1
|
Díaz-López EJ, Sánchez-Iglesias S, Castro AI, Cobelo-Gómez S, Prado-Moraña T, Araújo-Vilar D, Fernandez-Pombo A. Lipodystrophic Laminopathies: From Dunnigan Disease to Progeroid Syndromes. Int J Mol Sci 2024; 25:9324. [PMID: 39273270 PMCID: PMC11395136 DOI: 10.3390/ijms25179324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 08/20/2024] [Accepted: 08/26/2024] [Indexed: 09/15/2024] Open
Abstract
Lipodystrophic laminopathies are a group of ultra-rare disorders characterised by the presence of pathogenic variants in the same gene (LMNA) and other related genes, along with an impaired adipose tissue pattern and other features that are specific of each of these disorders. The most fascinating traits include their complex genotype-phenotype associations and clinical heterogeneity, ranging from Dunnigan disease, in which the most relevant feature is precisely adipose tissue dysfunction and lipodystrophy, to the other laminopathies affecting adipose tissue, which are also characterised by the presence of signs of premature ageing (Hutchinson Gilford-progeria syndrome, LMNA-atypical progeroid syndrome, mandibuloacral dysplasia types A and B, Nestor-Guillermo progeria syndrome, LMNA-associated cardiocutaneous progeria). This raises several questions when it comes to understanding how variants in the same gene can lead to similar adipose tissue disturbances and, at the same time, to such heterogeneous phenotypes and variable degrees of metabolic abnormalities. The present review aims to gather the molecular basis of adipose tissue impairment in lipodystrophic laminopathies, their main clinical aspects and recent therapeutic strategies. In addition, it also summarises the key aspects for their differential diagnosis.
Collapse
Affiliation(s)
- Everardo Josué Díaz-López
- UETeM-Molecular Pathology Group, Department of Psychiatry, Radiology, Public Health, Nursing and Medicine, IDIS-CIMUS, University of Santiago de Compostela, 15706 Santiago de Compostela, Spain
- Division of Endocrinology and Nutrition, University Clinical Hospital of Santiago de Compostela, 15706 Santiago de Compostela, Spain
| | - Sofía Sánchez-Iglesias
- UETeM-Molecular Pathology Group, Department of Psychiatry, Radiology, Public Health, Nursing and Medicine, IDIS-CIMUS, University of Santiago de Compostela, 15706 Santiago de Compostela, Spain
| | - Ana I Castro
- Division of Endocrinology and Nutrition, University Clinical Hospital of Santiago de Compostela, 15706 Santiago de Compostela, Spain
- CIBER Fisiopatología de la Obesidad y la Nutrición (CIBERobn), 28029 Madrid, Spain
| | - Silvia Cobelo-Gómez
- UETeM-Molecular Pathology Group, Department of Psychiatry, Radiology, Public Health, Nursing and Medicine, IDIS-CIMUS, University of Santiago de Compostela, 15706 Santiago de Compostela, Spain
| | - Teresa Prado-Moraña
- UETeM-Molecular Pathology Group, Department of Psychiatry, Radiology, Public Health, Nursing and Medicine, IDIS-CIMUS, University of Santiago de Compostela, 15706 Santiago de Compostela, Spain
- Division of Endocrinology and Nutrition, University Clinical Hospital of Santiago de Compostela, 15706 Santiago de Compostela, Spain
| | - David Araújo-Vilar
- UETeM-Molecular Pathology Group, Department of Psychiatry, Radiology, Public Health, Nursing and Medicine, IDIS-CIMUS, University of Santiago de Compostela, 15706 Santiago de Compostela, Spain
- Division of Endocrinology and Nutrition, University Clinical Hospital of Santiago de Compostela, 15706 Santiago de Compostela, Spain
| | - Antia Fernandez-Pombo
- UETeM-Molecular Pathology Group, Department of Psychiatry, Radiology, Public Health, Nursing and Medicine, IDIS-CIMUS, University of Santiago de Compostela, 15706 Santiago de Compostela, Spain
- Division of Endocrinology and Nutrition, University Clinical Hospital of Santiago de Compostela, 15706 Santiago de Compostela, Spain
| |
Collapse
|
2
|
Clinical Spectrum of LMNA-Associated Type 2 Familial Partial Lipodystrophy: A Systematic Review. Cells 2023; 12:cells12050725. [PMID: 36899861 PMCID: PMC10000975 DOI: 10.3390/cells12050725] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/16/2023] [Accepted: 02/17/2023] [Indexed: 03/03/2023] Open
Abstract
Type 2 familial partial lipodystrophy (FPLD2) is a laminopathic lipodystrophy due to pathogenic variants in the LMNA gene. Its rarity implies that it is not well-known. The aim of this review was to explore the published data regarding the clinical characterisation of this syndrome in order to better describe FPLD2. For this purpose, a systematic review through a search on PubMed until December 2022 was conducted and the references of the retrieved articles were also screened. A total of 113 articles were included. FPLD2 is characterised by the loss of fat starting around puberty in women, affecting limbs and trunk, and its accumulation in the face, neck and abdominal viscera. This adipose tissue dysfunction conditions the development of metabolic complications associated with insulin resistance, such as diabetes, dyslipidaemia, fatty liver disease, cardiovascular disease, and reproductive disorders. However, a great degree of phenotypical variability has been described. Therapeutic approaches are directed towards the associated comorbidities, and recent treatment modalities have been explored. A comprehensive comparison between FPLD2 and other FPLD subtypes can also be found in the present review. This review aimed to contribute towards augmenting knowledge of the natural history of FPLD2 by bringing together the main clinical research in this field.
Collapse
|
3
|
Schaflinger E, Blatterer J, Khan AS, Kaufmann L, Auinger L, Tatrai B, Abbasi SW, Zeeshan Ali M, Abbasi AA, Al Kaissi A, Petek E, Wagner K, Ahmad Khan M, Windpassinger C. An exceptional biallelic N-terminal frame shift mutation in ZMPSTE24 leads to non-lethal progeria due to possible utilization of a downstream alternative start codon. Gene 2022; 833:146582. [PMID: 35597529 DOI: 10.1016/j.gene.2022.146582] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 03/29/2022] [Accepted: 05/16/2022] [Indexed: 11/16/2022]
Abstract
Biallelic mutations in ZMPSTE24 are known to be associated with autosomal recessive mandibuloacral dysplasia with type B lipodystrophy (MADB) and lethal restrictive dermopathy (RD), respectively. Disease manifestation is depending on the remaining enzyme activity of the mutated ZMPSTE24 protein. To date, complete loss of function has exclusively been reported in RD cases. In this study, we identified a novel N-terminal homozygous frameshift mutation (c.28_29insA) in a consanguineous family segregating with MADB. An in-depth analysis of the mutated sequence revealed, that the one base pair insertion creates a novel downstream in-frame start codon, which supposedly serves as an alternative translation initiation site (TIS). This possible rescue mechanism would explain the relatively mild clinical outcome in the studied individuals. Our findings demonstrate the necessity for careful interpretation of N-terminal variants potentially effecting translation initiation.
Collapse
Affiliation(s)
- Erich Schaflinger
- Diagnostic and Research Institute of Human Genetics, Medical University of Graz, Graz 8010, Austria
| | - Jasmin Blatterer
- Diagnostic and Research Institute of Human Genetics, Medical University of Graz, Graz 8010, Austria
| | - Aiman Saeed Khan
- Gomal Centre of Biochemistry and Biotechnology, Gomal University, D.I.Khan, Khyber Pakhtunkhwa, Pakistan
| | - Lukas Kaufmann
- Diagnostic and Research Institute of Human Genetics, Medical University of Graz, Graz 8010, Austria
| | - Lisa Auinger
- Diagnostic and Research Institute of Human Genetics, Medical University of Graz, Graz 8010, Austria
| | - Benjamin Tatrai
- Diagnostic and Research Institute of Human Genetics, Medical University of Graz, Graz 8010, Austria
| | - Sumra Wajid Abbasi
- NUMS Department of Biological Sciences, National University of Medical Sciences, The Mall, Abid Majeed Road, Rawalpindi, Punjab, Pakistan
| | - Muhammad Zeeshan Ali
- Gomal Centre of Biochemistry and Biotechnology, Gomal University, D.I.Khan, Khyber Pakhtunkhwa, Pakistan
| | - Ansar Ahmad Abbasi
- Department of Zoology, Mirpur University of Science and Technology, Mirpur, AJK 10250, Pakistan
| | - Ali Al Kaissi
- Ludwig Boltzmann Institute of Osteology at Hanusch Hospital of OEGK and AUVA Trauma Centre Meidling, 1st Med. Dept. Hanusch Hospital, Vienna, Austria
| | - Erwin Petek
- Diagnostic and Research Institute of Human Genetics, Medical University of Graz, Graz 8010, Austria
| | - Klaus Wagner
- Diagnostic and Research Institute of Human Genetics, Medical University of Graz, Graz 8010, Austria
| | - Muzammil Ahmad Khan
- Gomal Centre of Biochemistry and Biotechnology, Gomal University, D.I.Khan, Khyber Pakhtunkhwa, Pakistan.
