1
|
Da Cruz BO, Almeida PP, Silva-Costa N, Brito ML, Degani VAN, da Silva EM, Magliano DC, Mebarek S, Brizuela L, Cardozo LFMF, Stockler-Pinto MB. Brazil nut-enriched diet modulates bone mineral density and body composition in an experimental model of chronic kidney disease. Nutrition 2024; 125:112482. [PMID: 39024685 DOI: 10.1016/j.nut.2024.112482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 04/17/2024] [Accepted: 04/30/2024] [Indexed: 07/20/2024]
Abstract
OBJECTIVE This study investigates the effects of a Brazil nut-enriched diet on body composition and bone parameters in CKD animal model. METHODS Male Wistar rats were assigned to the following groups: Sham (n=8), Nx (n=6), nephrectomized rats, and NxBN (n=6), nephrectomized rats and an enricheddiet with 5% Brazil nut. Body composition parameters were obtained by dual-energy X- ray absorptiometry (DXA). Bioclin kits determined plasmatic calcium. The femurs werecollected to determine absolute mass and length, bone mineral density, and biomechanical tests. RESULTS The NxBN group exhibited a higher total body bone mineral density (BMD) value than the Nx group (0.177±0.004g/cm2vs 0,169±0.003g/cm2; p=0.0397). No significant differences were observed regarding absolute mass, length, BMD, and biomechanical parameters in the femurs of the groups. Moreover, no significant differences were found in plasmatic calcium levels among the groups. CONCLUSIONS Brazil-nut enriched diet modulated BMD in CKD experimental model, and further studies are demanded to understand the pathways involved in this finding.
Collapse
Affiliation(s)
- Beatriz Oliveira Da Cruz
- Cardiovascular Sciences Post Graduate Program, Universidade Federal Fluminense, Niterói-RJ, Brazil.
| | | | - Nathalia Silva-Costa
- Cardiovascular Sciences Post Graduate Program, Universidade Federal Fluminense, Niterói-RJ, Brazil
| | - Michele Lima Brito
- Pathology Post Graduate Program, Universidade Federal Fluminense, Niterói- RJ, Brazil
| | | | - Eduardo Moreira da Silva
- Analytical Laboratory of Restorative Biomaterials, Dental School, Universidade Federal Fluminense, Niterói-RJ, Brazil
| | - D'Angelo Carlo Magliano
- Pathology Post Graduate Program, Universidade Federal Fluminense, Niterói- RJ, Brazil; Research Center on Morphology and Metabolism, Department of Morphology, Biomedical Institute, Universidade Federal Fluminense, Niterói-RJ, Brazil
| | - Saida Mebarek
- Institut de Chimie et Biochimie Moléculaires et Supramoléculaires, Université Claude Bernard Lyon 1, Lyon, France
| | - Leyre Brizuela
- Institut de Chimie et Biochimie Moléculaires et Supramoléculaires, Université Claude Bernard Lyon 1, Lyon, France
| | - Ludmila F M F Cardozo
- Cardiovascular Sciences Post Graduate Program, Universidade Federal Fluminense, Niterói-RJ, Brazil
| | - Milena Barcza Stockler-Pinto
- Cardiovascular Sciences Post Graduate Program, Universidade Federal Fluminense, Niterói-RJ, Brazil; Pathology Post Graduate Program, Universidade Federal Fluminense, Niterói- RJ, Brazil; Nutrition Sciences Post Graduate Program, Universidade Federal Fluminense, Niterói-RJ, Brazil
| |
Collapse
|
2
|
Sharma S, Porwal K, Kulkarni C, Pal S, Kumar S, Sihota P, Tiwari MC, Katekar R, Kumar A, Rajput S, Singh P, Guha R, Kumar N, Gayen JR, Chattopadhyay N. Diosmin, a citrus fruit-derived phlebotonic bioflavonoid protects rats from chronic kidney disease-induced loss of bone mass and strength without deteriorating renal function. Food Funct 2022; 13:2184-2199. [DOI: 10.1039/d1fo03867b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Kidney Disease: Improving Global Outcomes (KDIGO) 2017 Clinical Practice Guideline recommended treatment decisions for patients with chronic kidney disease (CKD) with osteoporosis and/or high risk of fracture. Bisphosphonates, the first-line...
Collapse
|
3
|
RANKL/OPG system regulation by endogenous PTH and PTH1R/ATF4 axis in bone: Implications for bone accrual and strength in growing rats with mild uremia. Cytokine 2018. [PMID: 29529595 DOI: 10.1016/j.cyto.2018.03.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Osteoprotegerin (OPG), receptor activator of NF-κB ligand (RANKL), and parathyroid hormone (PTH) play a central role in the regulation of bone turnover in chronic kidney disease (CKD), but their influence on bone mineral density (BMD) and strength remains unclear, particularly in children. We studied the clinical significance of OPG and RANKL in relation to PTH, femur weight, BMD, and bone biomechanical properties in growing rats after one month (CKD-1) and three months (CKD-3) of surgically-induced mild CKD. Gene expression of parathyroid hormone 1 receptor (PTH1R) and activating transcription factor 4 (ATF4), major regulators of anabolic PTH response in bone, was also determined. Serum PTH and bone PTH1R/ATF4 expression was elevated in CKD-3 compared with other groups, and it positively correlated with femur weight, BMD, and the biomechanical properties of the femoral diaphysis reflecting cortical bone strength. In contrast, bone RANKL/OPG ratios were decreased in CKD-3 rats compared with other groups, and they were inversely correlated with PTH and the other abovementioned bone parameters. However, the PTH-PTH1R-ATF4 axis exerted an unfavorable effect on the biomechanical properties of the femoral neck. In conclusion, this study showed for the first time an inverse association between serum PTH and the bone RANKL/OPG system in growing rats with mild CKD. A decrease in the RANKL/OPG ratio, associated with PTH-dependent activation of the anabolic PTH1R/ATF4 pathway, seems to be responsible for the unexpected, beneficial effect of PTH on cortical bone accrual and strength. Simultaneously, impaired biomechanical properties of the femoral neck were observed, making this bone site more susceptible to fractures.
