1
|
Chu T, Wasi M, Guerra RM, Song X, Wang S, Sims-Mourtada J, You L, Wang L. Skeletal response to Yoda1 and whole-body vibration in mice varied with animal age, bone compartment, treatment duration, and radiation exposure. Bone 2025:117525. [PMID: 40389188 DOI: 10.1016/j.bone.2025.117525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2025] [Revised: 05/13/2025] [Accepted: 05/13/2025] [Indexed: 05/21/2025]
Abstract
In this study, we investigated the skeletal effects of Yoda1, an agonist of the mechanosensitive Piezo1 channels, and whole-body vibration (WBV), alone and combined, in young mice (8-week-old) and in mature (31- to 36-week-old) mice after radiation exposure. Our goal was to determine whether the two mechanobiology-based interventions, known to induce anabolic response individually in young subjects, could promote the bone health of older subjects undergoing cancer treatments such as radiotherapy. Our hypothesis was that the combination of Yoda1 and WBV could improve young skeletons and protect mature skeletons after radiotherapy better than Yoda1 or WBV alone. Our in vivo experiments demonstrated (1) that Yoda1 (5 mg/kg body weight) alone or combined with WBV (0.3 g, 13 Hz, 30 min/day, 5 days/week, 4 weeks) enhanced bone growth similarly (~2 folds relative to nontreated controls) in young mice; (2) that mature mice were unresponsive to individual interventions but exhibited less polar moment of inertia loss (-56 %) in the tibiae receiving the combination of Yoda1 and WBV (15 min/day) but no radiation exposure; and (3) that the contralateral tibiae receiving fractionated radiation (2 × 8 Gy over three days) did not show different treatment responses in Week 4, while they responded to the combination therapy (increased cortical bone formation) in Week 2. Interestingly, pair comparisons of the irradiated and non-irradiated tibiae of the same animals revealed that radiation exposure resulted in decreased trabecular bone loss regardless of the treatments and increased the percentage of tibiae maintaining better cortical polar moment of inertia and cortical area in the groups receiving Yoda1 or the combination therapy. The complex skeletal responses to Yoda1 and/or WBV were compartment specific (cortical or trabecular bone) and dependent on animal age, radiation exposure, and treatment duration. This study partially supported our original hypothesis, while suggesting the need of finetuning the Yoda1 and WBV regimens and elucidating the underlying mechanisms in order to effectively treat age and radiation induced bone loss.
Collapse
Affiliation(s)
- Tiankuo Chu
- Department of Mechanical Engineering, University of Delaware, Newark, DE, USA
| | - Murtaza Wasi
- Department of Mechanical Engineering, University of Delaware, Newark, DE, USA
| | - Rosa M Guerra
- Department of Biomedical Engineering, University of Delaware, Newark, DE, USA
| | - Xin Song
- Department of Mechanical and Industrial Engineering, Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Shubo Wang
- Department of Mechanical Engineering, University of Delaware, Newark, DE, USA
| | | | - Lidan You
- Department of Mechanical and Industrial Engineering, Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada; Department of Mechanical and Materials Engineering, Queens University, Ontario, Canada
| | - Liyun Wang
- Department of Mechanical Engineering, University of Delaware, Newark, DE, USA; Department of Biomedical Engineering, University of Delaware, Newark, DE, USA.
| |
Collapse
|
2
|
Hoffman DB, Schifino AG, Cooley MA, Zhong RX, Heo J, Morris CM, Campbell MJ, Warren GL, Greising SM, Call JA. Low intensity, high frequency vibration training to improve musculoskeletal function in a mouse model of volumetric muscle loss. J Orthop Res 2025; 43:622-631. [PMID: 39610268 PMCID: PMC11806655 DOI: 10.1002/jor.26023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 10/04/2024] [Accepted: 10/31/2024] [Indexed: 11/30/2024]
Abstract
This study's objective was to investigate the extent to which two different levels of low-intensity vibration training (0.6 g or 1.0 g) affected musculoskeletal structure and function after a volumetric muscle loss (VML) injury in male C57BL/6J mice. All mice received a unilateral VML injury to the posterior plantar flexors. Mice were randomized into a control group (no vibration; VML-noTX), or one of two experimental groups. The two experimental groups received vibration training for 15-min/day, 5-days/week for 8 weeks at either 0.6 g (VML-0.6 g) or 1.0 g (VML-1.0 g) beginning 3-days after induction of VML. Muscles were analyzed for contractile and metabolic adaptations. Tibial bone mechanical properties and geometric structure were assessed by a three-point bending test and microcomputed tomography (µCT). Body mass-normalized peak isometric-torque was 18% less in VML-0.6 g mice compared with VML-noTx mice (p = 0.030). There were no statistically significant differences of vibration intervention on contractile power or muscle oxygen consumption (p ≥ 0.191). Bone ultimate load, but not stiffness, was ~16% greater in tibias of VML-1.0 g mice compared with those from VML-noTx mice (p = 0.048). Cortical bone volume was ~12% greater in tibias of both vibration groups compared with VML-noTx mice (p = 0.003). Importantly, cross-section moment of inertia, the primary determinant of bone ultimate load, was 44% larger in tibias of VML-0.6 g mice compared with VML-noTx mice (p = 0.006). These changes indicate that following VML, bones are more responsive to the selected vibration training parameters than muscle. Vibration training represents a possible adjuvant intervention to address bone deficits following VML.
Collapse
Affiliation(s)
| | | | - Marion A. Cooley
- Department of Oral Biology and Diagnostic Sciences, Dental College of GeorgiaAugust UniversityAugustaGeorgiaUSA
| | - Roger X. Zhong
- Department of Neuroscience and Regenerative MedicineAugusta UniversityAugustaGeorgiaUSA
| | - Junwon Heo
- Department of Physiology & PharmacologyUniversity of GeorgiaAthensGeorgiaUSA
| | - Courtney M. Morris
- Department of Physiology & PharmacologyUniversity of GeorgiaAthensGeorgiaUSA
| | - Matthew J. Campbell
- Department of Physiology & PharmacologyUniversity of GeorgiaAthensGeorgiaUSA
| | - Gordon L. Warren
- Department of Physical TherapyGeorgia State UniversityAtlantaGeorgiaUSA
| | | | - Jarrod A. Call
- Department of Physiology & PharmacologyUniversity of GeorgiaAthensGeorgiaUSA
- Regenerative Bioscience CenterUniversity of GeorgiaAthensGeorgiaUSA
| |
Collapse
|
3
|
Peng Y, Bramlett HM, Dietrich WD, Marcillo A, Sanchez-Molano J, Furones-Alonso O, Cao JJ, Huang J, Li AA, Feng JQ, Bauman WA, Qin W. Administration of low intensity vibration and a RANKL inhibitor, alone or in combination, reduces bone loss after spinal cord injury-induced immobilization in rats. Bone Rep 2024; 23:101808. [PMID: 39429803 PMCID: PMC11489065 DOI: 10.1016/j.bonr.2024.101808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 09/30/2024] [Accepted: 10/01/2024] [Indexed: 10/22/2024] Open
Abstract
We previously reported an ability of low-intensity vibration (LIV) to improve selected biomarkers of bone turnover and gene expression and reduce osteoclastogenesis but lacking of evident bone accrual. In this study, we demonstrate that a prolonged course of LIV that initiated at 2 weeks post-injury and continued for 8 weeks can protect against bone loss after SCI in rats. LIV stimulates bone formation and improves osteoblast differentiation potential of bone marrow stromal stem cells while inhibiting osteoclast differentiation potential of marrow hematopoietic progenitors to reduce bone resorption. We further demonstrate that the combination of LIV and RANKL antibody reduces SCI-related bone loss more than each intervention alone. Our findings that LIV is efficacious in maintaining sublesional bone mass suggests that such physical-based intervention approach would be a noninvasive, simple, inexpensive and practical intervention to treat bone loss after SCI. Because the combined administration of LIV and RANKL inhibition better preserved sublesional bone after SCI than either intervention alone, this work provides the impetus for the development of future clinical protocols based on the potential greater therapeutic efficacy of combining non-pharmacological (e.g., LIV) and pharmacological (e.g., RANKL inhibitor or other agents) approaches to treat osteoporosis after SCI or other conditions associated with severe immobilization.
Collapse
Affiliation(s)
- Yuanzhen Peng
- Spinal Cord Damage Research Center, James J. Peters Veteran Affairs Medical Center, Bronx, New York, USA
| | - Helen M. Bramlett
- Bruce W. Carter Miami VA Medical Center, Miami, Florida, USA
- Miami Project to Cure Paralysis, USA
- Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - W. Dalton Dietrich
- Miami Project to Cure Paralysis, USA
- Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Alex Marcillo
- Miami Project to Cure Paralysis, USA
- Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Juliana Sanchez-Molano
- Miami Project to Cure Paralysis, USA
- Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Ofelia Furones-Alonso
- Miami Project to Cure Paralysis, USA
- Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Jay J. Cao
- USDA-ARS Grand Forks Human Nutrition Research Center, Grand Forks, North Dakota, USA
| | | | | | - Jian Q. Feng
- Baylor College of Dentistry, TX A&M, Dallas, TX, USA
| | - William A. Bauman
- Departments of Medicine, USA
- Rehabilitation and Human Performance, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Weiping Qin
- Spinal Cord Damage Research Center, James J. Peters Veteran Affairs Medical Center, Bronx, New York, USA
- Departments of Medicine, USA
| |
Collapse
|
4
|
DiVasta AD, Stamoulis C, Rubin CT, Gallagher JS, Kiel DP, Snyder BD, Gordon CM. Low-Magnitude Mechanical Signals to Preserve Skeletal Health in Female Adolescents With Anorexia Nervosa: A Randomized Clinical Trial. JAMA Netw Open 2024; 7:e2441779. [PMID: 39480424 PMCID: PMC11528308 DOI: 10.1001/jamanetworkopen.2024.41779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 08/30/2024] [Indexed: 11/03/2024] Open
Abstract
Importance Malnourished adolescents and young adults with anorexia nervosa (AN) are at high risk for skeletal deficits. Objective To examine whether low-magnitude mechanical signals (LMMS) could preserve bone mineral density (BMD) throughout 6 months in adolescents and young adults with AN. Design, Setting, and Participants This double-blind, sham-controlled randomized clinical trial, conducted in a hospital-based specialty clinic, assessed female adolescents and young women without medical comorbidity or medication use that would compromise bone health. A total of 837 female adolescents were screened from January 1, 2012, to December 31, 2019, of whom 317 met the study criteria. Data analysis was performed from 2020 to 2024. Intervention Platform delivering low-magnitude mechanical signals (LMMS) (0.3 g at 32-37 Hz) or sham (ie, placebo) signals for 10 minutes daily for 6 months. Main Outcomes and Measures The primary outcome was trabecular volumetric BMD (vBMD) as measured by peripheral quantitative computed tomography of the tibia at baseline and 6 months. Secondary outcomes included cortical vBMD, cross-sectional area (CSA), areal BMD and body composition measured by dual-energy x-ray absorptiometry, and serum bone turnover markers. Results Forty female adolescents and young women (median [IQR] age, 16.3 [15.1-17.6] years; median [IQR] percentage median BMI for age, 87.2% [81.0%-91.6%]) completed the trial. Total bone vBMD changes were nonsignificant in both groups (95% CI for difference in median change between groups, -57.11 to 2.49): in the LMMS group, vBMD decreased from a median (IQR) of 313.4 (292.9-344.6) to 309.4 (290.4-334.0) mg/cm3, and in the placebo group, it increased from a median (IQR) of 308.5 (276.7-348.0) to 319.2 (309.9-338.4) mg/cm3. Total CSA at the 4% tibia site increased from a median (IQR) of 795.8 (695.0-844.8) mm2 to 827.5 (803.0-839.4) mm2 in the LMMS group, whereas in the placebo group, it decreased from 847.3 (770.5-915.3) mm2 to 843.3 (828.9-857.7) mm2 (95% CI for difference in median change between groups, 2.94-162.53). Median (IQR) trabecular CSA at the 4% tibia site increased from 616.3 (534.8-672.3) mm2 to 649.2 (638.0-661.4) mm2 in the LMMS group but decreased in the placebo group from 686.4 (589.0-740.0) mm2 to 647.9 (637.3-661.9) mm2 (95% CI for difference in median change between groups, 2.80-139.68 mm2). Changes in cortical vBMD, cortical section modulus, and muscle CSA were not significant between groups. The 6-month changes in trabecular and total bone CSA at the tibia 4% site (weight-bearing trabecular bone) were significantly different between groups (these measures increased in the LMMS group but decreased in the placebo group; total bone CSA: 95% CI, 2.94-162.53; P = .01; trabecular CSA: 95% CI, 2.80-139.68; P = .02). Greater increases in body mass index were seen in the placebo group (median [IQR] gain, 0.5 [-0.3 to +2.1]) than in the LMMS group (median [IQR] gain, +0.4 [-0.3 to +2.1]), perhaps due to differences in fat mass accrual. No adverse events occurred related to the LMMS intervention. Conclusions and Relevance In this randomized clinical trial of female adolescents and young women with AN, a 6-month LMMS intervention did not yield improvement in tibial trabecular vBMD. However, LMMS led to increases in total and trabecular CSA at the tibia. These results suggest an early positive response of increased bone turnover and trabecular bone quantity due to the LMMS intervention. Future studies should use a longer duration of intervention, consider strategies to optimize adherence, and potentially focus on a more profoundly malnourished patient population. Trial Registration ClinicalTrials.gov Identifier: NCT01100567.
Collapse
Affiliation(s)
- Amy D. DiVasta
- Division of Adolescent Medicine, Boston Children’s Hospital, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
| | - Catherine Stamoulis
- Division of Adolescent Medicine, Boston Children’s Hospital, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
| | - Clinton T. Rubin
- Department of Biomedical Engineering, State University of New York at Stony Brook, Stony Brook
| | | | - Douglas P. Kiel
- Harvard Medical School, Boston, Massachusetts
- Hinda and Arthur Marcus Institute for Aging Research, Hebrew SeniorLife, Boston, Massachusetts
- Department of Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts
| | - Brian D. Snyder
- Harvard Medical School, Boston, Massachusetts
- Department of Orthopedic Surgery, Boston Children’s Hospital, Boston, Massachusetts
| | - Catherine M. Gordon
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, Maryland
| |
Collapse
|
5
|
Matsumoto T, Hashimoto K, Okada H. Discretizing low-intensity whole-body vibration into bouts with short rest intervals promotes bone defect repair in osteoporotic mice. J Orthop Res 2024; 42:1267-1275. [PMID: 38234146 DOI: 10.1002/jor.25781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 12/19/2023] [Accepted: 12/24/2023] [Indexed: 01/19/2024]
Abstract
Continuous administration of low-intensity whole-body vibration (WBV) gradually diminishes bone mechanosensitivity over time, leading to a weakening of its osteogenic effect. We investigated whether discretizing WBV into bouts with short rest intervals was effective in enhancing osteoporotic bone repair. Ten-week-old female mice were ovariectomized and underwent drill-hole defect surgery (Day 0) on the right tibial diaphysis at 11 weeks of age. The mice underwent one of three regimens starting from Day 1 for 5 days/week: continuous WBV at 45 Hz and 0.3 g for 7.5 min/day (cWBV); 3-s bouts of WBV at 45 Hz, 0.3 g followed by 9-s rest intervals, repeated for 30 min/day (repeated bouts of whole-body vibration with short rest intervals [rWBV]); or a sham treatment. Both the cWBV and rWBV groups received a total of 20,250 vibration cycles per day. On either Day 7 or 14 posteuthanasia (n = 6/group/timepoint), the bone and angiogenic vasculature in the defect were computed tomography imaged using synchrotron light. By Day 14, the bone repair was most advanced in the rWBV group, showing a higher bone volume fraction and a more uniform mineral distribution compared with the sham group. The cWBV group exhibited an intermediate level of bone repair between the sham and rWBV groups. The rWBV group had a decrease in large-sized angiogenic vessels, while the cWBV group showed an increase in such vessels. In conclusion, osteoporotic bone repair was enhanced by WBV bouts with short rest intervals, which may potentially be attributed to the improved mechanosensitivity of osteogenic cells and alterations in angiogenic vasculature.