| | - Christian Windpassinger
- Diagnostic and Research Institute of Human Genetics, Medical University of Graz, Graz 8010, Austria.
| |
Collapse
|
4
|
Campos JTADM, Oliveira MSD, Soares LP, Medeiros KAD, Campos LRDS, Lima JG. DNA repair-related genes and adipogenesis: Lessons from congenital lipodystrophies. Genet Mol Biol 2022; 45:e20220086. [DOI: 10.1590/1678-4685-gmb-2022-0086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 09/20/2022] [Indexed: 11/09/2022] Open
|
5
|
Abstract
Osteogenesis imperfecta (OI) is a disease characterised by altered bone tissue material properties together with abnormal micro and macro-architecture and thus bone fragility, increased bone turnover and hyperosteocytosis. Increasingly appreciated are the soft tissue changes, sarcopenia in particular. Approaches to treatment are now multidisciplinary, with bisphosphonates having been the primary pharmacological intervention over the last 20 years. Whilst meta-analyses suggest that anti-fracture efficacy across the life course is equivocal, there is good evidence that for children bisphosphonates reduce fracture risk, increase vertebral size and improve vertebral shape, as well as improving motor function and mobility. The genetics of OI continues to provide insights into the molecular pathogenesis of the disease, although the pathophysiology is less clear. The complexity of the multi-scale interactions of bone tissue with cellular function are gradually being disentangled, but the fundamental question of why increased tissue brittleness should be associated with so many other changes is unclear; ER stress, pro-inflammatory cytokines, accelerated senesence and altered matrix component release might all contribute, but a unifying hypothesis remains elusive. New approaches to therapy are focussed on increasing bone mass, following the paradigm established by the treatment of postmenopausal osteoporosis. For adults, this brings the prospect of restoring previously lost bone - for children, particularly at the severe end of the spectrum, the possibility of further reducing fracture frequency and possibly altering growth and long term function are attractive. The alternatives that might affect tissue brittleness are autophagy enhancement (through the removal of abnormal type I collagen aggregates) and stem cell transplantation - both still at the preclinical stage of assessment. Preclinical assessment is not supportive of targeting inflammatory pathways, although understanding why TGFb signalling is increased, and whether that presents a treatment target in OI, remains to be established.
Collapse
Affiliation(s)
- Fawaz Arshad
- Academic Unit of Child Health, Sheffield Children's Hospital, Department of Oncology and Metabolism, University of Sheffield, S10 2TH, UK
| | - Nick Bishop
- Academic Unit of Child Health, Sheffield Children's Hospital, Department of Oncology and Metabolism, University of Sheffield, S10 2TH, UK.
| |
Collapse
|
6
|
D’Apice MR, De Dominicis A, Murdocca M, Amati F, Botta A, Sangiuolo F, Lattanzi G, Federici M, Novelli G. Cutaneous and metabolic defects associated with nuclear abnormalities in a transgenic mouse model expressing R527H lamin A mutation causing mandibuloacral dysplasia type A (MADA) syndrome. ACTA MYOLOGICA : MYOPATHIES AND CARDIOMYOPATHIES : OFFICIAL JOURNAL OF THE MEDITERRANEAN SOCIETY OF MYOLOGY 2020; 39:320-335. [PMID: 33458588 PMCID: PMC7783430 DOI: 10.36185/2532-1900-036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 11/11/2020] [Indexed: 06/12/2023]
Abstract
LMNA gene encodes for lamin A/C, attractive proteins linked to nuclear structure and functions. When mutated, it causes different rare diseases called laminopathies. In particular, an Arginine change in Histidine in position 527 (p.Arg527His) falling in the C-terminal domain of lamin A precursor form (prelamin A) causes mandibuloacral dysplasia Type A (MADA), a segmental progeroid syndrome characterized by skin, bone and metabolic anomalies. The well-characterized cellular models made difficult to assess the tissue-specific functions of 527His prelamin A. Here, we describe the generation and characterization of a MADA transgenic mouse overexpressing 527His LMNA gene, encoding mutated prelamin A. Bodyweight is slightly affected, while no difference in lifespan was observed in transgenic animals. Mild metabolic anomalies and thinning and loss of hairs from the back were the other observed phenotypic MADA manifestations. Histological analysis of tissues relevant for MADA syndrome revealed slight increase in adipose tissue inflammatory cells and a reduction of hypodermis due to a loss of subcutaneous adipose tissue. At cellular levels, transgenic cutaneous fibroblasts displayed nuclear envelope aberrations, presence of prelamin A, proliferation, and senescence rate defects. Gene transcriptional pattern was found differentially modulated between transgenic and wildtype animals, too. In conclusion, the presence of 527His Prelamin A accumulation is further linked to the appearance of mild progeroid features and metabolic disorder without lifespan reduction.
Collapse
Affiliation(s)
| | | | - Michela Murdocca
- Department of Biomedicine and Prevention, University of Rome “Tor Vergata”, Rome, Italy
| | - Francesca Amati
- Department of Biomedicine and Prevention, University of Rome “Tor Vergata”, Rome, Italy
| | - Annalisa Botta
- Department of Biomedicine and Prevention, University of Rome “Tor Vergata”, Rome, Italy
| | - Federica Sangiuolo
- Laboratory of Medical Genetics, Tor Vergata Hospital, Rome, Italy
- Department of Biomedicine and Prevention, University of Rome “Tor Vergata”, Rome, Italy
| | - Giovanna Lattanzi
- Center for Atherosclerosis, School of Medicine, University of Rome ‘Tor Vergata’, Rome, Italy
| | - Massimo Federici
- Center for Atherosclerosis, School of Medicine, University of Rome ‘Tor Vergata’, Rome, Italy
| | - Giuseppe Novelli
- Laboratory of Medical Genetics, Tor Vergata Hospital, Rome, Italy
- Department of Biomedicine and Prevention, University of Rome “Tor Vergata”, Rome, Italy
- Neuromed IRCCS Institute, Pozzilli (IS), Italy
- School of Medicine, University of Nevada, Reno, NV, USA
| |
Collapse
|
7
|
D'Apice MR, De Dominicis A, Murdocca M, Amati F, Botta A, Sangiuolo F, Lattanzi G, Federici M, Novelli G. Cutaneous and metabolic defects associated with nuclear abnormalities in a transgenic mouse model expressing R527H lamin A mutation causing mandibuloacral dysplasia type A (MADA) syndrome. ACTA MYOLOGICA : MYOPATHIES AND CARDIOMYOPATHIES : OFFICIAL JOURNAL OF THE MEDITERRANEAN SOCIETY OF MYOLOGY 2020; 39. [PMID: 33458588 PMCID: PMC7783430 DOI: 10.36185/2532-1900-036&set/a 907644967+854571971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
LMNA gene encodes for lamin A/C, attractive proteins linked to nuclear structure and functions. When mutated, it causes different rare diseases called laminopathies. In particular, an Arginine change in Histidine in position 527 (p.Arg527His) falling in the C-terminal domain of lamin A precursor form (prelamin A) causes mandibuloacral dysplasia Type A (MADA), a segmental progeroid syndrome characterized by skin, bone and metabolic anomalies. The well-characterized cellular models made difficult to assess the tissue-specific functions of 527His prelamin A. Here, we describe the generation and characterization of a MADA transgenic mouse overexpressing 527His LMNA gene, encoding mutated prelamin A. Bodyweight is slightly affected, while no difference in lifespan was observed in transgenic animals. Mild metabolic anomalies and thinning and loss of hairs from the back were the other observed phenotypic MADA manifestations. Histological analysis of tissues relevant for MADA syndrome revealed slight increase in adipose tissue inflammatory cells and a reduction of hypodermis due to a loss of subcutaneous adipose tissue. At cellular levels, transgenic cutaneous fibroblasts displayed nuclear envelope aberrations, presence of prelamin A, proliferation, and senescence rate defects. Gene transcriptional pattern was found differentially modulated between transgenic and wildtype animals, too. In conclusion, the presence of 527His Prelamin A accumulation is further linked to the appearance of mild progeroid features and metabolic disorder without lifespan reduction.