Collapse
|
4
|
Shipov A, Shahar R, Sugar N, Segev G. The Influence of Chronic Kidney Disease on the Structural and Mechanical Properties of Canine Bone. J Vet Intern Med 2017; 32:280-287. [PMID: 29193308 PMCID: PMC5787163 DOI: 10.1111/jvim.14879] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 09/10/2017] [Accepted: 10/17/2017] [Indexed: 01/10/2023] Open
Abstract
Background Chronic kidney disease (CKD) is common in companion animals. Secondary hyperparathyroidism is an inevitable consequence of the disease and may have deleterious effect on the bone; however, the information regarding CKD‐associated bone abnormalities in companion animals is scarce. Hypothesis/Objectives Dogs with CKD have decreased bone quality compared to dogs without CKD. Animals Nine dogs diagnosed with naturally occurring CKD for at least 6 months and 9 age‐matched controls. Methods Dogs with CKD were enrolled and compared to 9 age‐, weight‐, and sex‐matched control dogs with no evidence of CKD. Samples were assessed using light microscopy, mechanical testing, and microcomputed tomography. Variables evaluated included microstructural features such as number, size, and density of Haversian canals, resorption cavities and osteocytic lacunae, bone mineral density, porosity and Young's modulus. Results Median lacunae size was significantly smaller in the CKD group compared to the control group (P = 0.001). Resorption cavity density was higher in the CKD compared to the control group (10 [8–14] vs. 7 [4–9]/mm2, respectively, P = 0.001). Overall porosity was significantly (2.3‐fold) higher in the CKD compared to the control group. There was no difference in Young's moduli between groups. Conclusions and Clinical Importance Naturally occurring CKD affects bone quality in dogs, but these changes are relatively mild and likely not to be manifested clinically. The duration of the disease in dogs evaluated here is short compared to cats and human patients, likely accounting for the more subtle changes in dogs compared to other species.
Collapse
Affiliation(s)
- A Shipov
- Koret School of Veterinary Medicine, Hebrew University of Jerusalem, Rehovot, Israel
| | - R Shahar
- Koret School of Veterinary Medicine, Hebrew University of Jerusalem, Rehovot, Israel
| | - N Sugar
- Koret School of Veterinary Medicine, Hebrew University of Jerusalem, Rehovot, Israel
| | - G Segev
- Koret School of Veterinary Medicine, Hebrew University of Jerusalem, Rehovot, Israel
| |
Collapse
|
5
|
Kalaska B, Pawlak K, Domaniewski T, Oksztulska-Kolanek E, Znorko B, Roszczenko A, Rogalska J, Brzoska MM, Lipowicz P, Doroszko M, Pryczynicz A, Pawlak D. Elevated Levels of Peripheral Kynurenine Decrease Bone Strength in Rats with Chronic Kidney Disease. Front Physiol 2017; 8:836. [PMID: 29163188 PMCID: PMC5671515 DOI: 10.3389/fphys.2017.00836] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 10/09/2017] [Indexed: 01/25/2023] Open
Abstract
The diagnosis and treatment of bone disorders in patients with chronic kidney disease (CKD) represent a clinical challenge. CKD leads to mineral and bone complications starting early in the course of renal failure. Recently, we have observed the positive relationship between intensified central kynurenine turnover and bone strength in rats with subtotal 5/6 nephrectomy (5/6 Nx)-induced CKD. The aim of the present study was to determine the association between peripheral kynurenine pathway metabolites and bone strength in rats with 5/6 Nx-induced CKD. The animals were sacrificed 1 and 3 months after 5/6 Nx or sham operation. Nephrectomized rats presented higher concentrations of serum creatinine, urea nitrogen, and parathyroid hormone both 1 and 3 months after nephrectomy. These animals revealed higher concentrations of kynurenine and 3-hydroxykynurenine in the serum and higher gene expression of aryl hydrocarbon receptor (AhR) as a physiological receptor for kynurenine and AhR-dependent cytochrome in the bone tissue. Furthermore, nephrectomy significantly increased the number of osteoclasts in the bone without affecting their resorptive activity measured in serum. These changes were particularly evident in rats 1 month after 5/6 Nx. The main bone biomechanical parameters of the tibia were unchanged between nephrectomized and sham-operated rats but were significantly increased in older compared to younger animals. A similar trend was observed for geometrical parameters measured with calipers, bone mineral density based on Archimedes' method and image of bone microarchitecture obtained from micro-computed tomography analyses of tibial cortical bone. In nephrectomized animals, peripheral kynurenine levels correlated negatively with the main parameters of bone biomechanics, bone geometry, and bone mineral density values. In conclusion, our data suggest that CKD-induced elevated levels of peripheral kynurenine cause pathological changes in bone structure via AhR pathway. This finding opens new opportunities for the treatment/prevention of osteoporosis in CKD.
