1
|
Ruggiero N, Ciuciu A, Sedigh A, Rajpar I, Shelton D, Belanger P, Gropp K, Collins JA, Freeman TA, Tomlinson RE. The effect of celecoxib and muMab911 on strain adaptive bone remodeling and fracture repair in female mice: implications for rapidly progressive osteoarthritis. Bone 2025; 198:117542. [PMID: 40414473 DOI: 10.1016/j.bone.2025.117542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2025] [Revised: 05/16/2025] [Accepted: 05/19/2025] [Indexed: 05/27/2025]
Abstract
Debilitating pain is the primary clinical feature of osteoarthritis (OA) that drives the enormous healthcare costs. Osteoarthritis-related pain is often treated with non-steroidal anti-inflammatory drugs (NSAIDs), which effectively relieve pain and inflammation by inhibition of prostaglandin synthesis. Antibodies directed against nerve growth factor (NGF) were tested some time ago as an alternative potential analgesic for musculoskeletal pain, including osteoarthritis-related pain. Unfortunately, clinical development of these drugs was put on hold due to adverse outcomes - primarily rapidly progressive osteoarthritis. Both prostaglandin synthesis and NGF have been implicated as critical mediators of strain adaptive bone remodeling, which may play a role in rapid osteoarthritis progression. Therefore, this study was designed to investigate the effects of celecoxib, an NSAID, and muMab911, an anti-NGF antibody, as well as the combination therapy on strain adaptive bone remodeling, bone mass and geometry, and bone healing in a murine model. Adult female C57BL/6 J mice received celecoxib through drinking water, up to 3 IP injections of muMab911, or both treatments over a period of two weeks. As expected, all treatments were effective for relieving injury-associated pain. Consistent with previous studies, we found that celecoxib alone and in combination with muMab911 impaired periosteal load-induced bone formation induced by axial forelimb compression. Furthermore, both treatments had minimal effects on osteoblast and osteocyte populations, bone structural and material properties, and cortical and trabecular bone mass. Moreover, treatment did not impair fracture healing or callus morphology, though both treatments suppressed NGF expression during healing. Together, these findings suggest that celecoxib and anti-NGF therapy diminish strain adaptive bone remodeling without broadly compromising bone mass or repair, potentially contributing to the accelerated OA progression observed clinically by weakening the subchondral bone's adaptive capacity.
Collapse
Affiliation(s)
- Nicholas Ruggiero
- Department of Orthopaedic Surgery, Thomas Jefferson University, Philadelphia, PA, United States of America
| | - Alexandra Ciuciu
- Department of Orthopaedic Surgery, Thomas Jefferson University, Philadelphia, PA, United States of America
| | - Ashkan Sedigh
- Department of Orthopaedic Surgery, Thomas Jefferson University, Philadelphia, PA, United States of America
| | - Ibtesam Rajpar
- Department of Orthopaedic Surgery, Thomas Jefferson University, Philadelphia, PA, United States of America
| | | | | | | | - John A Collins
- Department of Orthopaedic Surgery, Thomas Jefferson University, Philadelphia, PA, United States of America
| | - Theresa A Freeman
- Department of Orthopaedic Surgery, Thomas Jefferson University, Philadelphia, PA, United States of America
| | - Ryan E Tomlinson
- Department of Orthopaedic Surgery, Thomas Jefferson University, Philadelphia, PA, United States of America.
| |
Collapse
|
2
|
Kannan R, Koh AJ, Kent RN, Bhutada K, Wasi F, Wagner L, Kozloff K, Baker BM, Roca H, McCauley LK. CCL2/CCR2 Signalling in Mesenchymal Stem/Progenitor Cell Recruitment and Fracture Healing in Mice. J Cell Mol Med 2024; 28:e70300. [PMID: 39721002 DOI: 10.1111/jcmm.70300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 12/02/2024] [Accepted: 12/10/2024] [Indexed: 12/26/2024] Open
Abstract
Macrophage efferocytosis (clearance of apoptotic cells) is crucial for tissue homeostasis and wound repair, where macrophages secrete factors that promote resolution of inflammation and regenerative signalling. This study examined the role of efferocytic macrophage-associated CCL2 secretion, its influence on mesenchymal stem/progenitor cell (MSPC) chemotaxis, and in vivo cell recruitment using Ccr2-/- (KO) mice with disrupted CCL2 receptor signalling in two regenerative models: ossicle implants and ulnar stress fractures. Single cell RNA sequencing and PCR validation indicated that efferocytosis of various apoptotic cells at bone injury sites (osteoblasts, pre-osteoblasts, MSPC) upregulated CCL2. CCL2 gradients enhanced MSPC migration through type I collagen matrices. In vivo, MSPC (LepR+) infiltration was significantly reduced while macrophage (F4/80+) infiltration increased in KO ossicle implants versus WT. In ulnar stress fractures, micro-CT revealed increased mineralized callus incidence in CCR2 KO male mice 5 days post injury (dpi) versus WT. By 7-dpi callus fractional bone volume, trabecular thickness, and bone mineral density were increased versus WT. Immunohistochemistry of mice 5-dpi confirmed an increase in callus area (including soft tissue); however, the percent of osteoprogenitors (%Osx+) within the callus was not different. These findings suggest that CCL2 differentially impacts MSPC recruitment depending on bone wound healing model.
Collapse
Affiliation(s)
- Rahasudha Kannan
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, Michigan, USA
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, USA
| | - Amy J Koh
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, Michigan, USA
| | - Robert N Kent
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, USA
| | - Kaira Bhutada
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, Michigan, USA
| | - Fatima Wasi
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, Michigan, USA
| | - Leon Wagner
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, Michigan, USA
| | - Kenneth Kozloff
- Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, Michigan, USA
| | - Brendon M Baker
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, USA
| | - Hernan Roca
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, Michigan, USA
| | - Laurie K McCauley
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, Michigan, USA
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| |
Collapse
|
3
|
Xu M, Thottappillil N, Cherief M, Li Z, Zhu M, Xing X, Gomez-Salazar M, Mwirigi JM, Sankaranarayanan I, Tavares-Ferreira D, Zhang C, Wang XW, Archer M, Guan Y, Tower RJ, Cahan P, Price TJ, Clemens TL, James AW. Mapping Somatosensory Afferent Circuitry to Bone Identifies Neurotrophic Signals Required for Fracture Healing. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.06.597786. [PMID: 38895367 PMCID: PMC11185682 DOI: 10.1101/2024.06.06.597786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
The profound pain accompanying bone fracture is mediated by somatosensory neurons, which also appear to be required to initiate bone regeneration following fracture. Surprisingly, the precise neuroanatomical circuitry mediating skeletal nociception and regeneration remains incompletely understood. Here, we characterized somatosensory dorsal root ganglia (DRG) afferent neurons innervating murine long bones before and after experimental long bone fracture in mice. Retrograde labeling of DRG neurons by an adeno-associated virus with peripheral nerve tropism showed AAV-tdT signal. Single cell transcriptomic profiling of 6,648 DRG neurons showed highest labeling across CGRP+ neuron clusters (6.9-17.2%) belonging to unmyelinated C fibers, thinly myelinated Aδ fibers and Aβ-Field LTMR (9.2%). Gene expression profiles of retrograde labeled DRG neurons over multiple timepoints following experimental stress fracture revealed dynamic changes in gene expression corresponding to the acute inflammatory ( S100a8 , S100a9 ) and mechanical force ( Piezo2 ). Reparative phase after fracture included morphogens such as Tgfb1, Fgf9 and Fgf18 . Two methods to surgically or genetically denervate fractured bones were used in combination with scRNA-seq to implicate defective mesenchymal cell proliferation and osteodifferentiation as underlying the poor bone repair capacity in the presence of attenuated innervation. Finally, multi-tissue scRNA-seq and interactome analyses implicated neuron-derived FGF9 as a potent regulator of fracture repair, a finding compatible with in vitro assessments of neuron-to-skeletal mesenchyme interactions.
Collapse
|
4
|
Zweifler LE, Sinder BP, Stephan C, Koh AJ, Do J, Ulrich E, Grewal J, Woo C, Batoon L, Kozloff K, Roca H, Mishina Y, McCauley LK. Parathyroid hormone and trabectedin have differing effects on macrophages and stress fracture repair. Bone 2024; 179:116983. [PMID: 38013019 PMCID: PMC10932746 DOI: 10.1016/j.bone.2023.116983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 10/25/2023] [Accepted: 11/23/2023] [Indexed: 11/29/2023]
Abstract
Stress fractures occur as a result of repeated mechanical stress on bone and are commonly found in the load-bearing lower extremities. Macrophages are key players in the immune system and play an important role in bone remodeling and fracture healing. However, the role of macrophages in stress fractures has not been adequately addressed. We hypothesize that macrophage infiltration into a stress fracture callus site promotes bone healing. To test this, a unilateral stress fracture induction model was employed in which the murine ulna of four-month-old, C57BL/6 J male mice was repeatedly loaded with a pre-determined force until the bone was displaced a distance below the threshold for complete fracture. Mice were treated daily with parathyroid hormone (PTH, 50 μg/kg/day) starting two days before injury and continued until 24 h before euthanasia either four or six days after injury, or treated with trabectedin (0.15 mg/kg) on the day of stress fracture and euthanized three or seven days after injury. These treatments were used due to their established effects on macrophages. While macrophages have been implicated in the anabolic effects of PTH, trabectedin, an FDA approved chemotherapeutic, compromises macrophage function and reduces bone mass. At three- and four-days post injury, callus macrophage numbers were analyzed histologically. There was a significant increase in macrophages with PTH treatment compared to vehicle in the callus site. By one week of healing, treatments differentially affected the bony callus as analyzed by microcomputed tomography. PTH enhanced callus bone volume. Conversely, callus bone volume was decreased with trabectedin treatment. Interestingly, concurrent treatment with PTH and trabectedin rescued the reduction observed in the callus with trabectedin treatment alone. This study reports on the key involvement of macrophages during stress fracture healing. Given these observed outcomes on macrophage physiology and bone healing, these findings may be important for patients actively receiving either of these FDA-approved therapeutics.
