1
|
Wu M, Wu S, Chen W, Li YP. The roles and regulatory mechanisms of TGF-β and BMP signaling in bone and cartilage development, homeostasis and disease. Cell Res 2024; 34:101-123. [PMID: 38267638 PMCID: PMC10837209 DOI: 10.1038/s41422-023-00918-9] [Citation(s) in RCA: 98] [Impact Index Per Article: 98.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Accepted: 12/15/2023] [Indexed: 01/26/2024] Open
Abstract
Transforming growth factor-βs (TGF-βs) and bone morphometric proteins (BMPs) belong to the TGF-β superfamily and perform essential functions during osteoblast and chondrocyte lineage commitment and differentiation, skeletal development, and homeostasis. TGF-βs and BMPs transduce signals through SMAD-dependent and -independent pathways; specifically, they recruit different receptor heterotetramers and R-Smad complexes, resulting in unique biological readouts. BMPs promote osteogenesis, osteoclastogenesis, and chondrogenesis at all differentiation stages, while TGF-βs play different roles in a stage-dependent manner. BMPs and TGF-β have opposite functions in articular cartilage homeostasis. Moreover, TGF-β has a specific role in maintaining the osteocyte network. The precise activation of BMP and TGF-β signaling requires regulatory machinery at multiple levels, including latency control in the matrix, extracellular antagonists, ubiquitination and phosphorylation in the cytoplasm, nucleus-cytoplasm transportation, and transcriptional co-regulation in the nuclei. This review weaves the background information with the latest advances in the signaling facilitated by TGF-βs and BMPs, and the advanced understanding of their diverse physiological functions and regulations. This review also summarizes the human diseases and mouse models associated with disordered TGF-β and BMP signaling. A more precise understanding of the BMP and TGF-β signaling could facilitate the development of bona fide clinical applications in treating bone and cartilage disorders.
Collapse
Affiliation(s)
- Mengrui Wu
- Department of Cell and Developmental Biology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China.
| | - Shali Wu
- Department of Cell and Developmental Biology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Wei Chen
- Division in Cellular and Molecular Medicine, Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, Tulane University, New Orleans, LA, USA
| | - Yi-Ping Li
- Division in Cellular and Molecular Medicine, Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, Tulane University, New Orleans, LA, USA.
| |
Collapse
|
2
|
Suzuki E, Fukuda T. Multifaceted Functions of TWSG1: From Embryogenesis to Cancer Development. Int J Mol Sci 2022; 23:12755. [PMID: 36361543 PMCID: PMC9657663 DOI: 10.3390/ijms232112755] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/11/2022] [Accepted: 10/20/2022] [Indexed: 01/21/2024] Open
Abstract
Bone morphogenetic proteins (BMPs) play an important role in development. Twisted gastrulation BMP signaling modulator 1 (TWSG1) was initially identified as a regulator of the dorsoventral axis formation in Drosophila. The mechanism of BMP signaling modulation by TWSG1 is complex. TWSG1 inhibits BMP signaling by binding to BMP ligands including BMP4, whereas it enhances signaling by interacting with Chordin, a BMP antagonist. Therefore, TWSG1 can act as both a BMP agonist and antagonist. TWSG1 has various functions ranging from embryogenesis to cancer progression. TWSG1 knockout mice showed neural, craniofacial, and mammary defects. TWSG1 also regulated erythropoiesis and thymocyte development. Furthermore, the relationship between TWSG1 and cancer has been elucidated. Allelic loss of TWSG1 was detected in colorectal cancer. TWSG1 expression was upregulated in papillary thyroid carcinoma and glioblastoma but downregulated in gastric and endometrial cancers. TWSG1 suppressed BMP7-enhanced sphere formation and migration in endometrial cancer cells, indicating its tumor-suppressive role. Further studies are required to clarify the TWSG1 function and its association with BMP signaling in cancer development. Finally, TWSG1 is abundantly expressed in human and mouse ovaries and sustains follicular growth in rodent ovaries. Thus, TWSG1 has various functions ranging from fertility to cancer. Therefore, TWSG1 signaling modulation may be beneficial in treating specific diseases such as cancer.
Collapse
Affiliation(s)
| | - Tomohiko Fukuda
- Department of Obstetrics and Gynecology, The University of Tokyo Hospital, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-8655, Japan
| |
Collapse
|
3
|
BMP Signaling Pathway in Dentin Development and Diseases. Cells 2022; 11:cells11142216. [PMID: 35883659 PMCID: PMC9317121 DOI: 10.3390/cells11142216] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 07/08/2022] [Accepted: 07/12/2022] [Indexed: 12/27/2022] Open
Abstract
BMP signaling plays an important role in dentin development. BMPs and antagonists regulate odontoblast differentiation and downstream gene expression via canonical Smad and non-canonical Smad signaling pathways. The interaction of BMPs with their receptors leads to the formation of complexes and the transduction of signals to the canonical Smad signaling pathway (for example, BMP ligands, receptors, and Smads) and the non-canonical Smad signaling pathway (for example, MAPKs, p38, Erk, JNK, and PI3K/Akt) to regulate dental mesenchymal stem cell/progenitor proliferation and differentiation during dentin development and homeostasis. Both the canonical Smad and non-canonical Smad signaling pathways converge at transcription factors, such as Dlx3, Osx, Runx2, and others, to promote the differentiation of dental pulp mesenchymal cells into odontoblasts and downregulated gene expressions, such as those of DSPP and DMP1. Dysregulated BMP signaling causes a number of tooth disorders in humans. Mutation or knockout of BMP signaling-associated genes in mice results in dentin defects which enable a better understanding of the BMP signaling networks underlying odontoblast differentiation and dentin formation. This review summarizes the recent advances in our understanding of BMP signaling in odontoblast differentiation and dentin formation. It includes discussion of the expression of BMPs, their receptors, and the implicated downstream genes during dentinogenesis. In addition, the structures of BMPs, BMP receptors, antagonists, and dysregulation of BMP signaling pathways associated with dentin defects are described.
Collapse
|
4
|
Karagianni A, Matsuura S, Gerstenfeld LC, Ravid K. Inhibition of Osteoblast Differentiation by JAK2V617F Megakaryocytes Derived From Male Mice With Primary Myelofibrosis. Front Oncol 2022; 12:929498. [PMID: 35880162 PMCID: PMC9307716 DOI: 10.3389/fonc.2022.929498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 06/09/2022] [Indexed: 11/16/2022] Open
Abstract
Past studies described interactions between normal megakaryocytes, the platelet precursors, and bone cell precursors in the bone marrow. This relationship has also been studied in context of various mutations associated with increased number of megakaryocytes. The current study is the first to examine the effects of megakaryocytes from transgenic mice carrying the most common mutation that causes primary myelofibrosis (PMF) in humans (JAK2V617F) on bone cell differentiation. Organ level assessments of mice using micro-computed tomography showed decreased bone volume in JAK2V617F males, compared to matching controls. Tissue level histology revealed increased deposition of osteoid (bone matrix prior mineralization) in these mutated mice, suggesting an effect on osteoblast differentiation. Mechanistic studies using a megakaryocyte-osteoblast co-culture system, showed that both wild type or JAK2V617F megakaryocytes derived from male mice inhibited osteoblast differentiation, but JAK2V617F cells exerted a more significant inhibitory effect. A mouse mRNA osteogenesis array showed increased expression of Noggin, Chordin, Alpha-2-HS-glycoprotein, Collagen type IV alpha 1 and Collagen type XIV alpha 1 (mostly known to inhibit bone differentiation), and decreased expression of alkaline phosphatase, Vascular cell adhesion molecule 1, Sclerostin, Distal-less homeobox 5 and Collagen type III alpha 1 (associated with osteogenesis) in JAK2V617F megakaryocytes, compared to controls. This suggested that the mutation re-programs megakaryocytes to express a cluster of genes, which together could orchestrate greater suppression of osteogenesis in male mice. These findings provide mechanistic insight into the effect of JAK2V617F mutation on bone, encouraging future examination of patients with this or other PMF-inducing mutations.
