1
|
Delgado Cuenca P, Almaiman L, Schenk S, Kern M, Hooshmand S. Dried Plum Ingestion Increases the Osteoblastogenic Capacity of Human Serum. J Med Food 2017; 20:653-658. [PMID: 28445075 DOI: 10.1089/jmf.2016.0158] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
In cell culture studies, dried plum (Prunus domestica L.) polyphenols increased osteoblast alkaline phosphatase (ALP) activity, mineralized nodule formation, and the expression of the bone marker genes runt-related transcription factor 2 (RUNX2) and osterix. The purpose of this study was to determine whether human serum collected 1 and 2 h after dried plum ingestion influenced osteoblast cell activity and gene expression. Five healthy women ingested 100 g of dried plum, and serum samples were collected at baseline (before dried plum ingestion) and 1 and 2 h postingestion of dried plum. MC3T3-E1 osteoblast cells were treated (2% of medium) with these serum samples for 3 or 9 days. Intracellular and extracellular ALP activities were significantly increased after 3 or 9 days of treatment with serum both postingestion time points, with no effect seen in baseline samples. Also, serum obtained 1 and 2 h postingestion significantly increased the mRNA expression of bone markers RUNX2 and connexin43 (CX43) after both 3 and 9 days of incubation periods. Finally, serum obtained 1 and 2 h postingestion increased the mRNA expression of β-catenin after 9 days of incubation. We conclude that osteoblast activity and function are increased by dried plum ingestion, which may, in part, explain its beneficial effects on bone health.
Collapse
Affiliation(s)
- Paulina Delgado Cuenca
- 1 School of Exercise and Nutritional Sciences, San Diego State University , San Diego, California, USA
| | - Lama Almaiman
- 1 School of Exercise and Nutritional Sciences, San Diego State University , San Diego, California, USA
| | - Simon Schenk
- 2 Department of Orthopedic Surgery, University of California San Diego , La Jolla, California, USA
| | - Mark Kern
- 1 School of Exercise and Nutritional Sciences, San Diego State University , San Diego, California, USA
| | - Shirin Hooshmand
- 1 School of Exercise and Nutritional Sciences, San Diego State University , San Diego, California, USA
| |
Collapse
|
2
|
Isolation and Characterization of Synovial Mesenchymal Stem Cell Derived from Hip Joints: A Comparative Analysis with a Matched Control Knee Group. Stem Cells Int 2017; 2017:9312329. [PMID: 28115945 PMCID: PMC5237455 DOI: 10.1155/2017/9312329] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2016] [Revised: 10/26/2016] [Accepted: 11/29/2016] [Indexed: 12/28/2022] Open
Abstract
Purpose. To determine the characteristics of MSCs from hip and compare them to MSCs from knee. Methods. Synovial tissues were obtained from both the knee and the hip joints in 8 patients who underwent both hip and knee arthroscopies on the same day. MSCs were isolated from the knee and hip synovial samples. The capacities of MSCs were compared between both groups. Results. The number of cells per unit weight at passage 0 of synovium from the knee was significantly higher than that from the hip (P < 0.05). While it was possible to observe the growth of colonies in all the knee synovial fluid samples, it was impossible to culture cells from any of the hip samples. In adipogenesis experiments, the frequency of Oil Red-O-positive colonies and the gene expression of adipsin were significantly higher in knee than in hip. In osteogenesis experiments, the expression of COL1A1 and ALPP was significantly less in the knee synovium than in the hip synovium. Conclusions. MSCs obtained from hip joint have self-renewal and multilineage differentiation potentials. However, in matched donors, adipogenesis and osteogenesis potentials of MSCs from the knees are superior to those from the hips. Knee synovium may be a better source of MSC for potential use in hip diseases.