Collapse
Affiliation(s)
- Laura E Zweifler
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI, United States of America
| | - Benjamin P Sinder
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI, United States of America
| | - Chris Stephan
- Department of Orthopedic Surgery, University of Michigan, Ann Arbor, MI, United States of America
| | - Amy J Koh
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI, United States of America
| | - Justin Do
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI, United States of America
| | - Emily Ulrich
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI, United States of America
| | - Jobanpreet Grewal
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI, United States of America
| | - Cecilia Woo
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI, United States of America
| | - Lena Batoon
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI, United States of America
| | - Kenneth Kozloff
- Department of Orthopedic Surgery, University of Michigan, Ann Arbor, MI, United States of America
| | - Hernan Roca
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI, United States of America.
| | - Yuji Mishina
- Department of Biologic and Materials Science, University of Michigan School of Dentistry, Ann Arbor, MI, United States of America
| | - Laurie K McCauley
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI, United States of America; Department of Pathology, University of Michigan, Medical School, Ann Arbor, MI, United States of America
| |
Collapse
|
5
|
Nurrachman AS, Azhari A, Epsilawati L, Pramanik F. Temporal Pattern of micro-CT Angiography Vascular Parameters and VEGF mRNA Expression in Fracture Healing: a Radiograph and Molecular Comparison. Eur J Dent 2023. [PMID: 36716788 DOI: 10.1055/s-0042-1757466] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Angiogenesis plays an important role in fracture healing with vascular endothelial growth factor (VEGF) as the main protein involved. Micro-computed tomography (CT) angiography may be used to analyze this revascularization with several parameters such as number of branches, total volume, and diameter. This systematic review is aimed to assess available studies on the temporal pattern of vascular imaging on micro-CT angiographs, especially in terms of the number of branches, total volume, and diameter as well as the temporal pattern of VEGF mRNA expression as the molecular comparison during bone fracture healing. This review was conducted according to the PRISMA guidelines. Electronic database searches were performed using PubMed, ProQuest, ScienceDirect, EBSCOhost, Taylor & Francis Online, and hand searching. The search strategy and keywords were adjusted to each database using the Boolean operators and other available limit functions to identify most relevant articles based on our inclusion and exclusion criteria. Screening and filtration were done in several stages by removing the duplicates and analyzing each title, abstract, and full-text in all included entries. Data extraction was done for syntheses to summarize the temporal pattern of each parameter. A total of 28 articles were eligible and met all criteria, 11 articles were synthesized in its angiograph's analysis, 16 articles were synthesized in its VEGF mRNA expression analysis, and 1 article had both parameters analyzed. The overall temporal pattern of both three micro-CT angiographic parameters and VEGF mRNA expression was in line qualitatively. The number of branches, total volume, and diameter of the blood vessels in micro-CT angiography showed an exponential rise at week 2 and decline at week 3 of fracture healing, with the VEGF mRNA expression concurrently showing a consistent pattern in the phase.
Collapse
Affiliation(s)
- Aga Satria Nurrachman
- Department of Oral and Maxillofacial Radiology, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Azhari Azhari
- Department of Dentomaxillofacial Radiology, Faculty of Dentistry, Padjadjaran University, Bandung, West Java, Indonesia
| | - Lusi Epsilawati
- Department of Dentomaxillofacial Radiology, Faculty of Dentistry, Padjadjaran University, Bandung, West Java, Indonesia
| | - Farina Pramanik
- Department of Dentomaxillofacial Radiology, Faculty of Dentistry, Padjadjaran University, Bandung, West Java, Indonesia
| |
Collapse
|
6
|
Hixon KR, Miller AN. Animal models of impaired long bone healing and tissue engineering- and cell-based in vivo interventions. J Orthop Res 2022; 40:767-778. [PMID: 35072292 DOI: 10.1002/jor.25277] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 12/05/2021] [Accepted: 01/16/2022] [Indexed: 02/04/2023]
Abstract
Bone healing after injury typically follows a systematic process and occurs spontaneously under appropriate physiological conditions. However, impaired long bone healing is still quite common and may require surgical intervention. Various complications can result in different forms of impaired bone healing including nonunion, critical-size defects, or stress fractures. While a nonunion may occur due to impaired biological signaling and/or mechanical instability, a critical-size defect exhibits extensive bone loss that will not spontaneously heal. Comparatively, a stress fracture occurs from repetitive forces and results in a non-healing crack or break in the bone. Clinical standards of treatment vary between these bone defects due to their pathological differences. The use of appropriate animal models for modeling healing defects is critical to improve current treatment methods and develop novel rescue therapies. This review provides an overview of these clinical bone healing impairments and current animal models available to study the defects in vivo. The techniques used to create these models are compared, along with the outcomes, to clarify limitations and future objectives. Finally, rescue techniques focused on tissue engineering and cell-based therapies currently applied in animal models are specifically discussed to analyze their ability to initiate healing at the defect site, providing information regarding potential future therapies. In summary, this review focuses on the current animal models of nonunion, critical-size defects, and stress fractures, as well as interventions that have been tested in vivo to provide an overview of the clinical potential and future directions for improving bone healing.
Collapse
Affiliation(s)
- Katherine R Hixon
- Department of Orthopaedic Surgery, Washington University, St. Louis, Missouri, USA.,Thayer School of Engineering, Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire, USA
| | - Anna N Miller
- Department of Orthopaedic Surgery, Washington University, St. Louis, Missouri, USA
| |
Collapse
|
7
|
Buettmann EG, Yoneda S, Hu P, McKenzie JA, Silva MJ. Postnatal Osterix but not DMP1 lineage cells significantly contribute to intramembranous ossification in three preclinical models of bone injury. Front Physiol 2022; 13:1083301. [PMID: 36685200 PMCID: PMC9846510 DOI: 10.3389/fphys.2022.1083301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 12/02/2022] [Indexed: 01/06/2023] Open
Abstract
Murine models of long-bone fracture, stress fracture, and cortical defect are used to discern the cellular and molecular mediators of intramembranous and endochondral bone healing. Previous work has shown that Osterix (Osx+) and Dentin Matrix Protein-1 (DMP1+) lineage cells and their progeny contribute to injury-induced woven bone formation during femoral fracture, ulnar stress fracture, and tibial cortical defect repair. However, the contribution of pre-existing versus newly-derived Osx+ and DMP1+ lineage cells in these murine models of bone injury is unclear. We addressed this knowledge gap by using male and female 12-week-old, tamoxifen-inducible Osx Cre_ERT2 and DMP1 Cre_ERT2 mice harboring the Ai9 TdTomato reporter allele. To trace pre-existing Osx+ and DMP1+ lineage cells, tamoxifen (TMX: 100 mg/kg gavage) was given in a pulse manner (three doses, 4 weeks before injury), while to label pre-existing and newly-derived lineage Osx+ and DMP1+ cells, TMX was first given 2 weeks before injury and continuously (twice weekly) throughout healing. TdTomato positive (TdT+) cell area and cell fraction were quantified from frozen histological sections of injured and uninjured contralateral samples at times corresponding with active woven bone formation in each model. We found that in uninjured cortical bone tissue, Osx Cre_ERT2 was more efficient than DMP1 Cre_ERT2 at labeling the periosteal and endosteal surfaces, as well as intracortical osteocytes. Pulse-labeling revealed that pre-existing Osx+ lineage and their progeny, but not pre-existing DMP1+ lineage cells and their progeny, significantly contributed to woven bone formation in all three injury models. In particular, these pre-existing Osx+ lineage cells mainly lined new woven bone surfaces and became embedded as osteocytes. In contrast, with continuous dosing, both Osx+ and DMP1+ lineage cells and their progeny contributed to intramembranous woven bone formation, with higher TdT+ tissue area and cell fraction in Osx+ lineage versus DMP1+ lineage calluses (femoral fracture and ulnar stress fracture). Similarly, Osx+ and DMP1+ lineage cells and their progeny significantly contributed to endochondral callus regions with continuous dosing only, with higher TdT+ chondrocyte fraction in Osx+ versus DMP1+ cell lineages. In summary, pre-existing Osx+ but not DMP1+ lineage cells and their progeny make up a significant amount of woven bone cells (particularly osteocytes) across three preclinical models of bone injury. Therefore, Osx+ cell lineage modulation may prove to be an effective therapy to enhance bone regeneration.
Collapse
Affiliation(s)
- Evan G Buettmann
- Department of Orthopaedic Surgery, Washington University in St. Louis School of Medicine, St. Louis, MO, United States.,Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, United States.,Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA, United States
| | - Susumu Yoneda
- Department of Orthopaedic Surgery, Washington University in St. Louis School of Medicine, St. Louis, MO, United States
| | - Pei Hu
- Department of Orthopaedic Surgery, Washington University in St. Louis School of Medicine, St. Louis, MO, United States
| | - Jennifer A McKenzie
- Department of Orthopaedic Surgery, Washington University in St. Louis School of Medicine, St. Louis, MO, United States
| | - Matthew J Silva
- Department of Orthopaedic Surgery, Washington University in St. Louis School of Medicine, St. Louis, MO, United States.,Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, United States
| |
Collapse
|
8
|
Wang S, Pei S, Wasi M, Parajuli A, Yee A, You L, Wang L. Moderate tibial loading and treadmill running, but not overloading, protect adult murine bone from destruction by metastasized breast cancer. Bone 2021; 153:116100. [PMID: 34246808 PMCID: PMC8478818 DOI: 10.1016/j.bone.2021.116100] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 06/18/2021] [Accepted: 06/29/2021] [Indexed: 12/15/2022]
Abstract
Osteolytic bone lesions, which develop in many metastatic breast cancer patients, impair bone integrity and lead to adverse skeletal related events that are difficult to treat and sometimes fatal. Moderate mechanical loading has been shown to suppress osteolysis in young mice with breast cancer. In this study, we aimed to investigate the dose-dependent effects of mechanical loading on protecting the integrity of adult skeletons with breast cancer. Localized tibial loading and aerobic treadmill running with three levels of varying intensity were tested in a syngeneic mammary tumor bone metastasis model. Adult C57BL/6J female mice (14-week-old, N = 88 mice) received intra-tibial injections of Py8119 triple-negative murine breast cancer cells or PBS and underwent 4 to 5 weeks of exercise or acted as sedentary/non-loaded controls. The bone structure was monitored longitudinally with weekly in vivo micro-computed tomography imaging, while the cellular responses in bone and marrow were examined using immunohistochemistry. Moderate treadmill running (16 m/min, 50 min/day, 5 days/week, and 5 weeks) and tibial loading (4.5 N, 630 με, 4 Hz, 300 cycles/day, 5 days/week, and 4 weeks) suppressed tumor-induced bone destruction, as evaluated by full-thickness perforation of tibial cortex and the volume of osteolytic lesions in the cortex. In contrast, tibial loading at higher magnitude (8 N, 1100 με) induced woven bone and accelerated bone destruction, compared with the non-loaded controls. The three exercise regimens differentially affected osteocyte apoptosis, osteocyte hypoxia, osteoclast activity, bone marrow vasculature, and tumor proliferation. In conclusion, the relationship between exercise intensity and the risk of breast cancer-induced osteolysis was found to follow a J-shaped curve in a preclinical model, suggesting the need to optimize exercise parameters in order to harness the skeletal benefits of exercise in metastatic breast cancers.