Collapse
Affiliation(s)
- Aikaterini Karagianni
- Department of Internal Medicine, University of Crete, School of Medicine, Heraklion, Greece
- Department of Medicine, Whitaker Cardiovascular Research Institute, Boston University School of Medicine, Boston, MA, United States
| | - Shinobu Matsuura
- Department of Medicine, Whitaker Cardiovascular Research Institute, Boston University School of Medicine, Boston, MA, United States
| | - Louis C. Gerstenfeld
- Department of Orthopaedic Surgery, Boston University School of Medicine, Boston, MA, United States
| | - Katya Ravid
- Department of Medicine, Whitaker Cardiovascular Research Institute, Boston University School of Medicine, Boston, MA, United States
- *Correspondence: Katya Ravid,
| |
Collapse
|
5
|
Cao Z, Shi H, Hu L, Zhang K, Zhang X, Pan J. Yes-associated protein promotes bone healing after tooth extraction in mice. Biochem Biophys Res Commun 2022; 609:39-47. [DOI: 10.1016/j.bbrc.2022.03.116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 03/20/2022] [Accepted: 03/22/2022] [Indexed: 11/02/2022]
|
6
|
Zhang J, Xu S, Zhang Y, Zou S, Li X. Effects of equibiaxial mechanical stretch on extracellular matrix-related gene expression in human calvarial osteoblasts. Eur J Oral Sci 2018; 127:10-18. [PMID: 30474904 DOI: 10.1111/eos.12595] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Mechanical stretch commonly promotes craniofacial suture remodeling during interceptive orthodontics. The mechanical responses of osteoblasts in craniofacial sutures play a role in suture remodeling. Moreover, the extracellular matrix (ECM) produced by osteoblasts is crucial for the transduction of mechanical signals that promote cell differentiation. Therefore, we aimed to investigate the effect of mechanical stretch on cell viability and ECM-related gene-expression changes in human osteoblasts. Human calvarial osteoblasts (HCObs) were subjected to 2% deformation. Caspase activity, MTT, and cell viability assays were used to estimate osteoblast apoptosis, proliferation, and viability, respectively. Real-time RT-PCR (RT2 -PCR) arrays were used to assess expression of cytoskeletal-, apoptosis-, osteogenesis-, and ECM-related genes. We found that mechanical stretch significantly increased osteoblast viability and cell proliferation, and decreased the activities of caspases 3 and 7. Moreover, the expression of 18 genes related to osteoblast differentiation, apoptosis, and ECM remodeling changed by more than two-fold in a time-dependent manner. Therefore, mechanical stretch promotes HCOb viability and alters expression of genes that are closely related to suture remodeling under mechanical stretch.
Collapse
Affiliation(s)
- Jiawei Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Shuhao Xu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yanggen Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Shujuan Zou
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xiaobing Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
7
|
Abstract
The discovery of the transforming growth factor β (TGF-β) family ligands and the realization that their bioactivities need to be tightly controlled temporally and spatially led to intensive research that has identified a multitude of extracellular modulators of TGF-β family ligands, uncovered their functions in developmental and pathophysiological processes, defined the mechanisms of their activities, and explored potential modulator-based therapeutic applications in treating human diseases. These studies revealed a diverse repertoire of extracellular and membrane-associated molecules that are capable of modulating TGF-β family signals via control of ligand availability, processing, ligand-receptor interaction, and receptor activation. These molecules include not only soluble ligand-binding proteins that were conventionally considered as agonists and antagonists of TGF-β family of growth factors, but also extracellular matrix (ECM) proteins and proteoglycans that can serve as "sink" and control storage and release of both the TGF-β family ligands and their regulators. This extensive network of soluble and ECM modulators helps to ensure dynamic and cell-specific control of TGF-β family signals. This article reviews our knowledge of extracellular modulation of TGF-β growth factors by diverse proteins and their molecular mechanisms to regulate TGF-β family signaling.
Collapse
Affiliation(s)
- Chenbei Chang
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama 35294
| |
Collapse
|
8
|
Wu M, Chen G, Li YP. TGF-β and BMP signaling in osteoblast, skeletal development, and bone formation, homeostasis and disease. Bone Res 2016; 4:16009. [PMID: 27563484 PMCID: PMC4985055 DOI: 10.1038/boneres.2016.9] [Citation(s) in RCA: 1145] [Impact Index Per Article: 127.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Revised: 03/04/2016] [Accepted: 03/07/2016] [Indexed: 12/11/2022] Open
Abstract
Transforming growth factor-beta (TGF-β) and bone morphogenic protein (BMP) signaling has fundamental roles in both embryonic skeletal development and postnatal bone homeostasis. TGF-βs and BMPs, acting on a tetrameric receptor complex, transduce signals to both the canonical Smad-dependent signaling pathway (that is, TGF-β/BMP ligands, receptors, and Smads) and the non-canonical-Smad-independent signaling pathway (that is, p38 mitogen-activated protein kinase/p38 MAPK) to regulate mesenchymal stem cell differentiation during skeletal development, bone formation and bone homeostasis. Both the Smad and p38 MAPK signaling pathways converge at transcription factors, for example, Runx2 to promote osteoblast differentiation and chondrocyte differentiation from mesenchymal precursor cells. TGF-β and BMP signaling is controlled by multiple factors, including the ubiquitin–proteasome system, epigenetic factors, and microRNA. Dysregulated TGF-β and BMP signaling result in a number of bone disorders in humans. Knockout or mutation of TGF-β and BMP signaling-related genes in mice leads to bone abnormalities of varying severity, which enable a better understanding of TGF-β/BMP signaling in bone and the signaling networks underlying osteoblast differentiation and bone formation. There is also crosstalk between TGF-β/BMP signaling and several critical cytokines’ signaling pathways (for example, Wnt, Hedgehog, Notch, PTHrP, and FGF) to coordinate osteogenesis, skeletal development, and bone homeostasis. This review summarizes the recent advances in our understanding of TGF-β/BMP signaling in osteoblast differentiation, chondrocyte differentiation, skeletal development, cartilage formation, bone formation, bone homeostasis, and related human bone diseases caused by the disruption of TGF-β/BMP signaling.