Collapse
Affiliation(s)
| | | | - Michela Murdocca
- Department of Biomedicine and Prevention, University of Rome "Tor Vergata", Rome, Italy
| | - Francesca Amati
- Department of Biomedicine and Prevention, University of Rome "Tor Vergata", Rome, Italy
| | - Annalisa Botta
- Department of Biomedicine and Prevention, University of Rome "Tor Vergata", Rome, Italy
| | - Federica Sangiuolo
- Laboratory of Medical Genetics, Tor Vergata Hospital, Rome, Italy.,Department of Biomedicine and Prevention, University of Rome "Tor Vergata", Rome, Italy
| | - Giovanna Lattanzi
- Center for Atherosclerosis, School of Medicine, University of Rome 'Tor Vergata', Rome, Italy
| | - Massimo Federici
- Center for Atherosclerosis, School of Medicine, University of Rome 'Tor Vergata', Rome, Italy
| | - Giuseppe Novelli
- Laboratory of Medical Genetics, Tor Vergata Hospital, Rome, Italy.,Department of Biomedicine and Prevention, University of Rome "Tor Vergata", Rome, Italy.,Neuromed IRCCS Institute, Pozzilli (IS), Italy.,School of Medicine, University of Nevada, Reno, NV, USA
| |
Collapse
|
8
|
Jiajue R, Feng K, Wang R, Xia W. Recurrent Femoral Fractures in a Boy with an Atypical Progeroid Syndrome: A Case Report. Calcif Tissue Int 2020; 106:325-330. [PMID: 31807803 DOI: 10.1007/s00223-019-00639-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Accepted: 11/22/2019] [Indexed: 12/21/2022]
Abstract
Mutations in the gene LMNA cause a wide spectrum of diseases that are now referred to laminopathies, such as muscular dystrophies, cardiomyopathies, and progeroid syndromes. Atypical progeroid syndrome (APS) is a type of progeroid syndrome mainly associated with LMNA mutations. Abnormal skeletal features associated with APS, such as osteoporosis and acroosteolysis, are rarely reported, and recurrent fractures have never been documented. We present a 16-year-old Chinese male patient with the typical features of APS, such as progeroid manifestations, cutaneous mottled hyperpigmentation, generalized lipodystrophy, and severe metabolic complications. The patient has also been detected with some rare and severe skeletal features, such as severe osteoporosis, generalized thinning of cortical bone, and recurrent femoral fractures. Genetic mutation detection in the LMNA gene revealed a de novo heterozygous mutation, the c. 29C>T (p. T10I).
Collapse
Affiliation(s)
- Ruizhi Jiajue
- Department of Endocrinology, Key Laboratory of Endocrinology, National Commission of Health, Peking Union Medical College Hospital, Chinese Academy of Medical Science, No. 1 Shuaifuyuan, Wangfujing Street, Dongcheng District, Beijing, 100730, China
| | - Kai Feng
- Department of Endocrinology, Key Laboratory of Endocrinology, National Commission of Health, Peking Union Medical College Hospital, Chinese Academy of Medical Science, No. 1 Shuaifuyuan, Wangfujing Street, Dongcheng District, Beijing, 100730, China
| | - Rui Wang
- Department of Endocrinology, The First Hospital of Qinhuangdao, No. 258 Wenhua Road, Haigang District, Qinhuangdao, 066000, Hebei, China
| | - Weibo Xia
- Department of Endocrinology, Key Laboratory of Endocrinology, National Commission of Health, Peking Union Medical College Hospital, Chinese Academy of Medical Science, No. 1 Shuaifuyuan, Wangfujing Street, Dongcheng District, Beijing, 100730, China.
| |
Collapse
|
9
|
Hitzert MM, van der Crabben SN, Baldewsingh G, van Amstel HKP, van den Wijngaard A, van Ravenswaaij-Arts CMA, Zijlmans CWR. Mandibuloacral dysplasia type B (MADB): a cohort of eight patients from Suriname with a homozygous founder mutation in ZMPSTE24 (FACE1), clinical diagnostic criteria and management guidelines. Orphanet J Rare Dis 2019; 14:294. [PMID: 31856865 PMCID: PMC6924056 DOI: 10.1186/s13023-019-1269-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 12/02/2019] [Indexed: 12/28/2022] Open
Abstract
Background Mandibuloacral Dysplasia with type B lipodystrophy (MADB) is a rare premature aging disorder with an autosomal recessive inheritance pattern. MADB is characterized by brittle hair, mottled, atrophic skin, generalized lipodystrophy, insulin resistance, metabolic complications and skeletal features like stunted growth, mandibular and clavicular hypoplasia and acro-osteolysis of the distal phalanges. MADB is caused by reduced activity of the enzyme zinc metalloprotease ZMPSTE24 resulting from compound heterozygous or homozygous mutations in ZMPSTE24. Methods In 2012, and again in 2018, eight related patients from the remote tropical rainforest of inland Suriname were analysed for dysmorphic features. DNA analysis was performed and clinical features were documented. We also analysed all previously reported genetically confirmed MADB patients from literature (n = 12) for their clinical features. Based on the features of all cases (n = 20) we defined major criteria as those present in 85–100% of all MADB patients and minor criteria as those present in 70–84% of patients. Results All the Surinamese patients are of African descent and share the same homozygous c.1196A > G, p.(Tyr399Cys) missense variant in the ZMPSTE24 gene, confirming MADB. Major criteria were found to be: short stature, clavicular hypoplasia, delayed closure of cranial sutures, high palate, mandibular hypoplasia, dental crowding, acro-osteolysis of the distal phalanges, hypoplastic nails, brittle and/or sparse hair, mottled pigmentation, atrophic and sclerodermic skin, and calcified skin nodules. Minor criteria were (generalized or partial) lipoatrophy of the extremities, joint contractures and shortened phalanges. Based on our detailed clinical observations, and a review of previously described cases, we propose that the clinical diagnosis of MADB is highly likely if a patient exhibits ≥4 major clinical criteria OR ≥ 3 major clinical criteria and ≥ 2 minor clinical criteria. Conclusions We report on eight related Surinamese patients with MADB due to a homozygous founder mutation in ZMPSTE24. In low-income countries laboratory facilities for molecular genetic testing are scarce or lacking. However, because diagnosing MADB is essential for guiding clinical management and for family counselling, we defined clinical diagnostic criteria and suggest management guidelines.
Collapse
Affiliation(s)
- M M Hitzert
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.
| | - S N van der Crabben
- Department of Medical Genetics, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - G Baldewsingh
- Medical Mission Primary Health Care Suriname, Paramaribo, Suriname
| | - H K Ploos van Amstel
- Department of Medical Genetics, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - A van den Wijngaard
- Department of Clinical Genetics, Maastricht University Medical Center, Maastricht, The Netherlands
| | - C M A van Ravenswaaij-Arts
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - C W R Zijlmans
- Scientific Research Centre Suriname, Academic Hospital Paramaribo, Paramaribo, Suriname.,Faculty of Medical Sciences, Anton de Kom University of Suriname, Paramaribo, Suriname.,Department of Paediatrics, Diakonessenhuis Hospital, Paramaribo, Suriname
| |
Collapse
|
10
|
Araújo-Vilar D, Santini F. Diagnosis and treatment of lipodystrophy: a step-by-step approach. J Endocrinol Invest 2019; 42:61-73. [PMID: 29704234 PMCID: PMC6304182 DOI: 10.1007/s40618-018-0887-z] [Citation(s) in RCA: 111] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Accepted: 04/09/2018] [Indexed: 12/24/2022]
Abstract
AIM Lipodystrophy syndromes are rare heterogeneous disorders characterized by deficiency of adipose tissue, usually a decrease in leptin levels and, frequently, severe metabolic abnormalities including diabetes mellitus and dyslipidemia. PURPOSE To describe the clinical presentation of known types of lipodystrophy, and suggest specific steps to recognize, diagnose and treat lipodystrophy in the clinical setting. METHODS Based on literature and in our own experience, we propose a stepwise approach for diagnosis of the different subtypes of rare lipodystrophy syndromes, describing its more frequent co-morbidities and establishing the therapeutical approach. RESULTS Lipodystrophy is classified as genetic or acquired and by the distribution of fat loss, which can be generalized or partial. Genes associated with many congenital forms of lipodystrophy have been identified that may assist in diagnosis. Because of its rarity and heterogeneity, lipodystrophy may frequently be unrecognized or misdiagnosed, which is concerning because it is progressive and its complications are potentially life threatening. A basic diagnostic algorithm is proposed. Effective management of lipodystrophy includes lifestyle changes and aggressive, evidence-based treatment of comorbidities. Leptin replacement therapy (metreleptin) has been found to improve metabolic parameters in many patients with lipodystrophy. Metreleptin is approved in the United States as replacement therapy to treat the complications of leptin deficiency in patients with congenital or acquired generalized lipodystrophy and has been submitted for approval in Europe. CONCLUSIONS Here, we describe the clinical presentation of known types of lipodystrophy, present an algorithm for differential diagnosis of lipodystrophy, and suggest specific steps to recognize and diagnose lipodystrophy in the clinical setting.