Collapse
Affiliation(s)
- Shubo Wang
- Center for Biomechanical Engineering Research, Department of Mechanical Engineering, University of Delaware, Newark, DE, USA
| | - Shaopeng Pei
- Center for Biomechanical Engineering Research, Department of Mechanical Engineering, University of Delaware, Newark, DE, USA
| | - Murtaza Wasi
- Center for Biomechanical Engineering Research, Department of Mechanical Engineering, University of Delaware, Newark, DE, USA
| | - Ashutosh Parajuli
- Center for Biomechanical Engineering Research, Department of Mechanical Engineering, University of Delaware, Newark, DE, USA
| | - Albert Yee
- Division of Orthopaedics, Department of Surgery, Sunnybrook Health Sciences Centre and the University of Toronto, Toronto, Ontario, Canada
| | - Lidan You
- Department of Mechanical and Industrial Engineering, Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Liyun Wang
- Center for Biomechanical Engineering Research, Department of Mechanical Engineering, University of Delaware, Newark, DE, USA.
| |
Collapse
|
9
|
Coates BA, McKenzie JA, Yoneda S, Silva MJ. Interleukin-6 (IL-6) deficiency enhances intramembranous osteogenesis following stress fracture in mice. Bone 2021; 143:115737. [PMID: 33181349 PMCID: PMC8408837 DOI: 10.1016/j.bone.2020.115737] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 10/08/2020] [Accepted: 11/06/2020] [Indexed: 12/28/2022]
Abstract
Interleukin-6 (IL-6) is highly upregulated in response to skeletal injury, suggesting it plays a role in the inflammatory phase of fracture repair. However, the impact of IL-6 on successful repair remains incompletely defined. Therefore, we investigated the role of IL-6 in two models of fracture repair (full fracture and stress fracture) using 12-week old IL-6 global knockout mice (IL-6 KO) and wild type (WT) littermate controls. Callus morphology and mineral density 14 days after full femur fracture did not differ between IL-6 knockout mice and controls. In contrast, IL-6 KO mice had an enhanced bone response 7 days after ulnar stress fracture compared to WT, with increased total callus volume (p = 0.020) and callus bone volume (p = 0.045). IL-6 KO did not alter the recruitment of immune cells (Gr-1 or F4/80 positive) to the stress fracture callus. IL-6 KO also did not alter the number of osteoclasts in the stress fracture callus. Using RNA-seq, we identified differentially expressed genes in stress fracture vs. contralateral control ulnae, and observed that IL-6 KO resulted in only modest alterations to the gene expression response to stress fracture (SFx). Wnt1 was more highly upregulated in IL-6 KO SFx callus at both day 1 (fold change 12.5 in KO vs. 5.7 in WT) and day 3 (fold change 4.7 in KO vs. 1.9 in WT). Finally, using tibial compression to induce bone formation without bone injury, we found that IL-6 KO directly impacted osteoblast function, increasing the propensity for woven bone formation. In summary, we report that IL-6 knockout enhanced formation of callus and bone following stress fracture injury, likely through direct action on the osteoblast's ability to produce woven bone. This suggests a novel role of IL-6 as a suppressor of intramembranous bone formation.
Collapse
Affiliation(s)
- Brandon A Coates
- Department of Orthopaedic Surgery, Washington University in St. Louis, MO, United States of America; Department of Biomedical Engineering, Washington University in St. Louis, MO, United States of America.
| | - Jennifer A McKenzie
- Department of Orthopaedic Surgery, Washington University in St. Louis, MO, United States of America
| | - Susumu Yoneda
- Department of Orthopaedic Surgery, Washington University in St. Louis, MO, United States of America
| | - Matthew J Silva
- Department of Orthopaedic Surgery, Washington University in St. Louis, MO, United States of America; Department of Biomedical Engineering, Washington University in St. Louis, MO, United States of America
| |
Collapse
|
10
|
Ko FC, Sumner DR. How faithfully does intramembranous bone regeneration recapitulate embryonic skeletal development? Dev Dyn 2020; 250:377-392. [PMID: 32813296 DOI: 10.1002/dvdy.240] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 07/19/2020] [Accepted: 08/13/2020] [Indexed: 02/06/2023] Open
Abstract
Postnatal intramembranous bone regeneration plays an important role during a wide variety of musculoskeletal regeneration processes such as fracture healing, joint replacement and dental implant surgery, distraction osteogenesis, stress fracture healing, and repair of skeletal defects caused by trauma or resection of tumors. The molecular basis of intramembranous bone regeneration has been interrogated using rodent models of most of these conditions. These studies reveal that signaling pathways such as Wnt, TGFβ/BMP, FGF, VEGF, and Notch are invoked, reminiscent of embryonic development of membranous bone. Discoveries of several skeletal stem cell/progenitor populations using mouse genetic models also reveal the potential sources of postnatal intramembranous bone regeneration. The purpose of this review is to compare the underlying molecular signals and progenitor cells that characterize embryonic development of membranous bone and postnatal intramembranous bone regeneration.
Collapse
Affiliation(s)
- Frank C Ko
- Department of Cell & Molecular Medicine, Rush University Medical Center, Chicago, Illinois, USA
| | - D Rick Sumner
- Department of Cell & Molecular Medicine, Rush University Medical Center, Chicago, Illinois, USA
| |
Collapse
|
11
|
Li Z, Meyers CA, Chang L, Lee S, Li Z, Tomlinson R, Hoke A, Clemens TL, James AW. Fracture repair requires TrkA signaling by skeletal sensory nerves. J Clin Invest 2019; 129:5137-5150. [PMID: 31638597 PMCID: PMC6877307 DOI: 10.1172/jci128428] [Citation(s) in RCA: 152] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 08/20/2019] [Indexed: 01/08/2023] Open
Abstract
Bone is richly innervated by nerve growth factor-responsive (NGF-responsive) tropomyosin receptor kinase A-expressing (TrKa-expressing) sensory nerve fibers, which are required for osteochondral progenitor expansion during mammalian skeletal development. Aside from pain sensation, little is known regarding the role of sensory innervation in bone repair. Here, we characterized the reinnervation of tissue following experimental ulnar stress fracture and assessed the impact of loss of TrkA signaling in this process. Sequential histological data obtained in reporter mice subjected to fracture demonstrated a marked upregulation of NGF expression in periosteal stromal progenitors and fracture-associated macrophages. Sprouting and arborization of CGRP+TrkA+ sensory nerve fibers within the reactive periosteum in NGF-enriched cellular domains were evident at time points preceding periosteal vascularization, ossification, and mineralization. Temporal inhibition of TrkA catalytic activity by administration of 1NMPP1 to TrkAF592A mice significantly reduced the numbers of sensory fibers, blunted revascularization, and delayed ossification of the fracture callus. We observed similar deficiencies in nerve regrowth and fracture healing in a mouse model of peripheral neuropathy induced by paclitaxel treatment. Together, our studies demonstrate an essential role of TrkA signaling for stress fracture repair and implicate skeletal sensory nerves as an important upstream mediator of this repair process.
Collapse
Affiliation(s)
- Zhu Li
- Department of Orthopaedics, Johns Hopkins University, Baltimore, Maryland, USA
- Baltimore Veterans Administration Medical Center, Baltimore, Maryland, USA
| | - Carolyn A. Meyers
- Department of Pathology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Leslie Chang
- Department of Pathology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Seungyong Lee
- Department of Pathology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Zhi Li
- Department of Orthopaedics, Johns Hopkins University, Baltimore, Maryland, USA
| | - Ryan Tomlinson
- Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Ahmet Hoke
- Department of Neuroscience, Johns Hopkins University, Baltimore, Maryland, USA
| | - Thomas L. Clemens
- Department of Orthopaedics, Johns Hopkins University, Baltimore, Maryland, USA
- Baltimore Veterans Administration Medical Center, Baltimore, Maryland, USA
| | - Aaron W. James
- Department of Pathology, Johns Hopkins University, Baltimore, Maryland, USA
| |
Collapse
|
12
|
Coates BA, McKenzie JA, Buettmann EG, Liu X, Gontarz PM, Zhang B, Silva MJ. Transcriptional profiling of intramembranous and endochondral ossification after fracture in mice. Bone 2019; 127:577-591. [PMID: 31369916 PMCID: PMC6708791 DOI: 10.1016/j.bone.2019.07.022] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 06/27/2019] [Accepted: 07/18/2019] [Indexed: 12/21/2022]
Abstract
Bone fracture repair represents an important clinical challenge with nearly 1 million non-union fractures occurring annually in the U.S. Gene expression differs between non-union and healthy repair, suggesting there is a pattern of gene expression that is indicative of optimal repair. Despite this, the gene expression profile of fracture repair remains incompletely understood. In this work, we used RNA-seq of two well-established murine fracture models to describe gene expression of intramembranous and endochondral bone formation. We used top differentially expressed genes, enriched gene ontology terms and pathways, callus cellular phenotyping, and histology to describe and contrast these bone formation processes across time. Intramembranous repair, as modeled by ulnar stress fracture, and endochondral repair, as modeled by femur full fracture, exhibited vastly different transcriptional profiles throughout repair. Stress fracture healing had enriched differentially expressed genes associated with bone repair and osteoblasts, highlighting the strong osteogenic repair process of this model. Interestingly, the PI3K-Akt signaling pathway was one of only a few pathways uniquely enriched in stress fracture repair. Full fracture repair involved a higher level of inflammatory and immune cell related genes than did stress fracture repair. Full fracture repair also differed from stress fracture in a robust downregulation of ion channel genes following injury, the role of which in fracture repair is unclear. This study offers a broad description of gene expression in intramembranous and endochondral ossification across several time points throughout repair and suggests several potentially intriguing genes, pathways, and cells whose role in fracture repair requires further study.
Collapse
Affiliation(s)
- Brandon A Coates
- Department of Orthopaedic Surgery, Washington University in St. Louis, MO, United States of America; Department of Biomedical Engineering, Washington University in St. Louis, MO, United States of America.