Collapse
|
3
|
Ninomiya T, Hiraga T, Hosoya A, Ohnuma K, Ito Y, Takahashi M, Ito S, Asashima M, Nakamura H. Enhanced Bone-Forming Activity of Side Population Cells in the Periodontal Ligament. Cell Transplant 2014; 23:691-701. [DOI: 10.3727/096368913x663587] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Regeneration of alveolar bone is critical for the successful treatment of periodontal diseases. The periodontal ligament (PDL) has been widely investigated as a source of cells for the regeneration of periodontal tissues. In the present study where we attempted to develop an effective strategy for alveolar bone regeneration, we examined the osteogenic potential of side population (SP) cells, a stem cell-containing population that has been shown to be highly abundant in several kinds of tissues, in PDL cells. Isolated SP cells from the rat PDL exhibited a superior ability to differentiate into osteoblastic cells compared with non-SP (NSP) and unsorted PDL cells in vitro. The mRNA expressions of osteoblast markers and bone morphogenetic protein (BMP) 2 were significantly upregulated in SP cells and were further increased by osteogenic induction. To examine the bone-forming activity of SP cells in vivo, PDL SP cells isolated from green fluorescent protein (GFP)-transgenic rats were transplanted with hydroxyapatite (HA) disks into wild-type animals. SP cells exhibited a high ability to induce the mineralized matrix compared with NSP and unsorted PDL cells. At 12 weeks after the implantation, some of the pores in the HA disks with SP cells were filled with mineralized matrices, which were positive for bone matrix proteins, such as osteopontin, bone sialoprotein, and osteocalcin. Furthermore, osteoblast- and osteocyte-like cells on and in the bone-like mineralized matrices were GFP positive, suggesting that the matrices were directly formed by the transplanted cells. These results suggest that PDL SP cells possess enhanced osteogenic potential and could be a potential source for cell-based regenerative therapy for alveolar bone.
Collapse
Affiliation(s)
- Tadashi Ninomiya
- Division of Hard Tissue Research, Institute for Oral Science, Matsumoto Dental University, Shiojiri, Nagano, Japan
| | - Toru Hiraga
- Department of Histology and Cell Biology, Matsumoto Dental University, Shiojiri, Nagano, Japan
| | - Akihiro Hosoya
- Department of Histology and Cell Biology, Matsumoto Dental University, Shiojiri, Nagano, Japan
| | - Kiyoshi Ohnuma
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Meguro-ku, Tokyo, Japan
| | - Yuzuru Ito
- Research Center for Stem Cell Engineering (SCRC), National Institute of Advanced Industrial Science and Technology (AIST), Higashi, Tsukuba, Ibaraki, Japan
| | - Masafumi Takahashi
- Division of Bioimaging Sciences, Center for Molecular Medicine, Jichi Medical University, Shimotsuke, Tochigi, Japan
| | - Susumu Ito
- Division of Instrumental Analysis, Research Center for Human and Environmental Sciences, Shinshu University, Matsumoto, Nagano, Japan
| | - Makoto Asashima
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Meguro-ku, Tokyo, Japan
- Research Center for Stem Cell Engineering (SCRC), National Institute of Advanced Industrial Science and Technology (AIST), Higashi, Tsukuba, Ibaraki, Japan
| | - Hiroaki Nakamura
- Department of Histology and Cell Biology, Matsumoto Dental University, Shiojiri, Nagano, Japan
| |
Collapse
|
4
|
Unno K, Jain M, Liao R. Cardiac side population cells: moving toward the center stage in cardiac regeneration. Circ Res 2012; 110:1355-63. [PMID: 22581921 DOI: 10.1161/circresaha.111.243014] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Over the past decade, extensive work in animal models and humans has identified the presence of adult cardiac progenitor cells, capable of cardiomyogenic differentiation and likely contributors to cardiomyocyte turnover during normal development and disease. Among cardiac progenitor cells, there is a distinct subpopulation, termed "side population" (SP) progenitor cells, identified by their unique ability to efflux DNA binding dyes through an ATP-binding cassette transporter. This review highlights the literature on the isolation, characterization, and functional relevance of cardiac SP cells. We review the initial discovery of cardiac SP cells in adult myocardium as well as their capacity for functional cardiomyogenic differentiation and role in cardiac regeneration after myocardial injury. Finally, we discuss recent advances in understanding the molecular regulators of cardiac SP cell proliferation and differentiation, as well as likely future areas of investigation required to realize the goal of effective cardiac regeneration.
