract
Cyclooxygenase-1 and -2 (COX1 and COX2) derived endogenous ligand prostaglandin-E2 (PGE2) triggers several physiological and pathological conditions. It mediates signaling through four G-protein coupled receptors, EP1, EP2, EP3, and EP4. Among these, EP2 is expressed throughout the body including the brain and uterus. The functional role of EP2 has been extensively studied using EP2 gene knockout mice, cellular models, and selective small molecule agonists and antagonists for this receptor. The efficacy data from in vitro and in vivo animal models indicate that EP2 receptor is a major proinflammatory mediator with deleterious functions in a variety of diseases suggesting a path forward for EP2 inhibitors as the next generation of selective anti-inflammatory and antiproliferative agents. Interestingly in certain diseases, EP2 action is beneficial; therefore, EP2 agonists seem to be clinically useful. Here, we highlight the strengths, weaknesses, opportunities, and potential threats (SWOT analysis) for targeting EP2 receptor for therapeutic development for a variety of unmet clinical needs.
Collapse
Affiliation(s)
- Thota Ganesh
- Department of Pharmacology and Chemical
Biology, Emory University School of Medicine, Atlanta, Georgia 30322, United States
| |
Collapse
|
5
|
Wilmoth RL, Sharma S, Ferguson VL, Bryant SJ. The effects of prostaglandin E2 on gene expression of IDG-SW3-derived osteocytes in 2D and 3D culture. Biochem Biophys Res Commun 2022; 630:8-15. [PMID: 36126467 DOI: 10.1016/j.bbrc.2022.09.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Accepted: 09/02/2022] [Indexed: 11/20/2022]
Abstract
Prostaglandin E2 (PGE2) is a key signaling molecule produced by osteocytes in response to mechanical loading, but its effect on osteocytes is less understood. This work examined the effect of PGE2 on IDG-SW3-derived osteocytes in standard 2D culture (collagen-coated tissue culture polystyrene) and in a 3D degradable poly(ethylene glycol) hydrogel. IDG-SW3 cells were differentiated for 35 days into osteocytes in 2D and 3D cultures. 3D culture led to a more mature osteocyte phenotype with 100-fold higher Sost expression. IDG-SW3-derived osteocytes were treated with PGE2 and assessed for expression of genes involved in PGE2, anabolic, and catabolic signaling. In 2D, PGE2 had a rapid (1 h) and sustained (24 h) effect on many PGE2 signaling genes, a rapid stimulatory effect on Il6, and a sustained inhibitory effect on Tnfrsf11b and Bglap. Comparing culture environment without PGE2, osteocytes had higher expression of all four EP receptors and Sost but lower expression of Tnfrsf11b, Bglap, and Gja1 in 3D. Osteocytes were more responsive to PGE2 in 3D. With increasing PGE2, 3D led to increased Gja1 and decreased Sost expressions and a higher Tnfrsf11b/Tnfsf11 ratio, indicating an anabolic response. Further analysis in 3D revealed that EP4, the receptor implicated in PGE2 signaling in bone, was not responsible for the PGE2-induced gene expression changes in osteocytes. In summary, osteocytes are highly responsive to PGE2 when cultured in an in vitro 3D hydrogel model suggesting that autocrine and paracrine PGE2 signaling in osteocytes may play a role in bone homeostasis.
Collapse
Affiliation(s)
- Rachel L Wilmoth
- Mechanical Engineering, University of Colorado, 1111 Engineering Dr, Boulder, CO, 80309, USA
| | - Sadhana Sharma
- Chemical and Biological Engineering, University of Colorado, 3415 Colorado Ave, Boulder, CO, 80309, USA
| | - Virginia L Ferguson
- Mechanical Engineering, University of Colorado, 1111 Engineering Dr, Boulder, CO, 80309, USA; BioFrontiers Institute, University of Colorado, 3415 Colorado Ave, Boulder, CO, 80309, USA; Materials Science and Engineering, University of Colorado, 4001 Discovery Dr., Boulder, CO, 80309, USA
| | - Stephanie J Bryant
- Chemical and Biological Engineering, University of Colorado, 3415 Colorado Ave, Boulder, CO, 80309, USA; BioFrontiers Institute, University of Colorado, 3415 Colorado Ave, Boulder, CO, 80309, USA; Materials Science and Engineering, University of Colorado, 4001 Discovery Dr., Boulder, CO, 80309, USA.
| |
Collapse
|
6
|
Ukon Y, Nishida M, Yamamori N, Takeyama K, Sakamoto K, Takenaka S, Makino T, Fujimori T, Sakai Y, Kanie Y, Kodama J, Bal Z, Tateiwa D, Nakagawa S, Hirai H, Okada S, Kaito T. Prostaglandin EP4 Selective Agonist AKDS001 Enhances New Bone Formation by Minimodeling in a Rat Heterotopic Xenograft Model of Human Bone. Front Bioeng Biotechnol 2022; 10:845716. [PMID: 35372320 PMCID: PMC8968459 DOI: 10.3389/fbioe.2022.845716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 03/02/2022] [Indexed: 11/13/2022] Open
Abstract
To enhance bone regeneration, the use of bone morphogenetic protein (BMP)-2 is an attractive option. Unfortunately, the dose-dependent side effects prevent its widespread use. Therefore, a novel osteogenic agent using a different mechanism of action than BMP-2 is highly desirable. Previous reports demonstrated that prostaglandin E2 receptor 4 (EP4) agonists have potent osteogenic effects on non-human cells and are one of the potential alternatives for BMP-2. Here, we investigated the effects of an EP4 agonist (AKDS001) on human cells with a rat heterotopic xenograft model of human bone. Bone formation in the xenograft model was significantly enhanced by AKDS001 treatment. Histomorphometric analysis showed that the mode of bone formation by AKDS001 was minimodeling rather than remodeling. In cultured human mesenchymal stem cells, AKDS001 enhanced osteogenic differentiation and mineralization via the cAMP/PKA pathway. In cultured human preosteoclasts, AKDS001 suppressed bone resorption by inhibiting differentiation into mature osteoclasts. Thus, we conclude that AKDS001 can enhance bone formation in grafted autogenous bone by minimodeling while maintaining the volume of grafted bone. The combined use of an EP4 agonist and autogenous bone grafting may be a novel treatment option to enhance bone regeneration. However, we should be careful in interpreting the results because male xenografts were implanted in male rats in the present study. It remains to be seen whether females can benefit from the positive effects of AKDS001 MS by using female xenografts implanted in female rats in clinically relevant animal models.
Collapse
Affiliation(s)
- Yuichiro Ukon
- Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Masahiro Nishida
- Laboratory for Pharmacology, Pharmaceuticals Research Center, Asahi Kasei Pharma Corporation, Shizuoka, Japan
| | - Natsumi Yamamori
- Laboratory for Pharmacology, Pharmaceuticals Research Center, Asahi Kasei Pharma Corporation, Shizuoka, Japan
| | - Kazuhiro Takeyama
- Laboratory for Pharmacology, Pharmaceuticals Research Center, Asahi Kasei Pharma Corporation, Shizuoka, Japan
| | - Kazuhito Sakamoto
- Laboratory for Pharmacology, Pharmaceuticals Research Center, Asahi Kasei Pharma Corporation, Shizuoka, Japan
| | - Shota Takenaka
- Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Takahiro Makino
- Department of Orthopaedic Surgery, Hayaishi Hospital, Osaka, Japan
| | - Takahito Fujimori
- Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Yusuke Sakai
- Department of Orthopaedic Surgery, Suita Municipal Hospital, Osaka, Japan
| | - Yuya Kanie
- Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Joe Kodama
- Department of Orthopedics, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Zeynep Bal
- Department of Signal Transduction, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Daisuke Tateiwa
- Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Shinichi Nakagawa
- Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Hiromasa Hirai
- Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Seiji Okada
- Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Takashi Kaito
- Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
- *Correspondence: Takashi Kaito,
| |
Collapse
|
7
|
Vater C, Mehnert E, Bretschneider H, Bolte J, Findeisen L, Matuszewski LM, Zwingenberger S. Dose-Dependent Effects of a Novel Selective EP 4 Prostaglandin Receptor Agonist on Treatment of Critical Size Femoral Bone Defects in a Rat Model. Biomedicines 2021; 9:biomedicines9111712. [PMID: 34829941 PMCID: PMC8615441 DOI: 10.3390/biomedicines9111712] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 11/09/2021] [Accepted: 11/12/2021] [Indexed: 11/30/2022] Open
Abstract
Difficulties in treating pseudarthrosis and critical bone defects are still evident in physicians’ clinical routines. Bone morphogenetic protein 2 (BMP-2) has shown promising osteoinductive results but also considerable side effects, not unexpected given that it is a morphogen. Thus, the bone regenerative potential of the novel selective, non-morphogenic EP4 prostaglandin receptor agonist KMN-159 was investigated in this study. Therefore, mineralized collagen type-1 matrices were loaded with different amounts of BMP-2 or KMN-159 and implanted into a 5 mm critical-sized femoral defect in rats. After 12 weeks of observation, micro-computed tomography scans were performed to analyze the newly formed bone volume (BV) and bone mineral density (BMD). Histological analysis was performed to evaluate the degree of defect healing and the number of vessels, osteoclasts, and osteoblasts. Data were evaluated using Kruskal-Wallis followed by Dunn’s post hoc test. As expected, animals treated with BMP-2, the positive control for this model, showed a high amount of newly formed BV as well as bone healing. For KMN-159, a dose-dependent effect on bone regeneration could be observed up to a dose optimum, demonstrating that this non-morphogenic mechanism of action can stimulate bone formation in this model system.
Collapse
Affiliation(s)
- Corina Vater
- University Center of Orthopedic, Trauma and Plastic Surgery, University Hospital Carl Gustav Carus, Fetscherstrasse 74, 01307 Dresden, Germany; (H.B.); (J.B.); (L.F.); (L.-M.M.); (S.Z.)
- Center for Translational Bone, Joint and Soft Tissue Research, Medical Faculty and University Hospital Carl Gustav Carus, Technische Universität Dresden, Fetscherstrasse 74, 01307 Dresden, Germany
- Correspondence: (C.V.); (E.M.)
| | - Elisabeth Mehnert
- University Center of Orthopedic, Trauma and Plastic Surgery, University Hospital Carl Gustav Carus, Fetscherstrasse 74, 01307 Dresden, Germany; (H.B.); (J.B.); (L.F.); (L.-M.M.); (S.Z.)
- Center for Translational Bone, Joint and Soft Tissue Research, Medical Faculty and University Hospital Carl Gustav Carus, Technische Universität Dresden, Fetscherstrasse 74, 01307 Dresden, Germany
- Correspondence: (C.V.); (E.M.)
| | - Henriette Bretschneider
- University Center of Orthopedic, Trauma and Plastic Surgery, University Hospital Carl Gustav Carus, Fetscherstrasse 74, 01307 Dresden, Germany; (H.B.); (J.B.); (L.F.); (L.-M.M.); (S.Z.)
- Center for Translational Bone, Joint and Soft Tissue Research, Medical Faculty and University Hospital Carl Gustav Carus, Technische Universität Dresden, Fetscherstrasse 74, 01307 Dresden, Germany
| | - Julia Bolte
- University Center of Orthopedic, Trauma and Plastic Surgery, University Hospital Carl Gustav Carus, Fetscherstrasse 74, 01307 Dresden, Germany; (H.B.); (J.B.); (L.F.); (L.-M.M.); (S.Z.)