| | - Jennifer A McKenzie
- Department of Orthopaedic Surgery, Washington University in St. Louis, MO, United States of America
| | - Evan G Buettmann
- Department of Orthopaedic Surgery, Washington University in St. Louis, MO, United States of America; Department of Biomedical Engineering, Washington University in St. Louis, MO, United States of America
| | - Xiaochen Liu
- Department of Orthopaedic Surgery, Washington University in St. Louis, MO, United States of America
| | - Paul M Gontarz
- Department of Developmental Biology, Washington University in St. Louis, MO, United States of America
| | - Bo Zhang
- Department of Developmental Biology, Washington University in St. Louis, MO, United States of America
| | - Matthew J Silva
- Department of Orthopaedic Surgery, Washington University in St. Louis, MO, United States of America; Department of Biomedical Engineering, Washington University in St. Louis, MO, United States of America
| |
Collapse
|
13
|
Buettmann EG, McKenzie JA, Migotsky N, Sykes DA, Hu P, Yoneda S, Silva MJ. VEGFA From Early Osteoblast Lineage Cells (Osterix+) Is Required in Mice for Fracture Healing. J Bone Miner Res 2019; 34:1690-1706. [PMID: 31081125 PMCID: PMC6744295 DOI: 10.1002/jbmr.3755] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 04/23/2019] [Accepted: 05/01/2019] [Indexed: 12/21/2022]
Abstract
Bone formation via intramembranous and endochondral ossification is necessary for successful healing after a wide range of bone injuries. The pleiotropic cytokine, vascular endothelial growth factor A (VEGFA) has been shown, via nonspecific pharmacologic inhibition, to be indispensable for angiogenesis and ossification following bone fracture and cortical defect repair. However, the importance of VEGFA expression by different cell types during bone healing is not well understood. We sought to determine the role of VEGFA from different osteoblast cell subsets following clinically relevant models of bone fracture and cortical defect. Ubiquitin C (UBC), Osterix (Osx), or Dentin matrix protein 1 (Dmp1) Cre-ERT2 mice (male and female) containing floxed VEGFA alleles (VEGFAfl/fl ) were either given a femur full fracture, ulna stress fracture, or tibia cortical defect at 12 weeks of age. All mice received tamoxifen continuously starting 2 weeks before bone injury and throughout healing. UBC Cre-ERT2 VEGFAfl/fl (UBC cKO) mice, which were used to mimic nonspecific inhibition, had minimal bone formation and impaired angiogenesis across all bone injury models. UBC cKO mice also exhibited impaired periosteal cell proliferation during full fracture, but not stress fracture repair. Osx Cre-ERT2 VEGFAfl/fl (Osx cKO) mice, but not Dmp1 Cre-ERT2 VEGFAfl/fl (Dmp1 cKO) mice, showed impaired periosteal bone formation and angiogenesis in models of full fracture and stress fracture. Neither Osx cKO nor Dmp1 cKO mice demonstrated significant impairments in intramedullary bone formation and angiogenesis following cortical defect. These data suggest that VEGFA from early osteolineage cells (Osx+), but not mature osteoblasts/osteocytes (Dmp1+), is critical at the time of bone injury for rapid periosteal angiogenesis and woven bone formation during fracture repair. Whereas VEGFA from another cell source, not from the osteoblast cell lineage, is necessary at the time of injury for maximum cortical defect intramedullary angiogenesis and osteogenesis. © 2019 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Evan G Buettmann
- Department of Orthopaedic Surgery, Washington University in St. Louis, St. Louis, MO, USA.,Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, USA
| | - Jennifer A McKenzie
- Department of Orthopaedic Surgery, Washington University in St. Louis, St. Louis, MO, USA
| | - Nicole Migotsky
- Department of Orthopaedic Surgery, Washington University in St. Louis, St. Louis, MO, USA.,Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, USA
| | - David Aw Sykes
- Department of Biology, Washington University in St. Louis, St. Louis, MO, USA
| | - Pei Hu
- Department of Orthopaedic Surgery, Washington University in St. Louis, St. Louis, MO, USA
| | - Susumu Yoneda
- Department of Orthopaedic Surgery, Washington University in St. Louis, St. Louis, MO, USA
| | - Matthew J Silva
- Department of Orthopaedic Surgery, Washington University in St. Louis, St. Louis, MO, USA.,Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, USA
| |
Collapse
|
14
|
Park J, Fertala A, Tomlinson RE. Naproxen impairs load-induced bone formation, reduces bone toughness, and diminishes woven bone formation following stress fracture in mice. Bone 2019; 124:22-32. [PMID: 30998998 DOI: 10.1016/j.bone.2019.04.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 04/01/2019] [Accepted: 04/14/2019] [Indexed: 01/17/2023]
Abstract
Debilitating stress fractures are surprisingly common in physically active individuals, including athletes, military recruits, and dancers. These individuals are overrepresented in the 30 million daily users of non-steroidal anti-inflammatory drugs (NSAIDs). We hypothesized that regular use of NSAIDs would predispose habitually loaded bones to stress fracture and delay the repair of these injuries. In this project, we used repetitive axial forelimb compression in mice as a model to test these hypotheses. First, adult mice were subjected to six bouts of forelimb compression over a period of two weeks, with aspirin, naproxen, or vehicle continuously administered through drinking water. Naproxen-treated mice had diminished load-induced bone formation as well as a significant loss in toughness in non-loaded bone, which were not observed in aspirin-treated mice. Furthermore, there were no differences in RANKL/OPG ratio or cortical bone parameters. Picrosirius red staining and second harmonic generation imaging revealed that alterations in bone collagen fibril size and organization were driving the loss of toughness in naproxen-treated mice. Separately, adult mice were subjected to an ulnar stress fracture generated by a single bout of fatigue loading, with NSAIDs provided 24 h before injury. Both aspirin-treated and naproxen-treated mice had normal forelimb use in the week after injury, whereas control mice favored the injured forelimb until day 7. However, woven bone volume was only significantly impaired by naproxen. Both NSAIDs were found to significantly inhibit Ptgs2 and Ngf expression following stress fracture, but only naproxen significantly affected serum PGE2 concentration. Overall, our results suggest that naproxen, but not aspirin, may increase the risk of stress fracture and extend the healing time of these injuries, warranting further clinical evaluation for patients at risk for fatigue injuries.
Collapse
Affiliation(s)
- Jino Park
- Department of Orthopaedic Surgery, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Andrzej Fertala
- Department of Orthopaedic Surgery, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Ryan E Tomlinson
- Department of Orthopaedic Surgery, Thomas Jefferson University, Philadelphia, PA 19107, USA.
| |
Collapse
|
15
|
Corso PFCDL, Meger MN, Petean IBF, Souza JFD, Brancher JA, da Silva LAB, Rebelatto NLB, Kluppel LE, Sousa-Neto MD, Küchler EC, Scariot R. Examination of OPG, RANK, RANKL and HIF1A polymorphisms in temporomandibular joint ankylosis patients. J Craniomaxillofac Surg 2019; 47:766-770. [DOI: 10.1016/j.jcms.2019.01.024] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 12/13/2018] [Accepted: 01/14/2019] [Indexed: 02/05/2023] Open
|
16
|
Jones JD, Sinder BP, Paige D, Soki FN, Koh AJ, Thiele S, Shiozawa Y, Hofbauer LC, Daignault S, Roca H, McCauley LK. Trabectedin Reduces Skeletal Prostate Cancer Tumor Size in Association with Effects on M2 Macrophages and Efferocytosis. Neoplasia 2018; 21:172-184. [PMID: 30591422 PMCID: PMC6314218 DOI: 10.1016/j.neo.2018.11.003] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 11/07/2018] [Accepted: 11/09/2018] [Indexed: 12/30/2022] Open
Abstract
Macrophages play a dual role in regulating tumor progression. They can either reduce tumor growth by secreting antitumorigenic factors or promote tumor progression by secreting a variety of soluble factors. The purpose of this study was to define the monocyte/macrophage population prevalent in skeletal tumors, explore a mechanism employed in supporting prostate cancer (PCa) skeletal metastasis, and examine a novel therapeutic target. Phagocytic CD68+ cells were found to correlate with Gleason score in human PCa samples, and M2-like macrophages (F4/80+CD206+) were identified in PCa bone resident tumors in mice. Induced M2-like macrophages in vitro were more proficient at phagocytosis (efferocytosis) of apoptotic tumor cells than M1-like macrophages. Moreover, soluble factors released from efferocytic versus nonefferocytic macrophages increased PC-3 prostate cancer cell numbers in vitro. Trabectedin exposure reduced M2-like (F4/80+CD206+) macrophages in vivo. Trabectedin administration after PC-3 cell intracardiac inoculation reduced skeletal metastatic tumor growth. Preventative pretreatment with trabectedin 7 days prior to PC-3 cell injection resulted in reduced M2-like macrophages in the marrow and reduced skeletal tumor size. Together, these findings suggest that M2-like monocytes and macrophages promote PCa skeletal metastasis and that trabectedin represents a candidate therapeutic target.
Collapse
Affiliation(s)
- J D Jones
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI
| | - B P Sinder
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI
| | - D Paige
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI
| | - F N Soki
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI
| | - A J Koh
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI
| | - S Thiele
- Department of Endocrinology, Diabetes, and Bone Disease, Technische Universität Dresden Medical Center, Dresden, Germany; German Cancer Consortium (DKTK), partner site Dresden and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Y Shiozawa
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI; Department of Cancer Biology and Comprehensive Cancer Center, Wake Forest University School of Medicine, Winston-Salem, NC
| | - L C Hofbauer
- Department of Endocrinology, Diabetes, and Bone Disease, Technische Universität Dresden Medical Center, Dresden, Germany; German Cancer Consortium (DKTK), partner site Dresden and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - S Daignault
- Department of Biostatistics, Center for Cancer Biostatistics, University of Michigan, Ann Arbor, MI
| | - H Roca
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI
| | - L K McCauley
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI; Department of Pathology, University of Michigan Medical School, Ann Arbor, MI.
| |
Collapse
|
17
|
Lee KJ, Min BW. Surgical Treatment of the Atypical Femoral Fracture: Overcoming Femoral Bowing. Hip Pelvis 2018; 30:202-209. [PMID: 30534538 PMCID: PMC6284073 DOI: 10.5371/hp.2018.30.4.202] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2018] [Revised: 10/24/2018] [Accepted: 10/24/2018] [Indexed: 02/02/2023] Open
Abstract
Atypical femoral fractures differ from ordinary femoral diaphyseal or subtrochanteric fractures in several aspects. Although several authors have reported the results of surgical treatment for atypical femoral fractures, the rate of complications (e.g., delayed union, nonunion, fixation failure, and reoperation) is still high. Therefore, we reviewed principles of surgical treatment and describe useful methods for overcoming femoral bowing in these high-risk patients.
Collapse
Affiliation(s)
- Kyung-Jae Lee
- Department of Orthopaedic Surgery, Keimyung University Dongsan Hospital, Keimyung University School of Medicine, Daegu, Korea
| | - Byung-Woo Min
- Department of Orthopaedic Surgery, Keimyung University Dongsan Hospital, Keimyung University School of Medicine, Daegu, Korea
| |
Collapse
|
18
|
Chang L, Zhang L, Xu J, Meyers CA, Li Z, Yan N, Zou E, James AW. Lineage-Specific Wnt Reporter Elucidates Mesenchymal Wnt Signaling during Bone Repair. THE AMERICAN JOURNAL OF PATHOLOGY 2018; 188:2155-2163. [PMID: 30031726 DOI: 10.1016/j.ajpath.2018.07.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 06/26/2018] [Accepted: 07/02/2018] [Indexed: 01/06/2023]
Abstract
β-Catenin-dependent Wnt signaling controls numerous aspects of skeletal development and postnatal bone repair. Currently available transgenic Wnt reporter mice allow for visualization of global canonical Wnt signaling activity within skeletal tissues, without delineation of cell type. This is particularly important in a bone repair context, in which the inflammatory phase can obscure the visualization of mesenchymal cell types of interest. To tackle the issue of tissue-specific Wnt signaling, we have generated and characterized a transgenic mouse strain [termed paired related homeobox 1 (Prx1)-Wnt-green fluorescent protein (GFP), by crossing a previously validated Prx1-Cre strain with a nuclear fluorescent reporter driven by T-cell factor/lymphoid enhancer factor activity (Rosa26-Tcf/Lef-LSL-H2B-GFP)]. Prx1-Wnt-GFP animals were subject to three models of long bone and membranous bone repair (displaced forelimb fracture, tibial cortical defect, and frontal bone defect). Results showed that, irrespective of bone type, locoregional mesenchymal cell activation of Wnt signaling occurs in a defined temporospatial pattern among Prx1-Wnt-GFP mice. In summary, Prx1-Wnt-GFP reporter animals allow for improved visualization, spatial discrimination, and facile quantification of Wnt-activated mesenchymal cells within models of adult bone repair.