Collapse
Affiliation(s)
- Takeshi Matsumoto
- Division of Science and Technology, Graduate School of Technology, Industrial and Social Sciences, Tokushima University, Tokushima, Japan
| | - Keishi Hashimoto
- Division of Science and Technology, Graduate School of Technology, Industrial and Social Sciences, Tokushima University, Tokushima, Japan
| | - Hyuga Okada
- Division of Science and Technology, Graduate School of Technology, Industrial and Social Sciences, Tokushima University, Tokushima, Japan
| |
Collapse
|
6
|
Horowitz RA, Kurtzman GM. Utilization of Low-Magnitude High-Frequency Vibration (LMHFV) as an Aid in Treating Peri-Implantitis: Case Presentations. J ORAL IMPLANTOL 2023; 49:501-509. [PMID: 36975737 DOI: 10.1563/aaid-joi-d-21-00038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 12/21/2022] [Accepted: 03/09/2023] [Indexed: 03/29/2023]
Abstract
Peri-implantitis is an inflammatory process initiating in the soft tissue and then progressing to the hard tissue surrounding dental implants leading to loss of osseous support and potential loss of the implant if not identified early in the process. This process initiates in the soft tissue, which become inflamed spreading to the underlying bone leading to decreases in bone density with subsequent crestal resorption and thread exposure. In the absence of treatment of the peri-implantitis, the bone loss at the osseous implant interface progresses with inflammatory mediated decrease in the bone density that moves apically, eventually leading to mobility of the implant and its failure. Low-magnitude high-frequency vibration (LMHFV) has been shown to improve bone density, stimulate osteoblastic activity, and arrest progression of peri-implantitis with improvement of the bone or graft around the affected implant with or without surgery as part of the treatment. Two cases are presented using LMHFV to augment treatment.
Collapse
Affiliation(s)
- Robert A Horowitz
- Department of Periodontology and Implant Dentistry, NYU School of Dentistry, New York, New York
- Private practice, Scarsdale, New York
| | | |
Collapse
|
7
|
Lee BS, Murray C, Liu J, Kim M, Hwang MS, Yueh T, Mansour M, Qamar S, Agarwal G, Kim DG. The myosin and RhoGAP MYO9B influences osteocyte dendrite growth and responses to mechanical stimuli. Front Bioeng Biotechnol 2023; 11:1243303. [PMID: 37675403 PMCID: PMC10477788 DOI: 10.3389/fbioe.2023.1243303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 08/11/2023] [Indexed: 09/08/2023] Open
Abstract
Introduction: Myosin IXB (MYO9B) is an unconventional myosin with RhoGAP activity and thus is a regulator of actin cytoskeletal organization. MYO9B was previously shown to be necessary for skeletal growth and health and to play a role in actin-based functions of both osteoblasts and osteoclasts. However, its role in responses to mechanical stimulation of bone cells has not yet been described. Therefore, experiments were undertaken to determine the role of MYO9B in bone cell responses to mechanical stress both in vitro and in vivo. Methods: MYO9B expression was knocked down in osteoblast and osteocyte cell lines using RNA interference and the resulting cells were subjected to mechanical stresses including cyclic tensile strain, fluid shear stress, and plating on different substrates (no substrate vs. monomeric or polymerized collagen type I). Osteocytic cells were also subjected to MYO9B regulation through Slit-Robo signaling. Further, wild-type or Myo9b -/- mice were subjected to a regimen of whole-body vibration (WBV) and changes in bone quality were assessed by micro-CT. Results: Unlike control cells, MYO9B-deficient osteoblastic cells subjected to uniaxial cyclic tensile strain were unable to orient their actin stress fibers perpendicular to the strain. Osteocytic cells in which MYO9B was knocked down exhibited elongated dendrites but were unable to respond normally to treatments that increase dendrite length such as fluid shear stress and Slit-Robo signaling. Osteocytic responses to mechanical stimuli were also found to be dependent on the polymerization state of collagen type I substrates. Wild-type mice responded to WBV with increased bone tissue mineral density values while Myo9b -/- mice responded with bone loss. Discussion: These results demonstrate that MYO9B plays a key role in mechanical stress-induced responses of bone cells in vitro and in vivo.
Collapse
Affiliation(s)
- Beth S. Lee
- Department of Physiology and Cell Biology, College of Medicine, The Ohio State University, Columbus, OH, United States
| | - Cynthia Murray
- Department of Physiology and Cell Biology, College of Medicine, The Ohio State University, Columbus, OH, United States
| | - Jie Liu
- Division of Orthodontics, College of Dentistry, The Ohio State University, Columbus, OH, United States
| | - Minji Kim
- Department of Orthodontics, Graduate School of Clinical Dentistry, Ewha Womans University, Seoul, Republic of Korea
| | - Min Sik Hwang
- Division of Orthodontics, College of Dentistry, The Ohio State University, Columbus, OH, United States
| | - Tina Yueh
- Department of Physiology and Cell Biology, College of Medicine, The Ohio State University, Columbus, OH, United States
| | - Myrna Mansour
- Department of Physiology and Cell Biology, College of Medicine, The Ohio State University, Columbus, OH, United States
| | - Sana Qamar
- Department of Physiology and Cell Biology, College of Medicine, The Ohio State University, Columbus, OH, United States
| | - Gunjan Agarwal
- Department of Mechanical and Aerospace Engineering, College of Engineering, The Ohio State University, Columbus, OH, United States
| | - Do-Gyoon Kim
- Division of Orthodontics, College of Dentistry, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
8
|
Carvajal-Agudelo JD, McNeil A, Franz-Odendaal TA. Effects of simulated microgravity and vibration on osteoblast and osteoclast activity in cultured zebrafish scales. LIFE SCIENCES IN SPACE RESEARCH 2023; 38:39-45. [PMID: 37481306 DOI: 10.1016/j.lssr.2023.05.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 04/27/2023] [Accepted: 05/08/2023] [Indexed: 07/24/2023]
Abstract
Zebrafish cultured scales have been used effectively to study cellular and molecular responses of bone cells. In order to expose zebrafish scales to simulated microgravity (SMG) and/or vibration, we first determined via apoptosis staining whether cells of the scale survive in culture for two days and hence, we restricted our analyses to two-day durations. Next, we measured the effects of SMG and vibration on cell death, osteoclast tartrate-resistant acid phosphatase, and osteoblast alkaline phosphatase activity and on the number of Runx2a positive cells. We found that during the SMG treatment, osteoclast tartrate-resistant acid phosphatase activity increased on average, while the number of Runx2a positive cells decreased significantly. In contrast, SMG exposure caused a decrease in osteoblast activity. The vibration treatment showed an increase, on average, in the osteoblast alkaline phosphatase activity. This study demonstrates the effect of SMG and vibration on zebrafish scales and the effects of SMG on bone cells. We also show that zebrafish scales can be used to examine the effects of SMG on bone maintenance.
Collapse
Affiliation(s)
| | - Alisha McNeil
- Department of Biology, Mount Saint Vincent University, Halifax, NS, B3M 2J6, Canada
| | | |
Collapse
|
9
|
Minematsu A, Nishii Y. Effects of whole body vibration on bone properties in growing rats. Int Biomech 2022; 9:19-26. [DOI: 10.1080/23335432.2022.2142666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Akira Minematsu
- Department of Physical Therapy, Faculty of Health Science, Kio University, 4-2-2 Umaminaka, Koryo-cho, Kitakatsuragi-gun, 635-0832, Japan
| | - Yasue Nishii
- Department of Physical Therapy, Faculty of Health Science, Kio University, 4-2-2 Umaminaka, Koryo-cho, Kitakatsuragi-gun, 635-0832, Japan
| |
Collapse
|
10
|
Bonanni R, Cariati I, Romagnoli C, D’Arcangelo G, Annino G, Tancredi V. Whole Body Vibration: A Valid Alternative Strategy to Exercise? J Funct Morphol Kinesiol 2022; 7:jfmk7040099. [PMID: 36412761 PMCID: PMC9680512 DOI: 10.3390/jfmk7040099] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 10/26/2022] [Accepted: 10/28/2022] [Indexed: 11/06/2022] Open
Abstract
Several studies agree that mechanical vibration can induce physiological changes at different levels, improving neuromuscular function through postural control strategies, muscle tuning mechanisms and tonic vibration reflexes. Whole-body vibration has also been reported to increase bone mineral density and muscle mass and strength, as well as to relieve pain and modulate proprioceptive function in patients with osteoarthritis or lower back pain. Furthermore, vibratory training was found to be an effective strategy for improving the physical performance of healthy athletes in terms of muscle strength, agility, flexibility, and vertical jump height. Notably, several benefits have also been observed at the brain level, proving to be an important factor in protecting and/or preventing the development of age-related cognitive disorders. Although research in this field is still debated, certain molecular mechanisms responsible for the response to whole-body vibration also appear to be involved in physiological adaptations to exercise, suggesting the possibility of using it as an alternative or reinforcing strategy to canonical training. Understanding these mechanisms is crucial for the development of whole body vibration protocols appropriately designed based on individual needs to optimize these effects. Therefore, we performed a narrative review of the literature, consulting the bibliographic databases MEDLINE and Google Scholar, to i) summarize the most recent scientific evidence on the effects of whole-body vibration and the molecular mechanisms proposed so far to provide a useful state of the art and ii) assess the potential of whole-body vibration as a form of passive training in place of or in association with exercise.
Collapse
Affiliation(s)
- Roberto Bonanni
- Department of Clinical Sciences and Translational Medicine, “Tor Vergata” University of Rome, Via Montpellier 1, 00133 Rome, Italy
| | - Ida Cariati
- Department of Clinical Sciences and Translational Medicine, “Tor Vergata” University of Rome, Via Montpellier 1, 00133 Rome, Italy
- Correspondence:
| | - Cristian Romagnoli
- Sport Engineering Lab, Department of Industrial Engineering, “Tor Vergata” University of Rome, Via Politecnico 1, 00133 Rome, Italy
| | - Giovanna D’Arcangelo
- Department of Systems Medicine, “Tor Vergata” University of Rome, Via Montpellier 1, 00133 Rome, Italy
- Centre of Space Bio-Medicine, “Tor Vergata” University of Rome, Via Montpellier 1, 00133 Rome, Italy
| | - Giuseppe Annino
- Department of Systems Medicine, “Tor Vergata” University of Rome, Via Montpellier 1, 00133 Rome, Italy
- Centre of Space Bio-Medicine, “Tor Vergata” University of Rome, Via Montpellier 1, 00133 Rome, Italy
| | - Virginia Tancredi
- Department of Systems Medicine, “Tor Vergata” University of Rome, Via Montpellier 1, 00133 Rome, Italy
- Centre of Space Bio-Medicine, “Tor Vergata” University of Rome, Via Montpellier 1, 00133 Rome, Italy
| |
Collapse
|
11
|
Teixeira CC, Abdullah F, Alikhani M, Alansari S, Sangsuwon C, Oliveira S, Nervina JM, Alikhani M. Dynamic loading stimulates mandibular condyle remodeling. J World Fed Orthod 2022; 11:146-155. [DOI: 10.1016/j.ejwf.2022.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/21/2022] [Accepted: 08/21/2022] [Indexed: 10/14/2022]
|
12
|
Kerr N, Sanchez J, Moreno WJ, Furones-Alonso OE, Dietrich WD, Bramlett HM, Raval AP. Post-stroke low-frequency whole-body vibration improves cognition in middle-aged rats of both sexes. Front Aging Neurosci 2022; 14:942717. [PMID: 36062148 PMCID: PMC9428155 DOI: 10.3389/fnagi.2022.942717] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 07/26/2022] [Indexed: 11/18/2022] Open
Abstract
Low-frequency whole-body vibration (WBV; 40 Hz), a low impact form of exercise, intervention for a month following moderate transient middle-cerebral artery occlusion (tMCAO) reduces infarct volume and improves motor function in reproductively senescent, middle-aged female rats. Since post-stroke cognitive decline remains a significant problem, the current study aims to investigate the efficacy of WBV in ameliorating post-tMCAO cognitive deficits and to determine the underlying putative mechanism(s) conferring benefits of WBV in middle-aged rats. Middle-aged rats of both sexes were randomly assigned to tMCAO (90 min) or sham surgery followed by exposure to either WBV (twice a day for 15 min each for 5 days a week over a month) or no WBV treatment groups. Following the last WBV treatment, rats were tested for hippocampus-dependent learning and memory using a water maze followed by harvesting brain and blood samples for histopathological and inflammatory marker analyses, respectively. Results show that post-tMCAO WBV significantly lessens cognitive deficits in rats of both sexes. Post-tMCAO WBV significantly decreased circulating pro-inflammatory cytokines and increased serum levels of irisin, a muscle-derived hormone that may play a role in brain metabolism and inflammation regulation, which suggests putative beneficial mechanisms of WBV.
Collapse
Affiliation(s)
- Nadine Kerr
- Department of Neurological Surgery, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Juliana Sanchez
- Department of Neurological Surgery, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, United States
| | - William Javier Moreno
- Department of Neurological Surgery, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Ofelia E. Furones-Alonso
- Department of Neurological Surgery, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, United States
| | - W. Dalton Dietrich
- Department of Neurological Surgery, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Helen M. Bramlett
- Department of Neurological Surgery, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, United States
- Bruce W. Carter Department of Veterans Affairs Medical Center, Miami, FL, United States
- *Correspondence: Helen M. Bramlett,
| | - Ami P. Raval
- Peritz Scheinberg Cerebral Vascular Disease Research Laboratory, Department of Neurology, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, United States
- Ami P. Raval,
| |
Collapse
|
13
|
Effects of whole body vibration in postmenopausal osteopenic women on bone mineral density, muscle strength, postural control and quality of life: the T-bone randomized trial. Eur J Appl Physiol 2022; 122:2331-2342. [PMID: 35864343 PMCID: PMC9560973 DOI: 10.1007/s00421-022-05010-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 07/07/2022] [Indexed: 12/03/2022]
Abstract
Purpose Osteopenia is common in postmenopausal women and effective interventions increasing or stabilizing bone mineral density (BMD) to prevent fractures are urgently needed. Methods Sixty-five postmenopausal women diagnosed with osteopenia (T-score between -1.0 and -2.5) were randomly assigned to either a vibration training group (VT), a resistance training group (RT), or a control group (CG). BMD T-score values (primary endpoint) were assessed at baseline (T0) and after 12 months (T12), secondary endpoints (muscle strength, postural control, and health-related quality of life) at baseline (T0), after 6 months (T6), after 12 months (T12), and as follow-up after 15 months (T15). Results After the intervention period, neither the VT nor the RT showed any significant changes in BMD T-score values compared to the CG. Isokinetic strength improved significantly within all training groups, with the exception of the flexors of VT at an angular velocity of 240°/s. Health-related quality of life as well as postural control improved significantly for the RT only. Conclusions We conclude that participants of all three groups were able to maintain their BMD. The improvements in quality of life and postural control after resistance training are nevertheless meaningful for postmenopausal osteopenic women and support the importance of regular loadings of the musculoskeletal system. This study was retrospectively registered in January 2022 at the DRKS (S00027816) as clinical trial. Supplementary Information The online version contains supplementary material available at 10.1007/s00421-022-05010-5.