- Center for Translational Bone, Joint and Soft Tissue Research, Medical Faculty and University Hospital Carl Gustav Carus, Technische Universität Dresden, Fetscherstrasse 74, 01307 Dresden, Germany
| | - Lisa Findeisen
- University Center of Orthopedic, Trauma and Plastic Surgery, University Hospital Carl Gustav Carus, Fetscherstrasse 74, 01307 Dresden, Germany; (H.B.); (J.B.); (L.F.); (L.-M.M.); (S.Z.)
- Center for Translational Bone, Joint and Soft Tissue Research, Medical Faculty and University Hospital Carl Gustav Carus, Technische Universität Dresden, Fetscherstrasse 74, 01307 Dresden, Germany
| | - Lucas-Maximilian Matuszewski
- University Center of Orthopedic, Trauma and Plastic Surgery, University Hospital Carl Gustav Carus, Fetscherstrasse 74, 01307 Dresden, Germany; (H.B.); (J.B.); (L.F.); (L.-M.M.); (S.Z.)
- Center for Translational Bone, Joint and Soft Tissue Research, Medical Faculty and University Hospital Carl Gustav Carus, Technische Universität Dresden, Fetscherstrasse 74, 01307 Dresden, Germany
| | - Stefan Zwingenberger
- University Center of Orthopedic, Trauma and Plastic Surgery, University Hospital Carl Gustav Carus, Fetscherstrasse 74, 01307 Dresden, Germany; (H.B.); (J.B.); (L.F.); (L.-M.M.); (S.Z.)
- Center for Translational Bone, Joint and Soft Tissue Research, Medical Faculty and University Hospital Carl Gustav Carus, Technische Universität Dresden, Fetscherstrasse 74, 01307 Dresden, Germany
| |
Collapse
|
8
|
Wani TU, Khan RS, Rather AH, Beigh MA, Sheikh FA. Local dual delivery therapeutic strategies: Using biomaterials for advanced bone tissue regeneration. J Control Release 2021; 339:143-155. [PMID: 34563589 DOI: 10.1016/j.jconrel.2021.09.029] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 09/18/2021] [Accepted: 09/21/2021] [Indexed: 01/18/2023]
Abstract
Bone development is a complex process involving a vast number of growth factors and chemical substances. These factors include transforming growth factor-beta, platelet-derived growth factor, insulin-like growth factor, and most importantly, the bone morphogenetic protein, which exhibits excellent therapeutic value in bone repair. However, the spatial-temporal relationship in the expression of these factors during bone formation makes the bone repair a more complicated process to address. Thus, using a single therapeutic agent to address bone formation does not seem to provide a clinically effective option. Conversely, a dual delivery approach facilitating the co-delivery of agents has proved to be a dynamic alternative since such a strategy can provide more efficient spatial-temporal action. Such delivery systems can smartly target more than one pathway or differentiation lineage and thus offer more efficient bone regeneration. This review discusses various dual delivery strategies reported in the literature employed to achieve improved bone regeneration. These include concurrent use of different therapeutic agents (including growth factors and drugs), enhancing bone formation and cell recruitment, and improving the efficiency of bone healing.
Collapse
Affiliation(s)
- Taha Umair Wani
- Department of Nanotechnology, University of Kashmir, Hazratbal, Srinagar 190006, Jammu and Kashmir, India
| | - Rumysa Saleem Khan
- Department of Nanotechnology, University of Kashmir, Hazratbal, Srinagar 190006, Jammu and Kashmir, India
| | - Anjum Hamid Rather
- Department of Nanotechnology, University of Kashmir, Hazratbal, Srinagar 190006, Jammu and Kashmir, India
| | - Mushtaq A Beigh
- Department of Nanotechnology, University of Kashmir, Hazratbal, Srinagar 190006, Jammu and Kashmir, India
| | - Faheem A Sheikh
- Department of Nanotechnology, University of Kashmir, Hazratbal, Srinagar 190006, Jammu and Kashmir, India.
| |
Collapse
|
9
|
Thévenin M, Chen G, Kantham S, Sun C, Glogauer M, Young RN. Design, Synthesis, Pharmacokinetics, and Biodistribution of a Series of Bone-Targeting EP4 Receptor Agonist Prodrugs for Treatment of Osteoporosis and Other Bone Conditions. ACS Pharmacol Transl Sci 2021; 4:908-925. [PMID: 33860210 DOI: 10.1021/acsptsci.1c00027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Indexed: 01/31/2023]
Abstract
A series of bone-targeting EP4 receptor agonist conjugate prodrugs were prepared wherein a potent EP4 receptor agonist was bound to a biologically inactive, bisphosphonate-based bone-targeting moiety. Singly and doubly radiolabeled conjugates were synthesized and were shown to be stable in blood, to be rapidly eliminated from the bloodstream, and to be effectively taken up into bone in vivo after intravenous dosing. From these preliminary studies a preferred conjugate 4 (also known as C3 and Mes-1007) was selected for follow up biodistribution and elimination studies. Doubly radiolabeled conjugate 4 was found to partition largely to the liver and bones, and both labels were eliminated from liver at the same rate indicating the conjugate was eliminated intact. Quantification of the labels in bones indicated that free EP4 agonist (EP4a)(2a) was released from bone-bound 4 with a half-time of about 7 days. When dosed orally, radiolabeled 4 was not absorbed and passed through the gastrointestinal tract essentially unchanged, and only traces of radiolabeled 4 were found in the liver, blood, or bones. 4 was found to bind rapidly and completely to powdered bone mineral or to various forms of calcium phosphate, forming a stable matrix suitable for implant and that could made into powders or solid forms and be sterilized without decomposition or release of 4. Basic hydrolysis released free EP4 agonist 2a quantitatively from the material.
Collapse
Affiliation(s)
- Marion Thévenin
- Department of Chemistry, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia V5Z 4B4, Canada
| | - Gang Chen
- Department of Chemistry, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia V5Z 4B4, Canada
| | - Srinivas Kantham
- Department of Chemistry, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia V5Z 4B4, Canada
| | - Chunxiang Sun
- Faculty of Dentistry, University of Toronto, 150 College Street, Toronto, Ontario M5S 3E2, Canada
| | - Michael Glogauer
- Faculty of Dentistry, University of Toronto, 150 College Street, Toronto, Ontario M5S 3E2, Canada
| | - Robert N Young
- Department of Chemistry, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia V5Z 4B4, Canada
| |
Collapse
|
10
|
Inoue S, Hatakeyama J, Aoki H, Kuroki H, Niikura T, Oe K, Fukui T, Kuroda R, Akisue T, Moriyama H. Effects of ultrasound, radial extracorporeal shock waves, and electrical stimulation on rat bone defect healing. Ann N Y Acad Sci 2021; 1497:3-14. [PMID: 33619772 DOI: 10.1111/nyas.14581] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 01/31/2021] [Accepted: 02/04/2021] [Indexed: 11/27/2022]
Abstract
Fractures associated with osteoporosis are a major public health concern. Current treatments for fractures are limited to surgery or fixation, leading to long-term bedrest, which is linked to increased mortality. Alternatively, utilization of physical agents has been suggested as a promising therapeutic approach for fractures. Here, we examined the effects of ultrasound, radial extracorporeal shock waves, and electrical stimulation on normal or osteoporotic fracture healing. Femoral bone defects were created in normal or ovariectomized rats. Rats were divided into four groups: untreated, and treated with ultrasound, shock waves, or electrical stimulation after surgery. Samples were collected at 2 or 4 weeks after surgery, and the healing process was evaluated with micro-CT, histological, and immunohistochemical analyses. Ultrasound at intensities of 0.5 and 1.0 W/cm2 , but not 0.05 W/cm2 , accelerated new bone formation. Shock wave exposure also increased newly formed bone, but formed abnormal periosteal callus around the defect site. Conversely, electrical stimulation did not affect the healing process. Ultrasound exposure increased osteoblast activity and cell proliferation and decreased sclerostin-positive osteocytes. We demonstrated that higher-intensity ultrasound and radial extracorporeal shock waves accelerate fracture healing, but shock wave treatment may increase the risk of periosteal callus formation.
Collapse
Affiliation(s)
- Shota Inoue
- Department of Rehabilitation Science, Graduate School of Health Sciences, Kobe University, Kobe, Japan
| | - Junpei Hatakeyama
- Department of Rehabilitation Science, Graduate School of Health Sciences, Kobe University, Kobe, Japan
| | - Hitoshi Aoki
- OG Wellness Technologies Co., Ltd., Okayama, Japan
| | - Hiroshi Kuroki
- Department of Physical Therapy, Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Takahiro Niikura
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Keisuke Oe
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Tomoaki Fukui
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Ryosuke Kuroda
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Toshihiro Akisue
- Life and Medical Sciences Area, Health Sciences Discipline, Kobe University, Kobe, Japan
| | - Hideki Moriyama
- Life and Medical Sciences Area, Health Sciences Discipline, Kobe University, Kobe, Japan
| |
Collapse
|
11
|
KMN-159, a novel EP 4 receptor selective agonist, stimulates osteoblastic differentiation in cultured whole rat bone marrow. Gene 2020; 748:144668. [PMID: 32334025 DOI: 10.1016/j.gene.2020.144668] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 04/10/2020] [Indexed: 01/14/2023]
Abstract
KMN-159 is the lead compound from a series of novel difluorolactam prostanoid EP4 receptor agonists aimed at inducing local bone formation while avoiding the inherent side effects of systemic EP4 activation. KMN-159 is a potent, selective small molecule possessing pharmacokinetic properties amenable to local administration. Unfractionated rat bone marrow cells (BMCs) were treated once at plating with escalating doses of KMN-159 (1 pM to 10 μM). The resulting elevated alkaline phosphatase (ALP) levels measured 9 days post-dose are consistent with increased osteoblastic differentiation and exposure to KMN-159 at low nanomolar concentrations for as little as 30 min was sufficient to induce complete osteoblast differentiation of the BMCs from both sexes and regardless of age. ALP induction was blocked by an EP4 receptor antagonist but not by EP1 or EP2 receptor antagonists and was not induced by EP2 or EP3 receptor agonists. Addition of BMCs to plates coated with KMN-159 24 days earlier resulted in ALP activation, highlighting the chemical stability of the compound. The expression of phenotype markers such as ALP, type I collagen, and osteocalcin was significantly elevated throughout the osteoblastic differentiation timecourse initiated by KMN-159 stimulation. An increased number of tartrate-resistant acid phosphatase-positive cells was observed KMN-159 or PGE2 treated BMCs but only in the presence of exogenous receptor activator of nuclear factor kappa-Β ligand (RANKL). No change in the number of adipocytes was observed. KMN-159 also increased bone healing in a rat calvarial defect model with a healing rate equivalent to recombinant human bone morphogenetic protein-2. Our studies show that KMN-159 is able to stimulate osteoblastic differentiation with a very short time of exposure, supporting its potential as a therapeutic candidate for augmenting bone mass.