Collapse
Affiliation(s)
- Leslie Chang
- Department of Pathology, Johns Hopkins University, Baltimore, Maryland
| | - Lei Zhang
- Department of Pathology, Johns Hopkins University, Baltimore, Maryland; Department of Oral and Maxillofacial Surgery, School of Stomatology, China Medical University, Shenyang, China
| | - Jiajia Xu
- Department of Pathology, Johns Hopkins University, Baltimore, Maryland
| | - Carolyn A Meyers
- Department of Pathology, Johns Hopkins University, Baltimore, Maryland
| | - Zhu Li
- Department of Orthopaedic Surgery, Johns Hopkins University, Baltimore, Maryland
| | - Noah Yan
- Department of Pathology, Johns Hopkins University, Baltimore, Maryland
| | - Erin Zou
- Department of Pathology, Johns Hopkins University, Baltimore, Maryland
| | - Aaron W James
- Department of Pathology, Johns Hopkins University, Baltimore, Maryland.
| |
Collapse
|
19
|
Sato H, Kondo N, Nakatsue T, Wada Y, Fujisawa J, Kazama JJ, Kuroda T, Suzuki Y, Nakano M, Endo N, Narita I. High and pointed type of femoral localized reaction frequently extends to complete and incomplete atypical femoral fracture in patients with autoimmune diseases on long-term glucocorticoids and bisphosphonates. Osteoporos Int 2017; 28:2367-2376. [PMID: 28409215 DOI: 10.1007/s00198-017-4038-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 04/03/2017] [Indexed: 01/22/2023]
Abstract
UNLABELLED Once a localized reaction (beaking) was detected, discontinuation of bisphosphonates (BPs) and switching to vitamin D supplementation or teriparatide therapy effectively improved its shape. When the localized reaction was high, of the pointed type, and/or accompanied by prodromal pain, the risks of complete and incomplete atypical femoral fracture increased and consideration of prophylactic fixation for such patients was required. INTRODUCTION Femoral localized reaction (localized periosteal thickening of the lateral cortex, beaking) is reported to precede atypical femoral fractures (AFFs) and to develop in 8-10% of patients with autoimmune diseases taking BPs and glucocorticoids. The aims of the present study were to retrospectively investigate the shapes of localized reaction to consider how to manage the condition. METHODS Twenty femora of 12 patients with autoimmune diseases who were on BPs and glucocorticoids exhibited femoral localized reaction. The heights of localized reaction were measured and the shapes classified as pointed, arched, and other. Localized reaction changes were divided into three categories: deterioration, no change, and improvement. A severe form of localized reaction was defined; this was associated with prodromal pain, de novo complete AFF, or incomplete AFF with a fracture line at the localized reaction. RESULTS The mean height of localized reaction was 2.3 ± 0.8 mm (range, 1.0-3.7 mm) and the pointed type was 35%. Localized reaction was significantly higher (3.3 ± 0.8 vs. 2.1 ± 0.7 mm; p = 0.003) and the pointed type more common (78 vs. 27%; p = 0.035) in those with the severe form of localized reaction. Seven patients with localized reactions discontinued BPs just after localized reaction was detected, but five continued on BPs for 2 years. Localized reaction deterioration was more common in patients who continued than discontinued BPs (100 vs. 29%; p = 0.027). After 2 years, all patients had discontinued BPs and localized reaction did not deteriorate further in any patient. CONCLUSIONS Once a localized reaction was detected, discontinuation of BPs and switching to vitamin D supplementation or teriparatide therapy effectively improved it. When the localized reaction was high, of the pointed type, and/or accompanied by prodromal pain, the risks of complete and incomplete AFF increased and consideration of prophylactic fixation for such patients was required.
Collapse
Affiliation(s)
- H Sato
- Health Administration Center, Niigata University, 2-8050 Ikarashi, Nishiku, Niigata City, 950-2181, Japan.
- Division of Clinical Nephrology and Rheumatology, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-Dori, Chuoku, Niigata City, 951-8510, Japan.
| | - N Kondo
- Division of Orthopedic Surgery, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-Dori, Chuoku, Niigata City, 951-8510, Japan
| | - T Nakatsue
- Division of Clinical Nephrology and Rheumatology, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-Dori, Chuoku, Niigata City, 951-8510, Japan
| | - Y Wada
- Division of Clinical Nephrology and Rheumatology, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-Dori, Chuoku, Niigata City, 951-8510, Japan
| | - J Fujisawa
- Division of Orthopedic Surgery, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-Dori, Chuoku, Niigata City, 951-8510, Japan
| | - J J Kazama
- Department of Nephrology and Hypertention, Fukushima Medical University, 1 Hikariga-oka, Fukushima City, 960-1295, Japan
| | - T Kuroda
- Health Administration Center, Niigata University, 2-8050 Ikarashi, Nishiku, Niigata City, 950-2181, Japan
| | - Y Suzuki
- Health Administration Center, Niigata University, 2-8050 Ikarashi, Nishiku, Niigata City, 950-2181, Japan
| | - M Nakano
- Department of Medical Technology, School of Health Sciences, Faculty of Medicine, Niigata University, 2-746 Asahimachi-Dori, Chuoku, Niigata City, 951-8518, Japan
| | - N Endo
- Division of Orthopedic Surgery, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-Dori, Chuoku, Niigata City, 951-8510, Japan
| | - I Narita
- Division of Clinical Nephrology and Rheumatology, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-Dori, Chuoku, Niigata City, 951-8510, Japan
| |
Collapse
|
20
|
Uppin R, Gupta S, Prakash S. A Case Report of Bisphosphonate-induced Bilateral Osteoporotic Subtrochanteric Fracture Femurii: Review of Literature. J Orthop Case Rep 2017; 6:31-34. [PMID: 28164049 PMCID: PMC5288620 DOI: 10.13107/jocr.2250-0685.558] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
INTRODUCTION Osteoporosis is a significant health-care problem characterized by excessive skeletal fragility, susceptibility to low-trauma fractures in men as well as women. Any abnormality of the bone that reduces the strength of the bone predisposes it to mechanical failure during normal activity or with minimum trauma. The mechanical failure manifests itself as a fracture, and this fracture must be recognized as a pathological fracture if the patient is to be treated properly. Osteoporosis is one of the leading causes of such pathological fractures and accounts for 1.5 million fractures annually. In the following case report, we present a 56-year-old postmenopausal female patient with bilateral pathological subtrochanteric fracture femurii due to intake of bisphosponates for 4 years for osteoporosis. Bilateral pathological subtrochanteric femurii fractures are extremely uncommon injuries which occur in adults who sustain injuries due to trivial trauma. A variety of management modalities has been tried to treat this complex fracture pattern. Standard fixation treatment is intramedullary nailing. CASE REPORT A postmenopausal female of rheumatoid arthritis aged 56 years, presented to our emergency department with a history of trivial fall at home. Following the fall, she was unable to bear weight on bilateral feet and complained of deformity. History revealed consumption of bisphosphonates (tablet alendronate 10 mg) for the last 4 years and glucocorticoids for rheumatiod arthritis. Radiographs were taken, which revealed bilateral pathological subtrochanteric fracture femurii. After obtaining necessary fitness, the patient was taken up for surgery. Closed reduction and Internal fixation with long proximal femoral nail were done. Bisphosphonate intake was stopped and teriparatide 20 µg/day subcutaneously given for 3 months. Fracture healed after 3 months and patient resumed her daily activities. CONCLUSION In people taking long-term bisphoshponate therapy, symptomatic cortical stress reactions accompanied by evidence of a stress line across the cortical thickening suggest an increased risk of a complete stress fracture. The patients should be informed about the prodromal symptoms like pain and swelling, following this bisphosphonates should be stopped and teriparatide has to be started for osteoporosis.
Collapse
Affiliation(s)
- Rajendra Uppin
- Department of Orthopaedics, J.N. Medical College, KLE University, Belgaum, Karnataka, India
| | - Srinath Gupta
- Department of Orthopaedics, J.N. Medical College, KLE University, Belgaum, Karnataka, India
| | - Shivank Prakash
- Department of Orthopaedics, J.N. Medical College, KLE University, Belgaum, Karnataka, India
| |
Collapse
|
21
|
McBride-Gagyi SH, McKenzie JA, Buettmann EG, Gardner MJ, Silva MJ. Bmp2 conditional knockout in osteoblasts and endothelial cells does not impair bone formation after injury or mechanical loading in adult mice. Bone 2015; 81:533-543. [PMID: 26344756 PMCID: PMC4640950 DOI: 10.1016/j.bone.2015.09.003] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Revised: 08/20/2015] [Accepted: 09/03/2015] [Indexed: 12/11/2022]
Abstract
Post-natal osteogenesis after mechanical trauma or stimulus occurs through either endochondral healing, intramembranous healing or lamellar bone formation. Bone morphogenetic protein 2 (BMP2) is up-regulated in each of these osteogenic processes and is expressed by a variety of cells including osteoblasts and vascular cells. It is known that genetic knockout of Bmp2 in all cells or in osteo-chondroprogenitor cells completely abrogates endochondral healing after full fracture. However, the importance of BMP2 from differentiated osteoblasts and endothelial cells is not known. Moreover, the importance of BMP2 in non-endochondral bone formation such as intramembranous healing or lamellar bone formation is not known. Using inducible and tissue-specific Cre-lox mediated targeting of Bmp2 in adult (10-24 week old) mice, we assessed the role of BMP2 expression globally, by osteoblasts, and by vascular endothelial cells in endochondral healing, intramembranous healing and lamellar bone formation. These three osteogenic processes were modeled using full femur fracture, ulnar stress fracture, and ulnar non-damaging cyclic loading, respectively. Our results confirmed the requirement of BMP2 for endochondral fracture healing, as mice in which Bmp2 was knocked out in all cells prior to fracture failed to form a callus. Targeted deletion of Bmp2 in osteoblasts (osterix-expressing) or vascular endothelial cells (vascular endothelial cadherin-expressing) did not impact fracture healing in any way. Regarding non-endochondral bone formation, we found that BMP2 is largely dispensable for intramembranous bone formation after stress fracture and also not required for lamellar bone formation induced by mechanical loading. Taken together our results indicate that osteoblasts and endothelial cells are not a critical source of BMP2 in endochondral fracture healing, and that non-endochondral bone formation in the adult mouse is not as critically dependent on BMP2.
Collapse
Affiliation(s)
- Sarah Howe McBride-Gagyi
- Department of Orthopaedic Surgery, Saint Louis University School of Medicine, 1402 S. Grand Blvd, Schwitalla Hall, M176, St. Louis, MO 63104, USA; Department of Orthopedic Surgery, Washington University in St. Louis School of Medicine, 660 S. Euclid, Campus Box8233, St. Louis, MO 63110, USA.
| | - Jennifer A McKenzie
- Department of Orthopedic Surgery, Washington University in St. Louis School of Medicine, 660 S. Euclid, Campus Box8233, St. Louis, MO 63110, USA.
| | - Evan G Buettmann
- Department of Orthopedic Surgery, Washington University in St. Louis School of Medicine, 660 S. Euclid, Campus Box8233, St. Louis, MO 63110, USA.
| | - Michael J Gardner
- Department of Orthopedic Surgery, Washington University in St. Louis School of Medicine, 660 S. Euclid, Campus Box8233, St. Louis, MO 63110, USA.
| | - Matthew J Silva
- Department of Orthopedic Surgery, Washington University in St. Louis School of Medicine, 660 S. Euclid, Campus Box8233, St. Louis, MO 63110, USA.
| |
Collapse
|
22
|
Berman AG, Clauser CA, Wunderlin C, Hammond MA, Wallace JM. Structural and Mechanical Improvements to Bone Are Strain Dependent with Axial Compression of the Tibia in Female C57BL/6 Mice. PLoS One 2015; 10:e0130504. [PMID: 26114891 PMCID: PMC4482632 DOI: 10.1371/journal.pone.0130504] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Accepted: 05/19/2015] [Indexed: 01/26/2023] Open
Abstract
Strain-induced adaption of bone has been well-studied in an axial loading model of the mouse tibia. However, most outcomes of these studies are restricted to changes in bone architecture and do not explore the mechanical implications of those changes. Herein, we studied both the mechanical and morphological adaptions of bone to three strain levels using a targeted tibial loading mouse model. We hypothesized that loading would increase bone architecture and improve cortical mechanical properties in a dose-dependent fashion. The right tibiae of female C57BL/6 mice (8 week old) were compressively loaded for 2 weeks to a maximum compressive force of 8.8N, 10.6N, or 12.4N (generating periosteal strains on the anteromedial region of the mid-diaphysis of 1700 με, 2050 με, or 2400 με as determined by a strain calibration), while the left limb served as an non-loaded control. Following loading, ex vivo analyses of bone architecture and cortical mechanical integrity were assessed by micro-computed tomography and 4-point bending. Results indicated that loading improved bone architecture in a dose-dependent manner and improved mechanical outcomes at 2050 με. Loading to 2050 με resulted in a strong and compelling formation response in both cortical and cancellous regions. In addition, both structural and tissue level strength and energy dissipation were positively impacted in the diaphysis. Loading to the highest strain level also resulted in rapid and robust formation of bone in both cortical and cancellous regions. However, these improvements came at the cost of a woven bone response in half of the animals. Loading to the lowest strain level had little effect on bone architecture and failed to impact structural- or tissue-level mechanical properties. Potential systemic effects were identified for trabecular bone volume fraction, and in the pre-yield region of the force-displacement and stress-strain curves. Future studies will focus on a moderate load level which was largely beneficial in terms of cortical/cancellous structure and cortical mechanical function.