Collapse
Affiliation(s)
- Mengrui Wu
- Department of Pathology, University of Alabama at Birmingham , Birmingham, USA
| | - Guiqian Chen
- Department of Pathology, University of Alabama at Birmingham, Birmingham, USA; Department of neurology, Bruke Medical Research Institute, Weil Cornell Medicine of Cornell University, White Plains, USA
| | - Yi-Ping Li
- Department of Pathology, University of Alabama at Birmingham , Birmingham, USA
| |
Collapse
|
9
|
Billington CJ, Schmidt B, Marcucio RS, Hallgrimsson B, Gopalakrishnan R, Petryk A. Impact of retinoic acid exposure on midfacial shape variation and manifestation of holoprosencephaly in Twsg1 mutant mice. Dis Model Mech 2014; 8:139-46. [PMID: 25468951 PMCID: PMC4314779 DOI: 10.1242/dmm.018275] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Holoprosencephaly (HPE) is a developmental anomaly characterized by inadequate or absent midline division of the embryonic forebrain and midline facial defects. It is believed that interactions between genes and the environment play a role in the widely variable penetrance and expressivity of HPE, although direct investigation of such effects has been limited. The goal of this study was to examine whether mice carrying a mutation in a gene encoding the bone morphogenetic protein (BMP) antagonist twisted gastrulation (Twsg1), which is associated with a low penetrance of HPE, are sensitized to retinoic acid (RA) teratogenesis. Pregnant Twsg1(+/-) dams were treated by gavage with a low dose of all-trans RA (3.75 mg/kg of body weight). Embryos were analyzed between embryonic day (E)9.5 and E11.5 by microscopy and geometric morphometric analysis by micro-computed tomography. P19 embryonal carcinoma cells were used to examine potential mechanisms mediating the combined effects of increased BMP and retinoid signaling. Although only 7% of wild-type embryos exposed to RA showed overt HPE or neural tube defects (NTDs), 100% of Twsg1(-/-) mutants exposed to RA manifested severe HPE compared to 17% without RA. Remarkably, up to 30% of Twsg1(+/-) mutants also showed HPE (23%) or NTDs (7%). The majority of shape variation among Twsg1(+/-) mutants was associated with narrowing of the midface. In P19 cells, RA induced the expression of Bmp2, acted in concert with BMP2 to increase p53 expression, caspase activation and oxidative stress. This study provides direct evidence for modifying effects of the environment in a genetic mouse model carrying a predisposing mutation for HPE in the Twsg1 gene. Further study of the mechanisms underlying these gene-environment interactions in vivo will contribute to better understanding of the pathogenesis of birth defects and present an opportunity to explore potential preventive interventions.
Collapse
Affiliation(s)
- Charles J Billington
- Department of Pediatrics, University of Minnesota, Minneapolis, MN 55454, USA. Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55454, USA
| | - Brian Schmidt
- Department of Pediatrics, University of Minnesota, Minneapolis, MN 55454, USA
| | - Ralph S Marcucio
- Department of Orthopedic Surgery, University of California, San Francisco, CA 94110, USA
| | - Benedikt Hallgrimsson
- Department of Cell Biology & Anatomy, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Rajaram Gopalakrishnan
- Diagnostic/Biological Sciences, School of Dentistry, University of Minnesota, Minneapolis, MN 55455, USA
| | - Anna Petryk
- Department of Pediatrics, University of Minnesota, Minneapolis, MN 55454, USA. Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55454, USA.
| |
Collapse
|
10
|
Schneider H, Sedaghati B, Naumann A, Hacker MC, Schulz-Siegmund M. Gene silencing of chordin improves BMP-2 effects on osteogenic differentiation of human adipose tissue-derived stromal cells. Tissue Eng Part A 2013; 20:335-45. [PMID: 23931154 DOI: 10.1089/ten.tea.2012.0563] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Although bone morphogenic protein (BMP)-2 is known to potently induce osteogenic differentiation of human mesenchymal stem cells, strong individual differences have been reported. In part, this is due to internal antagonists of BMP-2 for example, noggin and chordin, secreted by differentiating cells. This enabling study was performed to prove the hypothesis that osteogenic effects of BMP-2 can be improved by transient nonviral gene silencing of chordin. We investigated the effect of siRNA against chordin on osteogenic differentiation in human adipose tissue-derived stromal cells (hASC). Cells of two different donors were isolated after liposuction and proliferated for passage 4 or 5. On seeding, hASCs were transfected with siRNA using a commercial liposomal transfection reagent. Subsequently, cells were differentiated in the presence or absence of BMP-2 (100 ng/mL). Noncoding siRNA as well as siRNA against noggin served as a control. Osteogenic differentiation of hASC was determined by alkaline phosphase (ALP) activity and matrix mineralization. ALP activity of hASC treated with siRNA against chordin was increased for cells of both donors. In contrast, silencing of noggin had no effect in any of the donors. In combination with BMP-2, silencing of either chordin or noggin showed strongly improved ALP activity compared with the control group that was also supplemented with BMP-2. Mineralization was observed to start earlier in groups that received siRNA against chordin or noggin and showed increased amounts of incorporated calcium on day 15 compared with the control groups. Silencing chordin in hASCs was successful to increase BMP-2 effects on osteogenic differentiation in both donors, while effects of noggin silencing were reliably observed only in one of the two investigated donors. In contrast to noggin silencing, chordin silencing also increased osteogenic differentiation without supplemented BMP-2.
Collapse
Affiliation(s)
- Hellen Schneider
- 1 Pharmaceutical Technology, Institute of Pharmacy, University of Leipzig , Leipzig, Germany
| | | | | | | | | |
Collapse
|
11
|
Hartig SM, Feng Q, Ochsner SA, Xiao R, McKenna NJ, McGuire SE, He B. Androgen receptor agonism promotes an osteogenic gene program in preadipocytes. Biochem Biophys Res Commun 2013; 434:357-62. [PMID: 23567971 DOI: 10.1016/j.bbrc.2013.03.078] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2013] [Accepted: 03/15/2013] [Indexed: 12/29/2022]
Abstract
Androgens regulate body composition by interacting with the androgen receptor (AR) to control gene expression in a tissue-specific manner. To identify novel regulatory roles for AR in preadipocytes, we created a 3T3-L1 cell line stably expressing human AR. We found AR expression is required for androgen-mediated inhibition of 3T3-L1 adipogenesis. This inhibition is characterized by decreased lipid accumulation, reduced expression of adipogenic genes, and induction of genes associated with osteoblast differentiation. Collectively, our results suggest androgens promote an osteogenic gene program at the expense of adipocyte differentiation.