Collapse
Affiliation(s)
- Kazumasa Unno
- Cardiovascular Division, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | | | | |
Collapse
|
5
|
Wei KW, Xuan K, Liu YL, Fang J, Ji K, Wang X, Jin Y, Watanabe S, Watanabe K, Ojihara T. Clinical, pathological and genetic evaluations of Chinese patients with autosomal-dominant hypophosphatasia. Arch Oral Biol 2010; 55:1017-23. [DOI: 10.1016/j.archoralbio.2010.08.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2010] [Revised: 07/01/2010] [Accepted: 08/10/2010] [Indexed: 01/09/2023]
|
6
|
Yoshiko Y, Oizumi K, Hasegawa T, Minamizaki T, Tanne K, Maeda N, Aubin JE. A subset of osteoblasts expressing high endogenous levels of PPARgamma switches fate to adipocytes in the rat calvaria cell culture model. PLoS One 2010; 5:e11782. [PMID: 20668686 PMCID: PMC2909914 DOI: 10.1371/journal.pone.0011782] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2010] [Accepted: 06/28/2010] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Understanding fate choice and fate switching between the osteoblast lineage (ObL) and adipocyte lineage (AdL) is important to understand both the developmental inter-relationships between osteoblasts and adipocytes and the impact of changes in fate allocation between the two lineages in normal aging and certain diseases. The goal of this study was to determine when during lineage progression ObL cells are susceptible to an AdL fate switch by activation of endogenous peroxisome proliferator-activated receptor (PPAR)gamma. METHODOLOGY/PRINCIPAL FINDINGS Multiple rat calvaria cells within the ObL developmental hierarchy were isolated by either fractionation on the basis of expression of alkaline phosphatase or retrospective identification of single cell-derived colonies, and treated with BRL-49653 (BRL), a synthetic ligand for PPARgamma. About 30% of the total single cell-derived colonies expressed adipogenic potential (defined cytochemically) when BRL was present. Profiling of ObL and AdL markers by qRT-PCR on amplified cRNA from over 160 colonies revealed that BRL-dependent adipogenic potential correlated with endogenous PPARgamma mRNA levels. Unexpectedly, a significant subset of relatively mature ObL cells exhibited osteo-adipogenic bipotentiality. Western blotting and immunocytochemistry confirmed that ObL cells co-expressed multiple mesenchymal lineage determinants (runt-related transcription factor 2 (Runx2), PPARgamma, Sox9 and MyoD which localized in the cytoplasm initially, and only Runx2 translocated to the nucleus during ObL progression. Notably, however, some cells exhibited both PPARgamma and Runx2 nuclear labeling with concomitant upregulation of expression of their target genes with BRL treatment. CONCLUSIONS/SIGNIFICANCE We conclude that not only immature but a subset of relatively mature ObL cells characterized by relatively high levels of endogenous PPARgamma expression can be switched to the AdL. The fact that some ObL cells maintain capacity for adipogenic fate selection even at relatively mature developmental stages implies an unexpected plasticity with important implications in normal and pathological bone development.
Collapse
Affiliation(s)
- Yuji Yoshiko
- Department of Oral Growth and Developmental Biology, Hiroshima University Graduate School of Biomedical Sciences, Hiroshima, Japan.