Collapse
Affiliation(s)
- Alycia G Berman
- Department of Biomedical Engineering, Indiana University-Purdue University at Indianapolis, Indianapolis, IN, United States of America
| | - Creasy A Clauser
- Department of Biomedical Engineering, Indiana University-Purdue University at Indianapolis, Indianapolis, IN, United States of America
| | - Caitlin Wunderlin
- Department of Biomedical Engineering, Indiana University-Purdue University at Indianapolis, Indianapolis, IN, United States of America
| | - Max A Hammond
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, United States of America
| | - Joseph M Wallace
- Department of Biomedical Engineering, Indiana University-Purdue University at Indianapolis, Indianapolis, IN, United States of America; Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, United States of America; Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN, United States of America
| |
Collapse
|
23
|
Atypical Femoral Fractures: A Teaching Perspective. Can Assoc Radiol J 2015; 66:102-7. [DOI: 10.1016/j.carj.2014.01.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Revised: 01/06/2014] [Accepted: 01/17/2014] [Indexed: 11/19/2022] Open
Abstract
This article provides an overview of atypical femoral fractures with a highlight on their radiographic findings. Potent antiresorptive agents such as bisphosphonates or denosumab have been associated with the development of such fractures. However, at this time, a causal association has not been conclusively established. Atypical femoral fractures are insufficiency fractures, which frequently present with bone pain. Early identification of characteristic radiographic features and withdrawal of antiresorptive therapy may prevent the development of completed atypical femoral fractures.
Collapse
|
24
|
Shao J, Zhang Y, Yang T, Qi J, Zhang L, Deng L. HIF-1α disturbs osteoblasts and osteoclasts coupling in bone remodeling by up-regulating OPG expression. In Vitro Cell Dev Biol Anim 2015; 51:808-14. [PMID: 25859979 DOI: 10.1007/s11626-015-9895-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Accepted: 03/23/2015] [Indexed: 12/19/2022]
Abstract
Hypoxia-inducible factor 1α (HIF-1α) is one of the master regulators of hypoxia reactions, playing an important role in bone modeling, remodeling, and homeostasis. And overexpression of HIF-1α in mature osteoblasts through conditional deletion of the von Hippel-Lindau (VHL) gene profoundly increases angiogenesis and osteogenesis. Studies showed that mice with osteoblasts lacking Vhl had a high level of Hif-1α and increased bone mass and density. On the contrary, Hif-1α conditional knockout mice had decreased bone mass and density. Our in vitro study showed that osteoprotegerin (OPG), an essential regulator of osteoclastic activity, can be upregulated by HIF-1α and in turn downregulate the resorption activity of osteoclasts. We showed that HIF-1α may directly bind to the upstream site of OPG and enhance its expression. Our study suggested that a novel mechanism, which works via OPG signaling, may mediate the function of HIF-1α in bone remodeling.
Collapse
Affiliation(s)
- Jin Shao
- Shanghai Key Laboratory for Bone and Joint Disease, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Department of Orthopaedics, Shanghai Pudong New Area Gongli Hospital/Clinical School of the Second Military Medical University, Shanghai, China
| | - Yan Zhang
- Department of Orthopaedics, Shanghai Pudong New Area Gongli Hospital/Clinical School of the Second Military Medical University, Shanghai, China
| | - Tieyi Yang
- Department of Orthopaedics, Shanghai Pudong New Area Gongli Hospital/Clinical School of the Second Military Medical University, Shanghai, China.
| | - Jin Qi
- Shanghai Key Laboratory for Bone and Joint Disease, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lianfang Zhang
- Shanghai Key Laboratory for Bone and Joint Disease, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lianfu Deng
- Shanghai Key Laboratory for Bone and Joint Disease, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
25
|
Tomlinson RE, Silva MJ. HIF-1α regulates bone formation after osteogenic mechanical loading. Bone 2015; 73:98-104. [PMID: 25541207 PMCID: PMC4336830 DOI: 10.1016/j.bone.2014.12.015] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Revised: 11/22/2014] [Accepted: 12/16/2014] [Indexed: 01/21/2023]
Abstract
HIF-1 is a transcription factor typically associated with angiogenic gene transcription under hypoxic conditions. In this study, mice with HIF-1α deleted in the osteoblast lineage (ΔHIF-1α) were subjected to damaging or non-damaging mechanical loading known to produce woven or lamellar bone, respectively, at the ulnar diaphysis. By microCT, ΔHIF-1α mice produced significantly less woven bone than wild type (WT) mice 7days after damaging loading. This decrease in woven bone volume and extent was accompanied by a significant decrease in vascularity measured by immunohistochemistry against vWF. Additionally, osteocytes, rather than osteoblasts, appear to be the main bone cell expressing HIF-1α following damaging loading. In contrast, 10days after non-damaging mechanical loading, dynamic histomorphometry measurements demonstrated no impairment in loading-induced lamellar bone formation in ΔHIF-1α mice. In fact, both non-loaded and loaded ulnae from ΔHIF-1α mice had increased bone formation compared with WT ulnae. When comparing the relative increase in periosteal bone formation in loaded vs. non-loaded ulnae, it was not different between ΔHIF-1α mice and controls. There were no significant differences observed between WT and ΔHIF-1α mice in endosteal bone formation parameters. The increases in periosteal lamellar bone formation in ΔHIF-1α mice are attributed to non-angiogenic effects of the knockout. In conclusion, these results demonstrate that HIF-1α is a pro-osteogenic factor for woven bone formation after damaging loading, but an anti-osteogenic factor for lamellar bone formation under basal conditions and after non-damaging loading.
Collapse
Affiliation(s)
- Ryan E Tomlinson
- Departments of Orthopaedic Surgery and Biomedical Engineering, Musculoskeletal Research Center, Washington University in St. Louis, 425 S. Euclid Avenue, St. Louis, MO 63110, USA.
| | - Matthew J Silva
- Departments of Orthopaedic Surgery and Biomedical Engineering, Musculoskeletal Research Center, Washington University in St. Louis, 425 S. Euclid Avenue, St. Louis, MO 63110, USA.
| |
Collapse
|
26
|
Im GI, Jeong SH. Pathogenesis, management and prevention of atypical femoral fractures. J Bone Metab 2015; 22:1-8. [PMID: 25774358 PMCID: PMC4357631 DOI: 10.11005/jbm.2015.22.1.1] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2014] [Revised: 01/09/2015] [Accepted: 01/18/2015] [Indexed: 11/11/2022] Open
Abstract
Much attention has been paid to the relationship between atypical femoral fractures (AFF) and use of bisphosphonates (BPs). While a significant cause-effect relationship was not established in earlier studies, more recent data shows a growing relationship between AFF and BPs use. The definition of an 'AFF' has also undergone significant changes. This review briefly summarizes the definition, pathogenesis, and management of AFF.
Collapse
Affiliation(s)
- Gun-Il Im
- Department of Orthopaedics, Dongguk University Ilsan Hospital, Goyang, Korea
| | - Seung-Hyo Jeong
- Department of Orthopaedics, Dongguk University Ilsan Hospital, Goyang, Korea
| |
Collapse
|
27
|
Hadjiargyrou M, O'Keefe RJ. The convergence of fracture repair and stem cells: interplay of genes, aging, environmental factors and disease. J Bone Miner Res 2014; 29:2307-22. [PMID: 25264148 PMCID: PMC4455538 DOI: 10.1002/jbmr.2373] [Citation(s) in RCA: 103] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Revised: 08/11/2014] [Accepted: 09/10/2014] [Indexed: 01/07/2023]
Abstract
The complexity of fracture repair makes it an ideal process for studying the interplay between the molecular, cellular, tissue, and organ level events involved in tissue regeneration. Additionally, as fracture repair recapitulates many of the processes that occur during embryonic development, investigations of fracture repair provide insights regarding skeletal embryogenesis. Specifically, inflammation, signaling, gene expression, cellular proliferation and differentiation, osteogenesis, chondrogenesis, angiogenesis, and remodeling represent the complex array of interdependent biological events that occur during fracture repair. Here we review studies of bone regeneration in genetically modified mouse models, during aging, following environmental exposure, and in the setting of disease that provide insights regarding the role of multipotent cells and their regulation during fracture repair. Complementary animal models and ongoing scientific discoveries define an increasing number of molecular and cellular targets to reduce the morbidity and complications associated with fracture repair. Last, some new and exciting areas of stem cell research such as the contribution of mitochondria function, limb regeneration signaling, and microRNA (miRNA) posttranscriptional regulation are all likely to further contribute to our understanding of fracture repair as an active branch of regenerative medicine.