Collapse
Affiliation(s)
- Sean M Hartig
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA.
| | | | | | | | | | | | | |
Collapse
|
12
|
Johnston J, Al-Bahrani R, Abuetabh Y, Chiu B, Forsman CL, Nagamori S, Leng R, Petryk A, Sergi C. Twisted gastrulation expression in cholangiocellular and hepatocellular carcinoma. J Clin Pathol 2012; 65:945-948. [PMID: 22639408 DOI: 10.1136/jclinpath-2011-200577] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
AIMS To assess the expression of Twisted gastrulation (TWSG1) protein, which regulates the activity of bone morphogenetic proteins (BMPs) in the extracellular space in malignant epithelial tumours of the liver. METHODS Thirteen hepatocellular carcinoma (HCC) samples and 12 intrahepatic cholangiocellular carcinoma (CCA) samples were compiled into diagnosis-specific tissue microarrays. Sections were immunostained with a monoclonal antibody against TWSG1 and a polyclonal antibody against BMP4. Human cell lines were also used, including one HCC cell line (HepG2), three CCA cell lines (OZ, Huh-28, HuCCT-1) and a Papova-immortalised normal hepatocyte cell line (THLE-3) for western blot analysis (WBA). RESULTS Immunostaining and WBA showed a stronger TWSG1 expression in CCA than in HCC. The difference in expression was significant (p<0.05), and the immunohistochemical signal was particularly evident in the malignant epithelial areas close to desmoplastic stroma in CCA and in the areas of glandular differentiation in HCC. No expression was seen in normal hepatocytes. Interestingly, BMP4 was fully expressed in CCA and only partly in HCC. WBA showed a band for BMP4 in both CCA and HCC cell lines. CONCLUSIONS TWSG1 is expressed in both malignant epithelial carcinomas, although the level of expression is higher in CCA than in HCC and seems to correlate at least partially with BMP4 expression.
Collapse
Affiliation(s)
- Jolene Johnston
- Department of Laboratory Medicine and Pathology, University of Alberta Hospital, Edmonton, Alberta, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Macsai CE, Georgiou KR, Foster BK, Zannettino ACW, Xian CJ. Microarray expression analysis of genes and pathways involved in growth plate cartilage injury responses and bony repair. Bone 2012; 50:1081-91. [PMID: 22387305 DOI: 10.1016/j.bone.2012.02.013] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2011] [Revised: 02/10/2012] [Accepted: 02/11/2012] [Indexed: 12/27/2022]
Abstract
The injured growth plate cartilage is often repaired by a bone bridge which causes bone growth deformities. Whilst previous studies have identified sequential inflammatory, fibrogenic, osteogenic and bone remodelling responses involved in the repair process, the molecular pathways which regulated these cellular events remain unknown. In a rat growth plate injury model, tissue from the injury site was collected across the time-course of bone bridge formation using laser capture microdissection and was subjected to Affymetrix microarray gene expression analysis. Real Time PCR and immunohistochemical analyses were used to confirm changes in levels of expression of some genes identified in microarray. Four major functional groupings of differentially expressed genes with known roles in skeletal development were identified across the time-course of bone bridge formation, including Wnt signalling (SFRP1, SFRP4, β-catenin, Csnk2a1, Tcf7, Lef1, Fzd1, Fzd2, Wisp1 and Cpz), BMP signalling (BMP-2, BMP-6, BMP-7, Chrd, Chrdl2 and Id1), osteoblast differentiation (BMP-2, BMP-6, Chrd, Hgn, Spp1, Axin2, β-catenin, Bglap2) and skeletal development (Chrd, Mmp9, BMP-1, BMP-6, Spp1, Fgfr1 and Traf6). These studies provide insight into the molecular pathways which act cooperatively to regulate bone formation following growth plate cartilage injury and highlight potential therapeutic targets to limit bone bridge formation.
Collapse
Affiliation(s)
- Carmen E Macsai
- Sansom Institute for Health Research, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, Australia
| | | | | | | | | |
Collapse
|
14
|
Bozic D, Grgurevic L, Erjavec I, Brkljacic J, Orlic I, Razdorov G, Grgurevic I, Vukicevic S, Plancak D. The proteome and gene expression profile of cementoblastic cells treated by bone morphogenetic protein-7 in vitro. J Clin Periodontol 2011; 39:80-90. [PMID: 22093042 DOI: 10.1111/j.1600-051x.2011.01794.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/02/2011] [Indexed: 11/28/2022]
Abstract
AIM Regenerative periodontal therapy is often unpredictable and limited. Cementum regeneration is necessary for the proper repair of a periodontal ligament. The precise mechanism how bone morphogenetic protein-7 (BMP7) induces differentiation and mineralization of cementoblasts remains undetermined. The purpose of this study was to evaluate the effect of BMP7 on early proteome and gene expression profile of cementoblastic OCCM.30 cells in vitro. MATERIALS AND METHODS Immortalized murine cementoblasts (OCCM.30) were exposed to BMP7 and evaluated for: (1) proliferation; (2) mineralization; (3) early proteome profile using liquid chromatography-mass spectrometry (LC-MS); and (4) gene expression by quantitative RT-PCR. RESULTS Bone morphogenetic protein-7 increased the cell proliferation at 24 h and 48 h, while higher doses suppressed the cell proliferation at 48 h. BMP7 induced the mineralization of cementoblasts following 8 days of therapy. Using LC-MS we identified 1117 proteins from the cell lysate. Many belonged to extracellular matrix formation such as PCPE1, collagens, annexins and integrin receptors. RT-PCR analyses revealed a BMP7 dose-dependent upregulation of BMP1, TGFβ1, osterix, osteoprotegerin, procollagen I and II, PCPE1, and noggin, while BMP6 and chordin expression were decreased. The high BMP7 dose down regulated most of the genes 24 h following therapy. CONCLUSION Bone morphogenetic protein-7 promotes differentiation and mineralization of cementoblasts via inducing PCPE1 and BMP1 responsible for processing of type I collagen.
Collapse
Affiliation(s)
- Darko Bozic
- Department of Periodontology, University of Zagreb, School of Dental Medicine, Croatia
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Pham L, Beyer K, Jensen ED, Rodriguez JS, Davydova J, Yamamoto M, Petryk A, Gopalakrishnan R, Mansky KC. Bone morphogenetic protein 2 signaling in osteoclasts is negatively regulated by the BMP antagonist, twisted gastrulation. J Cell Biochem 2011; 112:793-803. [PMID: 21328453 DOI: 10.1002/jcb.23003] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Bone morphogenetic proteins (BMPs) have been shown to regulate both osteoblasts and osteoclasts. We previously reported that BMP2 could directly enhance RANKL-mediated osteoclast differentiation by increasing the size and number of osteoclasts. Similarly, genetic deletion of the BMP antagonist Twisted gastrulation (TWSG1) in mice, resulted in an enhancement of osteoclast formation, activity and osteopenia. This was accompanied by increased levels of phosphorylated Smad (pSmad) 1/5/8 in Twsg1(-/-) osteoclasts in vitro. The purpose of this study was to develop an adenoviral vector overexpressing Twsg1 as a means of inhibiting osteoclast activity. We demonstrate that overexpressing TWSG1 in primary osteoclasts decreased the size and number of multinuclear TRAP-positive osteoclasts, expression of osteoclast genes, and resorption ability. Overexpression of TWSG1 did not affect osteoclast proliferation or apoptosis. However, overexpression of TWSG1 decreased the levels of pSmad 1/5/8 in osteoclasts. Addition of exogenous BMP2 to osteoclasts overexpressing TWSG1 rescued the size and levels of pSmad 1/5/8 compared to cultures infected with a control virus. Finally, TWSG1 overexpression in osteoclasts isolated from the Twsg1(-/-) mice rescued size of the osteoclasts while further addition of exogenous BMP2 reversed the effect of TWSG1 overexpression and increased the size of the osteoclasts similar to control virus infected cells. Taken together, we demonstrate that overexpressing TWSG1 in osteoclasts via an adenoviral vector results in inhibition of osteoclastogenesis and may provide a potential therapy for inhibiting osteoclast activity in a localized manner.