Collapse
|
12
|
Rothe R, Schulze S, Neuber C, Hauser S, Rammelt S, Pietzsch J. Adjuvant drug-assisted bone healing: Part I – Modulation of inflammation. Clin Hemorheol Microcirc 2020; 73:381-408. [PMID: 31177205 DOI: 10.3233/ch-199102] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Rebecca Rothe
- Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Institute of Radiopharmaceutical Cancer Research, Department of Radiopharmaceutical and Chemical Biology, Dresden, Germany
| | - Sabine Schulze
- University Center of Orthopaedics & Traumatology (OUC), University Hospital Carl Gustav Carus, Dresden, Germany
- Center for Translational Bone, Joint and Soft Tissue Research, University Hospital Carl Gustav Carus and Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Christin Neuber
- Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Institute of Radiopharmaceutical Cancer Research, Department of Radiopharmaceutical and Chemical Biology, Dresden, Germany
| | - Sandra Hauser
- Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Institute of Radiopharmaceutical Cancer Research, Department of Radiopharmaceutical and Chemical Biology, Dresden, Germany
| | - Stefan Rammelt
- University Center of Orthopaedics & Traumatology (OUC), University Hospital Carl Gustav Carus, Dresden, Germany
- Center for Translational Bone, Joint and Soft Tissue Research, University Hospital Carl Gustav Carus and Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
- Center for Regenerative Therapies Dresden (CRTD), Dresden, Germany
| | - Jens Pietzsch
- Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Institute of Radiopharmaceutical Cancer Research, Department of Radiopharmaceutical and Chemical Biology, Dresden, Germany
- Technische Universität Dresden, School of Science, Faculty of Chemistry and Food Chemistry, Dresden, Germany
| |
Collapse
|
13
|
|
14
|
Abstract
Prostaglandins (PGs) are highly bioactive fatty acids. PGs, especially prostaglandin E2 (PGE2), are abundantly produced by cells of both the bone-forming (osteoblast) lineage and the bone-resorbing (osteoclast) lineage. The inducible cyclooxygenase, COX-2, is largely responsible for most PGE2 production in bone, and once released, PGE2 is rapidly degraded in vivo. COX-2 is induced by multiple agonists - hormones, growth factors, and proinflammatory factors - and the resulting PGE2 may mediate, amplify, or, as we have recently shown for parathyroid hormone (PTH), inhibit responses to these agonists. In vitro, PGE2 can directly stimulate osteoblast differentiation and, indirectly via stimulation of RANKL in osteoblastic cells, stimulate the differentiation of osteoclasts. The net balance of these two effects of PGE2 in vivo on bone formation and bone resorption has been hard to predict and, as expected for such a widespread local factor, hard to study. Some of the complexity of PGE2 actions on bone can be explained by the fact that there are four receptors for PGE2 (EP1-4). Some of the major actions of PGE2 in vitro occur via EP2 and EP4, both of which can stimulate cAMP signaling, but there are other distinct signaling pathways, important in other tissues, which have not yet been fully elucidated in bone cells. Giving PGE2 or agonists of EP2 and EP4 to accelerate bone repair has been examined with positive results. Further studies to clarify the pathways of PGE2 action in bone may allow us to identify new and more effective ways to deliver the therapeutic benefits of PGE2 in skeletal disorders.
Collapse
Affiliation(s)
- Carol Pilbeam
- Department of Medicine and Musculoskeletal Institute, UConn Health, Farmington, CT, USA.
| |
Collapse
|
15
|
García-García A, Martin I. Extracellular Matrices to Modulate the Innate Immune Response and Enhance Bone Healing. Front Immunol 2019; 10:2256. [PMID: 31616429 PMCID: PMC6764079 DOI: 10.3389/fimmu.2019.02256] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 09/06/2019] [Indexed: 01/10/2023] Open
Abstract
Extracellular matrices (ECMs) have emerged as promising off-the-shelf products to induce bone regeneration, with the capacity not only to activate osteoprogenitors, but also to influence the immune response. ECMs generated starting from living cells such as mesenchymal stromal cells (MSCs) have the potential to combine advantages of native tissue-derived ECMs (e.g., physiological presentation of multiple regulatory factors) with those of synthetic ECMs (e.g., customization and reproducibility of composition). MSC-derived ECMs could be tailored by enrichment not only in osteogenic cytokines, but also in immunomodulatory factors, to skew the innate immune response toward regenerative processes. After reviewing the different immunoregulatory properties of ECM components, here we propose different approaches to engineer ECMs enriched in factors capable to regulate macrophage polarization, recruit host immune and mesenchymal cells, and stimulate the synthesis of other immunoinstructive cytokines. Finally, we offer a perspective on the possible evolution of the paradigm based on biological and chemico-physical design considerations, and the use of gene editing approaches.
Collapse
Affiliation(s)
- Andrés García-García
- Tissue Engineering, Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Ivan Martin
- Tissue Engineering, Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland
| |
Collapse
|
16
|
Yukata K, Xie C, Li TF, Brown ML, Kanchiku T, Zhang X, Awad HA, Schwarz EM, Beck CA, Jonason JH, O'Keefe RJ. Teriparatide (human PTH 1-34) compensates for impaired fracture healing in COX-2 deficient mice. Bone 2018; 110:150-159. [PMID: 29408411 PMCID: PMC5878736 DOI: 10.1016/j.bone.2018.02.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 02/01/2018] [Accepted: 02/02/2018] [Indexed: 01/08/2023]
Abstract
Genetic ablation of cyclooxygenase-2 (COX-2) in mice is known to impair fracture healing. To determine if teriparatide (human PTH1-34) can promote healing of Cox-2-deficient fractures, we performed detailed in vivo analyses using a murine stabilized tibia fracture model. Periosteal progenitor cell proliferation as well as bony callus formation was markedly reduced in Cox-2-/- mice at day 10 post-fracture. Remarkably, intermittent PTH1-34 administration increased proliferation of periosteal progenitor cells, restored callus formation on day 7, and enhanced bone formation on days 10, 14 and 21 in Cox-2-deficient mice. PTH1-34 also increased biomechanical torsional properties at days 10 or 14 in all genotypes, consistent with enhanced bony callus formation by radiologic examinations. To determine the effects of intermittent PTH1-34 for callus remodeling, TRAP staining was performed. Intermittent PTH1-34 treatment increased the number of TRAP positive cells per total callus area on day 21 in Cox-2-/- fractures. Taken together, the present findings indicate that intermittent PTH1-34 treatment could compensate for COX-2 deficiency and improve impaired fracture healing in Cox-2-deficient mice.
Collapse
Affiliation(s)
- Kiminori Yukata
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA; Department of Orthopedic Surgery, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi, Japan
| | - Chao Xie
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA
| | - Tian-Fang Li
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA
| | - Matthew L Brown
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA
| | - Tsukasa Kanchiku
- Department of Orthopedic Surgery, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi, Japan
| | - Xinping Zhang
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA
| | - Hani A Awad
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA
| | - Edward M Schwarz
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA
| | - Christopher A Beck
- Department of Biostatistics and Computational Biology, University of Rochester Medical Center, Rochester, NY, USA
| | - Jennifer H Jonason
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA
| | - Regis J O'Keefe
- Department of Orthopaedic Surgery, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
17
|
Dried and free flowing granules of Spinacia oleracea accelerate bone regeneration and alleviate postmenopausal osteoporosis. Menopause 2018; 24:686-698. [PMID: 28118295 DOI: 10.1097/gme.0000000000000809] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
OBJECTIVE The aim of this study was to demonstrate the efficacy of extract derived from Spinacia oleracea extract (SOE) in reversing bone loss induced by ovariectomy and bone healing properties in a drill-hole fracture model in rats. METHODS SOE was administered orally for 12 weeks in adult ovariectomized Sprague Dawley rats after inducing osteopenic condition. Bone micro-architecture, expressions of osteogenic and resorptive gene markers, biomechanical strength, new bone formation, and bone turnover markers were studied. Uterine histomorphometry was used to assess estrogenicity. Bone regeneration potential of SOE was assessed in a drill-hole fracture model. Fracture healing was assessed by calcein intensity and micro-CT analysis of callus at fracture region. RESULTS SOE prevented ovariectomy-induced bone loss as evident from 122% increase in bone volume/tissue volume (BV/TV) and 29% decline in Tb.Sp in femoral trabecular micro-architecture. This was corroborated by the more than twofold stimulation in the expression of osteogenic genes runt-related transcription factor 2, osterix, osteocalcin, bone morphogenetic protein 2, collagen-1. Furthermore in the fracture healing model, we observed a 25% increase in BV/TV and enhancement in calcein intensity at the fractured site. The extract when converted into dried deliverable Spinaceae oleracea granule (SOG) form accelerated bone regeneration at fracture site, which was more efficient as evident by a 39% increase in BV/TV. Transforming SOE into dried granules facilitated prolonged systemic availability, thus providing enhanced activity for a period of 14 days. CONCLUSIONS SOE treatment effectively prevents ovariectomy-induced bone loss and stimulated fracture healing in adult rats. The dried granular form of the extract of Spinaceae oleracea was effective in fracture healing at the same dose.
Collapse
|
18
|
Sauerschnig M, Stolberg-Stolberg J, Schmidt C, Wienerroither V, Plecko M, Schlichting K, Perka C, Dynybil C. Effect of COX-2 inhibition on tendon-to-bone healing and PGE2 concentration after anterior cruciate ligament reconstruction. Eur J Med Res 2018; 23:1. [PMID: 29304843 PMCID: PMC5756348 DOI: 10.1186/s40001-017-0297-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 12/12/2017] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Non-steroidal anti-inflammatory drugs are commonly used to reduce pain and inflammation in orthopaedic patients. Selective cyclooxygenase-2 (COX-2) inhibitors have been developed to minimize drug-specific side effects. However, they are suspected to impair both bone and tendon healing. The objective of this study is to evaluate the effect of COX-2 inhibitor administration on tendon-to-bone healing and prostaglandin E (PGE2) concentration. METHODS Thirty-two New Zealand white rabbits underwent reconstructions of the anterior cruciate ligaments and were randomized into four groups: Two groups postoperatively received a selective COX-2 inhibitor (Celecoxib) on a daily basis for 3 weeks, the two other groups received no postoperative COX-2 inhibitors at all and were examined after three or 6 weeks. The PGE2 concentration of the synovial fluid, the osseous integration of the tendon graft at tunnel aperture and midtunnel section, as well as the stability of the tendon graft were examined via biomechanic testing. RESULTS After 3 weeks, the PGE2 content of the synovial fluid in the COX-2 inhibitor recipients was significantly lower than that of the control group (p = 0.018). At the same time, the COX-2 inhibitor recipients had a significantly lower bone density and lower amount of new bone formation than the control group (p = 0.020; p = 0.028) in the tunnel aperture. At the 6-week examination, there was a significant increase in the PGE2 content within synovial fluid of the COX-2 inhibitor recipients (p = 0.022), whose treatment with COX-2 inhibitors had ended 3 weeks earlier; in contrast, the transplant stability decreased and was reduced by 37% compared to the controls. CONCLUSIONS Selective COX-2 inhibitors cause impaired tendon-to-bone healing, weaken mechanical stability and decrease PGE2 content of the synovial fluid. The present study suggests a reluctant use of COX-2 inhibitors when tendon-to-bone healing is intended.
Collapse
Affiliation(s)
- Martin Sauerschnig
- Center for Musculoskeletal Surgery, University Hospital Charité, Charitéplatz 1, 10117, Berlin, Germany. .,Department of Experimental Trauma Surgery, Technical University of Munich, Ismaninger Straße 22, 81675, Munich, Germany. .,Department of Orthopaedic Sports Medicine, Technical University of Munich, Ismaninger Straße 22, 81675, Munich, Germany. .,Trauma Hospital Graz, Unfallkrankenhaus der Allgemeinen Unfallversicherungsanstalt (AUVA), Göstinger Straße 24, 8020, Graz, Austria.
| | - Josef Stolberg-Stolberg
- Department of Trauma-, Hand- and Reconstructive Surgery, University Hospital Muenster, Albert-Schweitzer-Campus 1, 48149, Münster, Germany
| | - Carmen Schmidt
- Center for Musculoskeletal Surgery, University Hospital Charité, Charitéplatz 1, 10117, Berlin, Germany
| | - Valerie Wienerroither
- Department of Experimental Trauma Surgery, Technical University of Munich, Ismaninger Straße 22, 81675, Munich, Germany
| | - Michael Plecko
- Trauma Hospital Graz, Unfallkrankenhaus der Allgemeinen Unfallversicherungsanstalt (AUVA), Göstinger Straße 24, 8020, Graz, Austria
| | - Karin Schlichting
- Center for Musculoskeletal Surgery, University Hospital Charité, Charitéplatz 1, 10117, Berlin, Germany
| | - Carsten Perka
- Center for Musculoskeletal Surgery, University Hospital Charité, Charitéplatz 1, 10117, Berlin, Germany
| | - Christian Dynybil
- Center for Musculoskeletal Surgery, University Hospital Charité, Charitéplatz 1, 10117, Berlin, Germany
| |
Collapse
|
19
|
Abstract
PURPOSE OF REVIEW In the process of bone fracture healing, inflammation is thought to be an essential process that precedes bone formation and remodeling. We review recent studies on bone fracture healing from an osteoimmunological point of view. RECENT FINDINGS Based on previous observations that many types of immune cells infiltrate into the bone injury site and release a variety of molecules, recent studies have addressed the roles of specific immune cell subsets. Macrophages and interleukin (IL)-17-producing γδ T cells enhance bone healing, whereas CD8+ T cells impair bone repair. Additionally, IL-10-producing B cells may contribute to bone healing by suppressing excessive and/or prolonged inflammation. Although the involvement of other cells and molecules has been suggested, the precise underlying mechanisms remain elusive. Accumulating evidence has begun to reveal the deeper picture of bone fracture healing. Further studies are required for the development of novel therapeutic strategies for bone fracture.