Collapse
Affiliation(s)
- Michael Hadjiargyrou
- Department of Life Sciences, New York Institute of Technology, Old Westbury, NY, USA
| | | |
Collapse
|
28
|
Tomlinson RE, Schmieder AH, Quirk JD, Lanza GM, Silva MJ. Antagonizing the αv β3 integrin inhibits angiogenesis and impairs woven but not lamellar bone formation induced by mechanical loading. J Bone Miner Res 2014; 29:1970-80. [PMID: 24644077 PMCID: PMC4323187 DOI: 10.1002/jbmr.2223] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Revised: 02/25/2014] [Accepted: 02/27/2014] [Indexed: 12/26/2022]
Abstract
Angiogenesis and osteogenesis are critically linked, although the role of angiogenesis is not well understood in osteogenic mechanical loading. In this study, either damaging or non-damaging cyclic axial compression was used to generate woven bone formation (WBF) or lamellar bone formation (LBF), respectively, at the mid-diaphysis of the adult rat forelimb. αv β3 integrin-targeted nanoparticles or vehicle was injected intravenously after mechanical loading. β3 integrin subunit expression on vasculature was maximal 7 days after damaging mechanical loading, but was still robustly expressed 14 days after loading. Accordingly, targeted nanoparticle delivery in WBF-loaded limbs was increased compared with non-loaded limbs. Vascularity was dramatically increased after WBF loading (+700% on day 14) and modestly increased after LBF loading (+50% on day 14). This increase in vascularity was inhibited by nanoparticle treatment in both WBF- and LBF-loaded limbs at days 7 and 14 after loading. Decreased vascularity led to diminished woven, but not lamellar, bone formation. Decreased woven bone formation resulted in impaired structural properties of the skeletal repair, particularly in post-yield behavior. These results demonstrate that αv β3 integrin-mediated angiogenesis is critical for recovering fracture resistance after bone injury but is not required for bone modeling after modest mechanical strain. © 2014 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Ryan E. Tomlinson
- Department of Orthopaedic Surgery, Musculoskeletal Research Center, Washington University in St. Louis, Saint Louis, MO, USA
- Department of Biomedical Engineering, Washington University in St. Louis, Saint Louis, MO, USA
| | - Anne H. Schmieder
- Department of Medicine, Division of Cardiology, Washington University in St. Louis, Saint Louis, MO, USA
| | - James D. Quirk
- Department of Radiology, Washington University in St. Louis, Saint Louis, MO, USA
| | - Gregory M. Lanza
- Department of Biomedical Engineering, Washington University in St. Louis, Saint Louis, MO, USA
- Department of Medicine, Division of Cardiology, Washington University in St. Louis, Saint Louis, MO, USA
| | - Matthew J. Silva
- Department of Orthopaedic Surgery, Musculoskeletal Research Center, Washington University in St. Louis, Saint Louis, MO, USA
- Department of Biomedical Engineering, Washington University in St. Louis, Saint Louis, MO, USA
| |
Collapse
|
29
|
McBride SH, McKenzie JA, Bedrick BS, Kuhlmann P, Pasteris JD, Rosen V, Silva MJ. Long bone structure and strength depend on BMP2 from osteoblasts and osteocytes, but not vascular endothelial cells. PLoS One 2014; 9:e96862. [PMID: 24837969 PMCID: PMC4024030 DOI: 10.1371/journal.pone.0096862] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Accepted: 04/13/2014] [Indexed: 11/19/2022] Open
Abstract
The importance of bone morphogenetic protein 2 (BMP2) in the skeleton is well known. BMP2 is expressed in a variety of tissues during development, growth and healing. In this study we sought to better identify the role of tissue-specific BMP2 during post-natal growth and to determine if BMP2 knockout affects the ability of terminally differentiated cells to create high quality bone material. We targeted BMP2 knockout to two differentiated cell types known to express BMP2 during growth and healing, early-stage osteoblasts and their progeny (osterix promoted Cre) and vascular endothelial cells (vascular-endothelial-cadherin promoted Cre). Our objectives were to assess post-natal bone growth, structure and strength. We hypothesized that removal of BMP2 from osteogenic and vascular cells (separately) would result in smaller skeletons with inferior bone material properties. At 12 and 24 weeks of age the osteoblast knockout of BMP2 reduced body weight by 20%, but the vascular knockout had no effect. Analysis of bone in the tibia revealed reductions in cortical and cancellous bone size and volume in the osteoblast knockout, but not in the vascular endothelial knockout. Furthermore, forelimb strength testing revealed a 30% reduction in ultimate force at both 12 and 24 weeks in the osteoblast knockout of BMP2, but no change in the vascular endothelial knockout. Moreover, mechanical strength testing of femurs from osteoblast knockout mice demonstrated an increased Young's modulus (greater than 35%) but decreased post-yield displacement (greater than 50%) at both 12 and 24 weeks of age. In summary, the osteoblast knockout of BMP2 reduced bone size and altered mechanical properties at the whole-bone and material levels. Osteoblast-derived BMP2 has an important role in post-natal skeletal growth, structure and strength, while vascular endothelial-derived BMP2 does not.
Collapse
Affiliation(s)
- Sarah H. McBride
- Department of Orthopaedic Surgery, Musculoskeletal Research Center, Washington University in St. Louis, St. Louis, Missouri, United States of America
- Department of Orthopaedic Surgery, Saint Louis University, St. Louis, Missouri, United States of America
| | - Jennifer A. McKenzie
- Department of Orthopaedic Surgery, Musculoskeletal Research Center, Washington University in St. Louis, St. Louis, Missouri, United States of America
| | - Bronwyn S. Bedrick
- Department of Earth and Planetary Sciences, Washington University in St. Louis, St. Louis, Missouri, United States of America
| | - Paige Kuhlmann
- Department of Orthopaedic Surgery, Musculoskeletal Research Center, Washington University in St. Louis, St. Louis, Missouri, United States of America
| | - Jill D. Pasteris
- Department of Earth and Planetary Sciences, Washington University in St. Louis, St. Louis, Missouri, United States of America
| | - Vicki Rosen
- Department of Developmental Biology, Harvard School of Dental Medicine, Boston, Massachusetts, United States of America
| | - Matthew J. Silva
- Department of Orthopaedic Surgery, Musculoskeletal Research Center, Washington University in St. Louis, St. Louis, Missouri, United States of America
| |
Collapse
|
30
|
Extraspinal ossifications after implantation of vertical expandable prosthetic titanium ribs (VEPTRs). J Child Orthop 2014; 8:237-44. [PMID: 24752718 PMCID: PMC4142882 DOI: 10.1007/s11832-014-0585-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Accepted: 04/01/2014] [Indexed: 02/03/2023] Open
Abstract
INTRODUCTION Though developed for thoracic insufficiency syndrome, the spinal growth-stimulating potential and the ease of placement of vertical expandable titanium ribs (VEPTRs) has resulted in their widespread use for early-onset spine deformity. Observation of implant-related ossifications warrants further assessment, since they may be detrimental to the function-preserving non-fusion strategy. PATIENTS AND METHODS Radiographs (obtained pre and post index procedure, and at 4-year follow-up) and the records of 65 VEPTR patients from four paediatric spine centres were analysed. Ossifications were classified as type I (at anchor points), type II (along the central part) or type III (re-ossification after thoracostomy). RESULTS The average age at the index procedure was 6.5 years (min 1, max 13.7). The most prevalent spine problem was congenital scoliosis (37) with rib fusions (34), followed by neuromuscular and syndromic deformities (13 and 8, respectively). Idiopathic and secondary scoliosis (e.g. after thoracotomy) were less frequent (3 and 4, respectively). Forty-two of the 65 (65 %) patients showed ossifications, half of which were around the anchors. Forty-five percent (15/33) without pre-existing rib fusions developed a type II ossification along the implant. Re-ossifications of thoracostomies were less frequent (5/34, 15 %). The occurrence of ossifications was not associated with patient-specific factors. CONCLUSIONS Implant-related ossifications around VEPTR are common. In contrast to harmless bone formation around anchors, ossifications around the telescopic part and the rod section are troublesome in view of their possible negative impact on chest cage compliance and spinal mobility. This potential side effect needs to be considered during implant selection, particularly in patients with originally normal thoracic and spinal anatomy.
Collapse
|
31
|
Yang W, Guo D, Harris MA, Cui Y, Gluhak-Heinrich J, Wu J, Chen XD, Skinner C, Nyman JS, Edwards JR, Mundy GR, Lichtler A, Kream BE, Rowe DW, Kalajzic I, David V, Quarles DL, Villareal D, Scott G, Ray M, Liu S, Martin JF, Mishina Y, Harris SE. Bmp2 in osteoblasts of periosteum and trabecular bone links bone formation to vascularization and mesenchymal stem cells. J Cell Sci 2013; 126:4085-98. [PMID: 23843612 DOI: 10.1242/jcs.118596] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
We generated a new Bmp2 conditional-knockout allele without a neo cassette that removes the Bmp2 gene from osteoblasts (Bmp2-cKO(ob)) using the 3.6Col1a1-Cre transgenic model. Bones of Bmp2-cKO(ob) mice are thinner, with increased brittleness. Osteoblast activity is reduced as reflected in a reduced bone formation rate and failure to differentiate to a mature mineralizing stage. Bmp2 in osteoblasts also indirectly controls angiogenesis in the periosteum and bone marrow. VegfA production is reduced in Bmp2-cKO(ob) osteoblasts. Deletion of Bmp2 in osteoblasts also leads to defective mesenchymal stem cells (MSCs), which correlates with the reduced microvascular bed in the periosteum and trabecular bones. Expression of several MSC marker genes (α-SMA, CD146 and Angiopoietin-1) in vivo, in vitro CFU assays and deletion of Bmp2 in vitro in α-SMA(+) MSCs support our conclusions. Critical roles of Bmp2 in osteoblasts and MSCs are a vital link between bone formation, vascularization and mesenchymal stem cells.
Collapse
Affiliation(s)
- Wuchen Yang
- Department of Periodontics, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Ossifications after vertical expandable prosthetic titanium rib treatment in children with thoracic insufficiency syndrome and scoliosis. Spine (Phila Pa 1976) 2013; 38:E819-23. [PMID: 23532122 DOI: 10.1097/brs.0b013e318292aafa] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
STUDY DESIGN Retrospective analysis of 1328 spinal radiographs of 57 patients after vertical expandable prosthetic titanium rib (VEPTR) implantation with an average follow-up of 30 months. OBJECTIVE To evaluate the incidence, time of onset, as well as the underlying factors influencing the occurrence of ossifications in children treated with VEPTR. SUMMARY OF BACKGROUND DATA Spontaneous spinal fusions and ossifications are well known in children treated with spinal implants. In theory, children with spinal deformity and VEPTR implantation are less likely to develop these complications because of either little or no implant contact to the spine. METHODS Fifty-seven patients had a primary VEPTR implantation due to spinal deformity and thoracic insufficiency syndrome and repeated lengthening procedures. The mean age at the time of primary surgery was 7.7 years, the mean duration of follow-up was 29.8 months, and the mean number of operations was 5.9. A total of 1328 spinal radiographs were analyzed with respect to the occurrence and growth of ossifications, implant migration, and other complications. RESULTS Overall, 24% of the patients (n = 13) had ossifications, which affected in 92% the main load sharing VEPTR implant. The fusions involved in 54% of cases the lumbar spine and in each 23% the ribs and the iliac crest. Ossifications developed in 11% of children within the first year of treatment and increased by about the same rate per annum. After 53 months, 48% of the radiographs showed some ossifications. There was a significant correlation to the stiffness of the deformity and the number of surgical procedures. CONCLUSION Contrary to previous assumptions, it was shown that in children treated with the VEPTR system, 48% of children showed ossifications after 53 months. Ossifications were observed significantly more often in children with stiff deformities and after multiple surgical procedures. It is a much more common problem than previously thought. LEVEL OF EVIDENCE 3.
Collapse
|
33
|
Resonance in the mouse tibia as a predictor of frequencies and locations of loading-induced bone formation. Biomech Model Mechanobiol 2013; 13:141-51. [PMID: 23575747 DOI: 10.1007/s10237-013-0491-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2012] [Accepted: 04/01/2013] [Indexed: 01/15/2023]
Abstract
To enhance new bone formation for the treating of patients with osteopenia and osteoporosis, various mechanical loading regimens have been developed. Although a wide spectrum of loading frequencies is proposed in those regimens, a potential linkage between loading frequencies and locations of loading-induced bone formation is not well understood. In this study, we addressed a question: Does mechanical resonance play a role in frequency-dependent bone formation? If so, can the locations of enhanced bone formation be predicted through the modes of vibration? Our hypothesis is that mechanical loads applied at a frequency near the resonant frequencies enhance bone formation, specifically in areas that experience high principal strains. To test the hypothesis, we conducted axial tibia loading using low, medium, or high frequency to the mouse tibia, as well as finite element analysis. The experimental data demonstrated dependence of the maximum bone formation on location and frequency of loading. Samples loaded with the low-frequency waveform exhibited peak enhancement of bone formation in the proximal tibia, while the high-frequency waveform offered the greatest enhancement in the midshaft and distal sections. Furthermore, the observed dependence on loading frequencies was correlated to the principal strains in the first five resonance modes at 8.0-42.9 Hz. Collectively, the results suggest that resonance is a contributor to the frequencies and locations of maximum bone formation. Further investigation of the observed effects of resonance may lead to the prescribing of personalized mechanical loading treatments.
Collapse
|
34
|
Abstract
Atypical femoral fractures have attracted a great deal of attention and controversy in the osteoporosis community because of their association with prolonged bisphosphonate therapy. The purpose of this article is to review the epidemiologic evidence linking bisphosphonates to atypical fractures and to highlight the potential pathologic mechanisms involved in such fractures. A management plan is provided based on the available evidence.