Collapse
Affiliation(s)
- Bartlomiej Kalaska
- Department of Pharmacodynamics, Medical University of Bialystok, Bialystok, Poland
| | - Krystyna Pawlak
- Department of Monitored Pharmacotherapy, Medical University of Bialystok, Bialystok, Poland
| | - Tomasz Domaniewski
- Department of Monitored Pharmacotherapy, Medical University of Bialystok, Bialystok, Poland
| | - Ewa Oksztulska-Kolanek
- Department of Monitored Pharmacotherapy, Medical University of Bialystok, Bialystok, Poland
| | - Beata Znorko
- Department of Monitored Pharmacotherapy, Medical University of Bialystok, Bialystok, Poland
| | - Alicja Roszczenko
- Department of Toxicology, Medical University of Bialystok, Bialystok, Poland
| | - Joanna Rogalska
- Department of Toxicology, Medical University of Bialystok, Bialystok, Poland
| | | | - Pawel Lipowicz
- Faculty of Mechanical Engineering, Institute of Biocybernetics and Biomedical Engineering, Bialystok University of Technology, Bialystok, Poland
| | - Michal Doroszko
- Department of Mechanics and Applied Computer Science, Faculty of Mechanical Engineering, Bialystok University of Technology, Bialystok, Poland
| | - Anna Pryczynicz
- Department of General Pathomorphology, Medical University of Bialystok, Bialystok, Poland
| | - Dariusz Pawlak
- Department of Pharmacodynamics, Medical University of Bialystok, Bialystok, Poland
| |
Collapse
|
6
|
Kalaska B, Pawlak K, Oksztulska-Kolanek E, Domaniewski T, Znorko B, Karbowska M, Citkowska A, Rogalska J, Roszczenko A, Brzoska MM, Pawlak D. A link between central kynurenine metabolism and bone strength in rats with chronic kidney disease. PeerJ 2017; 5:e3199. [PMID: 28439468 PMCID: PMC5401623 DOI: 10.7717/peerj.3199] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Accepted: 03/18/2017] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND Disturbances in mineral and bone metabolism represent one of the most complex complications of chronic kidney disease (CKD). Serotonin, a monoamine synthesized from tryptophan, may play a potential role in bone metabolism. Brain-derived serotonin exerts a positive effect on the bone structure by limiting bone resorption and enhancing bone formation. Tryptophan is the precursor not only to the serotonin but also and primarily to kynurenine metabolites. The ultimate aim of the present study was to determine the association between central kynurenine metabolism and biomechanical as well as geometrical properties of bone in the experimental model of the early stage of CKD. METHODS Thirty-three Wistar rats were randomly divided into two groups (sham-operated and subtotal nephrectomized animals). Three months after surgery, serum samples were obtained for the determination of biochemical parameters, bone turnover biomarkers, and kynurenine pathway metabolites; tibias were collected for bone biomechanical, bone geometrical, and bone mass density analysis; brains were removed and divided into five regions for the determination of kynurenine pathway metabolites. RESULTS Subtotal nephrectomized rats presented higher serum concentrations of creatinine, urea nitrogen, and parathyroid hormone, and developed hypocalcemia. Several biomechanical and geometrical parameters were significantly elevated in rats with experimentally induced CKD. Subtotal nephrectomized rats presented significantly higher kynurenine concentrations and kynurenine/tryptophan ratio and significantly lower tryptophan levels in all studied parts of the brain. Kynurenine in the frontal cortex and tryptophan in the hypothalamus and striatum correlated positively with the main parameters of bone biomechanics and bone geometry. DISCUSSION In addition to the complex mineral, hormone, and metabolite changes, intensified central kynurenine turnover may play an important role in the development of bone changes in the course of CKD.
Collapse
Affiliation(s)
- Bartlomiej Kalaska
- Department of Pharmacodynamics, Medical University of Bialystok, Bialystok, Poland
| | - Krystyna Pawlak
- Department of Monitored Pharmacotherapy, Medical University of Bialystok, Bialystok, Poland
| | - Ewa Oksztulska-Kolanek
- Department of Monitored Pharmacotherapy, Medical University of Bialystok, Bialystok, Poland
| | - Tomasz Domaniewski
- Department of Monitored Pharmacotherapy, Medical University of Bialystok, Bialystok, Poland
| | - Beata Znorko
- Department of Monitored Pharmacotherapy, Medical University of Bialystok, Bialystok, Poland
| | - Malgorzata Karbowska
- Department of Pharmacodynamics, Medical University of Bialystok, Bialystok, Poland
| | - Aleksandra Citkowska
- Department of Pharmacodynamics, Medical University of Bialystok, Bialystok, Poland
| | - Joanna Rogalska
- Department of Toxicology, Medical University of Bialystok, Bialystok, Poland
| | - Alicja Roszczenko
- Department of Toxicology, Medical University of Bialystok, Bialystok, Poland
| | | | - Dariusz Pawlak
- Department of Pharmacodynamics, Medical University of Bialystok, Bialystok, Poland
| |
Collapse
|
7
|
The Association between Elevated Levels of Peripheral Serotonin and Its Metabolite - 5-Hydroxyindoleacetic Acid and Bone Strength and Metabolism in Growing Rats with Mild Experimental Chronic Kidney Disease. PLoS One 2016; 11:e0163526. [PMID: 27711209 PMCID: PMC5053519 DOI: 10.1371/journal.pone.0163526] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 09/09/2016] [Indexed: 11/25/2022] Open
Abstract