Collapse
|
14
|
Bodnyk KA, Kim DG, Pan X, Hart RT. The Long-Term Residual Effects of Low-Magnitude Mechanical Stimulation on Murine Femoral Mechanics. J Biomech Eng 2022; 144:1128892. [PMID: 34817049 DOI: 10.1115/1.4053101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Indexed: 11/08/2022]
Abstract
As an alternative to drug treatments, low-magnitude mechanical stimulation (LMMS) may improve skeletal health without potential side effects from drugs. LMMS has been shown to increase bone health short term in both animal and clinical studies. Long-term changes to the mechanical properties of bone from LMMS are currently unknown, so the objective of this research was to establish the methodology and preliminary results for investigating the long-term effects of whole body vibration therapy on the elastic and viscoelastic properties of bone. In this study, 10-week-old female BALB/cByJ mice were given LMMS (15 min/day, 5 days/week, 0.3 g, 90 Hz) for 8 weeks; SHAM did not receive LMMS. Two sets of groups remained on study for an additional 8 or 16 weeks post-LMMS (N = 17). Micro-CT and fluorochrome histomorphology of these femurs were studied and results were published by Bodnyk et al. (2020, "The Long-Term Residual Effects of Low-Magnitude Mechanical Stimulation Therapy on Skeletal Health," J. Biol. Eng., 14, Article No. 9.). Femoral quasi-static bending stiffness trended 4.2% increase in stiffness after 8 weeks of LMMS and 1.3% increase 8 weeks post-LMMS compared to SHAM. Damping, tan delta, and loss stiffness significantly increased by 17.6%, 16.3%, and 16.6%, respectively, at 8 weeks LMMS compared to SHAM. Finite element models of applied LMMS signal showed decreased stress in the mid-diaphyseal region at both 8-week LMMS and 8-week post-LMMS compared to SHAM. Residual mechanical changes in bone during and post-LMMS indicate that LMMS could be used to increase long-term mechanical integrity of bone.
Collapse
Affiliation(s)
- Kyle A Bodnyk
- Department of Biomedical Engineering, The Ohio State University, Fontana Labs, 140 West 19th Street, Columbus OH 43210
| | - Do-Gyoon Kim
- Division of Orthodontics, The Ohio State University, 305 West 12th Avenue, 4088 Postle Hall, Columbus, OH 43210
| | - Xueliang Pan
- College of Medicine, Biomedical Informatics, The Ohio State University, 1800 Cannon Drive, Columbus, OH 43210
| | - Richard T Hart
- Department of Biomedical Engineering, Fontana Labs, The Ohio State University, 140 West 19th Street Columbus, OH 43210
| |
Collapse
|
15
|
Beck B, Rubin C, Harding A, Paul S, Forwood M. The effect of low-intensity whole-body vibration with or without high-intensity resistance and impact training on risk factors for proximal femur fragility fracture in postmenopausal women with low bone mass: study protocol for the VIBMOR randomized controlled trial. Trials 2022; 23:15. [PMID: 34991684 PMCID: PMC8734256 DOI: 10.1186/s13063-021-05911-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 12/03/2021] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND The prevailing medical opinion is that medication is the primary (some might argue, only) effective intervention for osteoporosis. It is nevertheless recognized that osteoporosis medications are not universally effective, tolerated, or acceptable to patients. Mechanical loading, such as vibration and exercise, can also be osteogenic but the degree, relative efficacy, and combined effect is unknown. The purpose of the VIBMOR trial is to determine the efficacy of low-intensity whole-body vibration (LIV), bone-targeted, high-intensity resistance and impact training (HiRIT), or the combination of LIV and HiRIT on risk factors for hip fracture in postmenopausal women with osteopenia and osteoporosis. METHODS Postmenopausal women with low areal bone mineral density (aBMD) at the proximal femur and/or lumbar spine, with or without a history of fragility fracture, and either on or off osteoporosis medications will be recruited. Eligible participants will be randomly allocated to one of four trial arms for 9 months: LIV, HiRIT, LIV + HiRIT, or control (low-intensity, home-based exercise). Allocation will be block-randomized, stratified by use of osteoporosis medications. Testing will be performed at three time points: baseline (T0), post-intervention (T1; 9 months), and 1 year thereafter (T2; 21 months) to examine detraining effects. The primary outcome measure will be total hip aBMD determined by dual-energy X-ray absorptiometry (DXA). Secondary outcomes will include aBMD at other regions, anthropometrics, and other indices of bone strength, body composition, physical function, kyphosis, muscle strength and power, balance, falls, and intervention compliance. Exploratory outcomes include bone turnover markers, pelvic floor health, quality of life, physical activity enjoyment, adverse events, and fracture. An economic evaluation will also be conducted. DISCUSSION No previous studies have compared the effect of LIV alone or in combination with bone-targeted HiRIT (with or without osteoporosis medications) on risk factors for hip fracture in postmenopausal women with low bone mass. Should either, both, or combined mechanical interventions be safe and efficacious, alternative therapeutic avenues will be available to individuals at elevated risk of fragility fracture who are unresponsive to or unwilling or unable to take osteoporosis medications. TRIAL REGISTRATION Australian New Zealand Clinical Trials Registry (www. anzctr.org.au ) (Trial number ANZCTR12615000848505, https://www.anzctr.org.au/Trial/Registration/TrialReview.aspx?id = 368962 ); date of registration 14/08/2015 (prospectively registered). Universal Trial Number: U1111-1172-3652.
Collapse
Affiliation(s)
- Belinda Beck
- Menzies Health Institute Queensland, School of Health Sciences and Social Work, Griffith University, Gold Coast, QLD Australia
| | - Clinton Rubin
- Department of Biomedical Engineering, State University of New York at Stony Brook, New York, NY USA
| | - Amy Harding
- Menzies Health Institute Queensland, School of Health Sciences and Social Work, Griffith University, Gold Coast, QLD Australia
| | - Sanjoy Paul
- Melbourne EpiCentre, University of Melbourne and Melbourne Health, Melbourne, VIC Australia
| | - Mark Forwood
- School of Pharmacy and Medical Sciences, Gold Coast, QLD Australia
| |
Collapse
|
16
|
Kennedy IW, Tsimbouri PM, Campsie P, Sood S, Childs PG, Reid S, Young PS, Meek DRM, Goodyear CS, Dalby MJ. Nanovibrational stimulation inhibits osteoclastogenesis and enhances osteogenesis in co-cultures. Sci Rep 2021; 11:22741. [PMID: 34815449 PMCID: PMC8611084 DOI: 10.1038/s41598-021-02139-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 11/02/2021] [Indexed: 11/23/2022] Open
Abstract
Models of bone remodelling could be useful in drug discovery, particularly if the model is one that replicates bone regeneration with reduction in osteoclast activity. Here we use nanovibrational stimulation to achieve this in a 3D co-culture of primary human osteoprogenitor and osteoclast progenitor cells. We show that 1000 Hz frequency, 40 nm amplitude vibration reduces osteoclast formation and activity in human mononuclear CD14+ blood cells. Additionally, this nanoscale vibration both enhances osteogenesis and reduces osteoclastogenesis in a co-culture of primary human bone marrow stromal cells and bone marrow hematopoietic cells. Further, we use metabolomics to identify Akt (protein kinase C) as a potential mediator. Akt is known to be involved in bone differentiation via transforming growth factor beta 1 (TGFβ1) and bone morphogenetic protein 2 (BMP2) and it has been implicated in reduced osteoclast activity via Guanine nucleotide-binding protein subunit α13 (Gα13). With further validation, our nanovibrational bioreactor could be used to help provide humanised 3D models for drug screening.
Collapse
Affiliation(s)
- Ian W Kennedy
- Centre for the Cellular Microenvironment, Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, UK.
| | - P Monica Tsimbouri
- Centre for the Cellular Microenvironment, Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Paul Campsie
- SUPA Department of Biomedical Engineering, University of Strathclyde, Glasgow, G1 1QE, UK
| | - Shatakshi Sood
- Institute of Infection, Immunity and Inflammation, Glasgow Biomedical Research Centre, University Place, University of Glasgow, Glasgow, G12 8TA, UK
| | - Peter G Childs
- SUPA Department of Biomedical Engineering, University of Strathclyde, Glasgow, G1 1QE, UK
| | - Stuart Reid
- SUPA Department of Biomedical Engineering, University of Strathclyde, Glasgow, G1 1QE, UK
| | - Peter S Young
- Centre for the Cellular Microenvironment, Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Dominic R M Meek
- Department of Trauma and Orthopaedics, Queen Elizabeth University Hospital, Glasgow, G51 4TF, UK
| | - Carl S Goodyear
- Institute of Infection, Immunity and Inflammation, Glasgow Biomedical Research Centre, University Place, University of Glasgow, Glasgow, G12 8TA, UK
| | - Matthew J Dalby
- Centre for the Cellular Microenvironment, Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, UK
| |
Collapse
|
17
|
van der Ende M, Plas RLC, van Dijk M, Dwarkasing JT, van Gemerden F, Sarokhani A, Swarts HJM, van Schothorst EM, Grefte S, Witkamp RF, van Norren K. Effects of whole-body vibration training in a cachectic C26 mouse model. Sci Rep 2021; 11:21563. [PMID: 34732809 PMCID: PMC8566567 DOI: 10.1038/s41598-021-98665-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 07/20/2021] [Indexed: 12/02/2022] Open
Abstract
Targeted exercise combined with nutritional and pharmacological strategies is commonly considered to be the most optimal strategy to reduce the development and progression of cachexia. For COPD patients, this multi-targeted treatment has shown beneficial effects. However, in many, physical activity is seriously hampered by frailty and fatigue. In the present study, effects of whole-body-vibration-training (WBV) were investigated, as potential alternative to active exercise, on body mass, muscle mass and function in tumour bearing mice. Twenty-four male CD2F1-mice (6–8 weeks, 21.5 ± 0.2 g) were stratified into four groups: control, control + WBV, C26 tumour-bearing, and C26 tumour-bearing + WBV. From day 1, whole-body-vibration was daily performed for 19 days (15 min, 45 Hz, 1.0 g acceleration). General outcome measures included body mass and composition, daily activity, blood analysis, assessments of muscle histology, function, and whole genome gene expression in m. soleus (SOL), m. extensor digitorum longus (EDL), and heart. Body mass, lean and fat mass and EDL mass were all lower in tumour bearing mice compared to controls. Except from improved contractility in SOL, no effects of vibration training were found on cachexia related general outcomes in control or tumour groups, as PCA analysis did not result in a distinction between corresponding groups. However, analysis of transcriptome data clearly revealed a distinction between tumour and trained tumour groups. WBV reduced the tumour-related effects on muscle gene expression in EDL, SOL and heart. Gene Set Enrichment Analysis showed that these effects were associated with attenuation of the upregulation of the proteasome pathway in SOL. These data suggest that WBV had minor effects on cachexia related general outcomes in the present experimental set-up, while muscle transcriptome showed changes associated with positive effects. This calls for follow-up studies applying longer treatment periods of WBV as component of a multiple-target intervention.
Collapse
Affiliation(s)
- Miranda van der Ende
- Division Human Nutrition and Health, Nutritional Biology and Health, Wageningen University & Research, Wageningen, The Netherlands.,Human and Animal Physiology, Wageningen University & Research, Wageningen, The Netherlands
| | - Rogier L C Plas
- Division Human Nutrition and Health, Nutritional Biology and Health, Wageningen University & Research, Wageningen, The Netherlands
| | - Miriam van Dijk
- Nutricia Research, Nutricia Advanced Medical Nutrition, Utrecht, The Netherlands
| | - Jvalini T Dwarkasing
- Division Human Nutrition and Health, Nutritional Biology and Health, Wageningen University & Research, Wageningen, The Netherlands
| | - Frans van Gemerden
- Division Human Nutrition and Health, Nutritional Biology and Health, Wageningen University & Research, Wageningen, The Netherlands
| | - Attusa Sarokhani
- Division Human Nutrition and Health, Nutritional Biology and Health, Wageningen University & Research, Wageningen, The Netherlands
| | - Hans J M Swarts
- Human and Animal Physiology, Wageningen University & Research, Wageningen, The Netherlands
| | - Evert M van Schothorst
- Human and Animal Physiology, Wageningen University & Research, Wageningen, The Netherlands
| | - Sander Grefte
- Human and Animal Physiology, Wageningen University & Research, Wageningen, The Netherlands
| | - Renger F Witkamp
- Division Human Nutrition and Health, Nutritional Biology and Health, Wageningen University & Research, Wageningen, The Netherlands
| | - Klaske van Norren
- Division Human Nutrition and Health, Nutritional Biology and Health, Wageningen University & Research, Wageningen, The Netherlands.
| |
Collapse
|
18
|
Fu Z, Huang X, Zhou P, Wu B, Cheng L, Wang X, Zhu D. Protective effects of low-magnitude high-frequency vibration on high glucose-induced osteoblast dysfunction and bone loss in diabetic rats. J Orthop Surg Res 2021; 16:650. [PMID: 34717702 PMCID: PMC8557505 DOI: 10.1186/s13018-021-02803-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 10/18/2021] [Indexed: 01/07/2023] Open
Abstract
Objective Low-magnitude high-frequency vibration (LMHFV) has been reported to be capable of promoting osteoblast proliferation and differentiation. Reduced osteoblast activity and impaired bone formation were related to diabetic bone loss. We investigated the potential protective effects of LMHFV on high-glucose (HG)-induced osteoblasts in this study. In addition, the assessment of LMHFV treatment for bone loss attributed to diabetes was also performed in vivo.
Method MC3T3-E1 cells induced by HG only or treated with LMHFV were treated in vitro. The experiments performed in this study included the detection of cell proliferation, migration and differentiation, as well as protein expression. Diabetic bone loss induced by streptozotocin (STZ) in rats was established. Combined with bone morphometric, microstructure, biomechanical properties and matrix composition tests, the potential of LMHFV in treating diabetes bone loss was explored. Results After the application of LMHFV, the inhibiting effects of HG on the proliferation, migration and differentiation of osteoblasts were alleviated. The GSK3β/β-catenin pathway was involved in the protective effect of LMHFV. Impaired microstructure and biomechanical properties attributed to diabetes were ameliorated by LMHFV treatment. The improvement of femur biomechanical properties might be associated with the alteration of the matrix composition by the LMHFV. Conclusion LMHFV exhibited a protective effect on osteoblasts against HG by regulating the proliferation, migration and differentiation of osteoblasts. The function of promoting bone formation and reinforcing bone strength made it possible for LMHFV to alleviate diabetic bone loss. Supplementary Information The online version contains supplementary material available at 10.1186/s13018-021-02803-w.
Collapse
Affiliation(s)
- Zhaoyu Fu
- Department of Orthopaedic Trauma, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Xu Huang
- Department of Radiology, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Pengcheng Zhou
- Department of Orthopaedic Trauma, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Bo Wu
- Department of Orthopaedic Trauma, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Long Cheng
- Department of Orthopaedic Trauma, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Xinyu Wang
- Department of Orthopaedic Trauma, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Dong Zhu
- Department of Orthopaedic Trauma, The First Hospital of Jilin University, Changchun, Jilin, China.
| |
Collapse
|
19
|
Wang J, Wang D, Hu G, Yang L, Liu Z, Yan D, Serikuly N, Alpyshov E, Demin KA, Strekalova T, Gil Barcellos LJ, Barcellos HHA, Amstislavskaya TG, de Abreu MS, Kalueff AV. The role of auditory and vibration stimuli in zebrafish neurobehavioral models. Behav Processes 2021; 193:104505. [PMID: 34547376 DOI: 10.1016/j.beproc.2021.104505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 09/09/2021] [Accepted: 09/14/2021] [Indexed: 11/16/2022]
Abstract
Strongly affecting human and animal physiology, sounds and vibration are critical environmental factors whose complex role in behavioral and brain functions necessitates further clinical and experimental studies. Zebrafish are a promising model organism for neuroscience research, including probing the contribution of auditory and vibration stimuli to neurobehavioral processes. Here, we summarize mounting evidence on the role of sound and vibration in zebrafish behavior and brain function, and outline future directions of translational research in this field. With the growing environmental exposure to noise and vibration, we call for more active use of zebrafish models for probing neurobehavioral and bioenvironmental consequences of acute and long-term exposure to sounds and vibration in complex biological systems.