| | | | | | | | | | | | | |
Collapse
|
7
|
Affiliation(s)
- Irene Cervelló
- Fundación IVI, Instituto Universitario IVI, Universidad de Valencia,
| | - Carlos Simón
- Centro de Investigación Príncipe Felipe, Valencia
| |
Collapse
|
8
|
Pirih FQ, Abayahoudian R, Elashoff D, Parhami F, Nervina JM, Tetradis S. Nuclear receptor profile in calvarial bone cells undergoing osteogenic versus adipogenic differentiation. J Cell Biochem 2008; 105:1316-26. [PMID: 18810760 PMCID: PMC5391254 DOI: 10.1002/jcb.21931] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Nuclear receptors (NRs) are key regulators of cell function and differentiation. We examined NR expression during osteogenic versus adipogenic differentiation of primary mouse calvarial osteoblasts (MOBs). MOBs were cultured for 21 days in osteogenic or adipogenic differentiation media. von Kossa and Oil Red O staining, and qRT-PCR of marker genes and 49 NRs were performed. PCR amplicons were subcloned to establish correct sequences and absolute standard curves. Forty-three NRs were detected at days 0-21. Uncentered average linkage hierarchical clustering identified four expression clusters: NRs (1) upregulated during osteogenic, but not adipogenic, differentiation, (2) upregulated in both conditions, with greater upregulation during adipogenic differentiation, (3) upregulated equally in both conditions, (4) downregulated during adipogenic, but not osteogenic, differentiation. One-way ANOVA with contrast revealed 20 NRs upregulated during osteogenic differentiation and 12 NRs upregulated during adipogenic differentiation. Two-way ANOVA demonstrated that 18 NRs were higher in osteogenic media, while 9 NRs were higher in adipogenic media. The time effect revealed 16 upregulated NRs. The interaction of condition with time revealed 6 NRs with higher expression rate during adipogenic differentiation and 3 NRs with higher expression rate during osteogenic differentiation. Relative NR abundance at days 0 and 21 were ranked. Basal ranking changed at least 5 positions for 13 NRs in osteogenic media and 9 NRs in adipogenic media. Osteogenic and adipogenic differentiation significantly altered NR expression in MOBs. These differences offer a fingerprint of cellular commitment and may provide clues to the underlying mechanisms of osteogenic versus adipogenic differentiation.
Collapse
Affiliation(s)
- Flavia Q. Pirih
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, Michigan 48109
| | - Rosette Abayahoudian
- Division of Diagnostic and Surgical Sciences, UCLA, Los Angeles, California 90095
| | - David Elashoff
- Department of Biostatistics/Nursing, UCLA, Los Angeles, California 90095
| | - Farhad Parhami
- Department of Cardiology, UCLA, Los Angeles, California 90095
| | | | - Sotirios Tetradis
- Division of Diagnostic and Surgical Sciences, UCLA, Los Angeles, California 90095
- Molecular Biology Institute, UCLA, Los Angeles, California 90095
| |
Collapse
|
9
|
Kässmeyer S, Plendl J, Custodis P, Bahramsoltani M. New insights in vascular development: vasculogenesis and endothelial progenitor cells. Anat Histol Embryol 2008; 38:1-11. [PMID: 18983622 DOI: 10.1111/j.1439-0264.2008.00894.x] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
In the course of new blood vessel formation, two different processes--vasculogenesis and angiogenesis--have to be distinguished. The term vasculogenesis describes the de novo emergence of a vascular network by endothelial progenitors, whereas angiogenesis corresponds to the generation of vessels by sprouting from pre-existing capillaries. Until recently, it was thought that vasculogenesis is restricted to the prenatal period. During the last decade, one of the most fascinating innovations in the field of vascular biology was the discovery of endothelial progenitor cells and vasculogenesis in the adult. This review aims at introducing the concept of adult vasculogenesis and discusses the efforts to identify and characterize adult endothelial progenitors. The different sources of adult endothelial progenitors like haematopoietic stem cells, myeloid cells, multipotent progenitors of the bone marrow, side population cells and tissue-residing pluripotent stem cells are considered. Moreover, a survey of cellular and molecular control mechanisms of vasculogenesis is presented. Recent advances in research on endothelial progenitors exert a strong impact on many different disciplines and provide the knowledge for functional concepts in basic fields like anatomy, histology as well as embryology.
