1
|
Yang Z, Hou Y, Zhang M, Hou P, Liu C, Dou L, Chen X, Zhao L, Su L, Jin Y. Unraveling proteome changes of Sunit lamb meat in different feeding regimes and its relationship to flavor analyzed by TMT-labeled quantitative proteomic. Food Chem 2024; 437:137657. [PMID: 37952393 DOI: 10.1016/j.foodchem.2023.137657] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 08/26/2023] [Accepted: 10/02/2023] [Indexed: 11/14/2023]
Abstract
In order to explore the molecular mechanism of the effect of feeding regimes on lamb flavor, biceps femoris muscle samples from pasture-fed groups (PF) and concentrate-fed groups (CF) were chosen, and tandem mass tag (TMT) labeling combined with mass spectrometry (MS) was performed to find associations between flavor indicators and proteome profiles. The content and composition of amino acids and volatile flavor substances were better in the PF compared to the CF, with higher levels of some beneficial flavor components such as Arg, Pro Pentanal, Heptanal, Octanal, 1-octen-3-ol and 2,3-Octanedione. About 82 differentially abundant proteins (DAPs) were identified. The Kyoto encyclopedia of genes and genomes (KEGG) pathway analysis indicated that the pathways that may be associated with lamb flavor are focused on amino acid anabolism. These results provide a basis for further understanding of the molecular mechanisms of proteins in meat flavor regulation.
Collapse
Affiliation(s)
- Zhihao Yang
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China; Integrative Research Base of Beef and Lamb Processing Technology, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Hohhot 010018, China
| | - Yanru Hou
- College of Food Science and Engineering, Ningxia University, Yinchuan 750021, China
| | - Min Zhang
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China; Integrative Research Base of Beef and Lamb Processing Technology, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Hohhot 010018, China
| | - Puxin Hou
- Science and Technology Achievement Transformation Center, Bayannur 015000, China
| | - Chang Liu
- Inner Mongolia Vocational College of Chemical Engineering, Hohhot 010051, China
| | - Lu Dou
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China; Integrative Research Base of Beef and Lamb Processing Technology, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Hohhot 010018, China
| | - Xiaoyu Chen
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China; Integrative Research Base of Beef and Lamb Processing Technology, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Hohhot 010018, China
| | - Lihua Zhao
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China; Integrative Research Base of Beef and Lamb Processing Technology, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Hohhot 010018, China
| | - Lin Su
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China; Integrative Research Base of Beef and Lamb Processing Technology, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Hohhot 010018, China.
| | - Ye Jin
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China; Integrative Research Base of Beef and Lamb Processing Technology, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Hohhot 010018, China.
| |
Collapse
|
2
|
Neuritin Promotes Bone Marrow-Derived Mesenchymal Stem Cell Migration to Treat Diabetic Peripheral Neuropathy. Mol Neurobiol 2022; 59:6666-6683. [DOI: 10.1007/s12035-022-03002-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 08/16/2022] [Indexed: 10/15/2022]
|
3
|
Suzuki A, Iwata J. Amino acid metabolism and autophagy in skeletal development and homeostasis. Bone 2021; 146:115881. [PMID: 33578033 PMCID: PMC8462526 DOI: 10.1016/j.bone.2021.115881] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 12/29/2020] [Accepted: 02/06/2021] [Indexed: 02/06/2023]
Abstract
Bone is an active organ that is continuously remodeled throughout life via formation and resorption; therefore, a fine-tuned bone (re)modeling is crucial for bone homeostasis and is closely connected with energy metabolism. Amino acids are essential for various cellular functions as well as an energy source, and their synthesis and catabolism (e.g., metabolism of carbohydrates and fatty acids) are regulated through numerous enzymatic cascades. In addition, the intracellular levels of amino acids are maintained by autophagy, a cellular recycling system for proteins and organelles; under nutrient deprivation conditions, autophagy is strongly induced to compensate for cellular demands and to restore the amino acid pool. Metabolites derived from amino acids are known to be precursors of bioactive molecules such as second messengers and neurotransmitters, which control various cellular processes, including cell proliferation, differentiation, and homeostasis. Thus, amino acid metabolism and autophagy are tightly and reciprocally regulated in our bodies. This review discusses the current knowledge and potential links between bone diseases and deficiencies in amino acid metabolism and autophagy.
Collapse
Affiliation(s)
- Akiko Suzuki
- Department of Diagnostic & Biomedical Sciences, School of Dentistry, The University of Texas Health Science Center at Houston, Houston, TX 77054, USA; Center for Craniofacial Research, The University of Texas Health Science Center at Houston, Houston, TX 77054, USA
| | - Junichi Iwata
- Department of Diagnostic & Biomedical Sciences, School of Dentistry, The University of Texas Health Science Center at Houston, Houston, TX 77054, USA; Center for Craniofacial Research, The University of Texas Health Science Center at Houston, Houston, TX 77054, USA; MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX 77030, USA.
| |
Collapse
|
4
|
Pezzotti G, Boschetto F, Ohgitani E, Fujita Y, Zhu W, Marin E, McEntire BJ, Bal BS, Mazda O. Silicon nitride: a potent solid-state bioceramic inactivator of ssRNA viruses. Sci Rep 2021; 11:2977. [PMID: 33536558 PMCID: PMC7858580 DOI: 10.1038/s41598-021-82608-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 01/19/2021] [Indexed: 01/30/2023] Open
Abstract
Surface inactivation of human microbial pathogens has a long history. The Smith Papyrus (2600 ~ 2200 B.C.) described the use of copper surfaces to sterilize chest wounds and drinking water. Brass and bronze on doorknobs can discourage microbial spread in hospitals, and metal-base surface coatings are used in hygiene-sensitive environments, both as inactivators and modulators of cellular immunity. A limitation of these approaches is that the reactive oxygen radicals (ROS) generated at metal surfaces also damage human cells by oxidizing their proteins and lipids. Silicon nitride (Si3N4) is a non-oxide ceramic compound with known surface bacterial resistance. We show here that off-stoichiometric reactions at Si3N4 surfaces are also capable of inactivating different types of single-stranded RNA (ssRNA) viruses independent of whether their structure presents an envelop or not. The antiviral property of Si3N4 derives from a hydrolysis reaction at its surface and the subsequent formation of reactive nitrogen species (RNS) in doses that could be metabolized by mammalian cells but are lethal to pathogens. Real-time reverse transcription (RT)-polymerase chain reaction (PCR) tests of viral RNA and in situ Raman spectroscopy suggested that the products of Si3N4 hydrolysis directly react with viral proteins and RNA. Si3N4 may have a role in controlling human epidemics related to ssRNA mutant viruses.