Collapse
Affiliation(s)
- D Araújo-Vilar
- UETeM-Molecular Pathology Group, Institute of Biomedical Research (CIMUS), School of Medicine, University of Santiago de Compostela, Santiago de Compostela, Spain.
| | - F Santini
- Endocrinology Unit, Obesity Center, University Hospital of Pisa, Pisa, Italy
| |
Collapse
|
11
|
Uskoković V, Marković S, Veselinović L, Škapin S, Ignjatović N, Uskoković DP. Insights into the kinetics of thermally induced crystallization of amorphous calcium phosphate. Phys Chem Chem Phys 2018; 20:29221-29235. [PMID: 30427330 PMCID: PMC6327086 DOI: 10.1039/c8cp06460a] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Transformations between amorphous and crystalline apatite mechanistically govern some of the most essential processes in bone metabolism, including biomineralization and bone remodeling. Fundamental understanding of this phase transition can help us gain control over the formation and dissolution of boney tissues in vivo and utilize that knowledge for various therapeutic ends. Crystallization of hydroxyapatite (HAp) and two tricalcium phosphate (TCP) polymorphs from the metastable precursor, amorphous calcium phosphate (ACP) was here studied kinetically and mechanistically using thermal analyses, X-ray diffraction and Fourier-transform infrared spectroscopy. Crystallization was detected in the differential thermal analysis as the exothermic peak at 639.5 °C at the slowest heating regimen of 5 °C min-1, while a combination of different kinetics models, including Augis-Bennett, Borchardt-Daniels, Johnson-Mehl-Avrami, Kissinger, Ozawa and Piloyan, yielded activation energies in the 435-450 kJ mol-1 range. Dehydrated ACP required a significant energy input to transform to HAp, thus indirectly proving the key role that structural water plays in this process in a biological setting. The phase transformation at high temperatures involved preformed nuclei and was solely due to their 3D growth, contrasting the edge-controlled nucleation derived earlier as the mechanism of growth in the solution. Crystallization was in both cases accompanied by the formation of needle-shape crystals of HAp through aggregation of ultrafine spherical units of ACP. Relationship between crystallinity and the heating rate was detected only for the initially amorphous structure, indicating a more intense and coherent lattice ordering process in annealed ACP than in HAp. Despite that, crystallization disobeyed the rule of inverse proportionality between the thermal energy required for the relaxation of defects and the level of strain, as the recovery rate of the initially poorly crystalline HAp was higher than that of ACP.
Collapse
Affiliation(s)
- Vuk Uskoković
- Advanced Materials and Nanobiotechnology Laboratory, Department of Bioengineering, University of Illinois, Chicago, IL, USA.
| | | | | | | | | | | |
Collapse
|
12
|
Spear ED, Hsu ET, Nie L, Carpenter EP, Hrycyna CA, Michaelis S. ZMPSTE24 missense mutations that cause progeroid diseases decrease prelamin A cleavage activity and/or protein stability. Dis Model Mech 2018; 11:dmm.033670. [PMID: 29794150 PMCID: PMC6078402 DOI: 10.1242/dmm.033670] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 05/16/2018] [Indexed: 12/24/2022] Open
Abstract
The human zinc metalloprotease ZMPSTE24 is an integral membrane protein crucial for the final step in the biogenesis of the nuclear scaffold protein lamin A, encoded by LMNA. After farnesylation and carboxyl methylation of its C-terminal CAAX motif, the lamin A precursor (prelamin A) undergoes proteolytic removal of its modified C-terminal 15 amino acids by ZMPSTE24. Mutations in LMNA or ZMPSTE24 that impede this prelamin A cleavage step cause the premature aging disease Hutchinson-Gilford progeria syndrome (HGPS), and the related progeroid disorders mandibuloacral dysplasia type B (MAD-B) and restrictive dermopathy (RD). Here, we report the development of a ‘humanized yeast system’ to assay ZMPSTE24-dependent cleavage of prelamin A and examine the eight known disease-associated ZMPSTE24 missense mutations. All mutations show diminished prelamin A processing and fall into three classes, with defects in activity, protein stability or both. Notably, some ZMPSTE24 mutants can be rescued by deleting the E3 ubiquitin ligase Doa10, involved in endoplasmic reticulum (ER)-associated degradation of misfolded membrane proteins, or by treatment with the proteasome inhibitor bortezomib. This finding may have important therapeutic implications for some patients. We also show that ZMPSTE24-mediated prelamin A cleavage can be uncoupled from the recently discovered role of ZMPSTE24 in clearance of ER membrane translocon-clogged substrates. Together with the crystal structure of ZMPSTE24, this humanized yeast system can guide structure-function studies to uncover mechanisms of prelamin A cleavage, translocon unclogging, and membrane protein folding and stability. Summary: The zinc metalloprotease ZMPSTE24 performs the final step of prelamin A processing. Here, a yeast-based system shows differences in protein stability and activity for alleles of ZMPSTE24 that cause progeria disease.
Collapse
Affiliation(s)
- Eric D Spear
- Department of Cell Biology, The Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Erh-Ting Hsu
- Department of Chemistry, Purdue University, West Lafayette, IN 47907, USA
| | - Laiyin Nie
- Structural Genomics Consortium, University of Oxford, Oxford OX3 7DQ, UK
| | | | | | - Susan Michaelis
- Department of Cell Biology, The Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
13
|
Gargiuli C, Schena E, Mattioli E, Columbaro M, D'Apice MR, Novelli G, Greggi T, Lattanzi G. Lamins and bone disorders: current understanding and perspectives. Oncotarget 2018; 9:22817-22831. [PMID: 29854317 PMCID: PMC5978267 DOI: 10.18632/oncotarget.25071] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 03/22/2018] [Indexed: 12/31/2022] Open
Abstract
Lamin A/C is a major constituent of the nuclear lamina implicated in a number of genetic diseases, collectively known as laminopathies. The most severe forms of laminopathies feature, among other symptoms, congenital scoliosis, osteoporosis, osteolysis or delayed cranial ossification. Importantly, specific bone districts are typically affected in laminopathies. Spine is severely affected in LMNA-linked congenital muscular dystrophy. Mandible, terminal phalanges and clavicles undergo osteolytic processes in progeroid laminopathies and Restrictive Dermopathy, a lethal developmental laminopathy. This specificity suggests that lamin A/C regulates fine mechanisms of bone turnover, as supported by data showing that lamin A/C mutations activate non-canonical pathways of osteoclastogenesis, as the one dependent on TGF beta 2. Here, we review current knowledge on laminopathies affecting bone and LMNA involvement in bone turnover and highlight lamin-dependent mechanisms causing bone disorders. This knowledge can be exploited to identify new therapeutic approaches not only for laminopathies, but also for other rare diseases featuring bone abnormalities.
Collapse
Affiliation(s)
- Chiara Gargiuli
- CNR Institute of Molecular Genetics, Unit of Bologna, Bologna, Italy
| | - Elisa Schena
- CNR Institute of Molecular Genetics, Unit of Bologna, Bologna, Italy.,Rizzoli Orthopaedic Institute, Laboratory of Cell Biology, Bologna, Italy
| | - Elisabetta Mattioli
- CNR Institute of Molecular Genetics, Unit of Bologna, Bologna, Italy.,Rizzoli Orthopaedic Institute, Laboratory of Cell Biology, Bologna, Italy
| | - Marta Columbaro
- Rizzoli Orthopaedic Institute, Laboratory of Cell Biology, Bologna, Italy
| | | | - Giuseppe Novelli
- Medical Genetics Unit, Policlinico Tor Vergata University Hospital, Rome, Italy
| | - Tiziana Greggi
- Rizzoli Orthopaedic Institute, Spine Deformity Department, Bologna, Italy
| | - Giovanna Lattanzi
- CNR Institute of Molecular Genetics, Unit of Bologna, Bologna, Italy.,Rizzoli Orthopaedic Institute, Laboratory of Cell Biology, Bologna, Italy
| |
Collapse
|
14
|
Mandibuloacral dysplasia: A premature ageing disease with aspects of physiological ageing. Ageing Res Rev 2018; 42:1-13. [PMID: 29208544 DOI: 10.1016/j.arr.2017.12.001] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 11/09/2017] [Accepted: 12/01/2017] [Indexed: 01/12/2023]
Abstract
Mandibuloacral dysplasia (MAD) is a rare genetic condition characterized by bone abnormalities including localized osteolysis and generalized osteoporosis, skin pigmentation, lipodystrophic signs and mildly accelerated ageing. The molecular defects associated with MAD are mutations in LMNA or ZMPSTE24 (FACE1) gene, causing type A or type B MAD, respectively. Downstream of LMNA or ZMPSTE24 mutations, the lamin A precursor, prelamin A, is accumulated in cells and affects chromatin dynamics and stress response. A new form of mandibuloacral dysplasia has been recently associated with mutations in POLD1 gene, encoding DNA polymerase delta, a major player in DNA replication. Of note, involvement of prelamin A in chromatin dynamics and recruitment of DNA repair factors has been also determined under physiological conditions, at the border between stress response and cellular senescence. Here, we review current knowledge on MAD clinical and pathogenetic aspects and highlight aspects typical of physiological ageing.