Collapse
Affiliation(s)
- Takehito Ono
- Department of Cell Signaling, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Yushima 1-5-45, Bunkyo-ku, Tokyo, 113-8549, Japan
| | - Hiroshi Takayanagi
- Department of Immunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo, 113-0033, Japan.
| |
Collapse
|
20
|
Structural features of subtype-selective EP receptor modulators. Drug Discov Today 2016; 22:57-71. [PMID: 27506873 DOI: 10.1016/j.drudis.2016.08.003] [Citation(s) in RCA: 123] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Revised: 06/20/2016] [Accepted: 08/01/2016] [Indexed: 12/11/2022]
Abstract
Prostaglandin E2 is a potent endogenous molecule that binds to four different G-protein-coupled receptors: EP1-4. Each of these receptors is a valuable drug target, with distinct tissue localisation and signalling pathways. We review the structural features of EP modulators required for subtype-selective activity, as well as the structural requirements for improved pharmacokinetic parameters. Novel EP receptor subtype selective agonists and antagonists appear to be valuable drug candidates in the therapy of many pathophysiological states, including ulcerative colitis, glaucoma, bone healing, B cell lymphoma, neurological diseases, among others, which have been studied in vitro, in vivo and in early phase clinical trials.
Collapse
|
21
|
Lee JW, Yun HS, Nakano T. Induction of Biological Apatite Orientation as a Bone Quality Parameter in Bone Regeneration Using Hydroxyapatite/Poly ɛ-Caprolactone Composite Scaffolds. Tissue Eng Part C Methods 2016; 22:856-63. [PMID: 27474256 DOI: 10.1089/ten.tec.2016.0133] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Changes in the biological apatite (BAp) c-axis orientation were investigated as a bone quality parameter in bone regeneration using hydroxyapatite/poly ɛ-caprolactone (HA/PCL) composite scaffolds. Three-dimensional (3D) HA/PCL composite scaffolds were fabricated using a layer manufacturing process in three grid sizes (200-, 600-, and 1000 μm) and grafted into the forearm ulna of New Zealand white rabbits. The cross-sectional areas of the bones regenerated from the scaffolds with 600- and 1000-μm grid sizes were significantly larger than those from the scaffold with 200-μm grid sizes, whereas bone mineral density in the regenerated regions did not differ between the three grid sizes. Moreover, the BAp c-axis orientation in the bones regenerated from the scaffolds with grid sizes of 600- and 1000 μm was not significantly different; however, both scaffolds showed enhanced BAp orientation, although the degree of BAp orientation was lower than that in intact bones. In conclusion, HA/PCL composite 3D scaffolds with 600- and 1000-μm grid sizes induced BAp c-axis orientation and showed good bone regeneration behavior in vivo.
Collapse
Affiliation(s)
- Jee-Wook Lee
- 1 School of Advanced Materials Engineering, Kookmin University , Seoul, Korea
| | - Hui-Suk Yun
- 2 Powder and Ceramics Division, Korea Institute of Materials Science , Changwon, Korea
| | - Takayoshi Nakano
- 3 Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University , Suita, Japan
| |
Collapse
|
22
|
Fukushima S, Miyagawa S, Sakai Y, Sawa Y. A sustained-release drug-delivery system of synthetic prostacyclin agonist, ONO-1301SR: a new reagent to enhance cardiac tissue salvage and/or regeneration in the damaged heart. Heart Fail Rev 2016; 20:401-13. [PMID: 25708182 PMCID: PMC4464640 DOI: 10.1007/s10741-015-9477-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Cardiac failure is a major cause of mortality and morbidity worldwide, since the standard treatment for cardiac failure in the clinical practice is chiefly to focus on removal of insults against the heart or minimisation of additional factors to exacerbate cardiac failure, but not on regeneration of the damaged cardiac tissue. A synthetic prostacyclin agonist, ONO-1301, has been developed as a long-acting drug for acute and chronic pathologies related to regional ischaemia, inflammation and/or interstitial fibrosis by pre-clinical studies. In addition, poly-lactic co-glycolic acid-polymerised form of ONO-1301, ONO-1301SR, was generated to achieve a further sustained release of this drug into the targeted region. This unique reagent has been shown to act on fibroblasts, vascular smooth muscle cells and endothelial cells in the tissue via the prostaglandin IP receptor to exert paracrinal release of multiple protective factors, such as hepatocyte growth factor, vascular endothelial growth factor or stromal cell-derived factor-1, into the adjacent damaged tissue, which is salvaged and/or regenerated as a result. Our laboratory developed a new surgical approach to treat acute and chronic cardiac failure using a variety of animal models, in which ONO-1301SR is directly placed over the cardiac surface to maximise the therapeutic effects and minimise the systemic complications. This review summarises basic and pre-clinical information of ONO-1301 and ONO-1301SR as a new reagent to enhance tissue salvage and/or regeneration, with a particular focus on the therapeutic effects on acute and chronic cardiac failure and underlying mechanisms, to explore a potential in launching the clinical study.
Collapse
Affiliation(s)
- Satsuki Fukushima
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan,
| | | | | | | |
Collapse
|
23
|
Hadley KB, Ryan AS, Forsyth S, Gautier S, Salem N. The Essentiality of Arachidonic Acid in Infant Development. Nutrients 2016; 8:216. [PMID: 27077882 PMCID: PMC4848685 DOI: 10.3390/nu8040216] [Citation(s) in RCA: 241] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Revised: 04/01/2016] [Accepted: 04/05/2016] [Indexed: 01/16/2023] Open
Abstract
Arachidonic acid (ARA, 20:4n-6) is an n-6 polyunsaturated 20-carbon fatty acid formed by the biosynthesis from linoleic acid (LA, 18:2n-6). This review considers the essential role that ARA plays in infant development. ARA is always present in human milk at a relatively fixed level and is accumulated in tissues throughout the body where it serves several important functions. Without the provision of preformed ARA in human milk or infant formula the growing infant cannot maintain ARA levels from synthetic pathways alone that are sufficient to meet metabolic demand. During late infancy and early childhood the amount of dietary ARA provided by solid foods is low. ARA serves as a precursor to leukotrienes, prostaglandins, and thromboxanes, collectively known as eicosanoids which are important for immunity and immune response. There is strong evidence based on animal and human studies that ARA is critical for infant growth, brain development, and health. These studies also demonstrate the importance of balancing the amounts of ARA and DHA as too much DHA may suppress the benefits provided by ARA. Both ARA and DHA have been added to infant formulas and follow-on formulas for more than two decades. The amounts and ratios of ARA and DHA needed in infant formula are discussed based on an in depth review of the available scientific evidence.
Collapse
Affiliation(s)
- Kevin B Hadley
- DSM Nutritional Products, 6480 Dobbin Road, Columbia, MD 21045, USA.
| | - Alan S Ryan
- Clinical Research Consulting, 9809 Halston Manor, Boynton Beach, FL 33473, USA.
| | - Stewart Forsyth
- School of Medicine, Dentistry & Nursing, University of Dundee, Ninewells Hospital and Medical School, Dundee, UK.
| | - Sheila Gautier
- DSM Nutritional Products, 6480 Dobbin Road, Columbia, MD 21045, USA.
| | - Norman Salem
- DSM Nutritional Products, 6480 Dobbin Road, Columbia, MD 21045, USA.
| |
Collapse
|
24
|
Balmayor ER, Geiger JP, Aneja MK, Berezhanskyy T, Utzinger M, Mykhaylyk O, Rudolph C, Plank C. Chemically modified RNA induces osteogenesis of stem cells and human tissue explants as well as accelerates bone healing in rats. Biomaterials 2016; 87:131-146. [PMID: 26923361 DOI: 10.1016/j.biomaterials.2016.02.018] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Revised: 02/10/2016] [Accepted: 02/16/2016] [Indexed: 01/24/2023]
Abstract
Limitations associated to the use of growth factors represent a major hurdle to musculoskeletal regeneration. On the one hand, they are needed to induce neo-tissue formation for the substitution of a necrotic or missing tissue. On the other hand, these factors are used in supraphysiological concentrations, are short lived and expensive and result in many side effects. Here we develop a gene transfer strategy based on the use of chemically modified mRNA (cmRNA) coding for human bone morphogenetic protein 2 (hBMP-2) that is non-immunogenic and highly stable when compared to unmodified mRNA. Transfected stem cells secrete hBMP-2, show elevated alkaline phosphatase levels and upregulated expression of RunX2, ALP, Osterix, Osteocalcin, Osteopontin and Collagen Type I genes. Mineralization was induced as seen by positive Alizarin red staining. hBMP-2 cmRNA transfected human fat tissue also yielded an osteogenic response in vitro as indicated by expression of hBMP-2, RunX2, ALP and Collagen Type I. Delivering hBMP-2 cmRNA to a femur defect in a rat model results in new bone tissue formation as early as 2 weeks after application of very low doses. Overall, our studies demonstrate the feasibility and therapeutic potential of a new cmRNA-based gene therapy strategy that is safe and efficient. When applied clinically, this approach could overcome BMP-2 growth factor associated limitations in bone regeneration.
Collapse
Affiliation(s)
- Elizabeth R Balmayor
- Institute of Molecular Immunology and Experimental Oncology, Technical University Munich, Ismaninger Str. 22, 81675 Munich, Germany; Ethris GmbH, Semmelweisstr. 3, 82152 Planegg, Germany; Experimental Trauma Surgery, Klinikum rechts der Isar, Technical University Munich, Ismaninger Str. 22, 81675 Munich, Germany.
| | | | | | - Taras Berezhanskyy
- Institute of Molecular Immunology and Experimental Oncology, Technical University Munich, Ismaninger Str. 22, 81675 Munich, Germany; Ethris GmbH, Semmelweisstr. 3, 82152 Planegg, Germany
| | | | - Olga Mykhaylyk
- Institute of Molecular Immunology and Experimental Oncology, Technical University Munich, Ismaninger Str. 22, 81675 Munich, Germany; Ethris GmbH, Semmelweisstr. 3, 82152 Planegg, Germany
| | | | - Christian Plank
- Institute of Molecular Immunology and Experimental Oncology, Technical University Munich, Ismaninger Str. 22, 81675 Munich, Germany; Ethris GmbH, Semmelweisstr. 3, 82152 Planegg, Germany.
| |
Collapse
|
25
|
Abstract
Bone defects do not heal in 5-10% of the fractures. In order to enhance bone regeneration, drug delivery systems are needed. They comprise a scaffold with or without inducing factors and/or cells. To test these drug delivery systems before application in patients, they finally need to be tested in animal models. The choice of animal model depends on the main research question; is a functional or mechanistic evaluation needed? Furthermore, which type of bone defects are investigated: load-bearing (i.e. orthopedic) or non-load-bearing (i.e. craniomaxillofacial)? This determines the type of model and in which type of animal. The experiments need to be set-up using the 3R principle and must be reported following the ARRIVE guidelines.