Collapse
Affiliation(s)
- Lan Pham
- Department of Diagnostic and Biological Sciences, University of Minnesota School of Dentistry, Minneapolis, Minnesota 55455, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Sun M, Forsman C, Sergi C, Gopalakrishnan R, O’Connor MB, Petryk A. The expression of twisted gastrulation in postnatal mouse brain and functional implications. Neuroscience 2010; 169:920-931. [PMID: 20493240 PMCID: PMC2971674 DOI: 10.1016/j.neuroscience.2010.05.026] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2010] [Revised: 05/11/2010] [Accepted: 05/12/2010] [Indexed: 12/28/2022]
Abstract
Twisted gastrulation (TWSG1), an extracellular regulator of bone morphogenetic protein (BMP) signaling, is critical for embryonic brain development. Mice deficient in TWSG1 have abnormal forebrain development manifesting as holoprosencephaly. The expression and potential roles of TWSG1 in postnatal brain development are less well understood. We show that Twsg1 is expressed in the adult mouse brain in the choroid plexus (CP), hippocampus, and other regions, with the strongest expression observed in CP. TWSG1 was also detected in a human fetal brain at mid-gestation, with highest levels in the epithelium of CP. Bmp1, Bmp2, Bmp4-Bmp7 as well as BmprIA and BmprII, but not BmprIB, were expressed in CP. BMP antagonists Chordin (Chrd) and Noggin were not detected in CP, however Chrd-like 1 and brain-specific Chrd-like (Brorin) were expressed. Electrophysiological study of synaptic plasticity revealed normal paired-pulse facilitation and long-term potentiation in the CA1 region of hippocampus in Twsg1(-/-) mice. Among the homozygous mutants that survive beyond the first 2 weeks, the prevalence of hydrocephalus was 4.3%, compared to 1.5% in a wild type colony (P=0.0133) between 3 and 10 weeks of life. We detected a high level of BMP signaling in CP in wild type adult mice that was 17-fold higher than in the hippocampus (P=0.005). In contrast, transforming growth factor beta (TGFbeta) signaling was predominant in the hippocampus. Both BMP signaling and the expression of BMP downstream targets Msx1 and Msx2 were reduced in CP in Twsg1(-/-) mice. In summary, we show that Twsg1 is expressed in the adult mouse and human fetal CP. We also show that BMP is a branch of TGFbeta superfamily that is dominant in CP. This presents an interesting avenue for future research in light of the novel roles of CP in neural progenitor differentiation and neuronal repair, especially since TWSG1 appears to be the main regulator of BMP present in CP.
Collapse
Affiliation(s)
- Mu Sun
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455-0356, USA
- Howard Hughes Medical Institute, University of Minnesota, Minneapolis, MN 55455-0356, USA
| | - Cynthia Forsman
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455-0356, USA
- Department of Pediatrics, University of Minnesota, Minneapolis, MN 55455-0356, USA
| | - Consolato Sergi
- Department of Laboratory Medicine & Pathology, University of Alberta, Alberta, Canada T6G 2B7
- Institute of Pathology, Medical University of Innsbruck, Innsbruck, Austria
| | - Rajaram Gopalakrishnan
- Diagnostic/Biological Sciences, School of Dentistry, University of Minnesota, Minneapolis, MN 55455-0356, USA
| | - Michael B. O’Connor
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455-0356, USA
- Howard Hughes Medical Institute, University of Minnesota, Minneapolis, MN 55455-0356, USA
| | - Anna Petryk
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455-0356, USA
- Department of Pediatrics, University of Minnesota, Minneapolis, MN 55455-0356, USA
| |
Collapse
|
17
|
Wiren KM, Semirale AA, Hashimoto JG, Zhang XW. Signaling pathways implicated in androgen regulation of endocortical bone. Bone 2010; 46:710-23. [PMID: 19895913 PMCID: PMC2823843 DOI: 10.1016/j.bone.2009.10.039] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2009] [Revised: 10/26/2009] [Accepted: 10/28/2009] [Indexed: 01/18/2023]
Abstract
Periosteal expansion is a recognized response to androgen exposure during bone development and in profoundly hypogonadal adults. However, androgen also suppresses endocortical bone formation, indicating that its effects on bone are dichotomous and envelope-specific. In fact, enhanced androgen signaling has been shown to have dramatic detrimental effects on whole bone biomechanical properties in two different transgenic models with skeletally targeted androgen receptor (AR) overexpression. As the mechanisms underlying this response are uncharacterized, we compared patterns of gene expression in periosteum-free cortical bone samples derived from AR-overexpressing transgenic male mice and their wild-type counterparts. We then assessed direct androgen effects in both wild-type and AR-overexpressing osteoblasts in primary culture. Among major signaling pathways associated with bone formation, focused quantitative RT-PCR (qPCR) array-based analysis of endocortical bone gene expression from wild-type vs. transgenic males identified the transforming growth factor-beta (TGF-beta) superfamily and bone morphogenetic protein (BMP) signaling as significantly altered by androgen in vivo. Bioinformatic analyses indicated proliferation, osteoblast differentiation and mineralization as major biological processes affected. Consistent with the in vivo array data and bioinformatic analyses, inhibition of differentiation observed with androgen exposure was reduced by exogenous BMP2 treatment of AR-overexpressing cultures to stimulate BMP signaling, confirming array pathway analysis. In addition, nonaromatizable dihydrotestosterone (DHT) inhibited osteoblast proliferation, differentiation and several indices of mineralization, including mineral accumulation and mineralized nodule formation in primary cultures from both wild-type and AR-transgenic mice. These findings identify a molecular mechanism based on altered BMP signaling that contributes to androgen inhibition of osteoblast differentiation and mineralization. Such detrimental effects of androgen on osteoblast function may underlie the generally disappointing results of androgen therapy.