Collapse
Affiliation(s)
- Jingtao Wang
- School of Pharmacy, Southwest University, Chongqing, China
| | - Dongmei Wang
- School of Pharmacy, Southwest University, Chongqing, China
| | - Guojun Hu
- School of Pharmacy, Southwest University, Chongqing, China
| | - LongEn Yang
- School of Pharmacy, Southwest University, Chongqing, China
| | - ZiYuan Liu
- School of Pharmacy, Southwest University, Chongqing, China
| | - Dongni Yan
- School of Pharmacy, Southwest University, Chongqing, China
| | - Nazar Serikuly
- School of Pharmacy, Southwest University, Chongqing, China
| | - Erik Alpyshov
- School of Pharmacy, Southwest University, Chongqing, China
| | - Konstantin A Demin
- St. Petersburg State University, St. Petersburg, Russia; Neurobiology Program, Sirius University, Sochi, Russia
| | - Tatiana Strekalova
- I.M. Sechenov First Moscow State Medical University, Moscow, Russia; Maastricht University, Maastricht, The Netherlands; Research Institute of General Pathology and Pathophysiology, Moscow, Russia
| | - Leonardo J Gil Barcellos
- Graduate Programs in Bio-experimentation and Environmental Sciences, University of Passo Fundo, Passo Fundo, Brazil; Graduate Program in Pharmacology, Federal University of Santa Maria, Santa Maria, Brazil
| | | | | | - Murilo S de Abreu
- Bioscience Institute, University of Passo Fundo, Passo Fundo, Brazil; Laboratory of Cell and Molecular Biology and Neurobiology, Moscow Institute of Physics and Technology, Moscow, Russia.
| | - Allan V Kalueff
- School of Pharmacy, Southwest University, Chongqing, China; Ural Federal University, Ekaterinburg, Russia.
| |
Collapse
|
20
|
Pagnotti GM, Thompson WR, Guise TA, Rubin CT. Suppression of cancer-associated bone loss through dynamic mechanical loading. Bone 2021; 150:115998. [PMID: 33971314 PMCID: PMC10044486 DOI: 10.1016/j.bone.2021.115998] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 04/30/2021] [Accepted: 05/03/2021] [Indexed: 02/06/2023]
Abstract
Patients afflicted with or being treated for cancer constitute a distinct and alarming subpopulation who exhibit elevated fracture risk and heightened susceptibility to developing secondary osteoporosis. Cancer cells uncouple the regulatory processes central for the adequate regulation of musculoskeletal tissue. Systemically taxing treatments to target tumors or disrupt the molecular elements driving tumor growth place considerable strain on recovery efforts. Skeletal tissue is inherently sensitive to mechanical forces, therefore attention to exercise and mechanical loading as non-pharmacological means to preserve bone during treatment and in post-treatment rehabilitative efforts have been topics of recent focus. This review discusses the dysregulation that cancers and the ensuing metabolic dysfunction that confer adverse effects on musculoskeletal tissues. Additionally, we describe foundational mechanotransduction pathways and the mechanisms by which they influence both musculoskeletal and cancerous cells. Functional and biological implications of mechanical loading at the tissue and cellular levels will be discussed, highlighting the current understanding in the field. Herein, in vitro, translational, and clinical data are summarized to consider the positive impact of exercise and low magnitude mechanical loading on tumor-bearing skeletal tissue.
Collapse
Affiliation(s)
- G M Pagnotti
- University of Texas - MD Anderson Cancer Center, Department of Endocrine, Neoplasia and Hormonal Disorders, Houston, TX, USA.
| | - W R Thompson
- Indiana University, Department of Physical Therapy, Indianapolis, IN, USA
| | - T A Guise
- University of Texas - MD Anderson Cancer Center, Department of Endocrine, Neoplasia and Hormonal Disorders, Houston, TX, USA
| | - C T Rubin
- Stony Brook University, Department of Biomedical Engineering, Stony Brook, NY, USA
| |
Collapse
|
21
|
Long-term Effects of Mechanical Vibration Stimulus on the Bone Formation of Wistar Rats: An Assessment Method Based on X-rays Images. Acad Radiol 2021; 28:e240-e245. [PMID: 32624402 DOI: 10.1016/j.acra.2020.05.035] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 05/25/2020] [Accepted: 05/28/2020] [Indexed: 01/03/2023]
Abstract
BACKGROUND Bone is a complex living tissue that adapts itself to the demands of mechanical stimuli such as physical activity and exercise. Whole-body vibration (WBV) is a type of exercise characterized by the transmission of mechanical vibration stimuli produced by a vibrating platform. This study aimed to investigated, in experimental model, the effect of WBV exercise on the bone in different frequencies through X-ray analysis. MATERIALS AND METHODS Wistar rats were divided in three groups: control, exposed to WBV of 10 Hz and exposed to WBV of 20 Hz, during 8-weeks. All procedures to obtain the radiographic images were carried out before and after the experiments. The femur linear size and bone density measurements through radiographic images were performed in all animals. A factor of increase for bone density (FIBD) was determined. RESULTS No differences were observed in the qualitative comparison between the groups, as well as radiographic bone density before the experiment. However, after the experiment the bone density increased in the rats exposed to WBV of 10 Hz and 20 Hz compared to control group. Also, the FIBD was higher in the groups exposed to WBV in comparison with control. CONCLUSION These findings indicate an increase of the bone density dependent of the vibration stimulus frequency. In addition, this increase suggests a possible osteogenic effect to the mechanical vibrations of 10 and 20 Hz.
Collapse
|
22
|
Lad SE, Anderson RJ, Cortese SA, Alvarez CE, Danison AD, Morris HM, Ravosa MJ. Bone remodeling and cyclical loading in maxillae of New Zealand white rabbits (Oryctolagus cuniculus). Anat Rec (Hoboken) 2021; 304:1927-1936. [PMID: 33586861 DOI: 10.1002/ar.24599] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 12/21/2020] [Accepted: 01/18/2021] [Indexed: 11/10/2022]
Abstract
Mammalian feeding behaviors are altered when mechanically challenging (e.g., tough, stiff) foods require large bite forces or prolonged mastication. Bony responses to high bite forces are well-documented for the mammalian skull, but osteogenesis due to cyclical loading, caused by repetitive chewing, is more poorly understood. Previous studies demonstrate that cyclical loading results in greater bone formation in the rabbit masticatory apparatus and in substantial Haversian remodeling in primate postcrania. Here we assess the relationship between cyclical loading and remodeling in the rabbit maxilla. Twenty male New Zealand white rabbits (Oryctolagus cuniculus) were raised on either an overuse or control diet (10 per group) for 48 weeks, beginning at weaning onset. The control group was raised on a diet of rabbit pellets (E = 29 MPa, R = 1031 J/m2 ), whereas the overuse group ate rabbit pellets and hay, which has high stiffness (E = 3336 MPa) and toughness (R = 2760 J/m2 ) properties. Hay requires greater chewing investment (475 chews/g) and longer chewing durations (568 s/g) than pellets (161 chews/g and 173 s/g), therefore causing cyclical loading of the jaws. Remodeling was measured as osteon population density (OPD), percent Haversian bone (%HAV), and osteon cross-sectional area (On.Ar). The only significant difference found was greater On.Ar in the alveolar region of the maxilla (p < 0.001) in the overuse group. The hypothesis that cyclical loading engenders Haversian remodeling in the developing maxilla is not supported. The continuation of modeling throughout the experimental duration may negate the need for remodeling as newly laid bone tends to be more compliant and resistant to crack propagation.
Collapse
Affiliation(s)
- Susan E Lad
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, USA
| | - Rebecca J Anderson
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, USA
| | - Stephen A Cortese
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, USA
| | - Carmen E Alvarez
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, USA
| | - Andrew D Danison
- Department of Biology, The College of Wooster, Wooster, Ohio, USA
| | - Hannah M Morris
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, USA
| | - Matthew J Ravosa
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, USA.,Department of Anthropology, University of Notre Dame, Notre Dame, Indiana, USA.,Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, Indiana, USA
| |
Collapse
|
23
|
Steppe L, Liedert A, Ignatius A, Haffner-Luntzer M. Influence of Low-Magnitude High-Frequency Vibration on Bone Cells and Bone Regeneration. Front Bioeng Biotechnol 2020; 8:595139. [PMID: 33195165 PMCID: PMC7609921 DOI: 10.3389/fbioe.2020.595139] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Accepted: 09/25/2020] [Indexed: 12/14/2022] Open
Abstract
Bone is a mechanosensitive tissue for which mechanical stimuli are crucial in maintaining its structure and function. Bone cells react to their biomechanical environment by activating molecular signaling pathways, which regulate their proliferation, differentiation, and matrix production. Bone implants influence the mechanical conditions in the adjacent bone tissue. Optimizing their mechanical properties can support bone regeneration. Furthermore, external biomechanical stimulation can be applied to improve implant osseointegration and accelerate bone regeneration. One promising anabolic therapy is vertical whole-body low-magnitude high-frequency vibration (LMHFV). This form of vibration is currently extensively investigated to serve as an easy-to-apply, cost-effective, and efficient treatment for bone disorders and regeneration. This review aims to provide an overview of LMHFV effects on bone cells in vitro and on implant integration and bone fracture healing in vivo. In particular, we review the current knowledge on cellular signaling pathways which are influenced by LMHFV within bone tissue. Most of the in vitro experiments showed that LMHFV is able to enhance mesenchymal stem cell (MSC) and osteoblast proliferation. Furthermore, osteogenic differentiation of MSCs and osteoblasts was shown to be accelerated by LMHFV, whereas osteoclastogenic differentiation was inhibited. Furthermore, LMHFV increased bone regeneration during osteoporotic fracture healing and osseointegration of orthopedic implants. Important mechanosensitive pathways mediating the effects of LMHFV might be the Wnt/beta-catenin signaling pathway, the estrogen receptor (ER) signaling pathway, and cytoskeletal remodeling.
Collapse
Affiliation(s)
- Lena Steppe
- Institute of Orthopedic Research and Biomechanics, Ulm University Medical Center, Ulm, Germany
| | - Astrid Liedert
- Institute of Orthopedic Research and Biomechanics, Ulm University Medical Center, Ulm, Germany
| | - Anita Ignatius
- Institute of Orthopedic Research and Biomechanics, Ulm University Medical Center, Ulm, Germany
| | - Melanie Haffner-Luntzer
- Institute of Orthopedic Research and Biomechanics, Ulm University Medical Center, Ulm, Germany
| |
Collapse
|
24
|
Scheuren AC, Vallaster P, Kuhn GA, Paul GR, Malhotra A, Kameo Y, Müller R. Mechano-Regulation of Trabecular Bone Adaptation Is Controlled by the Local in vivo Environment and Logarithmically Dependent on Loading Frequency. Front Bioeng Biotechnol 2020; 8:566346. [PMID: 33154964 PMCID: PMC7591723 DOI: 10.3389/fbioe.2020.566346] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 09/23/2020] [Indexed: 12/23/2022] Open
Abstract
It is well-established that cyclic, but not static, mechanical loading has anabolic effects on bone. However, the function describing the relationship between the loading frequency and the amount of bone adaptation remains unclear. Using a combined experimental and computational approach, this study aimed to investigate whether trabecular bone mechano-regulation is controlled by mechanical signals in the local in vivo environment and dependent on loading frequency. Specifically, by combining in vivo micro-computed tomography (micro-CT) imaging with micro-finite element (micro-FE) analysis, we monitored the changes in microstructural as well as the mechanical in vivo environment [strain energy density (SED) and SED gradient] of mouse caudal vertebrae over 4 weeks of either cyclic loading at varying frequencies of 2, 5, or 10 Hz, respectively, or static loading. Higher values of SED and SED gradient on the local tissue level led to an increased probability of trabecular bone formation and a decreased probability of trabecular bone resorption. In all loading groups, the SED gradient was superior in the determination of local bone formation and resorption events as compared to SED. Cyclic loading induced positive net (re)modeling rates when compared to sham and static loading, mainly due to an increase in mineralizing surface and a decrease in eroded surface. Consequently, bone volume fraction increased over time in 2, 5, and 10 Hz (+15%, +21% and +24%, p ≤ 0.0001), while static loading led to a decrease in bone volume fraction (-9%, p ≤ 0.001). Furthermore, regression analysis revealed a logarithmic relationship between loading frequency and the net change in bone volume fraction over the 4 week observation period (R 2 = 0.74). In conclusion, these results suggest that trabecular bone adaptation is regulated by mechanical signals in the local in vivo environment and furthermore, that mechano-regulation is logarithmically dependent on loading frequency with frequencies below a certain threshold having catabolic effects, and those above anabolic effects. This study thereby provides valuable insights toward a better understanding of the mechanical signals influencing trabecular bone formation and resorption in the local in vivo environment.
Collapse
Affiliation(s)
| | - Paul Vallaster
- Institute for Biomechanics, ETH Zurich, Zurich, Switzerland
| | - Gisela A. Kuhn
- Institute for Biomechanics, ETH Zurich, Zurich, Switzerland
| | - Graeme R. Paul
- Institute for Biomechanics, ETH Zurich, Zurich, Switzerland
| | - Angad Malhotra
- Institute for Biomechanics, ETH Zurich, Zurich, Switzerland
| | - Yoshitaka Kameo
- Institute for Biomechanics, ETH Zurich, Zurich, Switzerland
- Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Ralph Müller
- Institute for Biomechanics, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
25
|
Reynolds R, Garner A, Norton J. Sound and Vibration as Research Variables in Terrestrial Vertebrate Models. ILAR J 2020; 60:159-174. [PMID: 32602530 DOI: 10.1093/ilar/ilaa004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 02/07/2020] [Accepted: 02/11/2020] [Indexed: 12/31/2022] Open
Abstract
Sound and vibration have been shown to alter animal behavior and induce physiological changes as well as to cause effects at the cellular and molecular level. For these reasons, both environmental factors have a considerable potential to alter research outcomes when the outcome of the study is dependent on the animal existing in a normal or predictable biological state. Determining the specific levels of sound or vibration that will alter research is complex, as species will respond to different frequencies and have varying frequencies where they are most sensitive. In consideration of the potential of these factors to alter research, a thorough review of the literature and the conditions that likely exist in the research facility should occur specific to each research study. This review will summarize the fundamental physical properties of sound and vibration in relation to deriving maximal level standards, consider the sources of exposure, review the effects on animals, and discuss means by which the adverse effects of these factors can be mitigated.
Collapse
Affiliation(s)
- Randall Reynolds
- Duke University School of Medicine, Department of Pathology and Division of Laboratory Animal Resources, Durham, NC
| | - Angela Garner
- Duke University School of Medicine, Division of Laboratory Animal Resources, Durham, NC
| | - John Norton
- Duke University School of Medicine, Pathology and Division of Laboratory Animal Resources
| |
Collapse
|
26
|
Pyatin VF, Shirolapov IV. [Neuromuscular stimulation in conditions of vibrational physical activity for the prevention of osteoporosis]. VOPROSY KURORTOLOGII, FIZIOTERAPII, I LECHEBNOĬ FIZICHESKOĬ KULTURY 2020; 97:87-93. [PMID: 32592575 DOI: 10.17116/kurort20209703187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The review discusses the modern possibilities of non-drug rehabilitation of patients with osteoporosis. Osteopenia (osteoporosis) and osteoporosis-associated bone fractures are a global public health problem, and an intensive search is undergoing for new methods of treatment, prevention, diagnosis and screening of this disease. Innovative technologies for influencing bone remodeling using vibration training seem to be an effective method that allows you to simultaneously positively affect maintaining bone density, increasing muscle strength and improving coordination, especially in elderly patients. The evolution of study of the effects of intense neuromuscular stimulation under accelerated physical exertion, which began with fundamental work on experimental animals, now includes numerous clinical studies. Vibrational physical activity is one of the methods of biomechanical stimulation, which is considered as an innovative method in the field of rehabilitation and physiotherapy. The physiological basis of this effect is intensive neuromuscular stimulation, which causes a reflex reaction of skeletal muscles. This scientific review describes the results of both monotherapy and combined methods of exposure to vibrational stimulation using modern pharmacotherapy. Attention is focused on the positions of importance in the design of the study and the planning of rehabilitation programs of uniformly accelerated training.