Collapse
|
26
|
Yamamoto M, Hokugo A, Takahashi Y, Nakano T, Hiraoka M, Tabata Y. Combination of BMP-2-releasing gelatin/β-TCP sponges with autologous bone marrow for bone regeneration of X-ray-irradiated rabbit ulnar defects. Biomaterials 2015; 56:18-25. [DOI: 10.1016/j.biomaterials.2015.03.057] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Revised: 03/27/2015] [Accepted: 03/29/2015] [Indexed: 10/23/2022]
|
27
|
Chen G, Arns S, Young RN. Determination of the rat in vivo pharmacokinetic profile of a bone-targeting dual-action pro-drug for treatment of osteoporosis. Bioconjug Chem 2015; 26:1095-103. [PMID: 25945831 DOI: 10.1021/acs.bioconjchem.5b00160] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The in vivo hydrolytic pathway of a dual-function bone-targeting EP4 receptor agonist-bisphosphonate pro-drug was deduced from radiolabeling experiments. A (14)C labeled pro-drug was used to monitor liberation of the bisphosphonate and results were compared to parallel studies where the EP4 receptor agonist was labeled with (3)H. The bone-adsorption of the (14)C pro-drug following an IV bolus was about 10% compared to 7.8% for the tritiated pro-drug. The difference in release half-life (5.2 and 19.7 days from (3)H and (14)C experiments, respectively) indicated that, after binding to bone, the initial hydrolysis occurred at the ester moiety of the linker releasing the EP4 agonist. The conjugate was found to concentrate in more porous, high-surface-area regions of the long bones. Both (3)H and (14)C experiments indicated a short circulating half-life (1-2 h) in blood.
Collapse
Affiliation(s)
- Gang Chen
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| | - Steven Arns
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| | - Robert N Young
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| |
Collapse
|
28
|
Kyllönen L, D’Este M, Alini M, Eglin D. Local drug delivery for enhancing fracture healing in osteoporotic bone. Acta Biomater 2015; 11:412-34. [PMID: 25218339 DOI: 10.1016/j.actbio.2014.09.006] [Citation(s) in RCA: 112] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Revised: 08/30/2014] [Accepted: 09/04/2014] [Indexed: 01/08/2023]
Abstract
Fragility fractures can cause significant morbidity and mortality in patients with osteoporosis and inflict a considerable medical and socioeconomic burden. Moreover, treatment of an osteoporotic fracture is challenging due to the decreased strength of the surrounding bone and suboptimal healing capacity, predisposing both to fixation failure and non-union. Whereas a systemic osteoporosis treatment acts slowly, local release of osteogenic agents in osteoporotic fracture would act rapidly to increase bone strength and quality, as well as to reduce the bone healing period and prevent development of a problematic non-union. The identification of agents with potential to stimulate bone formation and improve implant fixation strength in osteoporotic bone has raised hope for the fast augmentation of osteoporotic fractures. Stimulation of bone formation by local delivery of growth factors is an approach already in clinical use for the treatment of non-unions, and could be utilized for osteoporotic fractures as well. Small molecules have also gained ground as stable and inexpensive compounds to enhance bone formation and tackle osteoporosis. The aim of this paper is to present the state of the art on local drug delivery in osteoporotic fractures. Advantages, disadvantages and underlying molecular mechanisms of different active species for local bone healing in osteoporotic bone are discussed. This review also identifies promising new candidate molecules and innovative approaches for the local drug delivery in osteoporotic bone.
Collapse
|
29
|
Yukata K, Xie C, Li TF, Takahata M, Hoak D, Kondabolu S, Zhang X, Awad HA, Schwarz EM, Beck CA, Jonason JH, O'Keefe RJ. Aging periosteal progenitor cells have reduced regenerative responsiveness to bone injury and to the anabolic actions of PTH 1-34 treatment. Bone 2014; 62:79-89. [PMID: 24530870 PMCID: PMC4085793 DOI: 10.1016/j.bone.2014.02.002] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Revised: 01/17/2014] [Accepted: 02/04/2014] [Indexed: 12/20/2022]
Abstract
A stabilized tibia fracture model was used in young (8-week old) and aged (1-year old) mice to define the relative bone regenerative potential and the relative responsiveness of the periosteal progenitor population with aging and PTH 1-34 (PTH) systemic therapy. Bone regeneration was assessed through gene expressions, radiographic imaging, histology/histomorphometry, and biomechanical testing. Radiographs and microCT showed increased calcified callus tissue and enhanced bone healing in young compared to aged mice. A key mechanism involved reduced proliferation, expansion, and differentiation of periosteal progenitor cell populations in aged mice. The experiments showed that PTH increased calcified callus tissue and torsional strength with a greater response in young mice. Histology and quantitative histomorphometry confirmed that PTH increased callus tissue area due primarily to an increase in bone formation, since minimal changes in cartilage and mesenchyme tissue area occurred. Periosteum examined at 3, 5, and 7 days showed that PTH increased cyclin D1 expression, the total number of cells in the periosteum, and width of the periosteal regenerative tissue. Gene expression showed that aging delayed differentiation of both bone and cartilage tissues during fracture healing. PTH resulted in sustained Col10a1 expression consistent with delayed chondrocyte maturation, but otherwise minimally altered cartilage gene expression. In contrast, PTH 1-34 stimulated expression of Runx2 and Osterix, but resulted in reduced Osteocalcin. β-Catenin staining was present in mesenchymal chondroprogenitors and chondrocytes in early fracture healing, but was most intense in osteoblastic cells at later times. PTH increased active β-catenin staining in the osteoblast populations of both young and aged mice, but had a lesser effect in cartilage. Altogether the findings show that reduced fracture healing in aging involves decreased proliferation and differentiation of stem cells lining the bone surface. While PTH 1-34 enhances the proliferation and expansion of the periosteal stem cell population and accelerates bone formation and fracture healing, the effects are proportionately reduced in aged mice compared to young mice. β-Catenin is induced by PTH in early and late fracture healing and is a potential target of PTH 1-34 effects.
Collapse
Affiliation(s)
- Kiminori Yukata
- Department of Orthopedics, Tokushima University Hospital, Kuramoto, Tokushima, Japan.
| | - Chao Xie
- The Center for Musculoskeletal Research, University of Rochester, Rochester, NY, USA.
| | - Tian-Fang Li
- The Center for Musculoskeletal Research, University of Rochester, Rochester, NY, USA.
| | - Masahiko Takahata
- The Center for Musculoskeletal Research, University of Rochester, Rochester, NY, USA.
| | - Donna Hoak
- The Center for Musculoskeletal Research, University of Rochester, Rochester, NY, USA
| | - Sirish Kondabolu
- The Center for Musculoskeletal Research, University of Rochester, Rochester, NY, USA.
| | - Xinping Zhang
- The Center for Musculoskeletal Research, University of Rochester, Rochester, NY, USA.
| | - Hani A Awad
- The Center for Musculoskeletal Research, University of Rochester, Rochester, NY, USA.
| | - Edward M Schwarz
- The Center for Musculoskeletal Research, University of Rochester, Rochester, NY, USA.
| | - Christopher A Beck
- Department of Biostatistics and Computational Biology, University of Rochester, USA.
| | - Jennifer H Jonason
- The Center for Musculoskeletal Research, University of Rochester, Rochester, NY, USA.
| | - Regis J O'Keefe
- The Center for Musculoskeletal Research, University of Rochester, Rochester, NY, USA.
| |
Collapse
|
30
|
Fracture healing and lipid mediators. BONEKEY REPORTS 2014; 3:517. [PMID: 24795811 DOI: 10.1038/bonekey.2014.12] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Accepted: 01/03/2014] [Indexed: 01/11/2023]
Abstract
Lipid mediators regulate bone regeneration during fracture healing. Prostaglandins and leukotrienes are well-known lipid mediators that regulate inflammation and are synthesized from the Ω-6 fatty acid, arachidonic acid. Cyclooxygenase (COX-1 or COX-2) and 5-lipoxygenase (5-LO) catalyze the initial enzymatic steps in the synthesis of prostaglandins and leukotrienes, respectively. Inhibition or genetic ablation of COX-2 activity impairs fracture healing in animal models. Genetic ablation of COX-1 does not affect the fracture callus strength in mice, suggesting that COX-2 activity is primarily responsible for regulating fracture healing. Inhibition of cyclooxygenase activity with nonsteroidal anti-inflammatory drugs (NSAIDs) is performed clinically to reduce heterotopic ossification, although clinical evidence that NSAID treatment impairs fracture healing remains controversial. In contrast, inhibition or genetic ablation of 5-LO activity accelerates fracture healing in animal models. Even though prostaglandins and leukotrienes regulate inflammation, loss of COX-2 or 5-LO activity appears to primarily affect chondrogenesis during fracture healing. Prostaglandin or prostaglandin analog treatment, prostaglandin-specific synthase inhibition and prostaglandin or leukotriene receptor antagonism also affect callus chondrogenesis. Unlike the Ω-6-derived lipid mediators, lipid mediators derived from Ω-3 fatty acids, such as resolvin E1 (RvE1), have anti-inflammatory activity. In vivo, RvE1 can inhibit osteoclastogenesis and limit bone resorption. Although Ω-6 and Ω-3 lipid mediators have clear-cut effects on inflammation, the role of these lipid mediators in bone regeneration is more complex, with apparent effects on callus chondrogenesis and bone remodeling.
Collapse
|
31
|
Li TF, Yukata K, Yin G, Sheu T, Maruyama T, Jonason JH, Hsu W, Zhang X, Xiao G, Konttinen YT, Chen D, O’Keefe RJ. BMP-2 induces ATF4 phosphorylation in chondrocytes through a COX-2/PGE2 dependent signaling pathway. Osteoarthritis Cartilage 2014; 22:481-9. [PMID: 24418675 PMCID: PMC3947583 DOI: 10.1016/j.joca.2013.12.020] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Revised: 11/11/2013] [Accepted: 12/20/2013] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Bone morphogenic protein (BMP)-2 is approved for fracture non-union and spine fusion. We aimed to further dissect its downstream signaling events in chondrocytes with the ultimate goal to develop novel therapeutics that can mimic BMP-2 effect but have less complications. METHODS BMP-2 effect on cyclooxygenase (COX)-2 expression was examined using Real time quantitative PCR (RT-PCR) and Western blot analysis. Genetic approach was used to identify the signaling pathway mediating the BMP-2 effect. Similarly, the pathway transducing the PGE2 effect on ATF4 was investigated. Immunoprecipitation (IP) was performed to assess the complex formation after PGE2 binding. RESULTS BMP-2 increased COX-2 expression in primary mouse costosternal chondrocytes (PMCSC). The results from the C9 Tet-off system demonstrated that endogenous BMP-2 also upregulated COX-2 expression. Genetic approaches using PMCSC from ALK2(fx/fx), ALK3(fx/fx), ALK6(-/-), and Smad1(fx/fx) mice established that BMP-2 regulated COX-2 through activation of ALK3-Smad1 signaling. PGE-2 EIA showed that BMP-2 increased PGE2 production in PMCSC. ATF4 is a transcription factor that regulates bone formation. While PGE2 did not have significant effect on ATF4 expression, it induced ATF4 phosphorylation. In addition to stimulating COX-2 expression, BMP-2 also induced phosphorylation of ATF4. Using COX-2 deficient chondrocytes, we demonstrated that the BMP-2 effect on ATF4 was COX-2-dependent. Tibial fracture samples from COX-2(-/-) mice showed reduced phospho-ATF4 immunoreactivity compared to wild type (WT) ones. PGE2 mediated ATF4 phosphorylation involved signaling primarily through the EP2 and EP4 receptors and PGE2 induced an EP4-ERK1/2-RSK2 complex formation. CONCLUSIONS BMP-2 regulates COX-2 expression through ALK3-Smad1 signaling, and PGE2 induces ATF4 phosphorylation via EP4-ERK1/2-RSK2 axis.