Collapse
Affiliation(s)
- Giuseppe Pezzotti
- grid.419025.b0000 0001 0723 4764Ceramic Physics Laboratory, Kyoto Institute of Technology, Sakyo-ku, Matsugasaki, Kyoto, 606–8585 Japan ,grid.410793.80000 0001 0663 3325Department of Orthopedic Surgery, Tokyo Medical University, 6–7-1 Nishi-Shinjuku, Shinjuku-ku, Tokyo 160–0023 Japan ,grid.136593.b0000 0004 0373 3971The Center for Advanced Medical Engineering and Informatics, Osaka University, 2–2 Yamadaoka, Suita, Osaka 565–0854 Japan ,grid.272458.e0000 0001 0667 4960Department of Immunology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-ku, 465 Kajii-cho, Kyoto, 602–8566 Japan ,grid.272458.e0000 0001 0667 4960Department of Dental Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-ku, Kyoto, 602–8566 Japan
| | - Francesco Boschetto
- grid.419025.b0000 0001 0723 4764Ceramic Physics Laboratory, Kyoto Institute of Technology, Sakyo-ku, Matsugasaki, Kyoto, 606–8585 Japan ,grid.272458.e0000 0001 0667 4960Department of Immunology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-ku, 465 Kajii-cho, Kyoto, 602–8566 Japan
| | - Eriko Ohgitani
- grid.272458.e0000 0001 0667 4960Department of Immunology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-ku, 465 Kajii-cho, Kyoto, 602–8566 Japan
| | - Yuki Fujita
- grid.419025.b0000 0001 0723 4764Ceramic Physics Laboratory, Kyoto Institute of Technology, Sakyo-ku, Matsugasaki, Kyoto, 606–8585 Japan
| | - Wenliang Zhu
- grid.419025.b0000 0001 0723 4764Ceramic Physics Laboratory, Kyoto Institute of Technology, Sakyo-ku, Matsugasaki, Kyoto, 606–8585 Japan
| | - Elia Marin
- grid.419025.b0000 0001 0723 4764Ceramic Physics Laboratory, Kyoto Institute of Technology, Sakyo-ku, Matsugasaki, Kyoto, 606–8585 Japan ,grid.272458.e0000 0001 0667 4960Department of Dental Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-ku, Kyoto, 602–8566 Japan
| | - Bryan J. McEntire
- grid.422391.f0000 0004 6010 3714SINTX Technologies Corporation, 1885 West 2100 South, Salt Lake City, UT 84119 USA
| | - B. Sonny Bal
- grid.422391.f0000 0004 6010 3714SINTX Technologies Corporation, 1885 West 2100 South, Salt Lake City, UT 84119 USA
| | - Osam Mazda
- grid.272458.e0000 0001 0667 4960Department of Immunology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-ku, 465 Kajii-cho, Kyoto, 602–8566 Japan
| |
Collapse
|
5
|
Boschetto F, Marin E, Ohgitani E, Adachi T, Zanocco M, Horiguchi S, Zhu W, McEntire BJ, Mazda O, Bal BS, Pezzotti G. Surface functionalization of PEEK with silicon nitride. Biomed Mater 2020; 16. [PMID: 32906100 DOI: 10.1088/1748-605x/abb6b1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 09/09/2020] [Indexed: 12/18/2022]
Abstract
Surface roughness, bioactivity, and antibacterial properties are desirable in skeletal implants. We hot-pressed a mix of particulate sodium chloride (NaCl) salt and silicon nitride (β-Si3N4) onto the surface of bulk PEEK. NaCl grains were removed by leaching in water, resulting in a porous PEEK surface embedded with ~15 vol.% β-Si3N4 particles. This functionalized surface showed the osteogenic and antibacterial properties previously reported in bulk silicon nitride implants. Surface enhancement of PEEK with β-Si3N4 could improve the performance of spinal fusion cages, by facilitating arthrodesis and resisting bacteria.
Collapse
Affiliation(s)
| | - Elia Marin
- Ceramic Physics Laboratory, Kyoto Institute of Technology, Kyoto, JAPAN
| | | | | | - Matteo Zanocco
- Ceramic Physics Laboratory, Kyoto Institute of Technology, Kyoto, JAPAN
| | | | - Wenliang Zhu
- Ceramic Physics Laboratory, Kyoto Institute of Technology, Research Institute for Nanoscience, Sakyo-ku, Matsugasaki, 606-8585 Kyoto, Kyoto, JAPAN
| | | | - Osam Mazda
- Kyoto Prefectural University of Medicine, Kyoto, JAPAN
| | - B Sonny Bal
- SINTX Technologies, Salt Lake City, UNITED STATES
| | - Giuseppe Pezzotti
- Ceramic Physics Laboratory, Kyoto Institute of Technology, Sakyo-ku, Matsugasaki, 606-8585 Kyoto, Kyoto, JAPAN
| |
Collapse
|
6
|
Crosstalk of Brain and Bone-Clinical Observations and Their Molecular Bases. Int J Mol Sci 2020; 21:ijms21144946. [PMID: 32668736 PMCID: PMC7404044 DOI: 10.3390/ijms21144946] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 07/06/2020] [Accepted: 07/06/2020] [Indexed: 02/06/2023] Open
Abstract
As brain and bone disorders represent major health issues worldwide, substantial clinical investigations demonstrated a bidirectional crosstalk on several levels, mechanistically linking both apparently unrelated organs. While multiple stress, mood and neurodegenerative brain disorders are associated with osteoporosis, rare genetic skeletal diseases display impaired brain development and function. Along with brain and bone pathologies, particularly trauma events highlight the strong interaction of both organs. This review summarizes clinical and experimental observations reported for the crosstalk of brain and bone, followed by a detailed overview of their molecular bases. While brain-derived molecules affecting bone include central regulators, transmitters of the sympathetic, parasympathetic and sensory nervous system, bone-derived mediators altering brain function are released from bone cells and the bone marrow. Although the main pathways of the brain-bone crosstalk remain ‘efferent’, signaling from brain to bone, this review emphasizes the emergence of bone as a crucial ‘afferent’ regulator of cerebral development, function and pathophysiology. Therefore, unraveling the physiological and pathological bases of brain-bone interactions revealed promising pharmacologic targets and novel treatment strategies promoting concurrent brain and bone recovery.