Collapse
Affiliation(s)
- V F Pyatin
- Samara state medical university, Samara, Russia
| | | |
Collapse
|
27
|
Bodnyk KA, Kuchynsky KS, Balgemann M, Stephens B, Hart RT. The long-term residual effects of low-magnitude mechanical stimulation therapy on skeletal health. J Biol Eng 2020; 14:9. [PMID: 32190111 PMCID: PMC7073014 DOI: 10.1186/s13036-020-0232-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Accepted: 03/02/2020] [Indexed: 11/10/2022] Open
Abstract
Background Low-magnitude mechanical stimulation (LMMS) may improve skeletal health. The objective of this research was to investigate the long-term residual effects of LMMS on bone health. 10-week old female mice were given LMMS for 8 weeks; SHAM did not receive LMMS. Some groups remained on study for an additional 8 or 16 weeks post treatment (N = 17). Results Epiphyseal trabecular mineralizing surface to bone surface ratio (MS/BS) and bone formation rate (BFR/BS) were significantly greater in the LMMS group compared to the SHAM group at 8 weeks by 92 and 128% respectively. Mineral apposition rate (MAR) was significantly greater in the LMMS group 16 weeks post treatment by 14%. Metaphyseal trabecular bone mineral density (BMD) increased by 18%, bone volume tissue volume ratio (BV/TV) increased by 37%, and trabecular thickness (Tb.Th.) increased by 10% with LMMS at 8 weeks post treatment. Significant effects 16 weeks post treatment were maintained for BV/TV and Tb.Th. The middle-cortical region bone volume (BV) increased by 4% and cortical thickness increased by 3% with 8-week LMMS. Conclusions LMMS improves bone morphological parameters immediately after and in some cases long-term post LMMS. Results from this work will be helpful in developing treatment strategies to increase bone health in younger individuals.
Collapse
Affiliation(s)
- Kyle A Bodnyk
- Department of Biomedical Engineering, The Ohio State University, 1080 Carmack Rd, Columbus, OH 43210 USA
| | - Kyle S Kuchynsky
- Department of Biomedical Engineering, The Ohio State University, 1080 Carmack Rd, Columbus, OH 43210 USA
| | - Megan Balgemann
- Department of Biomedical Engineering, The Ohio State University, 1080 Carmack Rd, Columbus, OH 43210 USA
| | - Brooke Stephens
- Department of Biomedical Engineering, The Ohio State University, 1080 Carmack Rd, Columbus, OH 43210 USA
| | - Richard T Hart
- Department of Biomedical Engineering, The Ohio State University, 1080 Carmack Rd, Columbus, OH 43210 USA
| |
Collapse
|
28
|
Saxena H, Ward KR, Krishnan C, Epureanu BI. Effect of Multi-Frequency Whole-Body Vibration on Muscle Activation, Metabolic Cost and Regional Tissue Oxygenation. IEEE ACCESS : PRACTICAL INNOVATIONS, OPEN SOLUTIONS 2020; 8:140445-140455. [PMID: 34036017 PMCID: PMC8143035 DOI: 10.1109/access.2020.3011691] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Prolonged immobilization from a critical illness can result in significant muscle atrophy. Whole-body vibration (WBV) could potentially attenuate the issue of muscle atrophy; however, there exists no device that could potentially provide WBV in supine position that is suitable for critically ill patients. Hence, the purpose of this study was to develop a new wearable suit, called therapeutic vibration device (TVD), that can provide WBV in supine position and test its effects on physiologic markers of physical activity including muscle activation, oxygen consumption (VO2), and regional hemoglobin oxygen saturation (rSO2). The prototype TVD delivered multi-frequency WBV axially to 19 healthy participants in supine position for 10 minutes simultaneously at 25 Hz/4.2 grms on the feet and 15 Hz/0.7 grms on the shoulders. Muscle activation was recorded by electromyography (EMG), VO2 was measured by indirect calorimetry and rSO2 was recorded by near-infrared spectroscopy. Recordings were collected from each participant from multiple body locations, on three separate days, at baseline and during the intervention. Acceleration was also recorded to gain insight into transmissibility and coherence. Repeated-measures ANOVA using Bonferroni correction revealed that the muscle activity significantly increased by 4% - 62% (p < 0.05), VO2 improved by 22.3% (p < 0.05) and rSO2 increased by 1.4% - 4.5% (p < 0.05) compared to baseline. WBV provided by the TVD is capable of producing physiologic responses consistent with mild physical activity. Such effects could potentially be valuable as an adjunct to physical therapy for early mobilization to prevent atrophy occurring from prolonged immobilization.
Collapse
Affiliation(s)
- Himanshu Saxena
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
- Michigan Center for Integrative Research in Critical Care, University of Michigan, Ann Arbor, MI 48109, USA
| | - Kevin R Ward
- Michigan Center for Integrative Research in Critical Care, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Emergency Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Chandramouli Krishnan
- Michigan Center for Integrative Research in Critical Care, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Physical Medicine and Rehabilitation, Michigan Medicine, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
- Robotics Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Bogdan I Epureanu
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
- Michigan Center for Integrative Research in Critical Care, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
29
|
Huseman CJ, Sigler DH, Welsh TH, Suva LJ, Vogelsang MM, Dominguez BJ, Huggins S, Paulk C. Skeletal response to whole body vibration and dietary calcium and phosphorus in growing pigs. J Anim Sci 2019; 97:3369-3378. [PMID: 31265734 DOI: 10.1093/jas/skz189] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 05/21/2019] [Indexed: 11/13/2022] Open
Abstract
The quality and strength of the skeleton is regulated by mechanical loading and adequate mineral intake of calcium (Ca) and phosphorus (P). Whole body vibration (WBV) has been shown to elicit adaptive responses in the skeleton, such as increased bone mass and strength. This experiment was designed to determine the effects of WBV and dietary Ca and P on bone microarchitecture and turnover. A total of 26 growing pigs were utilized in a 60-d experiment. Pigs were randomly assigned within group to a 2 × 2 factorial design with dietary Ca and P concentration (low and adequate) as well as WBV. The adequate diet was formulated to meet all nutritional needs according to the NRC recommendations for growing pigs. Low Ca, P diets had 0.16% lower Ca and 0.13% lower P than the adequate diet. Pigs receiving WBV were vibrated 30 min/d, 3 d/wk at a magnitude of 1 to 2 mm and a frequency of 50 Hz. On days 0, 30, and 60, digital radiographs were taken to determine bone mineral content by radiographic bone aluminum equivalency (RBAE) and serum was collected to measure biochemical markers of bone formation (osteocalcin, OC) and bone resorption (carboxy-terminal collagen crosslinks, CTX-I). At day 60, pigs were euthanized and the left third metacarpal bone was excised for detailed analysis by microcomputed tomography (microCT) to measure trabecular microarchitecture and cortical bone geometry. Maximum RBAE values for the medial or lateral cortices were not affected (P > 0.05) by WBV. Pigs fed adequate Ca and P tended (P = 0.10) to have increased RBAE max values for the medial and lateral cortices. WBV pigs had significantly decreased serum CTX-1 concentrations (P = 0.044), whereas animals fed a low Ca and P diet had increased (P < 0.05) OC concentrations. In bone, WBV pigs showed a significantly lower trabecular number (P = 0.002) and increased trabecular separation (P = 0.003), whereas cortical bone parameters were not significantly altered by WBV or diet (P > 0.05). In summary, this study confirmed the normal physiological responses of the skeleton to a low Ca, P diet. Interestingly, although the WBV protocol utilized in this study did not elicit any significant osteogenic response, decreases in CTX-1 in response to WBV may have been an early local adaptive bone response. We interpret these data to suggest that the frequency and amplitude of WBV was likely sufficient to elicit a bone remodeling response, but the duration of the study may not have captured the full extent of an entire bone remodeling cycle.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Chad Paulk
- Texas A&M University, College Station, TX.,Kansas State University, Manhattan, KS
| |
Collapse
|
30
|
Minematsu A, Nishii Y, Imagita H, Sakata S. Possible effects of whole body vibration on bone properties in growing rats. Osteoporos Sarcopenia 2019; 5:78-83. [PMID: 31728424 PMCID: PMC6838745 DOI: 10.1016/j.afos.2019.07.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 07/03/2019] [Accepted: 07/31/2019] [Indexed: 01/23/2023] Open
Abstract
Objectives To examine the effects of whole body vibration (WBV) on bone properties in growing rats, and to explore the optimal conditions for enhancing bone properties. Methods Thirty-six 4-week-old male rats were divided into 1 control and 5 experimental groups. Each experimental group underwent WBV at 15, 30, 45, 60, and 90 Hz (0.5 g, 15 min/d, 5 d/wk) for 8 weeks. We measured bone size, muscle weight and bone mechanical strength of the right tibia. Trabecular bone mass and trabecular bone microstructure (TBMS) of the left tibia were analyzed by micro-computed tomography. Serum levels of bone formation/resorption markers were also measured. Results WBV at 45 Hz and 60 Hz tended to enhance trabecular bone mass and TBMS parameters. However, there was no difference in maximum load of tibias among all groups. Serum levels of bone resorption marker were significantly higher in the 45-Hz WBV group than in the control group. Conclusions WBV at 45–60 Hz may offer a potent modality for increasing bone mass during the period of rapid growth. Further studies are needed to explore the optimal WBV conditions for increasing peak bone mass and TBMS parameters. WBV modality may be a potent strategy for primary prevention against osteoporosis.
Collapse
Affiliation(s)
- Akira Minematsu
- Department of Physical Therapy, Faculty of Health Science, Kio University, Kitakatsuragi-gun, Japan
| | - Yasue Nishii
- Department of Physical Therapy, Faculty of Health Science, Kio University, Kitakatsuragi-gun, Japan
| | - Hidetaka Imagita
- Department of Physical Therapy, Faculty of Health Science, Kio University, Kitakatsuragi-gun, Japan
| | - Susumu Sakata
- Department of Physiology I, Nara Medical University, Kashihara, Japan
| |
Collapse
|
31
|
García-López S, Villanueva RE, Massó-Rojas F, Páez-Arenas A, Meikle MC. Micro-vibrations at 30 Hz on bone cells cultivated in vitro produce soluble factors for osteoclast inhibition and osteoblast activity. Arch Oral Biol 2019; 110:104594. [PMID: 31733582 DOI: 10.1016/j.archoralbio.2019.104594] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 07/13/2019] [Accepted: 10/24/2019] [Indexed: 12/28/2022]
Abstract
OBJETIVE It has been claimed that micro-pulse vibration can accelerate the rate of tooth movement during orthodontic treatment; however, the underlying cellular mechanism has yet to be elucidated. The purpose of this study was to understand the mechanisms underlying tooth movement acceleration by measuring alterations in a panel of intercellular signalling molecules and markers of osteoblast/osteoclast function following micro-pulse vibration for 20 min at 30 Hz. DESIGN Primary BALB/c mouse calvarial osteoblasts were cultivatedin vitro and subjected to micro-pulse vibration (0.25 N; 30 Hz) with the AcceleDent® Aura appliance for 20 min and assayed for IL-4, IL-13, IL-17, OPG, soluble RANKL and TGF-β protein by ELISA; for PCNA in osteoblasts and caspase 3/7 in osteoclasts by immunohistochemistry; for IL-4, IL-13, and Il-17 in osteoclasts by ELISA; and for cathepsin K by flow cytometry. RESULTS After micro-pulse vibration, the murine osteoblast culture supernatant showed increased IL-4, IL-13, IL-17, OPG and TGF-β levels and decreased RANKL levels; PCNA in osteoblasts and caspase 3/7 in osteoclasts were also upregulated. The osteoclast culture supernatant had increased levels of IL-4, IL-13 and IL-17, and cathepsin K was upregulated in the treatment group compared with the control group. CONCLUSIONS Micro-pulse vibration promotes the production of soluble factors that inhibit osteoclasts, promote apoptosis and activate osteoblasts in vitro, which could increase bone mineral density. Further studies should be conducted in order to understand the biological mechanism of how micro-vibration might influence tooth movement during orthodontic treatment.
Collapse
Affiliation(s)
- Salvador García-López
- Health Science Department/Cell Biology and Immunology Laboratory, Universidad Autónoma Metropolitana-Xochimilco, 04960, Mexico City, Mexico; Orthodontic Department, General Hospital "Dr. Manuel Gea González", UNAM, 14080, Mexico City, Mexico; Universidad Intercontinental, Mexico City, Mexico.
| | - Rosina E Villanueva
- School of Dentistry, Universidad Autónoma Metropolitana, 04960, Mexico City, Mexico.
| | - Felipe Massó-Rojas
- Translational Medicine Unit, Instituto Nacional de Cardiología "Ignacio Chávez", 14080, Mexico City, Mexico.
| | - Araceli Páez-Arenas
- Translational Medicine Unit, Instituto Nacional de Cardiología "Ignacio Chávez", 14080, Mexico City, Mexico
| | - Murray C Meikle
- Emeritus Professor King's College, Dental Institute, at Guy's, King's and St. Thomas's Hospital, University of London, SE1 9RT, United Kingdom.
| |
Collapse
|
32
|
Applying vibration in early postmenopausal osteoporosis promotes osteogenic differentiation of bone marrow-derived mesenchymal stem cells and suppresses postmenopausal osteoporosis progression. Biosci Rep 2019; 39:BSR20191011. [PMID: 31406012 PMCID: PMC6722487 DOI: 10.1042/bsr20191011] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 07/29/2019] [Accepted: 08/08/2019] [Indexed: 02/05/2023] Open
Abstract
We aimed to evaluate whether applying low magnitude vibration (LMV) in early postmenopausal osteoporosis (PMO) suppresses its progression, and to investigate underlying mechanisms. Rats were randomly divided into Sham (Sham-operated), Sham+V, OVX (ovariectomized), OVX+E2 (estradiol benzoate), OVX+V (LMV at 12–20 weeks postoperatively), and OVX+Vi (LMV at 1–20 weeks postoperatively) groups. LMV was applied for 20 min once daily for 5 days weekly. V rats were loaded with LMV at 12–20 weeks postoperatively. Vi rats were loaded with LMV at 1–20 weeks postoperatively. Estradiol (E2) rats were intramuscularly injected at 12–20 weeks postoperatively once daily for 3 days. The bone mineral densities (BMDs), biomechanical properties, and histomorphological parameters of tibiae were analyzed. In vitro, rat bone marrow-derived mesenchymal stem cells (rBMSCs) were subjected to LMV for 30 min daily for 5 days, or 17β-E2 with or without 1-day pretreatment of estrogen receptor (ER) inhibitor ICI 182,780 (ICI). The mRNA and protein expresion were performed. Data showed that LMV increased BMD, bone strength, and bone mass of rats, and the effects of Vi were stronger than those of E2. In vitro, LMV up-regulated the mRNA and protein expressions of Runx2, Osx, Col I, and OCN and down-regulated PPARγ, compared with E2. The effects of both LMV and E2 on rBMSCs were inhibited by ICI. Altogether, LMV in early PMO suppresses its progression, which is associated with osteogenic differentiation of rBMSCs via up-regulation of ERα and activation of the canonical Wnt pathway. LMV may therefore be superior to E2 for the suppression of PMO progression.