Collapse
|
15
|
Cassini TA, Robertson AK, Bican AG, Cogan JD, Hannig VL, Newman JH, Hamid R, Phillips JA. Phenotypic heterogeneity of ZMPSTE24 deficiency. Am J Med Genet A 2018; 176:1175-1179. [PMID: 29341437 DOI: 10.1002/ajmg.a.38493] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 08/18/2017] [Accepted: 08/23/2017] [Indexed: 01/01/2023]
Abstract
A 4-year-old girl was referred to the Undiagnosed Diseases Network with a history of short stature, thin and translucent skin, macrocephaly, small hands, and camptodactyly. She had been diagnosed with possible Hallerman-Streiff syndrome. Her evaluation showed that she was mosaic for uniparental isodisomy of chromosome 1, which harbored a pathogenic c.1077dupT variant in ZMPSTE24 which predicts p.(Leu362fsX18). ZMPSTE24 is a zinc metalloproteinase that is involved in processing farnesylated proteins and pathogenic ZMPSTE24 variants cause accumulation of abnormal farnesylated forms of prelamin A. This, in turn, causes a spectrum of disease severity which is based on enzyme activity. The current patient has an intermediate form, which is a genocopy of severe Progeria.
Collapse
Affiliation(s)
- Thomas A Cassini
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee.,Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Amy K Robertson
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Anna G Bican
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Joy D Cogan
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Vickie L Hannig
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee
| | - John H Newman
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Rizwan Hamid
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee
| | - John A Phillips
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee
| | | |
Collapse
|
16
|
Fernández-Pombo A, Ossandon-Otero JA, Guillín-Amarelle C, Sánchez-Iglesias S, Castro AI, González-Méndez B, Rodríguez-García S, Rodriguez-Cañete L, Casanueva FF, Araújo-Vilar D. Bone mineral density in familial partial lipodystrophy. Clin Endocrinol (Oxf) 2018; 88:44-50. [PMID: 29078011 DOI: 10.1111/cen.13504] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2017] [Revised: 10/15/2017] [Accepted: 10/17/2017] [Indexed: 11/29/2022]
Abstract
OBJECTIVE Type 1 and type 2 familial partial lipodystrophies (FPLD) are characterized by the loss or increase in subcutaneous fat in certain body regions, as well as metabolic disorders. Higher muscle volume and mass have also been described. However, so far, possible bone involvement has not been studied. The aim of this study was to evaluate bone mineral density (BMD) in patients with type 1 and type 2 FPLD. METHODS A total of 143 women were selected and distributed into three groups (17 women with FPLD2, 82 women with FPLD1 and 44 nonlipodystrophic obese female controls). A thorough history and physical examination were carried out on all subjects, as well as the measurement of anthropometric features. BMD along with fat and fat-free mass (FFM) were determined by DXA (dual-energy X-ray absorptiometry). Statistical analyses, primarily using the χ2 , ANOVA and ANCOVA tests, were performed, using age, height, fat and FFM as covariables. RESULTS After eliminating the possible influences of age, height, fat and FFM, we observed that there were no significant differences in total BMD between patients with FPLD and the control group, showing total BMD values of 1.092 ± 0.037 g/cm2 in the FPLD2 group, 1.158 ± 0.013 g/cm2 in the FPLD1 group and 1.173 ± 0.018 g/cm2 in the control group (P = .194). Similarly, no significant differences were found in segmental BMD. CONCLUSIONS Unlike in other types of laminopathy in which bone is affected, in the case of FPLD, there are no differences in BMD compared to nonlipodystrophic subjects.
Collapse
Affiliation(s)
- Antía Fernández-Pombo
- UETeM-Molecular Pathology Group, Department of Medicine, IDIS-CIMUS, University of Santiago de Compostela, Santiago de Compostela, Spain
- Division of Endocrinology and Nutrition, University Clinical Hospital of Santiago de Compostela, Santiago de Compostela, Spain
| | - Javier A Ossandon-Otero
- UETeM-Molecular Pathology Group, Department of Medicine, IDIS-CIMUS, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Cristina Guillín-Amarelle
- UETeM-Molecular Pathology Group, Department of Medicine, IDIS-CIMUS, University of Santiago de Compostela, Santiago de Compostela, Spain
- Division of Endocrinology and Nutrition, University Clinical Hospital of Santiago de Compostela, Santiago de Compostela, Spain
| | - Sofía Sánchez-Iglesias
- UETeM-Molecular Pathology Group, Department of Medicine, IDIS-CIMUS, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Ana I Castro
- Division of Endocrinology and Nutrition, University Clinical Hospital of Santiago de Compostela, Santiago de Compostela, Spain
- CIBER Fisiopatología de la Obesidad y la Nutrición (CIBERobn), Madrid, Spain
| | - Blanca González-Méndez
- UETeM-Molecular Pathology Group, Department of Medicine, IDIS-CIMUS, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Silvia Rodríguez-García
- UETeM-Molecular Pathology Group, Department of Medicine, IDIS-CIMUS, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Leticia Rodriguez-Cañete
- UETeM-Molecular Pathology Group, Department of Medicine, IDIS-CIMUS, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Felipe F Casanueva
- Division of Endocrinology and Nutrition, University Clinical Hospital of Santiago de Compostela, Santiago de Compostela, Spain
- CIBER Fisiopatología de la Obesidad y la Nutrición (CIBERobn), Madrid, Spain
| | - David Araújo-Vilar
- UETeM-Molecular Pathology Group, Department of Medicine, IDIS-CIMUS, University of Santiago de Compostela, Santiago de Compostela, Spain
- Division of Endocrinology and Nutrition, University Clinical Hospital of Santiago de Compostela, Santiago de Compostela, Spain
| |
Collapse
|
17
|
Gagliardi A, Besio R, Carnemolla C, Landi C, Armini A, Aglan M, Otaify G, Temtamy SA, Forlino A, Bini L, Bianchi L. Cytoskeleton and nuclear lamina affection in recessive osteogenesis imperfecta: A functional proteomics perspective. J Proteomics 2017; 167:46-59. [PMID: 28802583 PMCID: PMC5584732 DOI: 10.1016/j.jprot.2017.08.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Revised: 08/02/2017] [Accepted: 08/07/2017] [Indexed: 02/07/2023]
Abstract
Osteogenesis imperfecta (OI) is a collagen-related disorder associated to dominant, recessive or X-linked transmission, mainly caused by mutations in type I collagen genes or in genes involved in type I collagen metabolism. Among the recessive forms, OI types VII, VIII, and IX are due to mutations in CRTAP, P3H1, and PPIB genes, respectively. They code for the three components of the endoplasmic reticulum complex that catalyzes 3-hydroxylation of type I collagen α1Pro986. Under-hydroxylation of this residue leads to collagen structural abnormalities and results in moderate to lethal OI phenotype, despite the exact molecular mechanisms are still not completely clear. To shed light on these recessive forms, primary fibroblasts from OI patients with mutations in CRTAP (n=3), P3H1 (n=3), PPIB (n=1) genes and from controls (n=4) were investigated by a functional proteomic approach. Cytoskeleton and nucleoskeleton asset, protein fate, and metabolism were delineated as mainly affected. While western blot experiments confirmed altered expression of lamin A/C and cofilin-1, immunofluorescence analysis using antibody against lamin A/C and phalloidin showed an aberrant organization of nucleus and cytoskeleton. This is the first report describing an altered organization of intracellular structural proteins in recessive OI and pointing them as possible novel target for OI treatment. SIGNIFICANCE OI is a prototype for skeletal dysplasias. It is a highly heterogeneous collagen-related disorder with dominant, recessive and X-linked transmission. There is no definitive cure for this disease, thus a better understanding of the molecular basis of its pathophysiology is expected to contribute in identifying potential targets to develop new treatments. Based on this concept, we performed a functional proteomic study to delineate affected molecular pathways in primary fibroblasts from recessive OI patients, carrying mutations in CRTAP (OI type VII), P3H1 (OI type VIII), and PPIB (OI type IX) genes. Our analyses demonstrated the occurrence of an altered cytoskeleton and, for the first time in OI, of nuclear lamina organization. Hence, cytoskeleton and nucleoskeleton components may be considered as novel drug targets for clinical management of the disease. Finally, according to our analyses, OI emerged to share similar deregulated pathways and molecular aberrances, as previously described, with other rare disorders caused by different genetic defects. Those aberrances may provide common pharmacological targets to support classical clinical approach in treating different diseases.