Collapse
Affiliation(s)
- Kristine M Wiren
- Bone and Mineral Research Unit, Portland Veterans Affairs Medical Center, USA.
| | | | | | | |
Collapse
|
18
|
Nifuji A, Ideno H, Takanabe R, Noda M. Extracellular Modulators Regulate Bone Morphogenic Proteins in Skeletal Tissue. J Oral Biosci 2010. [DOI: 10.1016/s1349-0079(10)80011-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
19
|
Enhanced osteoclastogenesis causes osteopenia in twisted gastrulation-deficient mice through increased BMP signaling. J Bone Miner Res 2009; 24:1917-26. [PMID: 19419314 PMCID: PMC2765934 DOI: 10.1359/jbmr.090507] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The uncoupling of osteoblastic and osteoclastic activity is central to disorders such as osteoporosis, osteolytic malignancies, and periodontitis. Numerous studies have shown explicit functions for bone morphogenetic proteins (BMPs) in skeletogenesis. Their signaling activity has been shown in various contexts to be regulated by extracellular proteins, including Twisted gastrulation (TWSG1). However, experimental paradigms determining the effects of BMP regulators on bone remodeling are limited. In this study, we assessed the role of TWSG1 in postnatal bone homeostasis. Twsg1-deficient (Twsg1(-/-)) mice developed osteopenia that could not be explained by defective osteoblast function, because mineral apposition rate and differentiation markers were not significantly different compared with wildtype (WT) mice. Instead, we discovered a striking enhancement of osteoclastogenesis in Twsg1(-/-) mice, leading to increased bone resorption with resultant osteopenia. Enhanced osteoclastogenesis in Twsg1(-/-) mice was caused by increased cell fusion, differentiation, and function of osteoclasts. Furthermore, RANKL-mediated osteoclastogenesis and phosphorylated Smad1/5/8 levels were enhanced when WT osteoclasts were treated with recombinant BMP2, suggesting direct regulation of osteoclast differentiation by BMPs. Increase in detectable levels of phosphorylated Smad 1/5/8 was noted in osteoclasts from Twsg1(-/-) mice compared with WT mice. Furthermore, the enhanced osteoclastogenesis in Twsg1(-/-) mice was reversed in vitro in a dose-dependent manner with exposure to Noggin, a BMP antagonist, strongly suggesting that the enhanced osteoclastogenesis in Twsg1 mutants is attributable to increased BMP signaling. Thus, we present a novel and previously uncharacterized role for TWSG1 in inhibiting osteoclastogenesis through regulation of BMP activity.
Collapse
|
20
|
Suttamanatwong S, Jensen ED, Shilling J, Franceschi RT, Carlson AE, Mansky KC, Gopalakrishnan R. Sp proteins and Runx2 mediate regulation of matrix gla protein (MGP) expression by parathyroid hormone. J Cell Biochem 2009; 107:284-92. [PMID: 19306294 PMCID: PMC2747369 DOI: 10.1002/jcb.22124] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
As part of its catabolic action in bone, parathyroid hormone (PTH) inhibits extracellular matrix mineralization. We previously showed that PTH dose-dependently induces matrix gla protein (MGP) expression in osteoblasts and this induction is at least partially responsible for PTH-mediated inhibition of mineralization. Recently, we identified PKA and ERK/MAPK as the key signaling pathways involved in PTH regulation of MGP expression. The goal of this study was to further characterize the mechanism by which PTH stimulates expression of MGP. Deletion analysis of the murine Mgp gene promoter identified a PTH-responsive region between -173 bp and-49 bp. Using gel-mobility shift assays we found that Sp1/Sp3, and Runx2 bind to distinct sites within this region. Mutation of either the Sp or the Runx2 site reduced MGP induction by PTH, while mutation of both sites completely abolished PTH responsiveness. Overexpression of Runx2 or Sp1 activated the Mgp reporter, while Sp3 was a dose-dependent repressor of Sp1 and PTH-induced MGP expression. Collectively, these data show that PTH regulates MGP gene transcription in osteoblasts through altered activities of Sp and Runx2 transcription factors.
Collapse
Affiliation(s)
- Supaporn Suttamanatwong
- Department of Diagnostic and Biological Sciences University of Minnesota School of Dentistry, Minneapolis, MN 55455
| | - Eric D Jensen
- Department of Diagnostic and Biological Sciences University of Minnesota School of Dentistry, Minneapolis, MN 55455
| | - Jody Shilling
- Department of Diagnostic and Biological Sciences University of Minnesota School of Dentistry, Minneapolis, MN 55455
| | - Renny T. Franceschi
- Periodontics and Oral Medicine University of Michigan School of Dentistry, Ann Arbor, MI 48109
| | - Ann E. Carlson
- Department of Diagnostic and Biological Sciences University of Minnesota School of Dentistry, Minneapolis, MN 55455
| | - Kim C. Mansky
- Department of Diagnostic and Biological Sciences University of Minnesota School of Dentistry, Minneapolis, MN 55455
| | - Rajaram Gopalakrishnan
- Department of Diagnostic and Biological Sciences University of Minnesota School of Dentistry, Minneapolis, MN 55455
| |
Collapse
|
21
|
Twisted gastrulation limits apoptosis in the distal region of the mandibular arch in mice. Dev Biol 2009; 328:13-23. [PMID: 19389368 DOI: 10.1016/j.ydbio.2008.12.041] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2008] [Revised: 12/03/2008] [Accepted: 12/31/2008] [Indexed: 11/23/2022]
Abstract
The mandibular arch (BA1) is critical for craniofacial development. The distal region of BA1, which gives rise to most of the mandible, is dependent upon an optimal level of bone morphogenetic protein (BMP) signaling. BMP activity is modulated in the extracellular space by BMP-binding proteins such as Twisted gastrulation (TWSG1). Twsg1(-/-) mice have a spectrum of craniofacial phenotypes, including mandibular defects that range from micrognathia to agnathia. At E9.5, the distal region of the mutant BA1 was prematurely and variably fused with loss of distal markers eHand and Msx1. Expression of proximal markers Fgf8 and Barx1 was expanded across the fused BA1. The expression of Bmp4 and Msx2 was preserved in the distal region, but shifted ventrally. While wild type embryos showed a gradient of BMP signaling with higher activity in the distal region of BA1, this gradient was disrupted and shifted ventrally in the mutants. Thus, loss of TWSG1 results in disruption of the BMP4 gradient at the level of signaling activity as well as mRNA expression. Altered distribution of BMP signaling leads to a shift in gene expression and increase in apoptosis. The extent of apoptosis may account for the variable degree of mandibular defects in Twsg1 mutants.
Collapse
|
22
|
Tsialogiannis E, Polyzois I, Tang QO, Pavlou G, Tsiridis E, Heliotis M, Tsiridis E. Targeting bone morphogenetic protein antagonists:in vitroandin vivoevidence of their role in bone metabolism. Expert Opin Ther Targets 2008; 13:123-37. [DOI: 10.1517/14728220802637725] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
23
|
Extracorporeal Shock Wave-Mediated Changes in Proliferation, Differentiation, and Gene Expression of Human Osteoblasts. ACTA ACUST UNITED AC 2008; 65:1402-10. [DOI: 10.1097/ta.0b013e318173e7c2] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
24
|
Kwong FNK, Richardson SM, Evans CH. Chordin knockdown enhances the osteogenic differentiation of human mesenchymal stem cells. Arthritis Res Ther 2008; 10:R65. [PMID: 18533030 PMCID: PMC2483456 DOI: 10.1186/ar2436] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2007] [Revised: 05/11/2008] [Accepted: 06/04/2008] [Indexed: 01/30/2023] Open
Abstract
INTRODUCTION Bone morphogenetic proteins (BMPs) are critical growth factors in the osteogenic differentiation of progenitor cells during development in embryos and fracture repair in adults. Although recombinant BMPs are in use clinically, their clinical efficiency needs to be improved. The biological activities of BMPs are naturally regulated by extracellular binding proteins. The specific hypotheses tested in this study were as follows: the BMP inhibitor chordin is produced endogenously during the osteogenic differentiation of human mesenchymal stem cells (MSCs); and blockade of the activity of the BMP inhibitor increases the rate of osteogenic differentiation of human MSCs in vitro. METHODS Human MSCs were derived from bone marrow from an iliac crest aspirate and from patients undergoing hip hemiarthroplasty. The MSCs were induced down the osteogenic pathway using standard osteogenic differentiation media, and expressions of BMP-2 and chordin were determined by gene expression analysis. During osteogenic differentiation, chordin knockdown was induced using RNA interference. Osteogenic differentiation was assessed by measuring the expression of alkaline phosphatase and calcium deposition. The differences in expression of osteogenic makers between groups were compared by analysis of variance, followed by Gabriel post hoc test. RESULTS We demonstrate the expression of BMP-2 and chordin in human MSCs during osteogenic differentiation. Knockdown of chordin by RNA interference in vitro resulted in a significant increase in the expression of the osteogenic marker alkaline phosphatase and the deposition of extracellular mineral, in response to osteogenic stimulation. CONCLUSION We conclude that endogenously produced chordin constrains the osteogenic differentiation of human MSCs. The targeting of BMP inhibitors, such as chordin, may provide a novel strategy for enhancing bone regeneration.