Collapse
|
33
|
Shipley T, Farouk K, El-Bialy T. Effect of high-frequency vibration on orthodontic tooth movement and bone density. J Orthod Sci 2019; 8:15. [PMID: 31497574 PMCID: PMC6702681 DOI: 10.4103/jos.jos_17_19] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
OBJECTIVES: Previous reports have shown that high-frequency vibration can increase bone remodeling and accelerate tooth movement. The aim of this study was to evaluate the effects of high-frequency vibration on treatment phase tooth movement, and post-treatment bone density at initiation of retention, with cone-beam computed tomography (CBCT). MATERIALS AND METHODS: Thirty patients with initial Class I skeletal relationships, initial minimum-moderate crowding (3–5 mm), treated to completion with clear aligners and adjunctive high-frequency vibration, (HFV group) or no vibration, (Control group) were evaluated. The patients were instructed to change aligners as soon as they become loose. Changes in bone density associated with orthodontic treatment were evaluated using i-CAT cone-beam computed tomography (CBCT) and InVivo Anatomage® software to quantify density using Hounsfield units (HU) between treated teeth in 10 different regions. HU values were averaged and compared against baseline (T1) and between the groups at initiation of retention (T2). RESULTS: The average time for aligner change was 5.2 days in the HFV group, and 8.7 days in the control group (P = 0.0001). There was significant T1 to T2 increase of HU values in the upper arch (P = 0.0001) and the lower arch (P = 0.008) in the HFV group. There was no significant change in average HU values in the upper (P = 0.83) or lower arches (P = 0.33) in the control group. The intergroup comparison revealed a significant difference in the upper, (P = 0.0001) and lower arches (P = 0.007). CONCLUSION: High-frequency vibration adjunctive to clear aligners, allowed early aligner changes that led to shorter treatment time in minimum-moderate crowded cases. At initiation of retention, the HFV group demonstrated statistically significant increase as compared with pre-treatment bone density, whereas control subjects showed no significant change from pre-treatment bone density.
Collapse
Affiliation(s)
- Thomas Shipley
- Department of Dentistry, Division of Orthodontics, Arizona School of Dentistry and Oral Health, A.T. Still University, Mesa, Arizona, USA.,Department of Orthodontics, Mesa, Arizona, USA
| | - Khaled Farouk
- Department of Orthodontics, Faculty of Dental Medicine, Al-Azhar University, Cairo, Egypt.,Department of Dentistry, Division of Orthodontics, University of Alberta, Edmonton, Canada
| | - Tarek El-Bialy
- Department of Dentistry, Division of Orthodontics, 7-020D Katz Group Centre for Pharmacy and Health Research, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
34
|
Kanie K, Sakai T, Imai Y, Yoshida K, Sugimoto A, Makino H, Kubo H, Kato R. Effect of mechanical vibration stress in cell culture on human induced pluripotent stem cells. Regen Ther 2019; 12:27-35. [PMID: 31890764 PMCID: PMC6933472 DOI: 10.1016/j.reth.2019.05.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 04/15/2019] [Accepted: 05/04/2019] [Indexed: 01/10/2023] Open
Abstract
The development of induced pluripotent stem cell (iPSC) techniques has solved various limitations in cell culture including cellular proliferation and potency. Hence, the expectations on wider applications and the quality of manufactured iPSCs are rapidly increasing. To answer such growing expectations, enhancement of technologies to improve cell-manufacturing efficiency is now a challenge for the bioengineering field. Mechanization of conventional manual operations, aimed at automation of cell manufacturing, is quickly advancing. However, as more processes are being automated in cell manufacturing, it is need to be more critical about influential parameters that may not be as important in manual operations. As a model of such parameters, we focused on the effect of mechanical vibration, which transmits through the vessel to the cultured iPSCs. We designed 7 types of vertical vibration conditions in cell culture vessels using a vibration calibrator. These conditions cover a wide range of potential situations in cell culture, such as tapping or closing an incubator door, and examined their effects by continuous passaging (P3 to P5). Detailed evaluation of cells by time-course image analysis revealed that vibrations can enhance cell growth as an early effect but can negatively affect cell adhesion and growth profile after several passages as a delayed effect. Such unexpected reductions in cell quality are potentially critical issues in maintaining consistency in cell manufacturing. Therefore, this work reveals the importance of continuous examination across several passages with detailed, temporal, quantitative measurements obtained by non-invasive image analysis to examine when and how the unknown parameters will affect the cell culture processes.
Collapse
Affiliation(s)
- Kei Kanie
- Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University, Furocho, Chikusa-ku, Nagoya, 464-8601, Japan
| | - Teppei Sakai
- Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University, Furocho, Chikusa-ku, Nagoya, 464-8601, Japan
| | - Yuta Imai
- Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University, Furocho, Chikusa-ku, Nagoya, 464-8601, Japan
| | - Kei Yoshida
- Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University, Furocho, Chikusa-ku, Nagoya, 464-8601, Japan
| | - Ayako Sugimoto
- Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University, Furocho, Chikusa-ku, Nagoya, 464-8601, Japan
| | - Hodaka Makino
- Ogino Memorial Laboratory, Nihon Kohden Corporation, TWIns (Tokyo Women's Medical University-Waseda University Joint Institution for Advanced Biomedical Sciences), 8-1, Kawata-cho, Shinjyuku-ku, Tokyo, 162-8666, Japan
| | - Hirotsugu Kubo
- Ogino Memorial Laboratory, Nihon Kohden Corporation, TWIns (Tokyo Women's Medical University-Waseda University Joint Institution for Advanced Biomedical Sciences), 8-1, Kawata-cho, Shinjyuku-ku, Tokyo, 162-8666, Japan
| | - Ryuji Kato
- Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University, Furocho, Chikusa-ku, Nagoya, 464-8601, Japan
- Stem Cell Evaluation Technology Research Center (SCETRA), Hacho-bori, Chuou-ku, Tokyo, 104-0032, Japan
- Institute of Nano-Life-Systems, Institute for Innovation for Future Society, Nagoya University, Furocho, Chikusa-ku, Nagoya, 464-8601, Japan
- Corresponding author. Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University, Furocho, Chikusa-ku, Nagoya, 464-8602, Japan. Fax: +81-52-747-6813.
| |
Collapse
|
35
|
Jiang F, Jalali A, Deguchi C, Chen A, Liu S, Kondo R, Minami K, Horiuchi T, Li BY, Robling AG, Chen J, Yokota H. Finite-element analysis of the mouse proximal ulna in response to elbow loading. J Bone Miner Metab 2019; 37:419-429. [PMID: 30062431 PMCID: PMC6353704 DOI: 10.1007/s00774-018-0943-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 07/13/2018] [Indexed: 10/28/2022]
Abstract
Bone is a mechano-sensitive tissue that alters its structure and properties in response to mechanical loading. We have previously shown that application of lateral dynamic loads to a synovial joint, such as the knee and elbow, suppresses degradation of cartilage and prevents bone loss in arthritis and postmenopausal mouse models, respectively. While loading effects on pathophysiology have been reported, mechanical effects on the loaded joint are not fully understood. Because the direction of joint loading is non-axial, not commonly observed in daily activities, strain distributions in the laterally loaded joint are of great interest. Using elbow loading, we herein characterized mechanical responses in the loaded ulna focusing on the distribution of compressive strain. In response to 1-N peak-to-peak loads, which elevate bone mineral density and bone volume in the proximal ulna in vivo, we conducted finite-element analysis and evaluated strain magnitude in three loading conditions. The results revealed that strain of ~ 1000 μstrain (equivalent to 0.1% compression) or above was observed in the limited region near the loading site, indicating that the minimum effective strain for bone formation is smaller with elbow loading than axial loading. Calcein staining indicated that elbow loading increased bone formation in the regions predicted to undergo higher strain.
Collapse
Affiliation(s)
- Feifei Jiang
- Department of Mechanical Engineering, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202, USA
| | - Aydin Jalali
- Department of Biomedical Engineering, Indiana University-Purdue University Indianapolis, 723 West Michigan Street, SL220, Indianapolis, IN, 46202, USA
| | - Chie Deguchi
- Department of Biomedical Engineering, Indiana University-Purdue University Indianapolis, 723 West Michigan Street, SL220, Indianapolis, IN, 46202, USA
- Graduate School of Engineering, Mie University, Mie, 514, Japan
| | - Andy Chen
- Department of Biomedical Engineering, Indiana University-Purdue University Indianapolis, 723 West Michigan Street, SL220, Indianapolis, IN, 46202, USA
| | - Shengzhi Liu
- Department of Biomedical Engineering, Indiana University-Purdue University Indianapolis, 723 West Michigan Street, SL220, Indianapolis, IN, 46202, USA
- Department of Pharmacology, School of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Rika Kondo
- Department of Biomedical Engineering, Indiana University-Purdue University Indianapolis, 723 West Michigan Street, SL220, Indianapolis, IN, 46202, USA
- Osaka University Graduate School of Medicine, Suita, Osaka, 565, Japan
| | - Kazumasa Minami
- Osaka University Graduate School of Medicine, Suita, Osaka, 565, Japan
| | | | - Bai-Yan Li
- Department of Pharmacology, School of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Alexander G Robling
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Jie Chen
- Department of Mechanical Engineering, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202, USA
| | - Hiroki Yokota
- Department of Mechanical Engineering, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202, USA.
- Department of Biomedical Engineering, Indiana University-Purdue University Indianapolis, 723 West Michigan Street, SL220, Indianapolis, IN, 46202, USA.
- Department of Pharmacology, School of Pharmacy, Harbin Medical University, Harbin, 150081, China.
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.
| |
Collapse
|
36
|
The Effect of Mechanically-Generated Vibrations on the Efficacy of Hemodialysis; Assessment of Patients' Safety: Preliminary Reports. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:ijerph16040594. [PMID: 30781708 PMCID: PMC6406417 DOI: 10.3390/ijerph16040594] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 02/12/2019] [Accepted: 02/14/2019] [Indexed: 11/24/2022]
Abstract
Muscle activity during a hemodialysis procedure improves its efficacy. We have formulated a hypothesis that vibrations generated by a specially-designed dialysis chair can, the same as physical exercise, affect the filtering of various fluids between fluid spaces during the hemodialysis procedure. This prospective and interventional study included 21 dialyzed patients. During a single dialysis session, each patient used a prototype device with the working name “vibrating chair”. The chair’s drive used a low-power cage induction motor, which, along with the worm gear motor, was a part of the low-frequency (3.14 Hz) vibration-generating assembly with an amplitude of 4 mm. Tests and measurements were performed before and after the vibration dialysis. After a single hemodialysis session including five 3-min cycles of vibrations, an increase in Kt/V in relation to non-vibration Kt/V (1.53±0.26 vs. 1.62±0.23) was seen. Urea reduction ratio increased significantly (0.73±0.03 vs. 0.75±0.03). A significant increase in systolic blood pressure was observed between the first and the third measurement (146±18 vs. 156±24). The use of a chair generating low-frequency vibrations increased dialysis adequacy; furthermore, it seems an acceptable and safe alternative to intradialytic exercise.
Collapse
|
37
|
Edwards WB, Simonian N, Haider IT, Anschel AS, Chen D, Gordon KE, Gregory EK, Kim KH, Parachuri R, Troy KL, Schnitzer TJ. Effects of Teriparatide and Vibration on Bone Mass and Bone Strength in People with Bone Loss and Spinal Cord Injury: A Randomized, Controlled Trial. J Bone Miner Res 2018; 33:1729-1740. [PMID: 29905973 DOI: 10.1002/jbmr.3525] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 05/21/2018] [Accepted: 06/03/2018] [Indexed: 01/29/2023]
Abstract
Spinal cord injury (SCI) is associated with marked bone loss and an increased risk of fracture. We randomized 61 individuals with chronic SCI and low bone mass to receive either teriparatide 20 μg/d plus sham vibration 10 min/d (n = 20), placebo plus vibration 10 min/d (n = 20), or teriparatide 20 μg/d plus vibration 10 min/d (n = 21). Patients were evaluated for 12 months; those who completed were given the opportunity to participate in an open-label extension where all participants (n = 25) received teriparatide 20 μg/d for an additional 12 months and had the optional use of vibration (10 min/d). At the end of the initial 12 months, both groups treated with teriparatide demonstrated a significant increase in areal bone mineral density (aBMD) at the spine (4.8% to 5.5%). The increase in spine aBMD was consistent with a marked response in serum markers of bone metabolism (ie, CTX, P1NP, BSAP), but no treatment effect was observed at the hip. A small but significant increase (2.2% to 4.2%) in computed tomography measurements of cortical bone at the knee was observed in all groups after 12 months; however, the magnitude of response was not different amongst treatment groups and improvements to finite element-predicted bone strength were not observed. Teriparatide treatment after the 12-month extension resulted in further increases to spine aBMD (total increase from baseline 7.1% to 14.4%), which was greater in patients initially randomized to teriparatide. Those initially randomized to teriparatide also demonstrated 4.4% to 6.7% improvements in hip aBMD after the 12-month extension, while all groups displayed increases in cortical bone measurements at the knee. To summarize, teriparatide exhibited skeletal activity in individuals with chronic SCI that was not augmented by vibration stimulation. Without additional confirmatory data, the location-specific responses to teriparatide would not be expected to provide clinical benefit in this population. © 2018 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- W Brent Edwards
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Canada.,McCaig Institute for Bone and Joint Health, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - Narina Simonian
- Department of Physical Medicine and Rehabilitation, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.,Northwestern University Clinical and Translational Sciences Institute, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Ifaz T Haider
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Canada.,McCaig Institute for Bone and Joint Health, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - Alan S Anschel
- Department of Physical Medicine and Rehabilitation, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.,Rehabilitation Institute of Chicago (d.b.a. Shirley Ryan AbilityLab), Chicago, IL, USA
| | - David Chen
- Department of Physical Medicine and Rehabilitation, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.,Rehabilitation Institute of Chicago (d.b.a. Shirley Ryan AbilityLab), Chicago, IL, USA
| | - Keith E Gordon
- Department of Physical Therapy and Human Movement Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.,Edward Hines Jr. VA Hospital, Hines, IL, USA
| | - Elaine K Gregory
- Department of Physical Medicine and Rehabilitation, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Ki H Kim
- Department of Physical Medicine and Rehabilitation, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.,Rehabilitation Institute of Chicago (d.b.a. Shirley Ryan AbilityLab), Chicago, IL, USA
| | | | - Karen L Troy
- Department of Biomedical Engineering, Worcester Polytechnic Institute, Worcester, MA, USA
| | - Thomas J Schnitzer
- Department of Physical Medicine and Rehabilitation, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| |
Collapse
|
38
|
Mehta S, McClarren B, Aijaz A, Chalaby R, Cook-Chennault K, Olabisi RM. The effect of low-magnitude, high-frequency vibration on poly(ethylene glycol)-microencapsulated mesenchymal stem cells. J Tissue Eng 2018; 9:2041731418800101. [PMID: 30245801 PMCID: PMC6146326 DOI: 10.1177/2041731418800101] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Accepted: 08/21/2018] [Indexed: 12/14/2022] Open
Abstract
Low-magnitude, high-frequency vibration has stimulated osteogenesis in mesenchymal stem cells when these cells were cultured in certain types of three-dimensional environments. However, results of osteogenesis are conflicting with some reports showing no effect of vibration at all. A large number of vibration studies using three-dimensional scaffolds employ scaffolds derived from natural sources. Since these natural sources potentially have inherent biochemical and microarchitectural cues, we explored the effect of low-magnitude, high-frequency vibration at low, medium, and high accelerations when mesenchymal stem cells were encapsulated in poly(ethylene glycol) diacrylate microspheres. Low and medium accelerations enhanced osteogenesis in mesenchymal stem cells while high accelerations inhibited it. These studies demonstrate that the isolated effect of vibration alone induces osteogenesis.