Collapse
Affiliation(s)
- Tian-Fang Li
- Department of Biochemistry, Rush University Medical Center, 1735 W. Harrison St, Chicago, IL-60612,Department of Orthopaedics, Rush University Medical Center, 1611 W. Harrison St, Chicago, IL-60612,Corresponding author: Tian-Fang Li, MD, PhD, Department of Biochemistry and Orthopaedics, Rush University Medical Center, 1735 W. Harrison St., Chicago, IL-60608. Phone: 312-942-2182, Fax: 312-942-3053,
| | - Kiminori Yukata
- Department of Orthopaedics, University of Tokushima, 3-18-15 Kuramoto, Tokushima 770-8503, Japan,Center for Musculoskeletal Research, Department of Orthopaedics, University of Rochester, 601 Elmwood Ave., NY-14642
| | - Guoyong Yin
- Department of Orthopaedics, The First Affiliated Hospital, Nanjing Medical University, 300 Guangzhou Rd., Nanjing, Jiangsu-210029, China
| | - Tzongjen Sheu
- Center for Musculoskeletal Research, Department of Orthopaedics, University of Rochester, 601 Elmwood Ave., NY-14642
| | - Takamitsu Maruyama
- Department of Biomedical Genetics, Center for Oral Biology, and James P. Wilmot Cancer Center, University of Rochester, 601 Elmwood Ave., Rochester, NY-14642
| | - Jennifer H. Jonason
- Center for Musculoskeletal Research, Department of Orthopaedics, University of Rochester, 601 Elmwood Ave., NY-14642
| | - Wei Hsu
- Department of Biomedical Genetics, Center for Oral Biology, and James P. Wilmot Cancer Center, University of Rochester, 601 Elmwood Ave., Rochester, NY-14642
| | - Xinping Zhang
- Center for Musculoskeletal Research, Department of Orthopaedics, University of Rochester, 601 Elmwood Ave., NY-14642
| | - Guozhi Xiao
- Department of Biochemistry, Rush University Medical Center, 1735 W. Harrison St, Chicago, IL-60612
| | - Yrjo T. Konttinen
- Department of Medicine, Institute of Clinical Medicine, University of Helsinki, PO Box 700 (Haartmaninkatu 8, Biomedicum 1), 00029 HUS, FINLAND
| | - Di Chen
- Department of Biochemistry, Rush University Medical Center, 1735 W. Harrison St, Chicago, IL-60612
| | - Regis J. O’Keefe
- Center for Musculoskeletal Research, Department of Orthopaedics, University of Rochester, 601 Elmwood Ave., NY-14642,Corresponding author: Regis J. O’Keefe, MD, PhD, Department of Orthopaedics and Rehabilitation, Box 665, 601 Elmwood Avenue, University of Rochester, Rochester, NY-14642. Phone: 585-275-5167, Fax: 585-276-1202,
| |
Collapse
|
32
|
Manokawinchoke J, Pimkhaokhum A, Everts V, Pavasant P. Prostaglandin E2 inhibits in-vitro
mineral deposition by human periodontal ligament cells via modulating the expression of TWIST1 and RUNX2. J Periodontal Res 2014; 49:777-84. [DOI: 10.1111/jre.12162] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/30/2013] [Indexed: 01/01/2023]
Affiliation(s)
- J. Manokawinchoke
- Mineralized Tissue Research Unit; Faculty of Dentistry; Chulalongkorn University; Bangkok Thailand
| | - A. Pimkhaokhum
- Department of Surgery; Faculty of Dentistry; Chulalongkorn University; Bangkok Thailand
| | - V. Everts
- Department of Oral Cell Biology; Academic Centre for Dentistry Amsterdam (ACTA); University of Amsterdam and VU University Amsterdam; MOVE Research Institute; Amsterdam The Netherlands
| | - P. Pavasant
- Mineralized Tissue Research Unit; Faculty of Dentistry; Chulalongkorn University; Bangkok Thailand
- Department of Anatomy; Faculty of Dentistry; Chulalongkorn University; Bangkok Thailand
| |
Collapse
|
33
|
Chen L, Qi H, Jiang D, Wang R, Chen A, Yan Z, Xiao J. The new use of an ancient remedy: a double-blinded randomized study on the treatment of rheumatoid arthritis. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2013; 41:263-80. [PMID: 23548118 DOI: 10.1142/s0192415x13500195] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Rheumatoid arthritis (RA) is the most common chronic inflammatory disease with unknown causes and unknown cures in Western medicine. This double-blinded study aimed to investigate the efficacy and safety of a widely used traditional Chinese medicine (Paeoniflorin (PAE) plus cervus and cucumis polypeptide injection (CCPI) using disease-modifying antirheumatic drugs (DMARD) as a control (methotrexate (MTX) plus leflunomide (LEF)). Patients were randomly assigned to one of the three groups: PAE + CCPI, MTX + LEF, and MTX + LEF + CCPI. The primary end point was the American College of Rheumatology 20% improvement response criteria (ACR20). The secondary end point was that of adverse effect frequencies and the speed of onset action. Our results showed that more patients in the CCPI-containing groups responded to the ACR20 during early treatment. After six months, ACR20 showed no significant difference among the three treatments. The maximum improvement in the two DMARD groups was significantly higher than that in the PAE + CCPI group (p < 0.01). CCPI made the onset action of the DMARD therapy 4.6 times faster. PAE + CCPI had significantly lower adverse event incidences than the two DMARD groups. These results indicate that PAE + CCPI appear to be a more acceptable alternative to DMARDs when patients cannot use DMARDs. CCPI appears to be a beneficial add-on to DMARDs that makes the onset of action faster, especially when patients need to relieve RA symptoms as soon as possible. Although not as effective as DMARDs, PAE appears to be a safer option to substitute DMARDs for long-term RA treatment when DMARD toxicity is an issue.
Collapse
Affiliation(s)
- Letian Chen
- Department of Rheumatology, Beijing Friendship Hospital, Affiliated to Capital Medical University, Beijing, P. R. China
| | | | | | | | | | | | | |
Collapse
|
34
|
Yokoyama U, Iwatsubo K, Umemura M, Fujita T, Ishikawa Y. The prostanoid EP4 receptor and its signaling pathway. Pharmacol Rev 2013; 65:1010-52. [PMID: 23776144 DOI: 10.1124/pr.112.007195] [Citation(s) in RCA: 203] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2025] Open
Abstract
The EP4 prostanoid receptor is one of four receptor subtypes for prostaglandin E2. It belongs to the family of G protein-coupled receptors. It was originally identified, similar to the EP2 receptor as a G(s)α-coupled, adenylyl cyclase-stimulating receptor. EP4 signaling plays a variety of roles through cAMP effectors, i.e., protein kinase A and exchange protein activated by cAMP. However, emerging evidence from studies using pharmacological approaches and genetically modified mice suggests that EP4, unlike EP2, can also be coupled to G(i)α, phosphatidylinositol 3-kinase, β-arrestin, or β-catenin. These signaling pathways constitute unique roles for the EP4 receptor. EP4 is widely distributed in the body and thus plays various physiologic and pathophysiologic roles. In particular, EP4 signaling is closely related to carcinogenesis, cardiac hypertrophy, vasodilation, vascular remodeling, bone remodeling, gastrointestinal homeostasis, renal function, and female reproductive function. In addition to the classic anti-inflammatory action of EP4 on mononuclear cells and T cells, recent evidence has shown that EP4 signaling contributes to proinflammatory action as well. The aim of this review is to present current findings on the biologic functions of the EP4 receptor. In particular, we will discuss its diversity from the standpoint of EP4-mediated signaling.
Collapse
Affiliation(s)
- Utako Yokoyama
- Cardiovascular Research Institute, Yokohama City University, Yokohama, Kanagawa, Japan
| | | | | | | | | |
Collapse
|
35
|
Amini AR, Laurencin CT, Nukavarapu SP. Bone tissue engineering: recent advances and challenges. Crit Rev Biomed Eng 2013; 40:363-408. [PMID: 23339648 DOI: 10.1615/critrevbiomedeng.v40.i5.10] [Citation(s) in RCA: 1419] [Impact Index Per Article: 118.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The worldwide incidence of bone disorders and conditions has trended steeply upward and is expected to double by 2020, especially in populations where aging is coupled with increased obesity and poor physical activity. Engineered bone tissue has been viewed as a potential alternative to the conventional use of bone grafts, due to their limitless supply and no disease transmission. However, bone tissue engineering practices have not proceeded to clinical practice due to several limitations or challenges. Bone tissue engineering aims to induce new functional bone regeneration via the synergistic combination of biomaterials, cells, and factor therapy. In this review, we discuss the fundamentals of bone tissue engineering, highlighting the current state of this field. Further, we review the recent advances of biomaterial and cell-based research, as well as approaches used to enhance bone regeneration. Specifically, we discuss widely investigated biomaterial scaffolds, micro- and nano-structural properties of these scaffolds, and the incorporation of biomimetic properties and/or growth factors. In addition, we examine various cellular approaches, including the use of mesenchymal stem cells (MSCs), embryonic stem cells (ESCs), adult stem cells, induced pluripotent stem cells (iPSCs), and platelet-rich plasma (PRP), and their clinical application strengths and limitations. We conclude by overviewing the challenges that face the bone tissue engineering field, such as the lack of sufficient vascularization at the defect site, and the research aimed at functional bone tissue engineering. These challenges will drive future research in the field.
Collapse
Affiliation(s)
- Ami R Amini
- Department of Orthopedic Surgery, University of Connecticut Health Center, Farmington, CT, USA
| | | | | |
Collapse
|
36
|
Cottrell JA, Keshav V, Mitchell A, O'Connor JP. Local inhibition of 5-lipoxygenase enhances bone formation in a rat model. Bone Joint Res 2013; 2:41-50. [PMID: 23610701 PMCID: PMC3626215 DOI: 10.1302/2046-3758.22.2000066] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/29/2012] [Accepted: 01/09/2013] [Indexed: 12/20/2022] Open
Abstract
Objectives Recent studies have shown that modulating inflammation-related
lipid signalling after a bone fracture can accelerate healing in
animal models. Specifically, decreasing 5-lipoxygenase (5-LO) activity
during fracture healing increases cyclooxygenase-2 (COX-2) expression
in the fracture callus, accelerates chondrogenesis and decreases
healing time. In this study, we test the hypothesis that 5-LO inhibition
will increase direct osteogenesis. Methods Bilateral, unicortical femoral defects were used in rats to measure
the effects of local 5-LO inhibition on direct osteogenesis. The
defect sites were filled with a polycaprolactone (PCL) scaffold
containing 5-LO inhibitor (A-79175) at three dose levels, scaffold
with drug carrier, or scaffold only. Drug release was assessed in
vitro. Osteogenesis was assessed by micro-CT and histology
at two endpoints of ten and 30 days. Results Using micro-CT, we found that A-79175, a 5-LO inhibitor, increased
bone formation in an apparent dose-related manner. Conclusions These results indicate that 5-LO inhibition could be used therapeutically
to enhance treatments that require the direct formation of bone.