Collapse
Affiliation(s)
- Francois N K Kwong
- Center for Molecular Orthopaedics, Harvard Medical School, Longwood Avenue, Boston, Massachusetts 02115, USA.
| | | | | |
Collapse
|
25
|
Khan SA, Nelson MS, Pan C, Gaffney PM, Gupta P. Endogenous heparan sulfate and heparin modulate bone morphogenetic protein-4 signaling and activity. Am J Physiol Cell Physiol 2008; 294:C1387-97. [DOI: 10.1152/ajpcell.00346.2007] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Bone morphogenetic proteins (BMPs) and their endogenous antagonists are important for brain and bone development and tumor initiation and progression. Heparan sulfate (HS) proteoglycans (HSPG) modulate the activities of BMPs and their antagonists. How glycosaminoglycans (GAGs) influence BMP activity in various malignancies and in inherited abnormalities of GAG metabolism, and the structural features of GAGs essential for modulation of BMP signaling, remain incompletely defined. We examined whether chemically modified soluble heparins, the endogenous HS in malignant cells and the HS accumulated in Hurler syndrome cells influence BMP-4 signaling and activity. We show that both exogenous (soluble) and endogenous GAGs modulate BMP-4 signaling and activity, and that this effect is dependent on specific sulfate residues of GAGs. Our studies suggest that endogenous sulfated GAGs promote the proliferation and impair differentiation of malignant human cells, providing the rationale for investigating whether pharmacological agents that inhibit GAG synthesis or function might reverse this effect. Our demonstration of impairment of BMP-4 signaling by GAGs in multipotent stem cells in human Hurler syndrome identifies a mechanism that might contribute to the progressive neurological and skeletal abnormalities in Hurler syndrome and related mucopolysaccharidoses.
Collapse
|
26
|
Suttamanatwong S, Franceschi RT, Carlson AE, Gopalakrishnan R. Regulation of matrix Gla protein by parathyroid hormone in MC3T3-E1 osteoblast-like cells involves protein kinase A and extracellular signal-regulated kinase pathways. J Cell Biochem 2007; 102:496-505. [PMID: 17407158 DOI: 10.1002/jcb.21314] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Inhibition of osteoblast-mediated mineralization is one of the major catabolic effects of parathyroid hormone (PTH) on bone. Previously, we showed that PTH induces matrix gamma-carboxyglutamic acid (Gla) protein (MGP) expression and established that this induction is critical for PTH-mediated inhibition of osteoblast mineralization. In the present study, we focus on the mechanism through which PTH regulates MGP expression in osteoblastic MC3T3-E1 cells. Following transient transfection of these cells with a -748 bp murine MGP promoter-luciferase construct (pMGP-luc), PTH (10 (-7) M) induced promoter activity in a time-dependent manner with a maximal four- to six fold induction seen 6 h after PTH treatment. Both H-89 (PKA inhibitor) and U0126 (MEK inhibitor), suppressed PTH induction of MGP promoter activity as well as the MGP mRNA level. In addition, forskolin (PKA activator) stimulated MGP promoter activity and mRNA levels confirming that PKA is one of the signaling molecules required for regulation of MGP by PTH. Co-transfection of MC3T3-E1 cells with pMGP-luc and MEK(SP), a plasmid encoding the constitutively active form of MEK, led to a dose-dependent increase in MGP promoter activity. Both MGP promoter activity and MGP mRNA level were not affected by the protein kinase C (PKC) inhibitor, GF109203X. However, phorbol 12-myristate 13-acetate (PMA), a selective PKC activator induced MGP mRNA expression through activation of extracellular signal-regulated kinase (ERK). Taken together, these results indicate that PTH regulates MGP via both PKA- and ERK-dependent pathways.
Collapse
Affiliation(s)
- Supaporn Suttamanatwong
- Department of Diagnostic and Biological Sciences, University of Minnesota School of Dentistry, Minneapolis, Minnesota 55455, USA
| | | | | | | |
Collapse
|
27
|
Wan DC, Pomerantz JH, Brunet LJ, Kim JB, Chou YF, Wu BM, Harland R, Blau HM, Longaker MT. Noggin suppression enhances in vitro osteogenesis and accelerates in vivo bone formation. J Biol Chem 2007; 282:26450-9. [PMID: 17609215 DOI: 10.1074/jbc.m703282200] [Citation(s) in RCA: 124] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Several investigations have demonstrated a precise balance to exist between bone morphogenetic protein (BMP) agonists and antagonists, dictating BMP signaling and osteogenesis. We report a novel approach to manipulate BMP activity through a down-regulation of the potent BMP antagonist Noggin, and examined the effects on the bone forming capacity of osteoblasts. Reduction of noggin enhanced BMP signaling and in vitro osteoblast bone formation, as demonstrated by both gene expression profiles and histological staining. The effects of noggin suppression on in vivo bone formation were also investigated using critical-sized calvarial defects in mice repaired with noggin-suppressed osteoblasts. Radiographic and histological analyses revealed significantly more bone regeneration at 2 and 4 weeks post-injury. These findings strongly support the concept of enhanced osteogenesis through a down-regulation in Noggin and suggest a novel approach to clinically accelerate bone formation, potentially allowing for earlier mobilization of patients following skeletal injury or surgical resection.
Collapse
Affiliation(s)
- Derrick C Wan
- Department of Surgery, Stanford University School of Medicine, Stanford University, Stanford, California 94305, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Abstract
Fracture healing is a complex physiological process involving a coordinated interaction of hematopoietic and immune cells within the bone marrow, in conjunction with vascular and skeletal cell precursors. Multiple factors regulate this cascade of molecular events, which affects different stages in the osteoblast and chondroblast lineage during processes such as migration, proliferation, chemotaxis, differentiation, inhibition, and extracellular protein synthesis. A clear understanding of the cellular and molecular pathways in fracture healing is not only critical for advancing fracture treatment, but it may also enhance further our knowledge of the mechanisms involved within skeletal growth and repair, as well as the mechanisms of aging. An overview of the important molecules involved in fracture healing, including osteogenic autocoids and inhibitory molecules, and their interactions and possible mechanisms of synergy during the healing process is presented in this article.