Chronic kidney disease (CKD) is associated with disturbances in bone strength and metabolism. The alterations of the serotonergic system are also observed in CKD. We used the 5/6 nephrectomy model of CKD to assess the impact of peripheral serotonin and its metabolite– 5-hydroxyindoleacetic acid on bone biomechanical properties and metabolism in growing rats. The animals were sacrificed one and three months after nephrectomy. Biomechanical properties were determined on two different bone types: the cortical bone of the femoral diaphysis using three-point bending test and the mixed cortico-trabecular bone by the bending test of the femoral neck. Biomechanical tests revealed preserved cortical bone strength, whereas work to fracture (W) and yield load (Fy) of mixed cortico-trabecular bone were significantly lower in CKD compared to controls. Serum activity of alkaline phosphatase (ALP), a bone formation marker, and tartrate-resistant acid phosphatase (TRACP 5b) reflecting bone resorption, were similar in CKD and controls. ALP was associated with lower femoral stiffness and strength, and higher displacements and W. TRACP 5b was inversely associated with cortical Fu and W. The elevated peripheral serotonergic system in CKD was: inversely associated with stiffness but positively related to the displacements and W; inversely associated with cortical Fy but positively correlated with this parameter in cortico-trabecular bone; inversely associated with ALP in controls but positively correlated with this biomarker in CKD animals. In conclusion, this study demonstrates the distinct effect of mild degree of CKD on bone strength in rapidly growing rats. The impaired renal function affects the peripheral serotonin metabolism, which in turn may influence the strength and metabolism of bones in these rats. This relationship seems to be beneficial on the biomechanical properties of the cortico-trabecular bone, whereas the cortical bone strength can be potentially reduced.
Collapse
|
8
|
Jokihaara J, Pörsti IH, Sievänen H, Kööbi P, Kannus P, Niemelä O, Turner RT, Iwaniec UT, Järvinen TLN. Phosphate Binding with Sevelamer Preserves Mechanical Competence of Bone Despite Acidosis in Advanced Experimental Renal Insufficiency. PLoS One 2016; 11:e0163022. [PMID: 27658028 PMCID: PMC5033583 DOI: 10.1371/journal.pone.0163022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2016] [Accepted: 09/01/2016] [Indexed: 11/19/2022] Open
Abstract
Introduction Phosphate binding with sevelamer can ameliorate detrimental histomorphometric changes of bone in chronic renal insufficiency (CRI). Here we explored the effects of sevelamer-HCl treatment on bone strength and structure in experimental CRI. Methods Forty-eight 8-week-old rats were assigned to surgical 5/6 nephrectomy (CRI) or renal decapsulation (Sham). After 14 weeks of disease progression, the rats were allocated to untreated and sevelamer-treated (3% in chow) groups for 9 weeks. Then the animals were sacrificed, plasma samples collected, and femora excised for structural analysis (biomechanical testing, quantitative computed tomography). Results Sevelamer-HCl significantly reduced blood pH, and final creatinine clearance in the CRI groups ranged 30%-50% of that in the Sham group. Final plasma phosphate increased 2.4- to 2.9-fold, and parathyroid hormone 13- to 21-fold in CRI rats, with no difference between sevelamer-treated and untreated animals. In the femoral midshaft, CRI reduced cortical bone mineral density (-3%) and breaking load (-15%) (p<0.05 for all versus Sham), while sevelamer increased bone mineral density (+2%) and prevented the deleterious changes in bone. In the femoral neck, CRI reduced bone mineral density (-11%) and breaking load (-10%), while sevelamer prevented the decrease in bone mineral density (+6%) so that breaking load did not differ from controls. Conclusions In this model of stage 3–4 CRI, sevelamer-HCl treatment ameliorated the decreases in femoral midshaft and neck mineral density, and restored bone strength despite prevailing acidosis. Therefore, treatment with sevelamer can efficiently preserve mechanical competence of bone in CRI.
Collapse
Affiliation(s)
- Jarkko Jokihaara
- Department of Hand and Microsurgery, Tampere University Hospital, Tampere, Finland
- Center for Hip Health and Mobility, Department of Orthopaedics, University of British Columbia, Vancouver, BC, Canada
- * E-mail:
| | | | | | - Peeter Kööbi
- Medical School, University of Tampere, Tampere, Finland
| | - Pekka Kannus
- Bone Research Group, UKK-Institute, Tampere, Finland
| | - Onni Niemelä
- Medical School, University of Tampere, Tampere, Finland
- Department of Laboratory Medicine, Seinäjoki Central Hospital Laboratory, Seinäjoki, Finland
| | - Russell T. Turner
- Skeletal Biology Laboratory, School of Biological and Population Health Sciences, Oregon State University, Corvallis, OR, United States of America
| | - Urszula T. Iwaniec
- Skeletal Biology Laboratory, School of Biological and Population Health Sciences, Oregon State University, Corvallis, OR, United States of America
| | - Teppo L. N. Järvinen
- Center for Hip Health and Mobility, Department of Orthopaedics, University of British Columbia, Vancouver, BC, Canada
- Department of Orthopaedics and Traumatology, University of Helsinki, Helsinki, Finland
| |
Collapse
|
9
|
Segev G, Meltzer H, Shipov A. Does Secondary Renal Osteopathy Exist in Companion Animals? Vet Clin North Am Small Anim Pract 2016; 46:1151-62. [PMID: 27436331 DOI: 10.1016/j.cvsm.2016.06.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Secondary renal hyperparathyroidism is an inevitable consequence of chronic kidney disease. In human patients, the disease is associated with decreased bone quality and increased fracture risk. Recent evidence suggests that bone quality is also decreased in companion animals, more pronouncedly in cats compared with dogs, likely because of a longer disease course. The clinical significance of these findings is yet to be determined. However, clinicians should keep in mind that animals with chronic kidney disease have decreased bone quality and increased fracture risk.