Collapse
|
7
|
Zanocco M, Boschetto F, Zhu W, Marin E, McEntire BJ, Bal BS, Adachi T, Yamamoto T, Kanamura N, Ohgitani E, Yamamoto K, Mazda O, Pezzotti G. 3D-additive deposition of an antibacterial and osteogenic silicon nitride coating on orthopaedic titanium substrate. J Mech Behav Biomed Mater 2019; 103:103557. [PMID: 32090951 DOI: 10.1016/j.jmbbm.2019.103557] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 11/07/2019] [Accepted: 11/25/2019] [Indexed: 12/29/2022]
Abstract
A 3D-additive manufacturing approach produced a dense Si3N4 ceramic coating on a biomedical grade commercially pure titanium (cp-Ti) substrate by an automatic laser-sintering procedure. Si3N4 coatings could be prepared with thicknesses from the single to the tens of microns. A coating thickness, t = 15 ± 5 μm, was selected for this study, based on projections of homogeneity and scratching resistance. The Si3N4 coating met the 20 N threshold required for biomaterial applications, according to the standard scratch testing (ASTM C1624-05). The Si3N4 coating imparted both the antibacterial and osteogenic properties of bulk Si3N4 to the cp-Ti substrate. Both properties were comparable to those previously described for bulk Si3N4 biomedical implants. The newly developed Si3N4-coating was applied to commercially available Ti-alloy acetabular shells for total hip arthroplasty. A "glowing" test based on luciferase gene transformation was applied to visualize the colonization of gram-negative Escherichia coli on Si3N4-coated and uncoated Ti-alloy acetabular shells. The results showed that the coating technology conferred resistance to Staphylococcus epidermidis and Escherichia coli adhesion onto the bulk acetabular sockets.
Collapse
Affiliation(s)
- Matteo Zanocco
- Ceramic Physics Laboratory, Kyoto Institute of Technology, Sakyo-ku, Matsugasaki, Kyoto, 606-8585, Japan; Department of Immunology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-ku, 465 Kajii-cho, Kyoto, 602-8566, Japan
| | - Francesco Boschetto
- Ceramic Physics Laboratory, Kyoto Institute of Technology, Sakyo-ku, Matsugasaki, Kyoto, 606-8585, Japan; Department of Immunology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-ku, 465 Kajii-cho, Kyoto, 602-8566, Japan
| | - Wenliang Zhu
- Ceramic Physics Laboratory, Kyoto Institute of Technology, Sakyo-ku, Matsugasaki, Kyoto, 606-8585, Japan
| | - Elia Marin
- Ceramic Physics Laboratory, Kyoto Institute of Technology, Sakyo-ku, Matsugasaki, Kyoto, 606-8585, Japan; Department of Dental Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Bryan J McEntire
- SINTX Technologies Corporation, 1885 West 2100 South, Salt Lake City, UT, 84119, USA
| | - B Sonny Bal
- SINTX Technologies Corporation, 1885 West 2100 South, Salt Lake City, UT, 84119, USA
| | - Tetsuya Adachi
- Department of Dental Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Toshiro Yamamoto
- Department of Dental Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Narisato Kanamura
- Department of Dental Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Eriko Ohgitani
- Department of Immunology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-ku, 465 Kajii-cho, Kyoto, 602-8566, Japan
| | - Kengo Yamamoto
- Department of Orthopedic Surgery, Tokyo Medical University, 6-7-1 Nishi-Shinjuku, Shinjuku-ku, 160-0023, Tokyo, Japan
| | - Osam Mazda
- Department of Immunology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-ku, 465 Kajii-cho, Kyoto, 602-8566, Japan
| | - Giuseppe Pezzotti
- Ceramic Physics Laboratory, Kyoto Institute of Technology, Sakyo-ku, Matsugasaki, Kyoto, 606-8585, Japan; Department of Immunology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-ku, 465 Kajii-cho, Kyoto, 602-8566, Japan; Department of Orthopedic Surgery, Tokyo Medical University, 6-7-1 Nishi-Shinjuku, Shinjuku-ku, 160-0023, Tokyo, Japan; The Center for Advanced Medical Engineering and Informatics, Osaka University, 2-2 Yamadaoka, Suita, Osaka, 565-0854, Japan.
| |
Collapse
|
8
|
Glutamine Metabolism Is Essential for Stemness of Bone Marrow Mesenchymal Stem Cells and Bone Homeostasis. Stem Cells Int 2019; 2019:8928934. [PMID: 31611919 PMCID: PMC6757285 DOI: 10.1155/2019/8928934] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 08/23/2019] [Indexed: 02/06/2023] Open
Abstract
Skeleton has emerged as an endocrine organ which is both capable of regulating energy metabolism and being a target for it. Glutamine is the most bountiful and flexible amino acid in the body which provides adenosine 5′-triphosphate (ATP) demands for cells. Emerging evidences support that glutamine which acts as the second metabolic regulator after glucose exerts crucial roles in bone homeostasis at cellular level, including the lineage allocation and proliferation of bone mesenchymal stem cells (BMSCs), the matrix mineralization of osteoblasts, and the biosynthesis in chondrocytes. The integrated mechanism consisting of WNT, mammalian target of rapamycin (mTOR), and reactive oxygen species (ROS) signaling pathway in a glutamine-dependent pattern is responsible to regulate the complex intrinsic biological process, despite more extensive molecules are deserved to be elucidated in glutamine metabolism further. Indeed, dysfunctional glutamine metabolism enhances the development of degenerative bone diseases, such as osteoporosis and osteoarthritis, and glutamine or glutamine progenitor supplementation can partially restore bone defects which may promote treatment of bone diseases, although the mechanisms are not quite clear. In this review, we will summarize and update the latest research findings and clinical trials on the crucial regulatory roles of glutamine metabolism in BMSCs and BMSC-derived bone cells, also followed with the osteoclasts which are important in bone resorption.
Collapse
|
9
|
Does Riluzole Influence Bone Formation?: An In Vitro Study of Human Mesenchymal Stromal Cells and Osteoblast. Spine (Phila Pa 1976) 2019; 44:1107-1117. [PMID: 30896584 DOI: 10.1097/brs.0000000000003022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
STUDY DESIGN A post-test design biological experiment. OBJECTIVE The aim of this study was to evaluate the osteogenic effects of riluzole on human mesenchymal stromal cells and osteoblasts. SUMMARY OF BACKGROUND DATA Riluzole may benefit patients with spinal cord injury (SCI) from a neurologic perspective, but little is known about riluzole's effect on bone formation, fracture healing, or osteogenesis. METHODS Human mesenchymal stromal cells (hMSCs) and human osteoblasts (hOB) were obtained and isolated from healthy donors and cultured. The cells were treated with riluzole of different concentrations (50, 150, 450 ng/mL) for 1, 2, 3, and 4 weeks. Cytotoxicity was evaluated as was the induction of osteogenic differentiation of hMSCs. Differentiation was evaluated by measuring alkaline phosphatase (ALP) activity and with Alizarin red staining. Osteogenic gene expression of type I collagen (Col1), ALP, osteocalcin (Ocn), Runx2, Sox9, Runx2/Sox9 ratio were measured by qRT-PCR. RESULTS No cytotoxicity or increased proliferation was observed in bone marrow derived hMSCs and primary hOBs cultured with riluzole over 7 days. ALP activity was slightly increased in hMSCs after treatment for 2 weeks with riluzole 150 ng/mL and slightly upregulated by 150% (150 ng/mL) and 90% (450 ng/mL) in hMSCs at 3 weeks. In hOBs, ALP activity almost doubled after 2 weeks of culture with riluzole 150 ng/mL (P < 0.05). More pronounced 2.6-fold upregulation was noticed after 3 weeks of culture with riluzole at both 150 ng/mL (P = 0.05) and 450 ng/mL (P = 0.05). No significant influence of riluzole on the mRNA expression of osteocalcin (OCN) was observed. CONCLUSION The effect of riluzole on bone formation is mixed; low-dose riluzole has no effect on the viability or function of either hMSCs or hOBs. The activity of ALP in both cell types is upregulated by high-dose riluzole, which may indicate that high-dose riluzole can increase osteogenic metabolism and subsequently accelerate bone healing process. However, at high concentrations, riluzole leads to a decrease in osteogenic gene expression, including Runx2 and type 1 collagen. LEVEL OF EVIDENCE N/A.