Collapse
Affiliation(s)
- Assunta Gagliardi
- Functional Proteomics Laboratory, Department of Life Sciences, University of Siena, Siena, Italy; CIBIO, University of Trento, Trento, Italy
| | - Roberta Besio
- Department of Molecular Medicine, Biochemistry Unit, University of Pavia, Pavia, Italy
| | - Chiara Carnemolla
- Functional Proteomics Laboratory, Department of Life Sciences, University of Siena, Siena, Italy
| | - Claudia Landi
- Functional Proteomics Laboratory, Department of Life Sciences, University of Siena, Siena, Italy
| | - Alessandro Armini
- Functional Proteomics Laboratory, Department of Life Sciences, University of Siena, Siena, Italy
| | - Mona Aglan
- Department of Clinical Genetics, Human Genetics & Genome Research Division, Center of Excellence for Human Genetics, National Research Centre, Cairo, Egypt
| | - Ghada Otaify
- Department of Clinical Genetics, Human Genetics & Genome Research Division, Center of Excellence for Human Genetics, National Research Centre, Cairo, Egypt
| | - Samia A Temtamy
- Department of Clinical Genetics, Human Genetics & Genome Research Division, Center of Excellence for Human Genetics, National Research Centre, Cairo, Egypt
| | - Antonella Forlino
- Department of Molecular Medicine, Biochemistry Unit, University of Pavia, Pavia, Italy
| | - Luca Bini
- Functional Proteomics Laboratory, Department of Life Sciences, University of Siena, Siena, Italy
| | - Laura Bianchi
- Functional Proteomics Laboratory, Department of Life Sciences, University of Siena, Siena, Italy.
| |
Collapse
|
18
|
Haye D, Dridi H, Levy J, Lambert V, Lambert M, Agha M, Adjimi F, Kohlhase J, Lipsker D, Verloes A. Failure of ossification of the occipital bone in mandibuloacral dysplasia type B. Am J Med Genet A 2016; 170:2750-5. [PMID: 27410998 DOI: 10.1002/ajmg.a.37825] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 06/16/2016] [Indexed: 12/19/2022]
Abstract
Mandibuloacral dysplasia with type B lipodystrophy is a rare autosomal recessive disease characterized by atrophic skin, lipodystrophy, and skeletal features. It is caused by mutations in ZMPSTE24, a gene encoding a zinc metalloproteinase involved in the post-translational modification of lamin. Nine distinct pathogenic variants have been identified in 11 patients from nine unrelated families with this disorder. We report a 12-year-old boy with mandibuloacral dysplasia with type B lipodystrophy and a novel homozygous c.1196A>G; p.(Tyr399Cys) mutation in ZMPSTE24. The patient had typical dermatological and skeletal features of mandibuloacral dysplasia with type B lipodystrophy, sparse hair, short stature, mild microcephaly, facial dysmorphism, and a striking failure of ossification of the interparietal region of the occipital bone, up to the position where transverse occipital suture can be observed. Newly recognized signs for mandibuloacral dysplasia with type B lipodystrophy were gaze palsy and ptosis. Delayed closure of cranial sutures and Wormian bones have been described in three patients, but an ossification failure strictly limited to the occipital bone, as seen in the present patient, appears to be unique for mandibuloacral dysplasia with type B lipodystrophy. This observation illustrates that ZMPSTE24 could play a specific role in membranous ossification in the interparietal part of the squama (Inca bone) but not in the intracartilaginous ossification of the supraoccipital. This failure of ossification in the squama appears to be a useful feature for the radiological diagnosis of mandibuloacral dysplasia with type B lipodystrophy. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Damien Haye
- Department of Genetics, APHP-Robert Debré University Hospital and Paris VII-Denis Diderot Medical School Paris, Paris, France
| | - Hend Dridi
- Department of Genetics, APHP-Robert Debré University Hospital and Paris VII-Denis Diderot Medical School Paris, Paris, France
| | - Jonathan Levy
- Department of Genetics, APHP-Robert Debré University Hospital and Paris VII-Denis Diderot Medical School Paris, Paris, France
| | | | - Maurice Lambert
- Medical Doctor, Saint Laurent du Maroni, French Guiana, France
| | | | - Frédéric Adjimi
- Regional Hospital, Saint Laurent du Maroni, French Guiana, France
| | | | - Dan Lipsker
- Department of Dermatology, Strasbourg University Hospital, Strasbourg, France
| | - Alain Verloes
- Department of Genetics, APHP-Robert Debré University Hospital and Paris VII-Denis Diderot Medical School Paris, Paris, France. .,Sorbonne-Paris Cité University, Denis Diderot Medical School and INSERM UMR 1141 PROTECT, Paris, France.
| |
Collapse
|
19
|
Reinier F, Zoledziewska M, Hanna D, Smith JD, Valentini M, Zara I, Berutti R, Sanna S, Oppo M, Cusano R, Satta R, Montesu MA, Jones C, Cerimele D, Nickerson DA, Angius A, Cucca F, Cottoni F, Crisponi L. Mandibular hypoplasia, deafness, progeroid features and lipodystrophy (MDPL) syndrome in the context of inherited lipodystrophies. Metabolism 2015; 64:1530-40. [PMID: 26350127 DOI: 10.1016/j.metabol.2015.07.022] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Revised: 07/10/2015] [Accepted: 07/23/2015] [Indexed: 12/12/2022]
Abstract
BACKGROUND Lipodystrophies are a large heterogeneous group of genetic or acquired disorders characterized by generalized or partial fat loss, usually associated with metabolic complications such as diabetes mellitus, hypertriglyceridemia and hepatic steatosis. Many efforts have been made in the last years in identifying the genetic etiologies of several lipodystrophy forms, although some remain to be elucidated. METHODS We report here the clinical description of a woman with a rare severe lipodystrophic and progeroid syndrome associated with hypertriglyceridemia and diabetes whose genetic bases have been clarified through whole-exome sequencing (WES) analysis. RESULTS This article reports the 5th MDPL (Mandibular hypoplasia, deafness, progeroid features, and lipodystrophy syndrome) patient with the same de novo p.S605del mutation in POLD1. We provided further genetic evidence that this is a disease-causing mutation along with a plausible molecular mechanism responsible for this recurring event. Moreover we overviewed the current classification of the inherited forms of lipodystrophy, along with their underlying molecular basis. CONCLUSIONS Progress in the identification of lipodystrophy genes will help in better understanding the role of the pathways involved in the complex physiology of fat. This will lead to new targets towards develop innovative therapeutic strategies for treating the disorder and its metabolic complications, as well as more common forms of adipose tissue redistribution as observed in the metabolic syndrome and type 2 diabetes.
Collapse
Affiliation(s)
- Frederic Reinier
- Centre for Advanced Studies, Research and Development in Sardinia (CRS4), Pula, Italy; Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Magdalena Zoledziewska
- Istituto di Ricerca Genetica e Biomedica (IRGB), Consiglio Nazionale delle Ricerche (CNR), Monserrato, Italy
| | - David Hanna
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Josh D Smith
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Maria Valentini
- Centre for Advanced Studies, Research and Development in Sardinia (CRS4), Pula, Italy
| | - Ilenia Zara
- Centre for Advanced Studies, Research and Development in Sardinia (CRS4), Pula, Italy
| | - Riccardo Berutti
- Centre for Advanced Studies, Research and Development in Sardinia (CRS4), Pula, Italy
| | - Serena Sanna
- Istituto di Ricerca Genetica e Biomedica (IRGB), Consiglio Nazionale delle Ricerche (CNR), Monserrato, Italy
| | - Manuela Oppo
- Centre for Advanced Studies, Research and Development in Sardinia (CRS4), Pula, Italy; Dipartimento di Scienze Biomediche, Università di Sassari, Sassari, Italy
| | - Roberto Cusano
- Centre for Advanced Studies, Research and Development in Sardinia (CRS4), Pula, Italy
| | - Rosanna Satta
- Dipartimento di Scienze Chirurgiche, Microchirurgiche e Mediche-Dermatologia-Università di Sassari, Italy
| | - Maria Antonietta Montesu
- Dipartimento di Scienze Chirurgiche, Microchirurgiche e Mediche-Dermatologia-Università di Sassari, Italy
| | - Chris Jones
- Centre for Advanced Studies, Research and Development in Sardinia (CRS4), Pula, Italy
| | - Decio Cerimele
- Dipartimento di Scienze Chirurgiche, Microchirurgiche e Mediche-Dermatologia-Università di Sassari, Italy
| | | | - Andrea Angius
- Centre for Advanced Studies, Research and Development in Sardinia (CRS4), Pula, Italy; Istituto di Ricerca Genetica e Biomedica (IRGB), Consiglio Nazionale delle Ricerche (CNR), Monserrato, Italy
| | - Francesco Cucca
- Istituto di Ricerca Genetica e Biomedica (IRGB), Consiglio Nazionale delle Ricerche (CNR), Monserrato, Italy; Dipartimento di Scienze Biomediche, Università di Sassari, Sassari, Italy
| | - Francesca Cottoni
- Dipartimento di Scienze Chirurgiche, Microchirurgiche e Mediche-Dermatologia-Università di Sassari, Italy
| | - Laura Crisponi
- Istituto di Ricerca Genetica e Biomedica (IRGB), Consiglio Nazionale delle Ricerche (CNR), Monserrato, Italy.