Collapse
Affiliation(s)
- Gilad Segev
- Koret School of Veterinary Medicine, The Hebrew University of Jerusalem, Hertzel Street, Rehovot 76100, Israel.
| | - Hagar Meltzer
- Koret School of Veterinary Medicine, The Hebrew University of Jerusalem, Hertzel Street, Rehovot 76100, Israel
| | - Anna Shipov
- Koret School of Veterinary Medicine, The Hebrew University of Jerusalem, Hertzel Street, Rehovot 76100, Israel
| |
Collapse
|
10
|
Oksztulska-Kolanek E, Znorko B, Michałowska M, Pawlak K. The Biomechanical Testing for the Assessment of Bone Quality in an Experimental Model of Chronic Kidney Disease. Nephron Clin Pract 2015; 132:51-8. [DOI: 10.1159/000442714] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Accepted: 10/30/2015] [Indexed: 11/19/2022] Open
|
11
|
Shipov A, Segev G, Meltzer H, Milrad M, Brenner O, Atkins A, Shahar R. The effect of naturally occurring chronic kidney disease on the micro-structural and mechanical properties of bone. PLoS One 2014; 9:e110057. [PMID: 25333360 PMCID: PMC4198205 DOI: 10.1371/journal.pone.0110057] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Accepted: 09/09/2014] [Indexed: 11/19/2022] Open
Abstract
Chronic kidney disease (CKD) is a growing public health concern worldwide, and is associated with marked increase of bone fragility. Previous studies assessing the effect of CKD on bone quality were based on biopsies from human patients or on laboratory animal models. Such studies provide information of limited relevance due to the small size of the samples (biopsies) or the non-physiologic CKD syndrome studied (rodent models with artificially induced CKD). Furthermore, the type, architecture, structure and biology of the bone of rodents are remarkably different from human bones; therefore similar clinicopathologic circumstances may affect their bones differently. We describe the effects of naturally occurring CKD with features resembling human CKD on the skeleton of cats, whose bone biology, structure and composition are remarkably similar to those of humans. We show that CKD causes significant increase of resorption cavity density compared with healthy controls, as well as significantly lower cortical mineral density, cortical cross-sectional area and cortical cross-sectional thickness. Young's modulus, yield stress, and ultimate stress of the cortical bone material were all significantly decreased in the skeleton of CKD cats. Cancellous bone was also affected, having significantly lower trabecular thickness and bone volume over total volume in CKD cats compared with controls. This study shows that naturally occurring CKD has deleterious effects on bone quality and strength. Since many similarities exist between human and feline CKD patients, including the clinicopathologic features of the syndrome and bone microarchitecture and biology, these results contribute to better understanding of bone abnormalities associated with CKD.
Collapse
Affiliation(s)
- Anna Shipov
- Koret School of Veterinary Medicine, Hebrew University of Jerusalem, Rehovot, Israel
- * E-mail:
| | - Gilad Segev
- Koret School of Veterinary Medicine, Hebrew University of Jerusalem, Rehovot, Israel
| | - Hagar Meltzer
- Koret School of Veterinary Medicine, Hebrew University of Jerusalem, Rehovot, Israel
| | - Moran Milrad
- Koret School of Veterinary Medicine, Hebrew University of Jerusalem, Rehovot, Israel
| | - Ori Brenner
- Department of Veterinary Resources, Weizmann Institute, Rehovot, Israel
| | - Ayelet Atkins
- Koret School of Veterinary Medicine, Hebrew University of Jerusalem, Rehovot, Israel
| | - Ron Shahar
- Koret School of Veterinary Medicine, Hebrew University of Jerusalem, Rehovot, Israel
| |
Collapse
|
12
|
Shirazi-Fard Y, Kupke JS, Bloomfield SA, Hogan HA. Discordant recovery of bone mass and mechanical properties during prolonged recovery from disuse. Bone 2013; 52:433-43. [PMID: 23017660 DOI: 10.1016/j.bone.2012.09.021] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2012] [Revised: 09/14/2012] [Accepted: 09/14/2012] [Indexed: 11/28/2022]
Abstract
Profound bone loss at weight bearing sites is a primary effect of long-duration spaceflight. Moreover, a significant increase in estimated fracture risk remains even 1 year after returning to Earth; hence, it is important to define how quickly bone integrity can recover following prolonged disuse. This study characterized the loss and recovery dynamics of bone following a period of rodent hindlimb unloading in three anatomic sites. We hypothesized that the rat femoral neck would exhibit a discordant recovery dynamic most similar to that observed in astronauts' proximal femur; that is, bone mineral content (absolute mass) at this site would recover faster and more completely than would bone density and cortical area, and they will all recover before bone strength does. We characterized loss and long-term recovery of densitometric properties at the femoral neck, proximal tibia metaphysis, and tibia diaphysis, and also mechanical properties at the femoral neck and tibia diaphysis for which mechanical testing is amenable. We assessed the relationship between calculated strength indices and measured