Collapse
|
10
|
Pezzotti G. Silicon Nitride: A Bioceramic with a Gift. ACS APPLIED MATERIALS & INTERFACES 2019; 11:26619-26636. [PMID: 31251018 DOI: 10.1021/acsami.9b07997] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
In the closing decades of the 20th century, silicon nitride (Si3N4) was extensively developed for high-temperature gas turbine applications. Technologists attempted to take advantage of its superior thermal and mechanical properties to improve engine reliability and fuel economy. Yet, this promise was never realized in spite of the worldwide research, which was conducted at that time. Notwithstanding this disappointment, its use in medical applications in the early 21st century has been an unexpected gift. While retaining all of its engineered mechanical properties, it is now recognized for its peculiar surface chemistry. When immersed in an aqueous environment, the slow elution of silicon and nitrogen from its surface enhances healing of soft and osseous tissue, inhibits bacterial proliferation, and eradicates viruses. These benefits permit it to be used in a wide array of different disciplines inside and outside of the human body including orthopedics, dentistry, virology, agronomy, and environmental remediation. Given the global public health threat posed by mutating viruses and bacteria, silicon nitride offers a valid and straightforward alternative approach to fighting these pathogens. However, there is a conundrum behind these recent discoveries: How can this unique bioceramic be both friendly to mammalian cells while concurrently lysing invasive pathogens? This unparalleled characteristic can be explained by the pH-dependent kinetics of two ammonia species-NH4+ and NH3-both of which are leached from the wet Si3N4 surface.
Collapse
Affiliation(s)
- Giuseppe Pezzotti
- Ceramic Physics Laboratory , Kyoto Institute of Technology , Sakyo-ku, Matsugasaki , Kyoto 606-8585 , Japan
- Department of Orthopedic Surgery , Tokyo Medical University , 6-7-1 Nishi-Shinjuku , Shinjuku-ku, Tokyo 160-0023 , Japan
- The Center for Advanced Medical Engineering and Informatics , Osaka University , 2-2 Yamadaoka , Suita 565-0854 , Osaka , Japan
- Department of Immunology, Graduate School of Medical Science , Kyoto Prefectural University of Medicine , Kamigyo-ku, 465 Kajii-cho , Kyoto 602-8566 , Japan
| |
Collapse
|
11
|
Zhou J, Chen S, Guo H, Xia L, Liu H, Qin Y, He C. Electroacupuncture Prevents Ovariectomy-Induced Osteoporosis in Rats: A Randomised Controlled Trial. Acupunct Med 2018; 30:37-43. [PMID: 22378584 DOI: 10.1136/acupmed-2011-010114] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Background Electroacupuncture (EA) treatment has been shown to increase bone mineral density (BMD) in ovariectomised (OVX) rats; however, the underlying mechanisms remain unclear. Objective To systematically evaluate the effects of EA on OVX rats and the Wnt/β-catenin signalling pathway. Methods Three-month-old female Sprague–Dawley rats were randomly divided into three different groups (n=10 each): sham operated control (sham operated), ovariectomy (OVX) and ovariectomy with EA treatment (OVX+EA). Rats in the OVX+EA group received 12-week EA treatments. Results Serum bone-specific alkaline phosphatase level (p<0.01), BMD of the proximal femoral metaphysis and the fifth lumbar (L5) vertebral body (both, p<0.05) and maximum load and energy to failure of L5 vertebral body (both p<0.01) were significantly higher in the OVX+EA group than in the OVX group. Trabecular area, trabecular width and trabecular number were significantly higher in the OVX+EA group by 66.9%, 29.2% and 30.3%, respectively, than in the OVX group (all, p<0.01). Trabecular separation was 31.9% lower in the OVX+EA group than in the OVX group (p<0.01). Quantitative real-time reverse transcription polymerised chain reaction indicated that the expressions of mRNAs for low-density lipoprotein receptor-related protein 5 and β-catenin were significantly increased in the OVX+EA group, as compared with the OVX group (p<0.01 and p<0.05, respectively). Conclusion This study demonstrates that EA can prevent OVX-induced bone loss and deterioration of bone architecture and strength by stimulating the Wnt/β-catenin signalling pathway. These findings suggest that EA may bet a promising adjunct method for inhibiting OVX-induced osteoporosis in clinical settings.
Collapse
Affiliation(s)
- Jun Zhou
- Rehabilitation Key Laboratory of Sichuan Province, Department of Rehabilitation, West China Hospital, Sichuan University, Sichuan, People's Republic of China
| | - Shiju Chen
- Rehabilitation Key Laboratory of Sichuan Province, Department of Rehabilitation, West China Hospital, Sichuan University, Sichuan, People's Republic of China
| | - Hua Guo
- Rehabilitation Key Laboratory of Sichuan Province, Department of Rehabilitation, West China Hospital, Sichuan University, Sichuan, People's Republic of China
| | - Lu Xia
- Rehabilitation Key Laboratory of Sichuan Province, Department of Rehabilitation, West China Hospital, Sichuan University, Sichuan, People's Republic of China
| | - Huifang Liu
- Rehabilitation Key Laboratory of Sichuan Province, Department of Rehabilitation, West China Hospital, Sichuan University, Sichuan, People's Republic of China
| | - Yuxi Qin
- Rehabilitation Key Laboratory of Sichuan Province, Department of Rehabilitation, West China Hospital, Sichuan University, Sichuan, People's Republic of China
| | - Chengqi He
- Rehabilitation Key Laboratory of Sichuan Province, Department of Rehabilitation, West China Hospital, Sichuan University, Sichuan, People's Republic of China
| |
Collapse
|
12
|
Huang T, Liu R, Fu X, Yao D, Yang M, Liu Q, Lu WW, Wu C, Guan M. Aging Reduces an ERRalpha-Directed Mitochondrial Glutaminase Expression Suppressing Glutamine Anaplerosis and Osteogenic Differentiation of Mesenchymal Stem Cells. Stem Cells 2017; 35:411-424. [PMID: 27501743 DOI: 10.1002/stem.2470] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Revised: 07/07/2016] [Accepted: 07/25/2016] [Indexed: 12/19/2022]
Abstract
Aging deteriorates osteogenic capacity of mesenchymal stem/stromal cells (MSCs), contributing to imbalanced bone remodeling and osteoporosis. Glutaminase (Gls) catabolizes glutamine into glutamate at the first step of mitochondrial glutamine (Gln)-dependent anaplerosis which is essential for MSCs upon osteogenic differentiation. Estrogen-related receptor α (ERRα) regulates genes required for mitochondrial function. Here, we found that ERRα and Gls are upregulated by osteogenic induction in human MSCs (hMSCs). In contrast, osteogenic differentiation capacity and glutamine consumption of MSCs, as well as ERRα, Gls and osteogenic marker genes are significantly reduced with age. We demonstrated that ERRα binds to response elements on Gls promoter and affects glutamine anaplerosis through transcriptional induction of Gls. Conversely, mTOR inhibitor rapamycin, ERRα inverse agonist compound 29 or Gls inhibitor BPTES leads to reduced Gln anaplerosis and deteriorated osteogenic differentiation of hMSCs. Importantly, overexpression of ERRα or Gls restored impairment by these inhibitors. Finally, we proved that compensated ERRα or Gls expression indeed potentiated Gln anaplerosis and osteogenic capability of elderly mice MSCs in vitro. Together, we establish that Gls is a novel ERRα target gene and ERRα/Gls signaling pathway plays an important role in osteogenic differentiation of MSCs, providing new sights into novel regenerative therapeutics development. Our findings suggest that restoring age-related mitochondrial Gln-dependent anaplerosis may be beneficial for degenerative bone disorders such as osteoporosis. Stem Cells 2017;35:411-424.