Collapse
Affiliation(s)
- J A Cottrell
- University of Medicine and Dentistry of New Jersey, New Jersey Medical School, Department of Biochemistry & Molecular Biology, Newark, New Jersey, USA
| | | | | | | |
Collapse
|
37
|
Design and synthesis of novel bone-targeting dual-action pro-drugs for the treatment and reversal of osteoporosis. Bioorg Med Chem 2012; 20:2131-40. [DOI: 10.1016/j.bmc.2012.01.024] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2011] [Revised: 01/08/2012] [Accepted: 01/16/2012] [Indexed: 11/24/2022]
|
38
|
Shibata-Nozaki T, Ito H, Mitomi H, Akaogi J, Komagata T, Kanaji T, Maruyama T, Mori T, Nomoto S, Ozaki S, Yamada H. Endogenous prostaglandin E2 inhibits aberrant overgrowth of rheumatoid synovial tissue and the development of osteoclast activity through EP4 receptor. ACTA ACUST UNITED AC 2011; 63:2595-605. [PMID: 21898865 DOI: 10.1002/art.30428] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
OBJECTIVE We recently developed an ex vivo cellular model of pannus, the aberrant overgrowth of human synovial tissue. This study was undertaken to use that model to investigate the role of prostaglandin E2 (PGE2) and its receptor subtypes in the development of pannus growth and osteoclast activity in rheumatoid arthritis (RA). METHODS Inflammatory cells that infiltrated pannus from patients with RA were collected without enzyme digestion and designated synovial tissue-derived inflammatory cells. Their single-cell suspensions were cultured in medium alone to observe an aberrant overgrowth of inflammatory tissue in vitro. Levels of cytokines produced in culture supernatants were measured using enzyme-linked immunosorbent assay kits. Osteoclast activity was assessed by the development of resorption pits in calcium phosphate-coated slides. RESULTS Primary culture of the synovial tissue-derived inflammatory cells resulted in spontaneous reconstruction of inflammatory tissue in vitro within 4 weeks, during which tumor necrosis factor α, PGE2, macrophage colony-stimulating factor, and matrix metalloproteinase 9 were produced in the supernatant. This aberrant overgrowth was inhibited by antirheumatic drugs including methotrexate and infliximab. On calcium phosphate-coated slides, synovial tissue-derived inflammatory cells showed numerous resorption pits. In the presence of inhibitors of endogenous prostanoid production such as indomethacin and NS398, exogenous PGE1 and EP4-specific agonists significantly inhibited all these activities of synovial tissue-derived inflammatory cells in a dose-dependent manner. Addition of indomethacin, NS398, or EP4-specific antagonist resulted in the enhancement of these cells' activities. EP2-specific agonist had a partial effect, while EP1- and EP3-specific agonists had no significant effects. CONCLUSION These results suggest that endogenous PGE2 produced in rheumatoid synovium negatively regulates aberrant synovial overgrowth and the development of osteoclast activity via EP4.
Collapse
Affiliation(s)
- Toshiko Shibata-Nozaki
- Department of Internal Medicine, St. Marianna University School of Medicine, Kawasaki, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Rego EB, Inubushi T, Kawazoe A, Miyauchi M, Tanaka E, Takata T, Tanne K. Effect of PGE2 induced by compressive and tensile stresses on cementoblast differentiation in vitro. Arch Oral Biol 2011; 56:1238-46. [DOI: 10.1016/j.archoralbio.2011.05.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2011] [Revised: 05/17/2011] [Accepted: 05/17/2011] [Indexed: 12/12/2022]
|
40
|
Chang Y, Zhang L, Wang C, Jia XY, Wei W. Paeoniflorin inhibits function of synoviocytes pretreated by rIL-1α and regulates EP4 receptor expression. JOURNAL OF ETHNOPHARMACOLOGY 2011; 137:1275-1282. [PMID: 21840386 DOI: 10.1016/j.jep.2011.07.057] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2011] [Revised: 07/04/2011] [Accepted: 07/28/2011] [Indexed: 05/31/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE To investigate the effect of the Paeoniflorin (Pae), a main active component of total glucosides of paeony (TGP) extracted from the root of Paeonia lactiflora, on regulation of synoviocytes cultured from rats collagen-induced arthritis (CIA) in vitro. MATERIALS AND METHODS CIA was induced in male Sprague-Dawley rats immunized with chicken type II collagen (CCII) in Freund's complete adjuvant. The levels of interleukin-1 (IL-1), tumor necrosis factor α (TNF-α), prostaglandin E(2) (PGE(2)) and cyclic adenosine monophosphate (cAMP) were measured by radioimmunoassay. The proliferation responses was determined by the 3-(4,5-2dimethylthiazal-2yl) 2,5-diphenyltetrazoliumbromide (MTT) assay. Expression of E-prostanoid (EP(4)) receptor was detected by Western blotting technique. RESULTS Treatment of Pae (2.5, 12.5, 62.5 μg/ml) significantly decreased the production of IL-1 and TNF-α. Recombinant interleukin-1 (rIL-1α) (10 ng/ml) apparently stimulated synoviocyte, thymocyte and splenocyte proliferation, and Pae (12.5, 62.5 μg/ml) inhibited abnormal proliferation responses stimulated by rIL-1α. Moreover, rIL-1α time- and concentration-dependently increased production of PGE(2). The production of PGE(2) produced by synoviocytes from CIA rats significantly inhibited by administration of Pae (12.5, 62.5 μg/ml). rIL-1α (10 ng/ml) decreased cAMP of synoviocytes cells treated for 24h. Similarly rIL-1α (0.1, 1, 10 ng/ml) induced a concentration-dependent decrease in the production of cAMP at 24h. Pae (12.5, 62.5 μg/ml) increased the production of cAMP in synoviocytes. The immunoblot, Pae (12.5, 62.5 μg/ml) apparently increased the expression of EP(4) receptor in synoviocytes stimulated by rIL-1α (10 ng/ml). CONCLUSIONS The present study indicates that Pae might exert its anti-inflammatory effects through suppressing synoviocytes function and regulating immune cells responses in CIA rats, which might be associated with its ability to up-regulate the E-prostanoid (EP(4)) receptor protein expression and modulate intracellular cAMP level.
Collapse
MESH Headings
- Animals
- Anti-Inflammatory Agents/pharmacology
- Arthritis, Experimental/chemically induced
- Arthritis, Experimental/drug therapy
- Arthritis, Experimental/immunology
- Arthritis, Experimental/metabolism
- Arthritis, Experimental/pathology
- Benzoates/pharmacology
- Blotting, Western
- Bridged-Ring Compounds/pharmacology
- Cell Proliferation/drug effects
- Cells, Cultured
- Collagen Type II
- Cyclic AMP/metabolism
- Dinoprostone/metabolism
- Dose-Response Relationship, Drug
- Glucosides/pharmacology
- Interleukin-1alpha/metabolism
- Male
- Monoterpenes
- Radioimmunoassay
- Rats
- Rats, Sprague-Dawley
- Receptors, Prostaglandin E, EP4 Subtype/drug effects
- Receptors, Prostaglandin E, EP4 Subtype/metabolism
- Recombinant Proteins/metabolism
- Spleen/drug effects
- Spleen/immunology
- Synovial Membrane/drug effects
- Synovial Membrane/immunology
- Synovial Membrane/metabolism
- Synovial Membrane/pathology
- Thymocytes/drug effects
- Thymocytes/immunology
- Time Factors
- Tumor Necrosis Factor-alpha/metabolism
- Up-Regulation
Collapse
Affiliation(s)
- Yan Chang
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immunopharmacology of Education Ministry, Meishan Road, Hefei 230032, Anhui Province, China.
| | | | | | | | | |
Collapse
|
41
|
Woodward DF, Jones RL, Narumiya S. International Union of Basic and Clinical Pharmacology. LXXXIII: classification of prostanoid receptors, updating 15 years of progress. Pharmacol Rev 2011; 63:471-538. [PMID: 21752876 DOI: 10.1124/pr.110.003517] [Citation(s) in RCA: 332] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
It is now more than 15 years since the molecular structures of the major prostanoid receptors were elucidated. Since then, substantial progress has been achieved with respect to distribution and function, signal transduction mechanisms, and the design of agonists and antagonists (http://www.iuphar-db.org/DATABASE/FamilyIntroductionForward?familyId=58). This review systematically details these advances. More recent developments in prostanoid receptor research are included. The DP(2) receptor, also termed CRTH2, has little structural resemblance to DP(1) and other receptors described in the original prostanoid receptor classification. DP(2) receptors are more closely related to chemoattractant receptors. Prostanoid receptors have also been found to heterodimerize with other prostanoid receptor subtypes and nonprostanoids. This may extend signal transduction pathways and create new ligand recognition sites: prostacyclin/thromboxane A(2) heterodimeric receptors for 8-epi-prostaglandin E(2), wild-type/alternative (alt4) heterodimers for the prostaglandin FP receptor for bimatoprost and the prostamides. It is anticipated that the 15 years of research progress described herein will lead to novel therapeutic entities.
Collapse
Affiliation(s)
- D F Woodward
- Dept. of Biological Sciences RD3-2B, Allergan, Inc., 2525 Dupont Dr., Irvine, CA 92612, USA.
| | | | | |
Collapse
|
42
|
Sharan K, Mishra JS, Swarnkar G, Siddiqui JA, Khan K, Kumari R, Rawat P, Maurya R, Sanyal S, Chattopadhyay N. A novel quercetin analogue from a medicinal plant promotes peak bone mass achievement and bone healing after injury and exerts an anabolic effect on osteoporotic bone: the role of aryl hydrocarbon receptor as a mediator of osteogenic action. J Bone Miner Res 2011; 26:2096-111. [PMID: 21638315 DOI: 10.1002/jbmr.434] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
We recently reported that extracts made from the stem bark of Ulmus wallichiana promoted peak bone mass achievement in growing rats and preserved trabecular bone mass and cortical bone strength in ovariectomized (OVX) rats. Further, 6-C-β-D-glucopyranosyl-(2S,3S)-(+)-3',4',5,7-tetrahydroxyflavanol (GTDF), a novel flavonol-C-glucoside isolated from the extracts, had a nonestrogenic bone-sparing effect on OVX rats. Here we studied the effects of GTDF on osteoblast function and its mode of action and in vivo osteogenic effect. GTDF stimulated osteoblast proliferation, survival, and differentiation but had no effect on osteoclastic or adipocytic differentiation. In cultured osteoblasts, GTDF transactivated the aryl hydrocarbon receptor (AhR). Activation of AhR mediated the stimulatory effect of GTDF on osteoblast proliferation and differentiation. Furthermore, GTDF stimulated cAMP production, which mediated osteogenic gene expression. GTDF treatments given to 1- to 2-day-old rats or adult rats increased the mRNA levels of AhR target genes in calvaria or bone marrow stromal cells. In growing female rats, GTDF promoted parameters of peak bone accrual in the appendicular skeleton, including increased longitudinal growth, bone mineral density, bone-formation rate (BFR), cortical deposition, and bone strength. GTDF promoted the process of providing newly generated bone to fill drill holes in the femurs of both estrogen-sufficient and -deficient rats. In osteopenic OVX rats, GTDF increased BFR and significantly restored trabecular bone compared with the ovaries-intact group. Together our data suggest that GTDF stimulates osteoblast growth and differentiation via the AhR and promotes modeling-directed bone accrual, accelerates bone healing after injury, and exerts anabolic effects on osteopenic rats likely by a direct stimulatory effect on osteoprogenitors. Based on these preclinical data, clinical evaluation of GTDF as a potential bone anabolic agent is warranted.