mechanical properties. Adult male Sprague-Dawley rats (6 months) were assigned to baseline, age-matched control (AC), and hindlimb unloaded (HU) groups. The HU group was unloaded for 28 days and then returned to normal cage activity for 84 days of weight bearing recovery (3 times the duration of HU). Fifteen animals were euthanized from each of the HU and AC groups on days 28, 56, 84, and 112 of the study. At baseline and then every 28 days in vivo longitudinal pQCT scans were taken at proximal tibia metaphysis (PTM) and tibia diaphysis (TD); ex vivo pQCT scans were taken later at the femoral neck (FN). TD and FN were tested to failure to measure mechanical properties. The hypothesis that the femoral neck in rats will exhibit a discordant recovery dynamic most similar to that observed in astronauts' proximal femurs was not supported by our data. At the femoral neck, densitometric and geometric variables (total BMC, total vBMD, cancellous vBMD, and cortical area) recovered to age-matched control levels after a recovery period twice the duration of unloading. Contrary to our hypothesis, changes in densitometric variables at the PTM provided a better model for changes in the human femoral neck with prolonged weightlessness. Following 28 days of HU, PTM total BMC recovered to age-matched control levels after roughly two times the duration of unloading; however, total vBMD did not recover even after three recovery periods. Cortical thinning occurred at the PTM following HU likely due to inhibition of periosteal growth; cortical shell thickness did not recover even after three recovery periods. Calculated strength indices suggested a loss in strength at the tibial diaphysis, which was not confirmed with direct testing of mechanical properties. HU had no effect on maximum fracture force at mid-tibia diaphysis; however, femoral neck experienced a significant loss of maximum force due to unloading that fully recovered after 28 days. Estimated strength indices for the femoral neck suggested a recovery period of 56 days in contrast to the 28-day recovery that was observed with mechanical testing. However, the inaccuracy of strength indices vs. directly measured mechanical properties highlights the continued importance of ground based animal models and mechanical testing. Our results demonstrate that the PTM in the rat better matches loss and recovery dynamics observed in astronauts' proximal femur than does the rat FN, at least in terms of densitometric variables. More complete utility of the rat PTM as a model in this case, however, depends upon meaningful characterization of changes in mechanical properties as well.
Collapse
Affiliation(s)
- Yasaman Shirazi-Fard
- Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843, USA.
| | | | | | | |
Collapse
|
13
|
Mechanistic investigations on the etiology of Risperdal® Consta®-induced bone changes in female Wistar Hannover rats. Toxicology 2012; 299:90-8. [DOI: 10.1016/j.tox.2012.05.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2012] [Revised: 05/04/2012] [Accepted: 05/05/2012] [Indexed: 11/21/2022]
|
14
|
Iwamoto J, Seki A, Sato Y, Matsumoto H. Vitamin K(2) improves renal function and increases femoral bone strength in rats with renal insufficiency. Calcif Tissue Int 2012; 90:50-9. [PMID: 22080166 DOI: 10.1007/s00223-011-9548-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2011] [Accepted: 10/02/2011] [Indexed: 10/15/2022]
Abstract
Renal insufficiency induces cortical bone loss in rats. The present study examined the influence of vitamin K(2) on renal function, cortical bone mass, and bone strength in rats with renal insufficiency. Thirty male Sprague-Dawley rats (8 weeks old) were randomized by the stratified weight method to the following three groups of 10 animals each: sham operation (control), 5/6 nephrectomy, and 5/6 nephrectomy + oral vitamin K(2) (menaquinone-4, menatetrenone, 30 mg/kg, 5 days/week). Treatment was initiated 10 days after surgery. After 6 weeks of treatment, samples of serum, urine, and bone (femur and tibia) were obtained. Renal function was evaluated, bone histomorphometric analysis was performed on the tibial diaphysis, and the bone mineral density (BMD) and mechanical strength of the femoral diaphysis were determined by peripheral quantitative computed tomography and a three-point bending test, respectively. Nephrectomy induced renal dysfunction, as indicated by increased levels of serum creatinine and urea nitrogen along with a decrease of creatinine clearance; and it also decreased BMD without significantly affecting bone strength at the femoral diaphysis. Vitamin K(2) improved renal function parameters but did not significantly influence BMD at the femoral diaphysis. However, vitamin K(2) decreased the bone marrow area of the tibial diaphysis and increased the stiffness of the femoral diaphysis. These findings suggest that administration of vitamin K(2) improves renal function and increases cortical bone strength without altering BMD in rats with renal insufficiency.
Collapse
Affiliation(s)
- Jun Iwamoto
- Institute for Integrated Sports Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan.