Collapse
Affiliation(s)
- Anas Saleh
- Department of Orthopaedic Surgery, Hospital for Special Surgery, New York, NY 10021, USA
| | | | | | | |
Collapse
|
35
|
Tomlinson RE, McKenzie JA, Schmieder AH, Wohl GR, Lanza GM, Silva MJ. Angiogenesis is required for stress fracture healing in rats. Bone 2013; 52:212-9. [PMID: 23044046 PMCID: PMC3513671 DOI: 10.1016/j.bone.2012.09.035] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2012] [Revised: 09/25/2012] [Accepted: 09/28/2012] [Indexed: 12/12/2022]
Abstract
Although angiogenesis and osteogenesis are critically linked, the importance of angiogenesis for stress fracture healing is unknown. In this study, mechanical loading was used to create a non-displaced stress fracture in the adult rat forelimb. Fumagillin, an anti-angiogenic agent, was used as the water soluble analogue TNP-470 (25mg/kg) as well as incorporated into lipid-encapsulated α(v)β(3) integrin targeted nanoparticles (0.25mg/kg). In the first experiment, TNP-470 was administered daily for 5 days following mechanical loading, and changes in gene expression, vascularity, and woven bone formation were quantified. Although no changes in vascularity were detected 3 days after loading, treatment-related downregulation of angiogenic (Pecam1) and osteogenic (Bsp, Osx) genes was observed at this early time point. On day 7, microCT imaging of loaded limbs revealed diminished woven bone formation in treated limbs compared to vehicle treated limbs. In the second experiment, α(v)β(3) integrin targeted fumagillin nanoparticles were administered as before, albeit with a 100-fold lower dose, and changes in vascularity and woven bone formation were determined. There were no treatment-related changes in vessel count or volume 3 days after loading, although fewer angiogenic (CD105 positive) blood vessels were present in treated limbs compared to vehicle treated limbs. This result manifested on day 7 as a reduction in total vascularity, as measured by histology (vessel count) and microCT (vessel volume). Similar to the first experiment, treated limbs had diminished woven bone formation on day 7 compared to vehicle treated limbs. These results indicate that angiogenesis is required for stress fracture healing, and may have implications for inducing rapid repair of stress fractures.
Collapse
Affiliation(s)
- Ryan E. Tomlinson
- Department of Orthopaedic Surgery, Washington University in St. Louis, Saint Louis, MO, USA
- Department of Biomedical Engineering, Washington University in St. Louis, Saint Louis, MO, USA
| | - Jennifer A. McKenzie
- Department of Orthopaedic Surgery, Washington University in St. Louis, Saint Louis, MO, USA
| | - Anne H. Schmieder
- Department of Medicine, Division of Cardiology, Washington University in St. Louis, Saint Louis, MO, USA
| | - Gregory R. Wohl
- Department of Orthopaedic Surgery, Washington University in St. Louis, Saint Louis, MO, USA
| | - Gregory M. Lanza
- Department of Biomedical Engineering, Washington University in St. Louis, Saint Louis, MO, USA
- Department of Medicine, Division of Cardiology, Washington University in St. Louis, Saint Louis, MO, USA
| | - Matthew J. Silva
- Department of Orthopaedic Surgery, Washington University in St. Louis, Saint Louis, MO, USA
- Department of Biomedical Engineering, Washington University in St. Louis, Saint Louis, MO, USA
| |
Collapse
|
36
|
Diercke K, König A, Kohl A, Lux C, Erber R. Human primary cementoblasts respond to combined IL-1β stimulation and compression with an impaired BSP and CEMP-1 expression. Eur J Cell Biol 2012; 91:402-12. [DOI: 10.1016/j.ejcb.2011.12.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2011] [Revised: 12/20/2011] [Accepted: 12/21/2011] [Indexed: 10/28/2022] Open
|
37
|
McKenzie JA, Bixby EC, Silva MJ. Differential gene expression from microarray analysis distinguishes woven and lamellar bone formation in the rat ulna following mechanical loading. PLoS One 2011; 6:e29328. [PMID: 22216249 PMCID: PMC3245266 DOI: 10.1371/journal.pone.0029328] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2011] [Accepted: 11/26/2011] [Indexed: 12/21/2022] Open
Abstract
Formation of woven and lamellar bone in the adult skeleton can be induced through mechanical loading. Although much is known about the morphological appearance and structural properties of the newly formed bone, the molecular responses to loading are still not well understood. The objective of our study was to use a microarray to distinguish the molecular responses between woven and lamellar bone formation induced through mechanical loading. Rat forelimb loading was completed in a single bout to induce the formation of woven bone (WBF loading) or lamellar bone (LBF loading). A set of normal (non-loaded) rats were used as controls. Microarrays were performed at three timepoints after loading: 1 hr, 1 day and 3 days. Confirmation of microarray results was done for a select group of genes using quantitative real-time PCR (qRT-PCR). The micorarray identified numerous genes and pathways that were differentially regulated for woven, but not lamellar bone formation. Few changes in gene expression were evident comparing lamellar bone formation to normal controls. A total of 395 genes were differentially expressed between formation of woven and lamellar bone 1 hr after loading, while 5883 and 5974 genes were differentially expressed on days 1 and 3, respectively. Results suggest that not only are the levels of expression different for each type of bone formation, but that distinct pathways are activated only for woven bone formation. A strong early inflammatory response preceded an increase in angiogenic and osteogenic gene expression for woven bone formation. Furthermore, at later timepoints there was evidence of bone resorption after WBF loading. In summary, the vast coverage of the microarray offers a comprehensive characterization of the early differences in expression between woven and lamellar bone formation.
Collapse
Affiliation(s)
- Jennifer A McKenzie
- Department of Orthopaedics, Washington University, St. Louis, Missouri, USA.
| | | | | |
Collapse
|
38
|
Rizzoli R, Akesson K, Bouxsein M, Kanis JA, Napoli N, Papapoulos S, Reginster JY, Cooper C. Subtrochanteric fractures after long-term treatment with bisphosphonates: a European Society on Clinical and Economic Aspects of Osteoporosis and Osteoarthritis, and International Osteoporosis Foundation Working Group Report. Osteoporos Int 2011; 22:373-90. [PMID: 21085935 PMCID: PMC3020314 DOI: 10.1007/s00198-010-1453-5] [Citation(s) in RCA: 160] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2010] [Accepted: 09/30/2010] [Indexed: 01/17/2023]
Abstract
UNLABELLED This paper reviews the evidence for an association between atypical subtrochanteric fractures and long-term bisphosphonate use. Clinical case reports/reviews and case-control studies report this association, but retrospective phase III trial analyses show no increased risk. Bisphosphonate use may be associated with atypical subtrochanteric fractures, but the case is yet unproven. INTRODUCTION A Working Group of the European Society on Clinical and Economic Aspects of Osteoporosis and Osteoarthritis and the International Osteoporosis Foundation has reviewed the evidence for a causal association between subtrochanteric fractures and long-term treatment with bisphosphonates, with the aim of identifying areas for further research and providing recommendations for physicians. METHODS A PubMed search of literature from 1994 to May 2010 was performed using key search terms, and articles pertinent to subtrochanteric fractures following bisphosphonate use were analysed. RESULTS Several clinical case reports and case reviews report a possible association between atypical fractures at the subtrochanteric region of the femur in bisphosphonate-treated patients. Common features of these 'atypical' fractures include prodromal pain, occurrence with minimal/no trauma, a thickened diaphyseal cortex and transverse fracture pattern. Some small case-control studies report the same association, but a large register-based study and retrospective analyses of phase III trials of bisphosphonates do not show an increased risk of subtrochanteric fractures with bisphosphonate use. The number of atypical subtrochanteric fractures in association with bisphosphonates is an estimated one per 1,000 per year. It is recommended that physicians remain vigilant in assessing their patients treated with bisphosphonates for the treatment or prevention of osteoporosis and advise patients of the potential risks. CONCLUSIONS Bisphosphonate use may be associated with atypical subtrochanteric fractures, but the case is unproven and requires further research. Were the case to be proven, the risk-benefit ratio still remains favourable for use of bisphosphonates to prevent fractures.
Collapse
Affiliation(s)
- R Rizzoli
- Division of Bone Diseases, Department of Rehabilitation and Geriatrics, University Hospitals and Faculty of Medicine of Geneva, 1211, Geneva 14, Switzerland.
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Shane E, Burr D, Ebeling PR, Abrahamsen B, Adler RA, Brown TD, Cheung AM, Cosman F, Curtis JR, Dell R, Dempster D, Einhorn TA, Genant HK, Geusens P, Klaushofer K, Koval K, Lane JM, McKiernan F, McKinney R, Ng A, Nieves J, O'Keefe R, Papapoulos S, Sen HT, van der Meulen MCH, Weinstein RS, Whyte M. Atypical subtrochanteric and diaphyseal femoral fractures: report of a task force of the American Society for Bone and Mineral Research. J Bone Miner Res 2010; 25:2267-94. [PMID: 20842676 DOI: 10.1002/jbmr.253] [Citation(s) in RCA: 772] [Impact Index Per Article: 51.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Reports linking long-term use of bisphosphonates (BPs) with atypical fractures of the femur led the leadership of the American Society for Bone and Mineral Research (ASBMR) to appoint a task force to address key questions related to this problem. A multidisciplinary expert group reviewed pertinent published reports concerning atypical femur fractures, as well as preclinical studies that could provide insight into their pathogenesis. A case definition was developed so that subsequent studies report on the same condition. The task force defined major and minor features of complete and incomplete atypical femoral fractures and recommends that all major features, including their location in the subtrochanteric region and femoral shaft, transverse or short oblique orientation, minimal or no associated trauma, a medial spike when the fracture is complete, and absence of comminution, be present to designate a femoral fracture as atypical. Minor features include their association with cortical thickening, a periosteal reaction of the lateral cortex, prodromal pain, bilaterality, delayed healing, comorbid conditions, and concomitant drug exposures, including BPs, other antiresorptive agents, glucocorticoids, and proton pump inhibitors. Preclinical data evaluating the effects of BPs on collagen cross-linking and maturation, accumulation of microdamage and advanced glycation end products, mineralization, remodeling, vascularity, and angiogenesis lend biologic plausibility to a potential association with long-term BP use. Based on published and unpublished data and the widespread use of BPs, the incidence of atypical femoral fractures associated with BP therapy for osteoporosis appears to be very low, particularly compared with the number of vertebral, hip, and other fractures that are prevented by BPs. Moreover, a causal association between BPs and atypical fractures has not been established. However, recent observations suggest that the risk rises with increasing duration of exposure, and there is concern that lack of awareness and underreporting may mask the true incidence of the problem. Given the relative rarity of atypical femoral fractures, the task force recommends that specific diagnostic and procedural codes be created and that an international registry be established to facilitate studies of the clinical and genetic risk factors and optimal surgical and medical management of these fractures. Physicians and patients should be made aware of the possibility of atypical femoral fractures and of the potential for bilaterality through a change in labeling of BPs. Research directions should include development of animal models, increased surveillance, and additional epidemiologic and clinical data to establish the true incidence of and risk factors for this condition and to inform orthopedic and medical management.
Collapse
Affiliation(s)
- Elizabeth Shane
- Columbia University, College of Physicians and Surgeons, PH 8 West 864, 630 West 168th Street, New York, NY 10032, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|