Collapse
Affiliation(s)
- Tongling Huang
- National Engineering Research Center of Genetic Medicine, Institute of Biomedicine, Jinan University, Guangzhou, Guangdong, China
- Center for Human Tissues and Organs Degeneration, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China
| | - Renzhong Liu
- National Engineering Research Center of Genetic Medicine, Institute of Biomedicine, Jinan University, Guangzhou, Guangdong, China
- Center for Human Tissues and Organs Degeneration, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China
| | - Xuekun Fu
- Center for Human Tissues and Organs Degeneration, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China
| | - Dongsheng Yao
- National Engineering Research Center of Genetic Medicine, Institute of Biomedicine, Jinan University, Guangzhou, Guangdong, China
| | - Meng Yang
- Center for Human Tissues and Organs Degeneration, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China
| | - Qingli Liu
- Center for Human Tissues and Organs Degeneration, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China
| | - William W Lu
- Center for Human Tissues and Organs Degeneration, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China
- Department of Orthopaedics and Traumatology, The University of Hong Kong, Hong Kong, China
| | - Chuanyue Wu
- Department of Biology and Shenzhen Key Laboratory of Cell Microenvironment, South University of Science and Technology of China, Shenzhen, China
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Min Guan
- Center for Human Tissues and Organs Degeneration, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China
| |
Collapse
|
13
|
Xie W, Dolder S, Siegrist M, Wetterwald A, Hofstetter W. Glutamate Receptor Agonists and Glutamate Transporter Antagonists Regulate Differentiation of Osteoblast Lineage Cells. Calcif Tissue Int 2016; 99:142-54. [PMID: 27016923 DOI: 10.1007/s00223-016-0129-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Accepted: 03/08/2016] [Indexed: 11/26/2022]
Abstract
Development and function of osteoblast lineage cells are regulated by a complex microenvironment consisting of the bone extracellular matrix, cells, systemic hormones and cytokines, autocrine and paracrine factors, and mechanical load. Apart from receptors that transduce extracellular signals into the cell, molecular transporters play a crucial role in the cellular response to the microenvironment. Transporter molecules are responsible for cellular uptake of nutritional components, elimination of metabolites, ion transport, and cell-cell communication. In this report, the expression of molecular transporters in osteoblast lineage cells was investigated to assess their roles in cell development and activity. Low-density arrays, covering membrane and vesicular transport molecules, were used to assess gene expression in osteoblasts representing early and late differentiation states. Receptors and transporters for the amino acid glutamate were found to be differentially expressed during osteoblast development. Glutamate is a neurotransmitter in the central nervous system, and the mechanisms of its release, signal transduction, and cellular reabsorption in the synaptic cleft are well understood. Less clear, however, is the control of equivalent processes in peripheral tissues. In primary osteoblasts, inhibition of glutamate transporters with nonselective inhibitors leads to an increase in the concentration of extracellular glutamate. This change was accompanied by a decrease in osteoblast proliferation, stimulation of alkaline phosphatase, and the expression of transcripts encoding osteocalcin. Enzymatic removal of extracellular glutamate abolished these pro-differentiation effects, as did the inhibition of PKC- and Erk1/2-signaling pathways. These findings demonstrate that glutamate signaling promotes differentiation and activation of osteoblast lineage cells. Consequently, the glutamate system may represent a putative therapeutic target to induce an anabolic response in the skeletal system. Known antagonists of glutamate transporters will serve as lead compounds in developing new and specific bioactive molecules.
Collapse
Affiliation(s)
- Wenjie Xie
- Bone Biology & Orthopaedic Research, Department Clinical Research, University of Bern, Murtenstrasse 35, 3010, Bern, Switzerland
- Swiss National Centre of Competence in Research, NCCR TransCure, University of Bern, Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Silvia Dolder
- Bone Biology & Orthopaedic Research, Department Clinical Research, University of Bern, Murtenstrasse 35, 3010, Bern, Switzerland
| | - Mark Siegrist
- Bone Biology & Orthopaedic Research, Department Clinical Research, University of Bern, Murtenstrasse 35, 3010, Bern, Switzerland
| | - Antoinette Wetterwald
- Bone Biology & Orthopaedic Research, Department Clinical Research, University of Bern, Murtenstrasse 35, 3010, Bern, Switzerland
| | - Willy Hofstetter
- Bone Biology & Orthopaedic Research, Department Clinical Research, University of Bern, Murtenstrasse 35, 3010, Bern, Switzerland.
- Swiss National Centre of Competence in Research, NCCR TransCure, University of Bern, Bern, Switzerland.
| |
Collapse
|
14
|
Takahashi K, Uchida N, Kitanaka C, Sagara C, Imai M, Takahashi N. Inhibition of ASCT2 is essential in all-trans retinoic acid-induced reduction of adipogenesis in 3T3-L1 cells. FEBS Open Bio 2015; 5:571-8. [PMID: 26236584 PMCID: PMC4511454 DOI: 10.1016/j.fob.2015.06.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Revised: 05/21/2015] [Accepted: 06/28/2015] [Indexed: 01/07/2023] Open
Abstract
Asct2, an amino acid transporter, could be a target for obesity prevention and treatment. All-trans retinoic acid suppresses upregulation of Asct2 during adipogenesis of 3T3-L1 cells. The Asct2 inhibitor, l-γ-glutamyl-p-nitroanilide, suppresses adipogenesis at early time points. Treatment with l-γ-glutamyl-p-nitroanilide suppresses adipogenesis more effectively than l-glutamine-deficient conditions.