Collapse
Affiliation(s)
- Sneha Mehta
- Department of Biomedical Engineering, Rutgers University, Piscataway, NJ, USA
| | - Brooke McClarren
- Department of Biomedical Engineering, Rutgers University, Piscataway, NJ, USA
| | - Ayesha Aijaz
- Department of Biomedical Engineering, Rutgers University, Piscataway, NJ, USA
| | - Rabab Chalaby
- Department of Materials Science and Engineering, Rutgers University, Piscataway, NJ, USA
| | | | - Ronke M Olabisi
- Department of Biomedical Engineering, Rutgers University, Piscataway, NJ, USA
| |
Collapse
|
39
|
Whole Body Vibration Therapy after Ischemia Reduces Brain Damage in Reproductively Senescent Female Rats. Int J Mol Sci 2018; 19:ijms19092749. [PMID: 30217051 PMCID: PMC6164360 DOI: 10.3390/ijms19092749] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 09/03/2018] [Accepted: 09/05/2018] [Indexed: 12/14/2022] Open
Abstract
A risk of ischemic stroke increases exponentially after menopause. Even a mild-ischemic stroke can result in increased frailty. Frailty is a state of increased vulnerability to adverse outcomes, which subsequently increases risk of cerebrovascular events and severe cognitive decline, particularly after menopause. Several interventions to reduce frailty and subsequent risk of stroke and cognitive decline have been proposed in laboratory animals and patients. One of them is whole body vibration (WBV). WBV improves cerebral function and cognitive ability that deteriorates with increased frailty. The goal of the current study is to test the efficacy of WBV in reducing post-ischemic stroke frailty and brain damage in reproductively senescent female rats. Reproductively senescent Sprague-Dawley female rats were exposed to transient middle cerebral artery occlusion (tMCAO) and were randomly assigned to either WBV or no-WBV groups. Animals placed in the WBV group underwent 30 days of WBV (40 Hz) treatment performed twice daily for 15 min each session, 5 days each week. The motor functions of animals belonging to both groups were tested intermittently and at the end of the treatment period. Brains were then harvested for inflammatory markers and histopathological analysis. The results demonstrate a significant reduction in inflammatory markers and infarct volume with significant increases in brain-derived neurotrophic factor and improvement in functional activity after tMCAO in middle-aged female rats that were treated with WBV as compared to the no-WBV group. Our results may facilitate a faster translation of the WBV intervention for improved outcome after stroke, particularly among frail women.
Collapse
|
40
|
Effects of low-magnitude high-frequency vibration on osteoblasts are dependent on estrogen receptor α signaling and cytoskeletal remodeling. Biochem Biophys Res Commun 2018; 503:2678-2684. [DOI: 10.1016/j.bbrc.2018.08.023] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 08/03/2018] [Indexed: 12/19/2022]
|
41
|
Reynolds RP, Li Y, Garner A, Norton JN. Vibration in mice: A review of comparative effects and use in translational research. Animal Model Exp Med 2018; 1:116-124. [PMID: 30891556 PMCID: PMC6388090 DOI: 10.1002/ame2.12024] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 06/11/2018] [Indexed: 11/10/2022] Open
Abstract
Sound pressure waves surround individuals in everyday life and are perceived by animals and humans primarily through sound or vibration. When sound pressure waves traverse through a solid medium, vibration will result. Vibration has long been considered an unwanted variable in animal research and may confound scientific endeavors using animals. Understanding the characteristics of vibration is required to determine whether effects in animals are likely to be therapeutic or result in adverse biological effects. The eighth edition of the "Guide for the Care and Use of Laboratory Animals" highlights the importance of considering vibration and its effects on animals in the research setting, but knowledge of the level of vibration for eliciting these effects was unknown. The literature provides information regarding therapeutic use of vibration in humans, but the range of conditions to be of therapeutic benefit is varied and without clarity. Understanding the characteristics of vibration (eg, frequency and magnitude) necessary to cause various effects will ultimately assist in the evaluation of this environmental factor and its role on a number of potential therapeutic regimens for use in humans. This paper will review the principles of vibration, sources within a research setting, comparative physiological effects in various species, and the relative potential use of vibration in the mouse as a translational research model.
Collapse
Affiliation(s)
- Randall P. Reynolds
- Division of Laboratory Animal ResourcesDuke University Medical CenterDurhamNCUSA
| | - Yao Li
- Department of Laboratory Animal ScienceSchool of MedicineShanghai Jiao Tong UniversityShanghaiChina
| | - Angela Garner
- Division of Laboratory Animal ResourcesDuke University Medical CenterDurhamNCUSA
| | - John N. Norton
- Division of Laboratory Animal ResourcesDuke University Medical CenterDurhamNCUSA
- Department of PathologyDuke University Medical CenterDurhamNCUSA
| |
Collapse
|
42
|
Robertson SN, Campsie P, Childs PG, Madsen F, Donnelly H, Henriquez FL, Mackay WG, Salmerón-Sánchez M, Tsimbouri MP, Williams C, Dalby MJ, Reid S. Control of cell behaviour through nanovibrational stimulation: nanokicking. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2018; 376:20170290. [PMID: 29661978 PMCID: PMC5915650 DOI: 10.1098/rsta.2017.0290] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/07/2018] [Indexed: 05/05/2023]
Abstract
Mechanical signals are ubiquitous in our everyday life and the process of converting these mechanical signals into a biological signalling response is known as mechanotransduction. Our understanding of mechanotransduction, and its contribution to vital cellular responses, is a rapidly expanding field of research involving complex processes that are still not clearly understood. The use of mechanical vibration as a stimulus of mechanotransduction, including variation of frequency and amplitude, allows an alternative method to control specific cell behaviour without chemical stimulation (e.g. growth factors). Chemical-independent control of cell behaviour could be highly advantageous for fields including drug discovery and clinical tissue engineering. In this review, a novel technique is described based on nanoscale sinusoidal vibration. Using finite-element analysis in conjunction with laser interferometry, techniques that are used within the field of gravitational wave detection, optimization of apparatus design and calibration of vibration application have been performed. We further discuss the application of nanovibrational stimulation, or 'nanokicking', to eukaryotic and prokaryotic cells including the differentiation of mesenchymal stem cells towards an osteoblast cell lineage. Mechanotransductive mechanisms are discussed including mediation through the Rho-A kinase signalling pathway. Optimization of this technique was first performed in two-dimensional culture using a simple vibration platform with an optimal frequency and amplitude of 1 kHz and 22 nm. A novel bioreactor was developed to scale up cell production, with recent research demonstrating that mesenchymal stem cell differentiation can be efficiently triggered in soft gel constructs. This important step provides first evidence that clinically relevant (three-dimensional) volumes of osteoblasts can be produced for the purpose of bone grafting, without complex scaffolds and/or chemical induction. Initial findings have shown that nanovibrational stimulation can also reduce biofilm formation in a number of clinically relevant bacteria. This demonstrates additional utility of the bioreactor to investigate mechanotransduction in other fields of research.This article is part of a discussion meeting issue 'The promises of gravitational-wave astronomy'.
Collapse
Affiliation(s)
- Shaun N Robertson
- SUPA, Department of Biomedical Engineering, University of Strathclyde, Graham Hills, 50 George Street, Glasgow G1 1QE, UK
| | - Paul Campsie
- SUPA, Department of Biomedical Engineering, University of Strathclyde, Graham Hills, 50 George Street, Glasgow G1 1QE, UK
| | - Peter G Childs
- Division of Biomedical Engineering, School of Engineering, University of Glasgow, Glasgow G12 8QQ, UK
| | - Fiona Madsen
- Institute of Healthcare, Policy and Practice, School of Health, Nursing and Midwifery, University of the West of Scotland, Paisley PA1 2BE, UK
| | - Hannah Donnelly
- Centre for Cell Engineering, Institute for Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Fiona L Henriquez
- Institute of Biomedical and Environmental Health Research, School of Science and Sport, University of the West of Scotland, Paisley PA1 2BE, UK
| | - William G Mackay
- Institute of Healthcare, Policy and Practice, School of Health, Nursing and Midwifery, University of the West of Scotland, Paisley PA1 2BE, UK
| | - Manuel Salmerón-Sánchez
- Division of Biomedical Engineering, School of Engineering, University of Glasgow, Glasgow G12 8QQ, UK
| | - Monica P Tsimbouri
- Centre for Cell Engineering, Institute for Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Craig Williams
- Institute of Healthcare, Policy and Practice, School of Health, Nursing and Midwifery, University of the West of Scotland, Paisley PA1 2BE, UK
| | - Matthew J Dalby
- Centre for Cell Engineering, Institute for Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Stuart Reid
- SUPA, Department of Biomedical Engineering, University of Strathclyde, Graham Hills, 50 George Street, Glasgow G1 1QE, UK
| |
Collapse
|
43
|
Huang Y, Fan Y, Salanova M, Yang X, Sun L, Blottner D. Effects of Plantar Vibration on Bone and Deep Fascia in a Rat Hindlimb Unloading Model of Disuse. Front Physiol 2018; 9:616. [PMID: 29875702 PMCID: PMC5974101 DOI: 10.3389/fphys.2018.00616] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 05/07/2018] [Indexed: 11/13/2022] Open
Abstract
The deep fascia of the vertebrate body comprises a biomechanically unique connective cell and tissue layer with integrative functions to support global and regional strain, tension, and even muscle force during motion and performance control. However, limited information is available on deep fascia in relation to bone in disuse. We used rat hindlimb unloading as a model of disuse (21 days of hindlimb unloading) to study biomechanical property as well as cell and tissue changes to deep fascia and bone unloading. Rats were randomly divided into three groups (n = 8, each): hindlimb unloading (HU), HU + vibration (HUV), and cage-control (CON). The HUV group received local vibration applied to the plantar of both hind paws. Micro-computed tomography analyzed decreased bone mineral density (BMD) of vertebra, tibia, and femur in HU vs. CON. Biomechanical parameters (elastic modulus, max stress, yield stress) of spinal and crural fascia in HU were always increased vs. CON. Vibration in HUV only counteracted HU-induced tibia bone loss and crural fascia mechanical changes but failed to show comparable changes in the vertebra and spinal fascia on lumbar back. Tissue and cell morphometry (size and cell nuclear density), immunomarker intensity levels of anti-collagen-I and III, probed on fascia cryosections well correlated with biomechanical changes suggesting crural fascia a prime target for plantar vibration mechano-stimulation in the HU rat. We conclude that the regular biomechanical characteristics as well as tissue and cell properties in crural fascia and quality of tibia bone (BMD) were preserved by local plantar vibration in disuse suggesting common mechanisms in fascia and bone adaptation to local mechanovibration stimulation following hind limb unloading in the HUV rat.
Collapse
Affiliation(s)
- Yunfei Huang
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing, China.,Beijing Advanced Innovation Centre for Biomedical Engineering, Beihang University, Beijing, China
| | - Yubo Fan
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing, China.,Beijing Advanced Innovation Centre for Biomedical Engineering, Beihang University, Beijing, China
| | - Michele Salanova
- Institute of Vegetative Anatomy, Charité - University Medicine Berlin, Berlin, Germany
| | - Xiao Yang
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing, China.,Beijing Advanced Innovation Centre for Biomedical Engineering, Beihang University, Beijing, China
| | - Lianwen Sun
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing, China.,Beijing Advanced Innovation Centre for Biomedical Engineering, Beihang University, Beijing, China
| | - Dieter Blottner
- Institute of Vegetative Anatomy, Charité - University Medicine Berlin, Berlin, Germany.,Center of Space Medicine Berlin, Neuromuscular Group, Charité - University Medicine Berlin, Berlin, Germany
| |
Collapse
|
44
|
Haffner-Luntzer M, Kovtun A, Lackner I, Mödinger Y, Hacker S, Liedert A, Tuckermann J, Ignatius A. Estrogen receptor α- (ERα), but not ERβ-signaling, is crucially involved in mechanostimulation of bone fracture healing by whole-body vibration. Bone 2018; 110:11-20. [PMID: 29367057 DOI: 10.1016/j.bone.2018.01.017] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 12/21/2017] [Accepted: 01/14/2018] [Indexed: 02/07/2023]
Abstract
Mechanostimulation by low-magnitude high frequency vibration (LMHFV) has been shown to provoke anabolic effects on the intact skeleton in both mice and humans. However, experimental studies revealed that, during bone fracture healing, the effect of whole-body vibration is profoundly influenced by the estrogen status. LMHFV significantly improved fracture healing in ovariectomized (OVX) mice being estrogen deficient, whereas bone regeneration was significantly reduced in non-OVX, estrogen-competent mice. Furthermore, estrogen receptors α (ERα) and β (ERβ) were differentially expressed in the fracture callus after whole-body vibration, depending on the estrogen status. Based on these data, we hypothesized that ERs may mediate vibration-induced effects on fracture healing. To prove this hypothesis, we investigated the effects of LMHFV on bone healing in mice lacking ERα or ERβ. To study the influence of the ER ligand estrogen, both non-OVX and OVX mice were used. All mice received a femur osteotomy stabilized by an external fixator. Half of the mice were sham-operated or subjected to OVX 4 weeks before osteotomy. Half of each group received LMHFV with 0.3 g and 45 Hz for 20 min per day, 5 days per week. After 21 days, fracture healing was evaluated by biomechanical testing, μCT analysis, histomorphometry and immunohistochemistry. Absence of ERα or ERβ did not affect fracture healing in sham-treated mice. Wildtype (WT) and ERβ-knockout mice similarly displayed impaired bone regeneration after OVX, whereas ERα-knockout mice did not. Confirming previous data, in WT mice, LMHFV negatively affected bone repair in non-OVX mice, whereas OVX-induced compromised healing was significantly improved by vibration. In contrast, vibrated ERα-knockout mice did not display significant differences in fracture healing compared to non-vibrated animals, both in non-OVX and OVX mice. Fracture healing in ERβ-knockout mice was similarly affected by LMHFV as in WT mice. These results suggest that ERα-signaling may be crucial for vibration-induced effects on fracture healing, whereas ERβ-signaling may play a minor role.