| | | | | | | |
Collapse
|
15
|
Cao H, Nazarian A, Ackerman JL, Snyder BD, Rosenberg AE, Nazarian RM, Hrovat MI, Dai G, Mintzopoulos D, Wu Y. Quantitative (31)P NMR spectroscopy and (1)H MRI measurements of bone mineral and matrix density differentiate metabolic bone diseases in rat models. Bone 2010; 46:1582-90. [PMID: 20188225 PMCID: PMC2875334 DOI: 10.1016/j.bone.2010.02.020] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2009] [Revised: 12/18/2009] [Accepted: 02/18/2010] [Indexed: 11/29/2022]
Abstract
In this study, bone mineral density (BMD) of normal (CON), ovariectomized (OVX), and partially nephrectomized (NFR) rats was measured by (31)P NMR spectroscopy; bone matrix density was measured by (1)H water- and fat-suppressed projection imaging (WASPI); and the extent of bone mineralization (EBM) was obtained by the ratio of BMD/bone matrix density. The capability of these MR methods to distinguish the bone composition of the CON, OVX, and NFR groups was evaluated against chemical analysis (gravimetry). For cortical bone specimens, BMD of the CON and OVX groups was not significantly different; BMD of the NFR group was 22.1% (by (31)P NMR) and 17.5% (by gravimetry) lower than CON. For trabecular bone specimens, BMD of the OVX group was 40.5% (by (31)P NMR) and 24.6% (by gravimetry) lower than CON; BMD of the NFR group was 26.8% (by (31)P NMR) and 21.5% (by gravimetry) lower than CON. No significant change of cortical bone matrix density between CON and OVX was observed by WASPI or gravimetry; NFR cortical bone matrix density was 10.3% (by WASPI) and 13.9% (by gravimetry) lower than CON. OVX trabecular bone matrix density was 38.0% (by WASPI) and 30.8% (by gravimetry) lower than CON, while no significant change in NFR trabecular bone matrix density was observed by either method. The EBMs of OVX cortical and trabecular specimens were slightly higher than CON but not significantly different from CON. Importantly, EBMs of NFR cortical and trabecular specimens were 12.4% and 26.3% lower than CON by (31)P NMR/WASPI, respectively, and 4.0% and 11.9% lower by gravimetry. Histopathology showed evidence of osteoporosis in the OVX group and severe secondary hyperparathyroidism (renal osteodystrophy) in the NFR group. These results demonstrate that the combined (31)P NMR/WASPI method is capable of discerning the difference in EBM between animals with osteoporosis and those with impaired bone mineralization.
Collapse
Affiliation(s)
- Haihui Cao
- Department of Orthopaedic Surgery, Children’s Hospital, Boston, MA 02115
- Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA 02129
- Harvard Medical School, Boston, MA 02115
| | - Ara Nazarian
- Center for Advanced Orthopaedic Studies, Department of Orthopaedic Surgery, Beth Israel Deaconess Medical Center, Boston, MA 02215
- Harvard Medical School, Boston, MA 02115
| | - Jerome L. Ackerman
- Department of Orthopaedic Surgery, Children’s Hospital, Boston, MA 02115
- Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA 02129
- Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA 02139
- Harvard Medical School, Boston, MA 02115
| | - Brian D. Snyder
- Department of Orthopaedic Surgery, Children’s Hospital, Boston, MA 02115
- Center for Advanced Orthopaedic Studies, Department of Orthopaedic Surgery, Beth Israel Deaconess Medical Center, Boston, MA 02215
- Harvard Medical School, Boston, MA 02115
| | - Andrew E. Rosenberg
- Department of Pathology, Massachusetts General Hospital, Boston, MA 02114
- Harvard Medical School, Boston, MA 02115
| | - Rosalynn M. Nazarian
- Department of Pathology, Massachusetts General Hospital, Boston, MA 02114
- Harvard Medical School, Boston, MA 02115
| | | | - Guangping Dai
- Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA 02129
- Harvard Medical School, Boston, MA 02115
| | - Dionyssios Mintzopoulos
- Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA 02129
- Harvard Medical School, Boston, MA 02115
| | - Yaotang Wu
- Department of Orthopaedic Surgery, Children’s Hospital, Boston, MA 02115
- Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA 02129
- Harvard Medical School, Boston, MA 02115
- Corresponding Author: Yaotang Wu, Department of Orthopaedic Surgery, Children’s Hospital, Room 930, Enders Building, 300 Longwood Avenue, Boston, MA 02115, Phone: 617-919-2060, Fax: 617-730-0122,
| |
Collapse
|
16
|
Abstract
The effects of type 2 diabetes mellitus (T2DM) on bone volumetric density, bone geometry, and estimates of bone strength are not well established. We used peripheral quantitative computed tomography (pQCT) to compare tibial and radial bone volumetric density (vBMD, mg/cm(3)), total (ToA, mm(2)) and cortical (CoA, mm(2)) bone area and estimates of bone compressive and bending strength in a subset (n = 1171) of men (> or =65 years of age) who participated in the multisite Osteoporotic Fractures in Men (MrOS) study. Analysis of covariance-adjusted bone data for clinic site, age, and limb length (model 1) and further adjusted for body weight (model 2) were used to compare data between participants with (n = 190) and without (n = 981) T2DM. At both the distal tibia and radius, patients with T2DM had greater bone vBMD (+2% to +4%, model 1, p < .05) and a smaller bone area (ToA -1% to -4%, model 2, p < .05). The higher vBMD compensated for lower bone area, resulting in no differences in estimated compressive bone strength at the distal trabecular bone regions. At the mostly cortical bone midshaft sites of the radius and tibia, men with T2DM had lower ToA (-1% to -3%, p < .05), resulting in lower bone bending strength at both sites after adjusting for body weight (-2% to -5%, p < .05) despite the lack of difference in cortical vBMD at these sites. These data demonstrate that older men with T2DM have bone strength that is low relative to body weight at the cortical-rich midshaft of the radius despite no difference in cortical vBMD.