Collapse
Affiliation(s)
- S Kässmeyer
- Department of Veterinary Anatomy, Faculty of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany.
| | | | | | | |
Collapse
|
10
|
Hasegawa T, Oizumi K, Yoshiko Y, Tanne K, Maeda N, Aubin JE. The PPARgamma-selective ligand BRL-49653 differentially regulates the fate choices of rat calvaria versus rat bone marrow stromal cell populations. BMC DEVELOPMENTAL BIOLOGY 2008; 8:71. [PMID: 18625072 PMCID: PMC2488338 DOI: 10.1186/1471-213x-8-71] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2007] [Accepted: 07/14/2008] [Indexed: 12/14/2022]
Abstract
Background Osteoblasts and adipocytes are derived from a common mesenchymal progenitor and an inverse relationship between expression of the two lineages is seen with certain experimental manipulations and in certain diseases, i.e., osteoporosis, but the cellular pathway(s) and developmental stages underlying the inverse relationship is still under active investigation. To determine which precursor mesenchymal cell types can differentiate into adipocytes, we compared the effects of BRL-49653 (BRL), a selective ligand for peroxisome proliferators-activated receptor (PPAR)γ, a master transcription factor of adipogenesis, on osteo/adipogeneis in two different osteoblast culture models: the rat bone marrow (RBM) versus the fetal rat calvaria (RC) cell system. Results BRL increased the number of adipocytes and corresponding marker expression, such as lipoprotein lipase, fatty acid-binding protein (aP2), and adipsin, in both culture models, but affected osteoblastogenesis only in RBM cultures, where a reciprocal decrease in bone nodule formation and osteoblast markers, e.g., osteopontin, alkaline phosphatase (ALP), bone sialoprotein, and osteocalcin was seen, and not in RC cell cultures. Even though adipocytes were histologically undetectable in RC cultures not treated with BRL, RC cells expressed PPAR and CCAAT/enhancer binding protein (C/EBP) mRNAs throughout osteoblast development and their expression was increased by BRL. Some single cell-derived BRL-treated osteogenic RC colonies were stained not only with ALP/von Kossa but also with oil red O and co-expressed the mature adipocyte marker adipsin and the mature osteoblast marker OCN, as well as PPAR and C/EBP mRNAs. Conclusion The data show that there are clear differences in the capacity of BRL to alter the fate choices of precursor cells in stromal (RBM) versus calvarial (RC) cell populations and that recruitment of adipocytes can occur from multiple precursor cell pools (committed preadipocyte pool, multi-/bipotential osteo-adipoprogenitor pool and conversion of osteoprogenitor cells or osteoblasts into adipocytes (transdifferentiation or plasticity)). They also show that mechanisms beyond activation of PPARγ by its ligand are required for changing the fate of committed osteoprogenitor cells and/or osteoblasts into adipocytes.
Collapse
Affiliation(s)
- Takuro Hasegawa
- 1Department of Orthodontics, Hiroshima University Graduate School of Biomedical Sciences, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan.
| | | | | | | | | | | |
Collapse
|
11
|
Pho M, Lee W, Watt DR, Laschinger C, Simmons CA, McCulloch CA. Cofilin is a marker of myofibroblast differentiation in cells from porcine aortic cardiac valves. Am J Physiol Heart Circ Physiol 2008; 294:H1767-78. [DOI: 10.1152/ajpheart.01305.2007] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The formation of myofibroblasts in valve interstitial cell (VIC) populations contributes to fibrotic valvular disease. We examined myofibroblast differentiation in VICs from porcine aortic valves. In normal valves, cells immunostained for α-smooth muscle actin (α-SMA, a myofibroblast marker) were rare (0.69 ± 0.48%), but in sclerotic valves of animals fed an atherogenic diet, myofibroblasts were spatially clustered and abundant (31.2 ± 6.3%). In cultured VIC populations from normal valves, SMA-positive myofibroblasts were also spatially clustered, abundant (21% positive cells after 1 passage), and stained for collagen type I and vimentin but not desmin. For an analysis of stem cells, two-color flow cytometry of isolated cells stained with Hoechst 33342 demonstrated that 0.5% of VICs were side population cells; none stained for SMA. Upon culture, sorted side population cells generated ∼85% SMA-positive cells, indicating that some myofibroblasts originate from a rare population with stem cell characteristics. Plating cells on rigid collagen substrates enabled the formation of myofibroblasts after 5 days in culture, which was completely blocked by culture of cells on compliant collagen substrates. Exogenous tensile force also significantly increased SMA expression in VICs. Isotope-coded affinity tags and mass spectrometry were used to identify differentially expressed proteins in myofibroblast differentiation of VICs. Of the nine proteins that were identified, cofilin expression and phospho-cofilin were strongly increased by conditions favoring myofibroblast differentiation. Knockdown of cofilin with small-interfering RNA inhibited collagen gel contraction and reduced myofibroblast differentiation as assessed by the SMA incorporation into stress fibers. When compared with normal valves, diseased valves showed strong immunostaining for cofilin that colocalized with SMA in clustered cells. We conclude that in VICs, cofilin is a marker for myofibroblasts in vivo and in vitro that arise from a rare population of stem cells and require a rigid matrix for formation.