Collapse
Affiliation(s)
- Melanie Haffner-Luntzer
- Institute of Orthopedic Research and Biomechanics, University Medical Center Ulm, Helmholtzstraße 14, 89081 Ulm, Germany.
| | - Anna Kovtun
- Institute of Orthopedic Research and Biomechanics, University Medical Center Ulm, Helmholtzstraße 14, 89081 Ulm, Germany
| | - Ina Lackner
- Institute of Orthopedic Research and Biomechanics, University Medical Center Ulm, Helmholtzstraße 14, 89081 Ulm, Germany
| | - Yvonne Mödinger
- Institute of Orthopedic Research and Biomechanics, University Medical Center Ulm, Helmholtzstraße 14, 89081 Ulm, Germany
| | - Steffen Hacker
- Institute of Orthopedic Research and Biomechanics, University Medical Center Ulm, Helmholtzstraße 14, 89081 Ulm, Germany
| | - Astrid Liedert
- Institute of Orthopedic Research and Biomechanics, University Medical Center Ulm, Helmholtzstraße 14, 89081 Ulm, Germany
| | - Jan Tuckermann
- Institute of Comparative Molecular Endocrinology, Ulm University, Helmholtzstraße 8, 89081 Ulm, Germany
| | - Anita Ignatius
- Institute of Orthopedic Research and Biomechanics, University Medical Center Ulm, Helmholtzstraße 14, 89081 Ulm, Germany
| |
Collapse
|
45
|
Zhang T, Gao J, Fang J, Gong H. Multiscale investigation on the effects of additional weight bearing in combination with low-magnitude high-frequency vibration on bone quality of growing female rats. J Bone Miner Metab 2018; 36:157-169. [PMID: 28293780 DOI: 10.1007/s00774-017-0827-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2016] [Accepted: 02/15/2017] [Indexed: 11/29/2022]
Abstract
This study aimed to explore the effects of additional weight bearing in combination with low-magnitude high-frequency vibration (LMHFV; 45 Hz, 0.3 g) on bone quality. One hundred twenty rats were randomly divided into ten groups; namely, sedentary (SED), additional weight bearing in which the rat wears a backpack whose weight is x% of the body weight (WBx; x = 5, 12, 19, 26), basic vibration (V), and additional weight bearing in combination with LMHFV in which the rat wears a backpack whose weight is x% of the body weight (Vx; x = 5, 12, 19, 26). The experiment was conducted for 12 weeks, 7 days per week, and 15 min per day. A three-point bending mechanical test, micro computed tomography, and a nanoindentation test were used. Serum samples were analyzed chemically. Failure load in V19 rats was significantly lower than that in SED rats (P < 0.05). Vx (x = 5, 12, 19, 26) rats showed poor microarchitectures. The content of tartrate-resistant acid phosphatase 5b was significantly higher in Vx (x = 5, 12, 19, 26) rats than that in SED rats (P < 0.05). V26 rats demonstrated comparatively better nanomechanical properties of materials than the other vibrational groups. Additional weight bearing in combination with LMHFV negatively affected the macromechanical properties and microarchitecture of bone. Heavy additional weight bearing, such as 26% of body weight, in combination with LMHFV was able to improve the nanomechanical properties of growing bone material compared with LMHFV. A combined mechanical stimulation was used, which may provide useful information to understand the mechanism of this mechanical stimulation on bone.
Collapse
Affiliation(s)
- Tianlong Zhang
- Department of Engineering Mechanics, Jilin University, Changchun, 130022, People's Republic of China
| | - Jiazi Gao
- Department of Engineering Mechanics, Jilin University, Changchun, 130022, People's Republic of China
| | - Juan Fang
- Department of Engineering Mechanics, Jilin University, Changchun, 130022, People's Republic of China
| | - He Gong
- Department of Engineering Mechanics, Jilin University, Changchun, 130022, People's Republic of China.
| |
Collapse
|
46
|
Curtis KJ, Coughlin TR, Mason DE, Boerckel JD, Niebur GL. Bone marrow mechanotransduction in porcine explants alters kinase activation and enhances trabecular bone formation in the absence of osteocyte signaling. Bone 2018; 107:78-87. [PMID: 29154967 DOI: 10.1016/j.bone.2017.11.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 11/10/2017] [Accepted: 11/13/2017] [Indexed: 01/12/2023]
Abstract
Bone is a dynamic tissue that can adapt its architecture in response to mechanical signals under the control of osteocytes, which sense mechanical deformation of the mineralized bone. However, cells in the marrow are also mechanosensitive and may contribute to load-induced bone adaptation, as marrow is subjected to mechanical stress during bone deformation. We investigated the contribution of mechanotransduction in marrow cells to trabecular bone formation by applying low magnitude mechanical stimulation (LMMS) to porcine vertebral trabecular bone explants in an in situ bioreactor. The bone formation rate was higher in stimulated explants compared to unloaded controls which represent a disuse condition (CNT). However, sclerostin protein expression in osteocytes was not different between groups, nor was expression of osteocytic mechanoregulatory genes SOST, IGF-1, CTGF, and Cyr61, suggesting the mechanoregulatory program of osteocytes was unaffected by the loading regime. In contrast, c-Fos, a gene indicative of mechanical stimulation, was upregulated in the marrow cells of mechanically stimulated explants, while the level of activated c-Jun decreased by 25%. The activator protein 1 (AP-1) transcription factor is a heterodimer of c-Fos and c-Jun, which led us to investigate the expression of the downstream target gene cyclin-D1, a gene associated with cell cycle progression and osteogenesis. Cyclin-D1 gene expression in the stimulated marrow was approximately double that of the controls. The level of phosphorylated PYK2, a purported inhibitor of osteoblast differentiation, also decreased in marrow cells from stimulated explants. Taken together, mechanotransduction in marrow cells induced trabecular bone formation independent of osteocyte signaling. Identifying the specific cells and signaling pathways involved, and verifying them with inhibition of specific signaling molecules, could lead to potential therapeutic targets for diseases characterized by bone loss.
Collapse
Affiliation(s)
- Kimberly J Curtis
- Tissue Mechanics Laboratory, University of Notre Dame, IN, 46556, USA; Bioengineering Graduate Program, University of Notre Dame, IN, 46556, USA
| | - Thomas R Coughlin
- Tissue Mechanics Laboratory, University of Notre Dame, IN, 46556, USA; Bioengineering Graduate Program, University of Notre Dame, IN, 46556, USA
| | - Devon E Mason
- Bioengineering Graduate Program, University of Notre Dame, IN, 46556, USA
| | - Joel D Boerckel
- Bioengineering Graduate Program, University of Notre Dame, IN, 46556, USA
| | - Glen L Niebur
- Tissue Mechanics Laboratory, University of Notre Dame, IN, 46556, USA; Bioengineering Graduate Program, University of Notre Dame, IN, 46556, USA.
| |
Collapse
|
47
|
Jing D, Yan Z, Cai J, Tong S, Li X, Guo Z, Luo E. Low-1 level mechanical vibration improves bone microstructure, tissue mechanical properties and porous titanium implant osseointegration by promoting anabolic response in type 1 diabetic rabbits. Bone 2018; 106:11-21. [PMID: 28982588 DOI: 10.1016/j.bone.2017.10.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 09/14/2017] [Accepted: 10/01/2017] [Indexed: 12/31/2022]
Abstract
Type 1 diabetes mellitus (T1DM) is associated with reduced bone mass, increased fracture risk, and impaired bone defect regeneration potential. These skeletal complications are becoming important clinical challenges due to the rapidly increasing T1DM population, which necessitates developing effective treatment for T1DM-associated osteopenia/osteoporosis and bone trauma. This study aims to investigate the effects of whole-body vibration (WBV), an easy and non-invasive biophysical method, on bone microstructure, tissue-level mechanical properties and porous titanium (pTi) osseointegration in alloxan-diabetic rabbits. Six non-diabetic and twelve alloxan-treated diabetic rabbits were equally assigned to the Control, DM, and DM with WBV stimulation (WBV) groups. A cylindrical drill-hole defect was established on the left femoral lateral condyle of all rabbits and filled with a novel non-toxic Ti2448 pTi. Rabbits in the WBV group were exposed to 1h/day WBV (0.3g, 30Hz) for 8weeks. After sacrifice, the left femoral condyles were harvested for histological, histomorphometric and nanoindentation analyses. The femoral sample with 2-cm height above the defect was used for qRT-PCR analysis. The right distal femora were scanned with μCT. We found that all alloxan-treated rabbits exhibited hyperglycemia throughout the experimental period. WBV inhibited the deterioration of cancellous and cortical bone architecture and tissue-level mechanical properties via μCT, histological and nanoindentation examinations. T1DM-induced reduction of bone formation was inhibited by WBV, as evidenced by elevated serum OCN and increased mineral apposition rate (MAR), whereas no alteration was observed in bone resorption marker TRACP5b. WBV also stimulated more adequate ingrowths of mineralized bone tissue into pTi pore spaces, and improved peri-implant bone tissue-level mechanical properties and MAR in T1DM bone defects. WBV mitigated the reductions in femoral BMP2, OCN, Wnt3a, Lrp6, and β-catenin and inhibited Sost mRNA expression but did not alter RANKL or RANK gene expression in T1DM rabbits. Our findings demonstrated that WBV improved bone architecture, tissue-level mechanical properties, and pTi osseointegration by promoting canonical Wnt signaling-mediated skeletal anabolic response. This study not only advances our understanding of T1DM skeletal sensitivity in response to external mechanical cues but also offers new treatment alternatives for T1DM-associated osteopenia/osteoporosis and osseous defects in an economic and highly efficient manner.
Collapse
Affiliation(s)
- Da Jing
- Department of Biomedical Engineering, Fourth Military Medical University, Xi'an, China; Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi'an, China.
| | - Zedong Yan
- Department of Biomedical Engineering, Fourth Military Medical University, Xi'an, China
| | - Jing Cai
- College of Basic Medicine, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Shichao Tong
- Department of Biomedical Engineering, Fourth Military Medical University, Xi'an, China
| | - Xiaokang Li
- Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Zheng Guo
- Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Erping Luo
- Department of Biomedical Engineering, Fourth Military Medical University, Xi'an, China.
| |
Collapse
|
48
|
Rajapakse CS, Leonard MB, Kobe EA, Slinger MA, Borges KA, Billig E, Rubin CT, Wehrli FW. The Efficacy of Low-intensity Vibration to Improve Bone Health in Patients with End-stage Renal Disease Is Highly Dependent on Compliance and Muscle Response. Acad Radiol 2017; 24:1332-1342. [PMID: 28652048 DOI: 10.1016/j.acra.2017.05.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 05/23/2017] [Indexed: 12/28/2022]
Abstract
RATIONAL AND OBJECTIVES Low intensity vibration (LIV) may represent a nondrug strategy to mitigate bone deficits in patients with end-stage renal disease. MATERIALS AND METHODS Thirty end-stage renal patients on maintenance hemodialysis were randomized to stand for 20 minutes each day on either an active or placebo LIV device. Analysis at baseline and completion of 6-month intervention included magnetic resonance imaging (tibia and fibula stiffness; trabecular thickness, number, separation, bone volume fraction, plate-to-rod ratio; and cortical bone porosity), dual-energy X-ray absorptiometry (hip and spine bone mineral density [BMD]), and peripheral quantitative computed tomography (tibia trabecular and cortical BMD; calf muscle cross-sectional area). RESULTS Intention-to-treat analysis did not show any significant changes in outcomes associated with LIV. Subjects using the active device and with greater than the median adherence (70%) demonstrated an increase in distal tibia stiffness (5.3%), trabecular number (1.7%), BMD (2.3%), and plate-to-rod ratio (6.5%), and a decrease in trabecular separation (-1.8%). Changes in calf muscle cross-sectional area were associated with changes in distal tibia stiffness (R = 0.85), trabecular bone volume/total volume (R = 0.91), number (R = 0.92), and separation (R = -0.94) in the active group but not in the placebo group. Baseline parathyroid hormone levels were positively associated with increased cortical bone porosity over the 6-month study period in the placebo group (R = 0.55) but not in the active group (R = 0.01). No changes were observed in the nondistal tibia locations for either group except a decrease in hip BMD in the placebo group (-1.7%). CONCLUSION Outcomes and adherence thresholds identified from this pilot study could guide future longitudinal studies involving vibration therapy.
Collapse
|
49
|
Asano FS, Val FFDAE, Serafim TT, Falcai MJ, Okubo R, Shimano AC. HIGH-IMPACT DROP EXERCISE ALTERS MECHANICAL PROPERTIES IN OSTEOPENIC BONE. REV BRAS MED ESPORTE 2017. [DOI: 10.1590/1517-869220172304170466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
ABSTRACT Introduction: Osteopenia is a reversible condition and precedes osteoporosis. Physical activity and mechanical loading appear to play an important role in the regulation of bone homeostasis, without the side effects of targeted drug therapy. However, there is controversy as to which type of stimulus promotes more effective adaptations with respect to mechanical properties of bones. Objective: To investigate the effects of high-impact drop training on bone structure after ovariectomy-induced osteopenia in 40 10-week-old female Wistar rats. Methods: Twenty female rats (prevention program) were randomly assigned into two groups (n=10): Ovariectomized sedentary (OVXs), and OVX trained (OVX+Dropt). OVX+Dropt animals began training 3 days after surgery. Another twenty female rats (treatment program) were randomly assigned to two other groups (n=10): Ovariectomized sedentary (OVXs), and OVX trained (OVX+Dropt). OVX+Dropt animals began training 60 days after surgery. The rats in the trained groups were dropped from 40 cm height 20 times/day, 5 days/week over a period of 12 weeks period. At the end, the biomechanical tests were analyzed. Results: The final load and stiffness of the left tibia in the trained groups were higher than in the sedentary groups (p<0.05). Conclusions: Dropping exercise induced favorable changes in bone mechanical properties. High-impact drop exercise is effective to prevent bone loss after ovariectomy even when osteopenia is already established.
Collapse
|
50
|
Li K, Zhang C, Qiu L, Gao L, Zhang X. Advances in Application of Mechanical Stimuli in Bioreactors for Cartilage Tissue Engineering. TISSUE ENGINEERING PART B-REVIEWS 2017; 23:399-411. [PMID: 28463576 DOI: 10.1089/ten.teb.2016.0427] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Articular cartilage (AC) is the weight-bearing tissue in diarthroses. It lacks the capacity for self-healing once there are injuries or diseases due to its avascularity. With the development of tissue engineering, repairing cartilage defects through transplantation of engineered cartilage that closely matches properties of native cartilage has become a new option for curing cartilage diseases. The main hurdle for clinical application of engineered cartilage is how to develop functional cartilage constructs for mass production in a credible way. Recently, impressive hyaline cartilage that may have the potential to provide capabilities for treating large cartilage lesions in the future has been produced in laboratories. The key to functional cartilage construction in vitro is to identify appropriate mechanical stimuli. First, they should ensure the function of metabolism because mechanical stimuli play the role of blood vessels in the metabolism of AC, for example, acquiring nutrition and removing wastes. Second, they should mimic the movement of synovial joints and produce phenotypically correct tissues to achieve the adaptive development between the micro- and macrostructure and function. In this article, we divide mechanical stimuli into three types according to forces transmitted by different media in bioreactors, namely forces transmitted through the liquid medium, solid medium, or other media, then we review and summarize the research status of bioreactors for cartilage tissue engineering (CTE), mainly focusing on the effects of diverse mechanical stimuli on engineered cartilage. Based on current researches, there are several motion patterns in knee joints; but compression, tension, shear, fluid shear, or hydrostatic pressure each only partially reflects the mechanical condition in vivo. In this study, we propose that rolling-sliding-compression load consists of various stimuli that will represent better mechanical environment in CTE. In addition, engineers often ignore the importance of biochemical factors to the growth and development of engineered cartilage. In our point of view, only by fully considering synergistic effects of mechanical and biochemical factors can we find appropriate culture conditions for functional cartilage constructs. Once again, rolling-sliding-compression load under appropriate biochemical conditions may be conductive to realize the adaptive development between the structure and function of engineered cartilage in vitro.
Collapse
Affiliation(s)
- Ke Li
- Tianjin Key Laboratory of Design and Intelligent Control of the Advanced Mechatronical System, School of Mechanical Engineering, Tianjin University of Technology , Tianjin, China
| | - Chunqiu Zhang
- Tianjin Key Laboratory of Design and Intelligent Control of the Advanced Mechatronical System, School of Mechanical Engineering, Tianjin University of Technology , Tianjin, China
| | - Lulu Qiu
- Tianjin Key Laboratory of Design and Intelligent Control of the Advanced Mechatronical System, School of Mechanical Engineering, Tianjin University of Technology , Tianjin, China
| | - Lilan Gao
- Tianjin Key Laboratory of Design and Intelligent Control of the Advanced Mechatronical System, School of Mechanical Engineering, Tianjin University of Technology , Tianjin, China
| | - Xizheng Zhang
- Tianjin Key Laboratory of Design and Intelligent Control of the Advanced Mechatronical System, School of Mechanical Engineering, Tianjin University of Technology , Tianjin, China
| |
Collapse
|