Collapse
Affiliation(s)
- Kunal Sharan
- Division of Endocrinology, CSIR-Central Drug Research Institute, Lucknow, India
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Mountziaris PM, Spicer PP, Kasper FK, Mikos AG. Harnessing and modulating inflammation in strategies for bone regeneration. TISSUE ENGINEERING PART B-REVIEWS 2011; 17:393-402. [PMID: 21615330 DOI: 10.1089/ten.teb.2011.0182] [Citation(s) in RCA: 163] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Inflammation is an immediate response that plays a critical role in healing after fracture or injury to bone. However, in certain clinical contexts, such as in inflammatory diseases or in response to the implantation of a biomedical device, the inflammatory response may become chronic and result in destructive catabolic effects on the bone tissue. Since our previous review 3 years ago, which identified inflammatory signals critical for bone regeneration and described the inhibitory effects of anti-inflammatory agents on bone healing, a multitude of studies have been published exploring various aspects of this emerging field. In this review, we distinguish between regenerative and damaging inflammatory processes in bone, update our discussion of the effects of anti-inflammatory agents on bone healing, summarize recent in vitro and in vivo studies demonstrating how inflammation can be modulated to stimulate bone regeneration, and identify key future directions in the field.
Collapse
|
44
|
Phosphatidylserine-Containing Liposomes: Potential Pharmacological Interventions Against Inflammatory and Immune Diseases Through the Production of Prostaglandin E2 After Uptake by Myeloid Derived Phagocytes. Arch Immunol Ther Exp (Warsz) 2011; 59:195-201. [DOI: 10.1007/s00005-011-0123-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2010] [Accepted: 11/05/2010] [Indexed: 10/18/2022]
|
45
|
Ishimoto T, Nakano T, Yamamoto M, Tabata Y. Biomechanical evaluation of regenerating long bone by nanoindentation. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2011; 22:969-976. [PMID: 21360120 DOI: 10.1007/s10856-011-4266-y] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2010] [Accepted: 02/17/2011] [Indexed: 05/30/2023]
Abstract
It is crucial to measure the mechanical function of regenerating bone in order to assess the mechanical performance of the regenerating portion as well as the efficiency of the regeneration methods. In this study, nanoindentation was applied to regenerating and intact rabbit ulnae to determine the material properties of hardness and elasticity; viscoelasticity was also investigated to precisely evaluate the material properties. Both intact and regenerating bones exhibited remarkable viscoelasticity manifested as a creep behavior during load hold at the maximum load, and the creep was significantly greater in the regenerating bone than the intact bone. The creep resulted in an overestimation of the hardness and Young's modulus. Hence, during nanoindentation testing of bones, the effect of creep should be eliminated. Moreover, the regenerating bone had lower hardness and Young's modulus than the intact bone. The nanoindentation technique proved to be a powerful approach for understanding the mechanical properties of regenerating bone.
Collapse
Affiliation(s)
- Takuya Ishimoto
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Suita, Osaka 565-0871, Japan
| | | | | | | |
Collapse
|
46
|
Zhang M, Ho HC, Sheu TJ, Breyer MD, Flick LM, Jonason JH, Awad HA, Schwarz EM, O'Keefe RJ. EP1(-/-) mice have enhanced osteoblast differentiation and accelerated fracture repair. J Bone Miner Res 2011; 26:792-802. [PMID: 20939055 PMCID: PMC3179328 DOI: 10.1002/jbmr.272] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
As a downstream product of cyclooxygenase 2 (COX-2), prostaglandin E(2) (PGE(2)) plays a crucial role in the regulation of bone formation. It has four different receptor subtypes (EP1 through EP4), each of which exerts different effects in bone. EP2 and EP4 induce bone formation through the protein kinase A (PKA) pathway, whereas EP3 inhibits bone formation in vitro. However, the effect of EP1 receptor signaling during bone formation remains unclear. Closed, stabilized femoral fractures were created in mice with EP1 receptor loss of function at 10 weeks of age. Healing was evaluated by radiographic imaging, histology, gene expression studies, micro-computed tomographic (µCT), and biomechanical measures. EP1(-/-) mouse fractures have increased formation of cartilage, increased fracture callus, and more rapid completion of endochondral ossification. The fractures heal faster and with earlier fracture callus mineralization with an altered expression of genes involved in bone repair and remodeling. Fractures in EP1(-/-) mice also had an earlier appearance of tartrate-resistant acid phosphatase (TRAcP)-positive osteoclasts, accelerated bone remodeling, and an earlier return to normal bone morphometry. EP1(-/-) mesenchymal progenitor cells isolated from bone marrow have higher osteoblast differentiation capacity and accelerated bone nodule formation and mineralization in vitro. Loss of the EP1 receptor did not affect EP2 or EP4 signaling, suggesting that EP1 and its downstream signaling targets directly regulate fracture healing. We show that unlike the PGE(2) receptors EP2 and EP4, the EP1 receptor is a negative regulator that acts at multiple stages of the fracture healing process. Inhibition of EP1 signaling is a potential means to enhance fracture healing.
Collapse
Affiliation(s)
- Minjie Zhang
- Center for Musculoskeletal Research, University of Rochester, Rochester, NY, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Kamolratanakul P, Hayata T, Ezura Y, Kawamata A, Hayashi C, Yamamoto Y, Hemmi H, Nagao M, Hanyu R, Notomi T, Nakamoto T, Amagasa T, Akiyoshi K, Noda M. Nanogel-based scaffold delivery of prostaglandin E2 receptor-specific agonist in combination with a low dose of growth factor heals critical-size bone defects in mice. ACTA ACUST UNITED AC 2011; 63:1021-33. [DOI: 10.1002/art.30151] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
48
|
Abstract
BACKGROUND AND PURPOSE Cyclooxygenase-2 (COX-2) promotes inflammation by synthesizing pro-inflammatory prostaglandins from arachidonic acid. Inflammation is an early response to bone fracture, and ablation of COX-2 activity impairs fracture healing. Arachidonic acid is also converted into leukotrienes by 5-lipoxygenase (5-LO). We hypothesized that 5-LO is a negative regulator of fracture healing and that in the absence of COX-2, excess leukotrienes synthesized by 5-LO will impair fracture healing. METHODS Fracture healing was assessed in mice with a targeted 5-LO mutation (5-LO(KO) mice) and control mice by radiographic and histological observations, and measured by histomorphometry and torsional mechanical testing. To assess effects on arachidonic acid metabolism, prostaglandin E2, F2α, and leukotriene B4 levels were measured in the fracture calluses of control, 5-LO(KO) COX-1(KO), and COX-2(KO) mice by enzyme linked immunoassays. RESULTS Femur fractures in 5-LO(KO) mice rapidly developed a cartilaginous callus that was replaced with bone to heal fractures faster than in control mice. Femurs from 5-LO(KO) mice had substantially better mechanical properties after 1 month of healing than did control mice. Callus leukotriene levels were 4-fold higher in mice homozygous for a targeted mutation in the COX-2 gene (COX-2(KO)), which indicated that arachidonic acid was shunted into the 5-LO pathway in the absence of COX-2. INTERPRETATION These experiments show that 5-LO negatively regulates fracture healing and that shunting of arachidonic acid into the 5-LO pathway may account, at least in part, for the impaired fracture healing response observed in COX-2(KO) mice.
Collapse
Affiliation(s)
- Michaele B Manigrasso
- Department of Biochemistry and Molecular Biology, UMDNJ-New Jersey Medical School and Graduate School of Biological Sciences, Newark, NJ, USA
| | - J Patrick O'Connor
- Department of Biochemistry and Molecular Biology, UMDNJ-New Jersey Medical School and Graduate School of Biological Sciences, Newark, NJ, USA
| |
Collapse
|
49
|
Tanaka K, Tanaka S, Sakai A, Ninomiya T, Arai Y, Nakamura T. Deficiency of vitamin A delays bone healing process in association with reduced BMP2 expression after drill-hole injury in mice. Bone 2010; 47:1006-12. [PMID: 20807599 DOI: 10.1016/j.bone.2010.08.016] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2010] [Revised: 07/12/2010] [Accepted: 08/25/2010] [Indexed: 12/12/2022]
Abstract
Although it is predicted that vitamin A and its active form, retinoic acid, regulate osteoblast lineage, this has not been elucidated in growing mammalians. To clarify the direct effect of retinoic acid on bone, we observed the process of filling up newly generating bone into a drill-hole of the bone, which is understood as membranous ossification, in vitamin A-deficient mice. Mice were assigned to three groups: a vitamin A-deficient group (VAD), which was fed a diet without vitamin A from the 10th day of gestation to the end of the experiments; a vitamin A-deficient-sufficient group (VADS), which was fed a diet without vitamin A from the 10th day of gestation to 4 weeks of age; and a vitamin A-sufficient group (VAS), which was fed a standard diet to the end of the experiment. In mice at 10 weeks of age (day 0), a drill-hole injury was made with a diameter of 1mm at the anterior portion of the diaphysis of the bilateral femurs. In VAD, retardation in repairing the drill-hole was demonstrated by in vivo micro-CT and histomorphometry from day 7 and after surgery. During repair of the bone defect, increases of bmp2, dlx5, msx2, col1a1, and osteocalcin mRNA expression were suppressed, and runx2-p2 mRNA expression was accelerated in VAD. Implantation of BMP2 in the bone defect of VAD normalized the delayed bone healing and mRNA expressions. We concluded that vitamin A regulates bmp2 mRNA expression and plays a crucial role in osteoblastogenesis and bone formation.
Collapse
Affiliation(s)
- Kazuhiro Tanaka
- Department of Orthopaedic Surgery, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu 807-8555, Japan.
| | | | | | | | | | | |
Collapse
|
50
|
Rego EB, Inubushi T, Kawazoe A, Tanimoto K, Miyauchi M, Tanaka E, Takata T, Tanne K. Ultrasound stimulation induces PGE(2) synthesis promoting cementoblastic differentiation through EP2/EP4 receptor pathway. ULTRASOUND IN MEDICINE & BIOLOGY 2010; 36:907-915. [PMID: 20447753 DOI: 10.1016/j.ultrasmedbio.2010.03.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2009] [Revised: 02/25/2010] [Accepted: 03/10/2010] [Indexed: 05/29/2023]
Abstract
The present study aims to provide insights into how ultrasound treatment (US) can affect the regenerative response of cementum by evaluating the role of prostaglandin E(2) induced by ultrasound stimulation on cementoblastic differentiation. The mouse cementoblast cell line OCCM-30 was exposed to low-intensity ultrasound and the cyclooxygenase-2 (COX-2) mRNA expression and prostaglandin E(2) (PGE(2)) production were quantified. The role of the US-induced PGE(2) in mineralization was examined using COX-2 inhibitor and prostaglandin receptors (EP-receptors) agonists and antagonists. In addition, gene expression of differentiation markers related to mineral metabolism was evaluated. Ultrasound significantly enhanced COX-2 mRNA expression and PGE(2) production. PGE(2) induced by US mediated mineral nodule formation, whereas COX-2 inhibitor treatment eliminated the enhancement of mineralization induced by US stimulation. Mineral deposition was also inhibited by treatment with EP2 or EP4 antagonist. Moreover, up-regulation of differentiation markers induced by US was suppressed by treatment with COX-2 inhibitor. The present findings provide evidence that US stimulation has a positive effect on mineralization ability of cementoblasts through the activation of EP2/EP4 pathway, suggesting that US can be a promising therapeutic tool for cementum repair.
Collapse
Affiliation(s)
- Emanuel Braga Rego
- Department of Orthodontics and Craniofacial Developmental Biology, Hiroshima University Graduate School of Biomedical Sciences, Hiroshima, Japan.
| | | | | | | | | | | | | | | |
Collapse
|