Vitamin A has preventive effects on obesity. All-trans retinoic acid (ATRA), the active form of vitamin A, inhibits lipid accumulation in 3T3-L1 cells in an experimental adipogenesis model. We found that ATRA suppressed up-regulation of the amino acid transporter, Asct2, in adipogenerating 3T3-L1 cells. We observed that Asct2 was up-regulated at 1 day after adipogenesis stimuli. The Asct2 inhibitor l-γ-glutamyl-p-nitroanilide (GPNA) decreased lipid accumulation. Glutamine-free conditions also suppressed adipogenesis. Suppression of adipogenesis by ATRA may be through Asct2 reduction. These results indicate that Asct2 could be a target for obesity prevention and treatment.
Collapse
Affiliation(s)
- Katsuhiko Takahashi
- Laboratory of Physiological Chemistry, Institute of Medicinal Chemistry, Hoshi University, Shinagawa, Tokyo 142-8501, Japan
| | - Natsumi Uchida
- Laboratory of Physiological Chemistry, Institute of Medicinal Chemistry, Hoshi University, Shinagawa, Tokyo 142-8501, Japan
| | - Chisato Kitanaka
- Laboratory of Physiological Chemistry, Institute of Medicinal Chemistry, Hoshi University, Shinagawa, Tokyo 142-8501, Japan
| | - Chiaki Sagara
- Laboratory of Physiological Chemistry, Institute of Medicinal Chemistry, Hoshi University, Shinagawa, Tokyo 142-8501, Japan
| | - Masahiko Imai
- Laboratory of Physiological Chemistry, Institute of Medicinal Chemistry, Hoshi University, Shinagawa, Tokyo 142-8501, Japan
| | - Noriko Takahashi
- Laboratory of Physiological Chemistry, Institute of Medicinal Chemistry, Hoshi University, Shinagawa, Tokyo 142-8501, Japan
| |
Collapse
|
15
|
Ytteborg E, Todorcevic M, Krasnov A, Takle H, Kristiansen IØ, Ruyter B. Precursor cells from Atlantic salmon (Salmo salar) visceral fat holds the plasticity to differentiate into the osteogenic lineage. Biol Open 2015; 4:783-91. [PMID: 25948755 PMCID: PMC4571100 DOI: 10.1242/bio.201411338] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
In order to study the potential plasticity of Atlantic salmon (Salmo salar) precursor cells (aSPCs) from the adipogenic mesenchyme cell lineage to differentiate to the osteogenic lineage, aSPCs were isolated and cultivated under either osteogenic or adipogenic promoting conditions. The results strengthen the hypothesis that aSPCs most likely are predestined to the adipogenic lineage, but they also hold the flexibility to turn into other lineages given the right stimuli. This assumption is supported by the fact that the transcription factor pparγ , important for regulation of adiopogenesis, was silent in aSPCs grown in osteogenic media, while runx2, important for osteogenic differentiation, was not expressed in aSPCs cultivated in adipogenic media. After 2 weeks in osteogenic promoting conditions the cells started to deposit extracellular matrix and after 4 weeks, the cells started mineralizing secreted matrix. Microarray analyses revealed large-scale transcriptome responses to osteogenic medium after 2 days, changes remained stable at day 15 and decreased by magnitude at day 30. Induction was observed in many genes involved in osteogenic differentiation, growth factors, regulators of development, transporters and production of extracellular matrix. Transcriptome profile in differentiating adipocytes was markedly different from differentiating osteoblasts with far fewer genes changing activity. The number of regulated genes slowly increased at the mature stage, when adipocytes increased in size and accumulated lipids. This is the first report on in vitro differentiation of aSPCs from Atlantic salmon to mineralizing osteogenic cells. This cell model system provides a new valuable tool for studying osteoblastogenesis in fish.
Collapse
|
16
|
Vadakkan KI, Mammen T, Wadhwa VS. Sum of two catalytic activities of the glutamine synthetase enzyme is a blood biomarker for stroke and is optimized for a rapid diagnostic test. Int J Stroke 2014; 10:E1-2. [PMID: 25491548 DOI: 10.1111/ijs.12382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Kunjumon I Vadakkan
- Division of Neurology, Department of Internal Medicine, University of Manitoba, Winnipeg, Canada; St. Boniface Research Centre, Winnipeg, Canada
| | | | | |
Collapse
|
17
|
Cerpa W, Ramos-Fernández E, Inestrosa NC. Modulation of the NMDA Receptor Through Secreted Soluble Factors. Mol Neurobiol 2014; 53:299-309. [PMID: 25429903 DOI: 10.1007/s12035-014-9009-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Accepted: 11/14/2014] [Indexed: 12/11/2022]
Abstract
Synaptic activity is a critical determinant in the formation and development of excitatory synapses in the central nervous system (CNS). The excitatory current is produced and regulated by several ionotropic receptors, including those that respond to glutamate. These channels are in turn regulated through several secreted factors that function as synaptic organizers. Specifically, Wnt, brain-derived neurotrophic factor (BDNF), fibroblast growth factor (FGF), and transforming growth factor (TGF) particularly regulate the N-methyl-D-aspartate receptor (NMDAR) glutamatergic channel. These factors likely regulate early embryonic development and directly control key proteins in the function of important glutamatergic channels. Here, we review the secreted molecules that participate in synaptic organization and discuss the cell signaling behind of this fine regulation. Additionally, we discuss how these factors are dysregulated in some neuropathologies associated with glutamatergic synaptic transmission in the CNS.
Collapse
Affiliation(s)
- Waldo Cerpa
- Laboratorio de Función y Patología Neuronal, Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile.