| |
Collapse
|
20
|
Navarro CL, Esteves-Vieira V, Courrier S, Boyer A, Duong Nguyen T, Huong LTT, Meinke P, Schröder W, Cormier-Daire V, Sznajer Y, Amor DJ, Lagerstedt K, Biervliet M, van den Akker PC, Cau P, Roll P, Lévy N, Badens C, Wehnert M, De Sandre-Giovannoli A. New ZMPSTE24 (FACE1) mutations in patients affected with restrictive dermopathy or related progeroid syndromes and mutation update. Eur J Hum Genet 2014; 22:1002-11. [PMID: 24169522 PMCID: PMC4350588 DOI: 10.1038/ejhg.2013.258] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Revised: 09/20/2013] [Accepted: 09/27/2013] [Indexed: 01/24/2023] Open
Abstract
Restrictive dermopathy (RD) is a rare and extremely severe congenital genodermatosis, characterized by a tight rigid skin with erosions at flexure sites, multiple joint contractures, low bone density and pulmonary insufficiency generally leading to death in the perinatal period. RD is caused in most patients by compound heterozygous or homozygous ZMPSTE24 null mutations. This gene encodes a metalloprotease specifically involved in lamin A post-translational processing. Here, we report a total of 16 families for whom diagnosis and molecular defects were clearly established. Among them, we report seven new ZMPSTE24 mutations, identified in classical RD or Mandibulo-acral dysplasia (MAD) affected patients. We also report nine families with one or two affected children carrying the common, homozygous thymine insertion in exon 9 and demonstrate the lack of a founder effect. In addition, we describe several new ZMPSTE24 variants identified in unaffected controls or in patients affected with non-classical progeroid syndromes. In addition, this mutation update includes a comprehensive search of the literature on previously described ZMPSTE24 mutations and associated phenotypes. Our comprehensive analysis of the molecular pathology supported the general rule: complete loss-of-function of ZMPSTE24 leads to RD, whereas other less severe phenotypes are associated with at least one haploinsufficient allele.
Collapse
Affiliation(s)
- Claire Laure Navarro
- Inserm, UMR_S 910, Marseille, France
- Aix Marseille Université, GMGF, Marseille, France
| | - Vera Esteves-Vieira
- Laboratory of Molecular Genetics, Medical Genetics Department, La Timone Children's Hospital, Marseille, France
| | - Sébastien Courrier
- Inserm, UMR_S 910, Marseille, France
- Aix Marseille Université, GMGF, Marseille, France
| | - Amandine Boyer
- Laboratory of Molecular Genetics, Medical Genetics Department, La Timone Children's Hospital, Marseille, France
| | - Thuy Duong Nguyen
- Institute of Human Genetics and Interfaculty Institute of Genetics and Functional Genomics, Department of University Medicine, Ernst-Moritz-Arndt University, Greifswald, Germany
- Institute of Genome Research (IGR), Vietnam Academy of Science and Technology (VAST), Hà Nô̇i, Vietnam
| | - Le Thi Thanh Huong
- Institute of Human Genetics and Interfaculty Institute of Genetics and Functional Genomics, Department of University Medicine, Ernst-Moritz-Arndt University, Greifswald, Germany
- National Institute of Hygiene and Epidemiology, Hà Nô̇i, Vietnam
| | - Peter Meinke
- Institute of Human Genetics and Interfaculty Institute of Genetics and Functional Genomics, Department of University Medicine, Ernst-Moritz-Arndt University, Greifswald, Germany
| | - Winnie Schröder
- Institute of Human Genetics and Interfaculty Institute of Genetics and Functional Genomics, Department of University Medicine, Ernst-Moritz-Arndt University, Greifswald, Germany
| | | | - Yves Sznajer
- Center for Human Genetics, Cliniques Universitaires St-Luc, U.C.L, Bruxelles, Belgique
| | - David J Amor
- Murdoch Childrens Research Institute, Royal Children's Hospital, Parkville, VIC, Australia
| | - Kristina Lagerstedt
- Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| | - Martine Biervliet
- Department of Medical Genetics, University Hospital Antwerp, Antwerp, Belgium
| | - Peter C van den Akker
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Pierre Cau
- Inserm, UMR_S 910, Marseille, France
- Aix Marseille Université, GMGF, Marseille, France
- Laboratory of Cellular Biology, Medical Genetics Department, La Timone Children's Hospital, Marseille, France
| | - Patrice Roll
- Inserm, UMR_S 910, Marseille, France
- Aix Marseille Université, GMGF, Marseille, France
- Laboratory of Cellular Biology, Medical Genetics Department, La Timone Children's Hospital, Marseille, France
| | - Nicolas Lévy
- Inserm, UMR_S 910, Marseille, France
- Aix Marseille Université, GMGF, Marseille, France
- Laboratory of Molecular Genetics, Medical Genetics Department, La Timone Children's Hospital, Marseille, France
| | - Catherine Badens
- Inserm, UMR_S 910, Marseille, France
- Aix Marseille Université, GMGF, Marseille, France
- Laboratory of Molecular Genetics, Medical Genetics Department, La Timone Children's Hospital, Marseille, France
| | - Manfred Wehnert
- Institute of Human Genetics and Interfaculty Institute of Genetics and Functional Genomics, Department of University Medicine, Ernst-Moritz-Arndt University, Greifswald, Germany
| | - Annachiara De Sandre-Giovannoli
- Inserm, UMR_S 910, Marseille, France
- Aix Marseille Université, GMGF, Marseille, France
- Laboratory of Molecular Genetics, Medical Genetics Department, La Timone Children's Hospital, Marseille, France
| |
Collapse
|
21
|
Quigley A, Dong YY, Pike ACW, Dong L, Shrestha L, Berridge G, Stansfeld PJ, Sansom MSP, Edwards AM, Bountra C, von Delft F, Bullock AN, Burgess-Brown NA, Carpenter EP. The structural basis of ZMPSTE24-dependent laminopathies. Science 2013; 339:1604-7. [PMID: 23539603 DOI: 10.1126/science.1231513] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Mutations in the nuclear membrane zinc metalloprotease ZMPSTE24 lead to diseases of lamin processing (laminopathies), such as the premature aging disease progeria and metabolic disorders. ZMPSTE24 processes prelamin A, a component of the nuclear lamina intermediate filaments, by cleaving it at two sites. Failure of this processing results in accumulation of farnesylated, membrane-associated prelamin A. The 3.4 angstrom crystal structure of human ZMPSTE24 has a seven transmembrane α-helical barrel structure, surrounding a large, water-filled, intramembrane chamber, capped by a zinc metalloprotease domain with the catalytic site facing into the chamber. The 3.8 angstrom structure of a complex with a CSIM tetrapeptide showed that the mode of binding of the substrate resembles that of an insect metalloprotease inhibitor in thermolysin. Laminopathy-associated mutations predicted to reduce ZMPSTE24 activity map to the zinc metalloprotease peptide-binding site and to the bottom of the chamber.
Collapse
Affiliation(s)
- Andrew Quigley
- Structural Genomics Consortium, University of Oxford, Oxford, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Schmidt E, Nilsson O, Koskela A, Tuukkanen J, Ohlsson C, Rozell B, Eriksson M. Expression of the Hutchinson-Gilford progeria mutation during osteoblast development results in loss of osteocytes, irregular mineralization, and poor biomechanical properties. J Biol Chem 2012; 287:33512-22. [PMID: 22893709 DOI: 10.1074/jbc.m112.366450] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Hutchinson-Gilford progeria syndrome (HGPS) is a very rare genetic disorder that is characterized by multiple features of premature aging and largely affects tissues of mesenchymal origin. In this study, we describe the development of a tissue-specific mouse model that overexpresses the most common HGPS mutation (LMNA, c.1824C>T, p.G608G) in osteoblasts. Already at the age of 5 weeks, HGPS mutant mice show growth retardation, imbalanced gait and spontaneous fractures. Histopathological examination revealed an irregular bone structure, characterized by widespread loss of osteocytes, defects in mineralization, and a hypocellular red bone marrow. Computerized tomography analysis demonstrated impaired skeletal geometry and altered bone structure. The skeletal defects, which resemble the clinical features reported for bone disease in HGPS patients, was associated with an abnormal osteoblast differentiation. The osteoblast-specific expression of the HGPS mutation increased DNA damage and affected Wnt signaling. In the teeth, irregular dentin formation, as was previously demonstrated in human progeria cases, caused severe dental abnormalities affecting the incisors. The observed phenotype also shows similarities to reported bone abnormalities in aging mice and may therefore help to uncover general principles of the aging process.