Collapse
Affiliation(s)
- Eleftherios Tsiridis
- Academic Department of Trauma and Orthopaedic Surgery, St James's University Hospital, Beckett Street, Leeds, UK
| | | | | |
Collapse
|
29
|
Gazzerro E, Deregowski V, Stadmeyer L, Gale NW, Economides AN, Canalis E. Twisted gastrulation, a bone morphogenetic protein agonist/antagonist, is not required for post-natal skeletal function. Bone 2006; 39:1252-60. [PMID: 16934545 DOI: 10.1016/j.bone.2006.06.028] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2006] [Accepted: 06/29/2006] [Indexed: 10/24/2022]
Abstract
Twisted gastrulation (Tsg) is a secreted glycoprotein that binds bone morphogenetic proteins (BMP)-2 and -4 and can display both BMP agonist and antagonist functions. Tsg promotes BMP-mediated endochondral ossification, but its activity in adult bone is not known. We created tsg null mice and examined the consequences of the tsg deletion on the skeleton in vivo and on osteoblast function in vitro. Analysis of the skeletal phenotype of 4-week-old tsg null mice revealed a 40% decrease in trabecular bone volume, but osteoblast and osteoclast number, and bone formation and resorption were not affected. The phenotype was transient, and at 7 weeks of age tsg null mice were not different from control wild-type mice. The decreased trabecular bone is congruent with a defect in endochondral bone formation. In osteoblasts isolated from tsg null mice, tsg gene inactivation decreased the BMP-2 stimulatory effects on osteocalcin expression and alkaline phosphatase activity, indicating that in the bone microenvironment endogenous Tsg enhances BMP activity. Accordingly, tsg null cells displayed impaired BMP signaling. These results were confirmed by Tsg down-regulation in primary osteoblasts from wild-type mice using RNA interference. In conclusion, endogenous Tsg is required for normal BMP activity in osteoblastic cells in vitro, but it plays a minor role in the regulation of adult bone homeostasis in vivo.
Collapse
Affiliation(s)
- Elisabetta Gazzerro
- Department of Research, Saint Francis Hospital and Medical Center, Hartford, CT 06105-1299, USA
| | | | | | | | | | | |
Collapse
|
30
|
Schmidl M, Adam N, Surmann-Schmitt C, Hattori T, Stock M, Dietz U, de Crombrugghe B, Po¨schl E, von der Mark K. Twisted Gastrulation Modulates Bone Morphogenetic Protein-induced Collagen II and X Expression in Chondrocytes in Vitro and in Vivo. J Biol Chem 2006. [DOI: 10.1016/s0021-9258(19)84094-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
31
|
Schmidl M, Adam N, Surmann-Schmitt C, Hattori T, Stock M, Dietz U, de Crombrugghe B, Pöschl E, von der Mark K. Twisted Gastrulation Modulates Bone Morphogenetic Protein-induced Collagen II and X Expression in Chondrocytesin Vitroandin Vivo. J Biol Chem 2006; 281:31790-800. [PMID: 16905550 DOI: 10.1074/jbc.m603419200] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Twisted gastrulation (TSG) is an extracellular modulator of bone morphogenetic protein (BMP) activity and regulates dorsoventral axis formation in early Drosophila and Xenopus development. Studies on tsg-deficient mice also indicated a role of this protein in skeletal growth, but the mechanism of TSG activity in this process has not yet been investigated. Here we show for the first time by in situ hybridization and immunohistochemistry that TSG is strongly expressed in bovine and mouse growth plate cartilage as well as in fetal ribs, vertebral cartilage, and cartilage anlagen of the skull. Furthermore we provide evidence that TSG is directly involved in BMP-regulated chondrocyte differentiation and maturation. In vitro, TSG impaired the dose-dependent BMP-2 stimulation of collagen II and X expression in cultures of MC615 chondrocytes and primary mouse chondrocytes. In the presence of chordin, a BMP antagonist, the inhibitory effect of TSG was further enhanced. TSG also inhibited BMP-2-stimulated phosphorylation of Smad factors in chondrocytes, confirming the role of TSG as a modulator of BMP signaling. For analysis of TSG functions in cartilage development in vivo, the gene was overexpressed in transgenic mice under the control of the cartilage-specific Col2a1 promoter. As a result, Col10a1 expression was significantly reduced in the growth plates of transgenic embryos and newborns in comparison with wild type littermates as shown by in situ hybridization and by real time PCR analysis. The data suggest that TSG is an important modulator of BMP-regulated cartilage development and chondrocyte differentiation.
Collapse
Affiliation(s)
- Martina Schmidl
- Department of Experimental Medicine I, Nikolaus-Fiebiger Center of Molecular Medicine, University of Erlangen-Nuremberg, 91054 Erlangen, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Abstract
Skeletal homeostasis is determined by systemic hormones and local factors. Bone morphogenetic proteins (BMPs) are unique because they induce the commitment of mesenchymal cells toward cells of the osteoblastic lineage and also enhance the differentiated function of the osteoblast. BMP activities in bone are mediated through binding to specific cell surface receptors and through interactions with other growth factors. BMPs are required for skeletal development and maintenance of adult bone homeostasis, and play a role in fracture healing. BMPs signal by activating the mothers against decapentaplegic (Smad) and mitogen activated protein kinase (MAPK) pathways, and their actions are tempered by intracellular and extracellular proteins. The BMP antagonists block BMP signal transduction at multiple levels including pseudoreceptor, inhibitory intracellular binding proteins, and factors that induce BMP ubiquitination. A large number of extracellular proteins that bind BMPs and prevent their binding to signaling receptors have emerged. The extracellular antagonists are differentially expressed in cartilage and bone tissue and exhibit BMP antagonistic as well as additional activities. Both intracellular and extracellular antagonists are regulated by BMPs, indicating the existence of local feedback mechanisms to modulate BMP cellular activities.
Collapse
Affiliation(s)
- Elisabetta Gazzerro
- Unit of Muscular and Neurodegenerative Disorders, Gaslini Institute, Genoa, Italy.
| | | |
Collapse
|
33
|
Abstract
The balance between all the signalling molecules involved in bone formation with their inhibitors and most importantly between BMPs and their antagonists is critical determinant of osteogenesis, and therefore of skeletal development, fracture repair, and bone remodelling. The main identified inhibitory molecules of the osteogenic lineage, either from studies during embryonic development or from in vitro and in vivo studies are presented in the herein study. Potential treatments using these molecules either alone or in combination with BMPs to control the bone growth and overgrowth are already under investigation aiming in treatments that mimic as much as possible the natural process of bone generation in various situations including fracture healing, osteoporosis, and osteoarthritis and other metabolic disorders, in order to more closely resemble the original tissue.
Collapse
Affiliation(s)
- Rozalia Dimitriou
- Academic Department of Trauma & Orthopaedic Surgery, School of Medicine, University of Leeds, United Kingdom
| | | | | | | | | |
Collapse
|