| | - Eva Ramos-Fernández
- Centro de Envejecimiento y Regeneración (CARE), Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Nibaldo C Inestrosa
- Centro de Envejecimiento y Regeneración (CARE), Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile.,Centre for Healthy Brain Ageing, School of Psychiatry, UNSW, Faculty of Medicine, University of New South Wales, Sydney, Australia.,Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Universidad de Magallanes, Punta Arenas, Chile
| |
Collapse
|
18
|
Sart S, Agathos SN, Li Y. Process engineering of stem cell metabolism for large scale expansion and differentiation in bioreactors. Biochem Eng J 2014. [DOI: 10.1016/j.bej.2014.01.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
19
|
Adeva MM, Souto G, Blanco N, Donapetry C. Ammonium metabolism in humans. Metabolism 2012; 61:1495-511. [PMID: 22921946 DOI: 10.1016/j.metabol.2012.07.007] [Citation(s) in RCA: 185] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2012] [Revised: 06/27/2012] [Accepted: 07/16/2012] [Indexed: 12/13/2022]
Abstract
Free ammonium ions are produced and consumed during cell metabolism. Glutamine synthetase utilizes free ammonium ions to produce glutamine in the cytosol whereas glutaminase and glutamate dehydrogenase generate free ammonium ions in the mitochondria from glutamine and glutamate, respectively. Ammonia and bicarbonate are condensed in the liver mitochondria to yield carbamoylphosphate initiating the urea cycle, the major mechanism of ammonium removal in humans. Healthy kidney produces ammonium which may be released into the systemic circulation or excreted into the urine depending predominantly on acid-base status, so that metabolic acidosis increases urinary ammonium excretion while metabolic alkalosis induces the opposite effect. Brain and skeletal muscle neither remove nor produce ammonium in normal conditions, but they are able to seize ammonium during hyperammonemia, releasing glutamine. Ammonia in gas phase has been detected in exhaled breath and skin, denoting that these organs may participate in nitrogen elimination. Ammonium homeostasis is profoundly altered in liver failure resulting in hyperammonemia due to the deficient ammonium clearance by the diseased liver and to the development of portal collateral circulation that diverts portal blood with high ammonium content to the systemic blood stream. Although blood ammonium concentration is usually elevated in liver disease, a substantial role of ammonium causing hepatic encephalopathy has not been demonstrated in human clinical studies. Hyperammonemia is also produced in urea cycle disorders and other situations leading to either defective ammonium removal or overproduction of ammonium that overcomes liver clearance capacity. Most diseases resulting in hyperammonemia and cerebral edema are preceded by hyperventilation and respiratory alkalosis of unclear origin that may be caused by the intracellular acidosis occurring in these conditions.
Collapse
|
20
|
Tarroni P, Villa I, Mrak E, Zolezzi F, Mattioli M, Gattuso C, Rubinacci A. Microarray analysis of 1,25(OH)₂D₃ regulated gene expression in human primary osteoblasts. J Cell Biochem 2012; 113:640-9. [PMID: 21956231 DOI: 10.1002/jcb.23392] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Though extensive studies have been conducted, questions regarding the molecular effectors and pathways underlying the regulatory role of 1,25(OH)(2)D(3) in human osteoblasts other than cell differentiation and matrix protein production remain unanswered. This study aims to identify genes and pathways that are modulated by 1,25(OH)(2)D(3) treatment in human osteoblasts. Primary osteoblast cultures obtained from human bone tissue samples were treated with 1,25(OH)(2)D(3) (10(-7) M) for 24 h and their transcritptomes were profiled by microarray analysis using the Affymetrix GeneChip. Statistical analysis was conducted to identify genes whose expression is significantly modulated following 1,25(OH)(2)D(3) treatment. One hundred and fifty-eight genes were found to be differentially expressed. Of these, 136 were upregulated, indicating clear transcriptional activation by 1,25(OH)(2)D(3). Biostatistical evaluation of microarray data by Ingenuity Pathways Analysis (IPA) revealed a relevant modulation of genes involved in vitamin D metabolism (CYP24), immune functions (CD14), neurotransmitter transporters (SLC1A1, SLC22A3), and coagulation [thrombomodulin (THBD), tissue plasminogen activator (PLAT), endothelial protein C receptor (PROCR), thrombin receptor (F2R)]. We identified a restricted number of highly regulated genes and confirmed their differential expression by real-time quantitative PCR (RT qPCR). The present genome-wide microarray analysis on 1,25(OH)(2)D(3) -treated human osteoblasts reveals an interplay of critical regulatory and metabolic pathways and supports the hypothesis that 1,25(OH)(2)D(3) can modulate the coagulation process through osteoblasts, activates osteoclastogenesis through inflammation signaling, modulates the effects of monoamines by affecting their reuptake.
Collapse
Affiliation(s)
- Paola Tarroni
- Axxam Spa, San Raffaele Biomedical Science Park, 20132 Milan, Italy.
| | | | | | | | | | | | | |
Collapse
|
21
|
Cowan RW, Seidlitz EP, Singh G. Glutamate signaling in healthy and diseased bone. Front Endocrinol (Lausanne) 2012; 3:89. [PMID: 22833735 PMCID: PMC3400067 DOI: 10.3389/fendo.2012.00089] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2012] [Accepted: 06/30/2012] [Indexed: 01/22/2023] Open
Abstract
Bone relies on multiple extracellular signaling systems to maintain homeostasis of its normal structure and functions. The amino acid glutamate is a fundamental extracellular messenger molecule in many tissues, and is used in bone for both neural and non-neural signaling. This review focuses on the non-neural interactions, and examines the evolutionarily ancient glutamate signaling system in the context of its application to normal bone functioning and discusses recent findings on the role of glutamate signaling as they pertain to maintaining healthy bone structure. The underlying mechanisms of glutamate signaling and the many roles glutamate plays in modulating bone physiology are featured, including those involved in osteoclast and osteoblast differentiation and mature cell functions. Moreover, the relevance of glutamate signaling systems in diseases that affect bone, such as cancer and rheumatoid arthritis, is discussed, and will highlight how the glutamate system may be exploited as a viable therapeutic target. We will identify novel areas of research where knowledge of glutamate communication mechanisms may aid in our understanding of the complex nature of bone homeostasis. By uncovering the contributions of glutamate in maintaining healthy bone, the reader will discover how this complex molecular signaling system may advance our capacity to treat bone pathologies.
Collapse
Affiliation(s)
- Robert W. Cowan
- Department of Pathology and Molecular Medicine, McMaster UniversityHamilton, ON, Canada
| | - Eric P. Seidlitz
- Department of Pathology and Molecular Medicine, McMaster UniversityHamilton, ON, Canada
| | - Gurmit Singh
- Department of Pathology and Molecular Medicine, McMaster UniversityHamilton, ON, Canada
- *Correspondence: Gurmit Singh, Juravinski Cancer Centre, Room 4-225, 699 Concession Street, Hamilton, ON, Canada L8V 5C2. e-mail:
| |
Collapse
|
22
|
Abstract
Mechanical loading plays a key role in the physiology of bone, allowing bone to functionally adapt to its environment, however characterization of the signaling events linking load to bone formation is incomplete. A screen for genes associated with mechanical load-induced bone formation identified the glutamate transporter GLAST, implicating the excitatory amino acid, glutamate, in the mechanoresponse. When an osteogenic load (10 N, 10 Hz) was externally applied to the rat ulna, GLAST (EAAT1) mRNA, was significantly down-regulated in osteocytes in the loaded limb. Functional components from each stage of the glutamate signaling pathway have since been identified within bone, including proteins necessary for calcium-mediated glutamate exocytosis, receptors, transporters, and signal propagation. Activation of ionotropic glutamate receptors has been shown to regulate the phenotype of osteoblasts and osteoclasts in vitro and bone mass in vivo. Furthermore, glutamatergic nerves have been identified in the vicinity of bone cells expressing glutamate receptors in vivo. However, it is not yet known how a glutamate signaling event is initiated in bone or its physiological significance. This review will examine the role of the glutamate signaling pathway in bone, with emphasis on the functions of glutamate transporters in osteoblasts.