Collapse
|
17
|
Compressive axial mechanical properties of rat bone as functions of bone volume fraction, apparent density and micro-ct based mineral density. J Biomech 2009; 43:953-60. [PMID: 20003979 DOI: 10.1016/j.jbiomech.2009.10.047] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2008] [Revised: 10/28/2009] [Accepted: 10/31/2009] [Indexed: 01/30/2023]
Abstract
Mechanical testing has been regarded as the gold standard to investigate the effects of pathologies on the structure-function properties of the skeleton. With recent advances in computing power of personal computers, virtual alternatives to mechanical testing are gaining acceptance and use. We have previously introduced such a technique called structural rigidity analysis to assess mechanical strength of skeletal tissue with defects. The application of this technique is predicated upon the use of relationships defining the strength of bone as a function of its density for a given loading mode. We are to apply this technique in rat models to assess their compressive skeletal response subjected to a host of biological and pharmaceutical stimulations. Therefore, the aim of this study is to derive a relationship expressing axial compressive mechanical properties of rat cortical and cancellous bone as a function of equivalent bone mineral density, bone volume fraction or apparent density over a range of normal and pathologic bones. We used bones from normal, ovariectomized and partially nephrectomized animals. All specimens underwent micro-computed tomographic imaging to assess bone morphometric and densitometric indices and uniaxial compression to failure. We obtained univariate relationships describing 71-78% of the mechanical properties of rat cortical and cancellous bone based on equivalent mineral density, bone volume fraction or apparent density over a wide range of density and common skeletal pathologies. The relationships reported in this study can be used in the structural rigidity analysis introduced by the authors to provide a non-invasive method to assess the compressive strength of bones affected by pathology and/or treatment options.
Collapse
|
18
|
An improved method to assess torsional properties of rodent long bones. J Biomech 2009; 42:1720-5. [DOI: 10.1016/j.jbiomech.2009.04.019] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2008] [Revised: 03/09/2009] [Accepted: 04/09/2009] [Indexed: 11/22/2022]
|
19
|
Nazarian A, Cory E, Müller R, Snyder BD. Shortcomings of DXA to assess changes in bone tissue density and microstructure induced by metabolic bone diseases in rat models. Osteoporos Int 2009; 20:123-32. [PMID: 18516487 DOI: 10.1007/s00198-008-0632-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2007] [Accepted: 03/21/2008] [Indexed: 11/26/2022]
Abstract
UNLABELLED The aim of this study is to demonstrate the deficiencies of dual-energy X-ray absorptiometry (DXA), compared with quantitative computed tomography, to reflect and differentiate between changes in bone mineral density and microstructure that contribute to a well-defined finding of altered skeletal state for both osteoporosis and renal osteodystrophy induced by chronic renal insufficiency. INTRODUCTION The aim of this study is to demonstrate the deficiencies of dual-energy X-ray absorptiometry (DXA), compared with quantitative CT, to reflect and differentiate between changes in bone mineral density and microstructure that contribute to a well-defined finding of altered skeletal state for both osteoporosis and renal osteodystrophy induced by chronic renal insufficiency. METHODS Forty-five female Sprague-Dawley rats were divided into three equal groups: control, ovariectomy, and nephrectomy. Following euthanasia, femurs were excised, divided into diaphyseal and distal metaphyseal sections, and subjected to DXA and micro-CT imaging and mechanical testing. RESULTS Ovariectomy does not affect the structural and mechanical properties of cortical bone material, but partial nephrectomy does adversely affect these properties. Both are verified by DXA and micro-CT imaging and mechanical testing. Meanwhile, nephrectomy does not affect trabecular bone microstructure or equivalent density, yet ovariectomy affects the trabecular microstructure. DXA is unable to detect changes in trabecular bone microstructure in relation to changes in their mechanical properties. DISCUSSION Dual energy X-ray absorptiometry measures the average bone mineral content in a 2D projected area and cannot differentiate whether the changes occur in the bone microstructure or equivalent bone tissue density. In contrast, micro-CT provides an accurate measurement of the changes in both equivalent bone tissue mineral density and microstructure for cancellous and cortical bone.
Collapse
Affiliation(s)
- A Nazarian
- Orthopedic Biomechanics Laboratory, Beth Israel Deaconess Medical Center and Harvard Medical School, 330 Brookline Avenue, RN115, Boston, MA, 02215, USA
| | | | | | | |
Collapse
|
20
|
Jokihaara J, Pörsti IH, Kööbi P, Jolma PM, Mustonen JT, Saha HHT, Sievänen H, Kannus P, Iwaniec UT, Turner RT, Järvinen TLN. Treatment of experimental renal osteodystrophy with pamidronate. Kidney Int 2008; 74:319-27. [PMID: 18463610 DOI: 10.1038/ki.2008.180] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
We evaluated the effects of the bisphosphonate pamidronate on bone histomorphometry, structure and strength in male rats with uninephrectomy or with chronic renal disease induced by 5/6 nephrectomy. In rats with chronic renal disease the plasma urea, phosphate and parathyroid hormone levels were significantly increased compared to rats with a uninephroctomy and none of these parameters was affected by pamidronate treatment. In the femoral midshaft, chronic renal disease reduced cortical bone mineral density and content. No difference was observed in the breaking load of the femoral midshaft. In the distal femur, a high-turnover renal osteodystrophy was found but pamidronate suppressed this bone turnover and increased bone mineral content. Treatment had no effect on chronic disease-induced augmentation of osteoid volume or fibroblast surface. These studies show that in this model of stage 3 renal disease, pamidronate increased mineral content in the femoral midshaft and distal metaphysis primarily by adding bone to endocortical and trabecular surfaces but did not reduce osteitis fibrosa.
Collapse
Affiliation(s)
- Jarkko Jokihaara
- Department of Orthopaedics, University of British Columbia, Vancouver, British Columbia, Canada
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|