Collapse
Affiliation(s)
- Eva Schmidt
- Department of Biosciences and Nutrition, Center for Biosciences, Karolinska Institutet, Huddinge SE-14183, Sweden
| | | | | | | | | | | | | |
Collapse
|
23
|
Barrowman J, Wiley PA, Hudon-Miller SE, Hrycyna CA, Michaelis S. Human ZMPSTE24 disease mutations: residual proteolytic activity correlates with disease severity. Hum Mol Genet 2012; 21:4084-93. [PMID: 22718200 DOI: 10.1093/hmg/dds233] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The zinc metalloprotease ZMPSTE24 plays a critical role in nuclear lamin biology by cleaving the prenylated and carboxylmethylated 15-amino acid tail from the C-terminus of prelamin A to yield mature lamin A. A defect in this proteolytic event, caused by a mutation in the lamin A gene (LMNA) that eliminates the ZMPSTE24 cleavage site, underlies the premature aging disease Hutchinson-Gilford Progeria Syndrome (HGPS). Likewise, mutations in the ZMPSTE24 gene that result in decreased enzyme function cause a spectrum of diseases that share certain features of premature aging. Twenty human ZMPSTE24 alleles have been identified that are associated with three disease categories of increasing severity: mandibuloacral dysplasia type B (MAD-B), severe progeria (atypical 'HGPS') and restrictive dermopathy (RD). To determine whether a correlation exists between decreasing ZMPSTE24 protease activity and increasing disease severity, we expressed mutant alleles of ZMPSTE24 in yeast and optimized in vivo yeast mating assays to directly compare the activity of alleles associated with each disease category. We also measured the activity of yeast crude membranes containing the ZMPSTE24 mutant proteins in vitro. We determined that, in general, the residual activity of ZMPSTE24 patient alleles correlates with disease severity. Complete loss-of-function alleles are associated with RD, whereas retention of partial, measureable activity results in MAD-B or severe progeria. Importantly, our assays can discriminate small differences in activity among the mutants, confirming that the methods presented here will be useful for characterizing any new ZMPSTE24 mutations that are discovered.
Collapse
Affiliation(s)
- Jemima Barrowman
- Department of Cell Biology, The Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | | | | | | | | |
Collapse
|
24
|
Kortüm F, Chyrek M, Fuchs S, Albrecht B, Gillessen-Kaesbach G, Mütze U, Seemanova E, Tinschert S, Wieczorek D, Rosenberger G, Kutsche K. Hallermann-Streiff Syndrome: No Evidence for a Link to Laminopathies. Mol Syndromol 2011; 2:27-34. [PMID: 22570643 DOI: 10.1159/000334317] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/27/2011] [Indexed: 01/20/2023] Open
Abstract
Hallermann-Streiff syndrome (HSS) is a rare inherited disorder characterized by malformations of the cranium and facial bones, congenital cataracts, microphthalmia, skin atrophy, hypotrichosis, proportionate short stature, teeth abnormalities, and a typical facial appearance with prominent forehead, small pointed nose, and micrognathia. The genetic cause of this developmental disorder is presently unknown. Here we describe 8 new patients with a phenotype of HSS. Individuals with HSS present with clinical features overlapping with some progeroid syndromes that belong to the laminopathies, such as Hutchinson-Gilford progeria syndrome (HGPS) and mandibuloacral dysplasia (MAD). HGPS is caused by de novo point mutations in the LMNA gene, coding for the nuclear lamina proteins lamin A and C. MAD with type A and B lipodystrophy are recessive disorders resulting from mutations in LMNA and ZMPSTE24, respectively. ZMPSTE24 in addition to ICMT encode proteins involved in posttranslational processing of lamin A. We hypothesized that HSS is an allelic disorder to HGPS and MAD. As the nuclear shape is often irregular in patients with LMNA mutations, we first analyzed the nuclear morphology in skin fibroblasts of patients with HSS, but could not identify any abnormality. Sequencing of the genes LMNA, ZMPSTE24 and ICMT in the 8 patients with HSS revealed the heterozygous missense mutation c.1930C>T (p.R644C) in LMNA in 1 female. Extreme phenotypic diversity and low penetrance have been associated with the p.R644C mutation. In ZMPSTE24 and ICMT, no pathogenic sequence change was detected in patients with HSS. Together, we found no evidence that HSS is another laminopathy.
Collapse
Affiliation(s)
- F Kortüm
- Institut für Humangenetik, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Cabanillas R, Cadiñanos J, Villameytide JA, Pérez M, Longo J, Richard JM, Álvarez R, Durán NS, Illán R, González DJ, López-Otín C. Néstor-Guillermo progeria syndrome: A novel premature aging condition with early onset and chronic development caused by BANF1 mutations. Am J Med Genet A 2011; 155A:2617-25. [DOI: 10.1002/ajmg.a.34249] [Citation(s) in RCA: 106] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2011] [Accepted: 07/17/2011] [Indexed: 02/02/2023]
|
26
|
Avnet S, Pallotta R, Perut F, Baldini N, Pittis MG, Saponari A, Lucarelli E, Dozza B, Greggi T, Maraldi NM, Capanni C, Mattioli E, Columbaro M, Lattanzi G. Osteoblasts from a mandibuloacral dysplasia patient induce human blood precursors to differentiate into active osteoclasts. Biochim Biophys Acta Mol Basis Dis 2011; 1812:711-8. [PMID: 21419220 DOI: 10.1016/j.bbadis.2011.03.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2010] [Revised: 03/09/2011] [Accepted: 03/10/2011] [Indexed: 10/18/2022]
Abstract
Mandibuloacral dysplasia type A (MADA) is a rare disease caused by mutations in the LMNA gene encoding A type lamins. Patients affected by mandibuloacral dysplasia type A suffer from partial lipodystrophy, skin abnormalities and accelerated aging. Typical of mandibuloacral dysplasia type A is also bone resorption at defined districts including terminal phalanges, mandible and clavicles. Little is known about the biological mechanism underlying osteolysis in mandibuloacral dysplasia type A. In the reported study, we analyzed an osteoblast primary culture derived from the cervical vertebrae of a mandibuloacral dysplasia type A patient bearing the homozygous R527H LMNA mutation. Mandibuloacral dysplasia type A osteoblasts showed nuclear abnormalities typical of laminopathic cells, but they proliferated in culture and underwent differentiation upon stimulation with dexamethasone and beta-glycerophosphate. Differentiated osteoblasts showed proper production of bone mineral matrix until passage 8 in culture, suggesting a good differentiation activity. In order to evaluate whether mandibuloacral dysplasia type A osteoblast-derived factors affected osteoclast differentiation or activity, we used a conditioned medium from mandibuloacral dysplasia type A or control cultures to treat normal human peripheral blood monocytes and investigated whether they were induced to differentiate into osteoclasts. A higher osteoclast differentiation and matrix digestion rate was obtained in the presence of mandibuloacral dysplasia type A osteoblast medium with respect to normal osteoblast medium. Further, TGFbeta 2 and osteoprotegerin expression were enhanced in mandibuloacral dysplasia type A osteoblasts while the RANKL/osteoprotegerin ratio was diminished. Importantly, inhibition of TGFbeta 2 by a neutralizing antibody abolished the effect of mandibuloacral dysplasia type A conditioned medium on osteoclast differentiation. These data argue in favor of an altered bone turnover in mandibuloacral dysplasia type A, caused by upregulation of bone-derived stimulatory cytokines, which activate non-canonical differentiation stimuli. In this context, TGFbeta 2 appears as a major player in the osteolytic process that affects mandibuloacral dysplasia type A patients.
Collapse
Affiliation(s)
- Sofia Avnet
- Laboratory for Pathophysiology, Istituto Ortopedico Rizzoli, Bologna, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Ben Yaou R, Navarro C, Quijano-Roy S, Bertrand AT, Massart C, De Sandre-Giovannoli A, Cadiñanos J, Mamchaoui K, Butler-Browne G, Estournet B, Richard P, Barois A, Lévy N, Bonne G. Type B mandibuloacral dysplasia with congenital myopathy due to homozygous ZMPSTE24 missense mutation. Eur J Hum Genet 2011; 19:647-54. [PMID: 21267004 DOI: 10.1038/ejhg.2010.256] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Mutation in ZMPSTE24 gene, encoding a major metalloprotease, leads to defective prelamin A processing and causes type B mandibuloacral dysplasia, as well as the lethal neonatal restrictive dermopathy syndrome. Phenotype severity is correlated with the residual enzyme activity of ZMPSTE24 and accumulation of prelamin A. We had previously demonstrated that a complete loss of function in ZMPSTE24 was lethal in the neonatal period, whereas compound heterozygous mutations including one PTC and one missense mutation were associated with type B mandibuloacral dysplasia. In this study, we report a 30-year longitudinal clinical survey of a patient harboring a novel severe and complex phenotype, combining an early-onset progeroid syndrome and a congenital myopathy with fiber-type disproportion. A unique homozygous missense ZMPSTE24 mutation (c.281T>C, p.Leu94Pro) was identified and predicted to produce two possible ZMPSTE24 conformations, leading to a partial loss of function. Western blot analysis revealed a major reduction of ZMPSTE24, together with the presence of unprocessed prelamin A and decreased levels of lamin A, in the patient's primary skin fibroblasts. These cells exhibited significant reductions in lifespan associated with major abnormalities of the nuclear shape and structure. This is the first report of MAD presenting with confirmed myopathic abnormalities associated with ZMPSTE24 defects, extending the clinical spectrum of ZMPSTE24 gene mutations. Moreover, our results suggest that defective prelamin A processing affects muscle regeneration and development, thus providing new insights into the disease mechanism of prelamin A-defective associated syndromes in general.
Collapse
|