Collapse
Affiliation(s)
- Karen S. Brakspear
- Department of Physiology and Pharmacology, Bristol University,Bristol, UK
| | - Deborah J. Mason
- School of Biosciences, Cardiff University,Cardiff, UK
- *Correspondence: Deborah J. Mason, School of Biosciences, Cardiff University, Biomedical Sciences Building, Museum Avenue, Cardiff CF10 3AX, UK. e-mail:
| |
Collapse
|
23
|
Olkku A, Leskinen JJ, Lammi MJ, Hynynen K, Mahonen A. Ultrasound-induced activation of Wnt signaling in human MG-63 osteoblastic cells. Bone 2010; 47:320-30. [PMID: 20435172 DOI: 10.1016/j.bone.2010.04.604] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2009] [Revised: 02/25/2010] [Accepted: 04/23/2010] [Indexed: 11/30/2022]
Abstract
The benefit from an ultrasound (US) exposure for fracture healing has been clearly shown. However, the molecular mechanisms behind this effect are not fully known. Recently, the canonical Wnt signaling pathway has been recognized as one of the essential regulators of osteoblastogenesis and bone mass, and thereby considered crucial for bone health. Mechanical loading and fluid shear stress have been reported to activate the canonical Wnt signaling pathway in bone cells, but previous reports on the effects of therapeutic US on Wnt signaling in general or in bone, in particular, have not been published yet. Therefore, activation of Wnt signaling pathway was assayed in human osteoblastic cells, and indeed, this pathway was found to be activated in MG-63 cells through the phosphoinositol 3-kinase/Akt (PI3K/Akt) and mTOR cascades following a single 10 min US exposure (2 W, 1.035 MHz). In addition to the reporter assay results, the Wnt pathway activation was also observed as nuclear localization of beta-catenin. Wnt activation showed also temperature dependence at elevated temperatures, and the expression of canonical Wnt ligands was induced under the thermal exposures. However, existence of a specific, non-thermal US component was evident as well, perhaps evidence of a potential dual action of therapeutic US on bone. Neither US nor heat exposures affected cell viability in our experiments. In summary, this is the first study to report that Wnt signaling cascade, important for osteoblast function and bone health, is one of the pathways activated by therapeutic US as well as by hyperthermia in human osteoblastic cells. Our results provide evidence for the potential molecular mechanisms behind the beneficial effects of US on fracture healing. Combinations of US, heat, and possible pharmacological treatment could provide useful flexibility for clinical cases in treating various bone disorders.
Collapse
Affiliation(s)
- Anu Olkku
- School of Medicine, Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | | | | | | | | |
Collapse
|
24
|
Peng CW, Yan M, Yu YY, Li JF, Ji J, Cai Q, Liu BY, Zhu ZG. Expression of the new target GS mRNA and protein of Wnt signaling pathway in gastric cancerous tissue. Shijie Huaren Xiaohua Zazhi 2009; 17:1777-1781. [DOI: 10.11569/wcjd.v17.i17.1777] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the new target of Wnt signaling pathway GS mRNA and protein expression in cancerous tissue from patients with gastric carcinoma and to evaluate its clinic significance.
METHODS: Fluorescent quantitative PCR (FQ-PCR) was used to detect the GS mRNA expression in cancerous tissue and paracancerous normal mucosa from 52 patients with gastric carcinoma. Immunohistochemistry (SP method) was used to detect GS expressions in paraffin-embedded gastric carcinoma tissues of 97 cases, paracancerous normal mucosa of 30 cases and 10 intestinal metaplasia tissues.
RESULTS: The expression of GS mRNA was significantly higher in cancerous tissue from patients with gastric carcinoma than in normal tissue (25.508 ± 5.090 vs 13.001 ± 2.040, P < 0.05). GS protein expression was closely related to the pathologic parameters, such as histological type, Lauren classification and distant metastasis (χ2 = 26.994, 54.929, 5.173, all P < 0.05). However, there was no significant correlation between GS expression and lymph node metastasis, tumor size, TNM staging, age and gender of patients.
CONCLUSION: GS mRNA and protein expression is significantly correlated with the biological behavior of gastric carcinoma. The high expression of GS may be related with the occurrence and progress of gastric cancer.
Collapse
|
25
|
Olkku A, Mahonen A. Calreticulin mediated glucocorticoid receptor export is involved in beta-catenin translocation and Wnt signalling inhibition in human osteoblastic cells. Bone 2009; 44:555-65. [PMID: 19100874 DOI: 10.1016/j.bone.2008.11.013] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2008] [Revised: 11/15/2008] [Accepted: 11/17/2008] [Indexed: 11/29/2022]
Abstract
Wnt signalling pathway is a multicomponent cascade involving interaction of several proteins and found to be important for development and function of various cells and tissues. There is increasing evidence that the Wnt/beta-catenin pathway constitutes also one of the essential molecular mechanisms controlling the metabolic aspects of osteoblastic cells. However, in bone, glucocorticoids (GCs) have been reported to weaken Wnt signalling. Therefore, the aim of this study was to characterize the mechanisms behind the cross-talk of these two signalling pathways in human osteoblastic cells. Based on our findings, liganded glucocorticoid receptor (GR) modulated Wnt signalling pathway by decreasing beta-catenin's nuclear accumulation and increasing its relocalization to cell membranes rather than affecting its degradation in human osteoblastic cells. The region of GR responsible for this inhibitory effect located into an area, which harbours the DNA binding as well as nuclear export domains. In further studies, a chaperone protein calreticulin (CRT), known to bind the DNA binding domain of GR and regulate receptor export, was found to be involved in the GR-mediated downregulation of Wnt signalling: GR mutants containing incomplete CRT binding sites were not able to translocate beta-catenin to cell surface. In addition, the inhibitory effect of GCs on endogenous Wnt target gene, cyclin D1, was abolished, when the expression of CRT was attenuated by the RNAi technique. Furthermore, GR and beta-catenin were shown to exist in the same immunocomplex, while interaction between CRT and beta-catenin was observed only in the presence of GR as a mediator molecule. In addition, the GR mutant lacking CRT binding ability impaired the complex formation between beta-catenin and CRT. Together with GR, beta-catenin could thus be co-transported from the nucleus in a CRT-dependent way. These observations represent a novel mechanism for GCs to downregulate Wnt signalling pathway in human osteoblastic cells. Knowledge of these molecular mechanisms is important for understanding the network of multiple signalling cascades in bone environment. Functional Wnt signalling pathway is a prerequisite for proper osteoblastogenesis, and this modulative cross-talk between the steroid pathway and Wnt cascade could therefore explain some of the two-edged effects of GCs on osteoblastic differentiation and function.
Collapse
Affiliation(s)
- Anu Olkku
- Institute of Biomedicine, Medical Biochemistry, University of Kuopio, Kuopio, Finland
| | | |
Collapse
|