Collapse
|
12
|
Li HY, Zhou XF. Potential conversion of adult clavicle-derived chondrocytes into neural lineage cells in vitro. J Cell Physiol 2008; 214:630-44. [PMID: 17786944 DOI: 10.1002/jcp.21251] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Neural stem cells (NSC) can be isolated from a variety of adult tissues and become a valuable cell source for the repair of peripheral and central nervous diseases. However, their origin and identity remain controversial because of possible de-differentiation/trans-differentiation or contaminations by hematopoietic stem cells (HSCs) or mesenchymal stem cells (MSCs). We hypothesize that the commonly used NSC culture medium can induce committed cartilage chondrocytes to de-differentiate and/or trans-differentiate into neural cell lineages. Using a biological isolation and purification method with explants culture, we here show that adult rat clavicle cartilage chondrocytes migrate out from tissue blocks, form sphere-like structures, possess the capability of self-renewal, express nestin and p75NTR, markers for neural crest progenitors, and differentiate into neurons, glia, and smooth muscle cells. Comparing with adult cartilage, the spherical-forming neural crest cell-like cells downregulate the chondrocytic marker genes, including collagen II, collagen X, and sox9, as well as neural-lineage repressors/silencers REST and coREST, but upregulate a set of well-defined genes related to neural crest cells and pro-neural potential. Nerve growth factor (NGF) and glial growth factor (GGF) increase glial and neuronal differentiation, respectively. These results suggest that chondrocytes derived from adult clavicle cartilage can become neural crest stem-like cells and acquire neuronal phenotypes in vitro. The possible de-differentiation/trans-differentiation mechanisms underlying the conversion were discussed.
Collapse
Affiliation(s)
- Hong-Yun Li
- Department of Human Physiology, School of Medicine, Flinders University of South Australia, Adelaide, South Australia, Australia
| | | |
Collapse
|
13
|
Bibliography. Current world literature. Parathyroids, bone and mineral metabolism. Curr Opin Endocrinol Diabetes Obes 2007; 14:494-501. [PMID: 17982358 DOI: 10.1097/med.0b013e3282f315ef] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
14
|
Adamski D, Mayol JF, Platet N, Berger F, Hérodin F, Wion D. Effects of Hoechst 33342 on C2C12 and PC12 cell differentiation. FEBS Lett 2007; 581:3076-80. [PMID: 17560574 DOI: 10.1016/j.febslet.2007.05.073] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2007] [Revised: 05/21/2007] [Accepted: 05/24/2007] [Indexed: 12/26/2022]
Abstract
Accumulative evidence demonstrates that normal as well as cancer stem cells can be identified as a side population following Hoechst 33342 staining and flow cytometric analysis. This popular method is based on the ability of stem cells to efflux this fluorescent vital dye. We demonstrate that Hoechst 33342 can affect cell differentiation, suggesting potential complications in the interpretation of data.
Collapse
|