1
|
Chong HH, Dehbozorgi S, Bodansky D, Trickett R. Comparison of individually packed metalwork and on-the-tray metalwork: A review of clinical risks. J Hand Surg Eur Vol 2025:17531934241310717. [PMID: 39781763 DOI: 10.1177/17531934241310717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
The use of metalwork, such as screws and plates, is common in orthopaedic trauma surgery, with a recent trend towards individually packed metalwork owing to concerns about sterilization efficacy and traceability. Despite this, there is no clinical evidence proving clinical risk from repeat sterilization of metalworks used in orthopaedic trauma of either increased infection rates or loosening or implant failure. On the contrary, the use of individually packed metalworks presents several practical challenges, including higher costs, increased risks of contamination, longer operative times and a larger carbon footprint. This review underscores the need for further validation of individually packed metalwork in orthopaedic trauma surgery.
Collapse
Affiliation(s)
- Han Hong Chong
- Hand Unit, Cardiff and Vale University Health Board, Cardiff, UK
| | - Sasan Dehbozorgi
- Hand Unit, Cardiff and Vale University Health Board, Cardiff, UK
| | - David Bodansky
- Trauma & Orthopaedic department, Maidstone and Tunbridge Wells NHS Trust, UK
| | - Ryan Trickett
- Hand Unit, Cardiff and Vale University Health Board, Cardiff, UK
| |
Collapse
|
2
|
Teixeira JFL, de Souza JAC, Magalhães FAC, de Oliveira GJPL, de Santis JB, de Souza Costa CA, de Souza PPC. Laser-Modified Ti Surface Improves Paracrine Osteogenesis by Modulating the Expression of DKK1 in Osteoblasts. J Funct Biomater 2023; 14:jfb14040224. [PMID: 37103314 PMCID: PMC10145280 DOI: 10.3390/jfb14040224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 04/04/2023] [Accepted: 04/12/2023] [Indexed: 04/28/2023] Open
Abstract
Titanium surface modifications are widely used to modulate cellular behavior by recognition of topographical cues. However, how those modifications affect the expression of mediators that will influence neighboring cells is still elusive. This study aimed to evaluate the effects of conditioned media from osteoblasts cultured on laser-modified titanium surfaces on the differentiation of bone marrow cells in a paracrine manner and to analyze the expression of Wnt pathway inhibitors. Mice calvarial osteoblasts were seeded on polished (P) and Yb:YAG laser-irradiated (L) Ti surfaces. Osteoblast culture media were collected and filtered on alternate days to stimulate mice BMCs. Resazurin assay was performed every other day for 20 days to check BMC viability and proliferation. After 7 and 14 days of BMCs maintained with osteoblasts P and L-conditioned media, alkaline phosphatase activity, Alizarin Red staining, and RT-qPCR were performed. ELISA of conditioned media was conducted to investigate the expression of Wnt inhibitors Dickkopf-1 (DKK1) and Sclerostin (SOST). BMCs showed increased mineralized nodule formation and alkaline phosphatase activity. The L-conditioned media enhanced the BMC mRNA expression of bone-related markers Bglap, Alpl, and Sp7. L-conditioned media decreased the expression of DKK1 compared with P-conditioned media. The contact of osteoblasts with Yb:YAG laser-modified Ti surfaces induces the regulation of the expression of mediators that affect the osteoblastic differentiation of neighboring cells. DKK1 is among these regulated mediators.
Collapse
Affiliation(s)
- Jorge Felipe Lima Teixeira
- Department of Physiology and Pathology, School of Dentistry, São Paulo State University, Araraquara 14801-385, Brazil
| | | | | | | | - José Bernardo de Santis
- Department of Basic and Oral Biology, Bone Research Lab, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto 14040-904, Brazil
| | - Carlos Alberto de Souza Costa
- Department of Physiology and Pathology, School of Dentistry, São Paulo State University, Araraquara 14801-385, Brazil
| | - Pedro Paulo Chaves de Souza
- Innovation in Biomaterials Laboratory (iBioM), School of Dentistry, Federal University of Goiás, Goiânia 74605-020, Brazil
| |
Collapse
|
3
|
Di Pompo G, Liguori A, Carlini M, Avnet S, Boi M, Baldini N, Focarete ML, Bianchi M, Gualandi C, Graziani G. Electrospun fibers coated with nanostructured biomimetic hydroxyapatite: A new platform for regeneration at the bone interfaces. BIOMATERIALS ADVANCES 2022; 144:213231. [PMID: 36495842 DOI: 10.1016/j.bioadv.2022.213231] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 11/18/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022]
Abstract
Reconstruction of gradient organic/inorganic tissues is a challenging task in orthopaedics. Indeed, to mimic tissue characteristics and stimulate bone regeneration at the interface, it is necessary to reproduce both the mineral and organic components of the tissue ECM, as well as the micro/nano-fibrous morphology. To address this goal, we propose here novel biomimetic patches obtained by the combination of electrospinning and nanostructured bone apatite. In particular, we deposited apatite on the electrospun fibers by Ionized Jet Deposition, a plasma-assisted technique that allows conformal deposition and the preservation in the coating of the target's stoichiometry. The damage to the substrate and fibrous morphology is a polymer-dependent aspect, that can be avoided by properly selecting the substrate composition and deposition parameters. In fact, all the tested polymers (poly(l-lactide), poly(D,l-lactide-co-glycolide, poly(ε-caprolactone), collagen) were effectively coated, and the morphological and thermal characterization revealed that poly(ε-caprolactone) suffered the least damage. The coating of collagen fibers, on the other hand, destroyed the fiber morphology and it could only be performed when collagen is blended with a more resistant synthetic polymer in the nanofibers. Due to the biomimetic composition and multiscale morphology from micro to nano, the poly(ε-caprolactone)-collagen biomimetic patches coated with bone apatite supported MSCs adhesion, patch colonization and early differentiation, while allowing optimal viability. The biomimetic coating allowed better scaffold colonization, promoting cell spreading on the fibers.
Collapse
Affiliation(s)
- Gemma Di Pompo
- Biomedical Science and Technologies and Nanobiotechnology Lab, IRCCS Istituto Ortopedico Rizzoli, via di Barbiano 1/10, 40136 Bologna, Italy
| | - Anna Liguori
- Department of Chemistry "G. Ciamician" and INSTM UdR of Bologna, University of Bologna, via Selmi 2, 40126 Bologna, Italy
| | - Martina Carlini
- Department of Chemistry "G. Ciamician" and INSTM UdR of Bologna, University of Bologna, via Selmi 2, 40126 Bologna, Italy
| | - Sofia Avnet
- Department of Biomedical and Neuromotor Sciences, University of Bologna, via Massarenti 9, 40138 Bologna, Italy
| | - Marco Boi
- Biomedical Science and Technologies and Nanobiotechnology Lab, IRCCS Istituto Ortopedico Rizzoli, via di Barbiano 1/10, 40136 Bologna, Italy
| | - Nicola Baldini
- Biomedical Science and Technologies and Nanobiotechnology Lab, IRCCS Istituto Ortopedico Rizzoli, via di Barbiano 1/10, 40136 Bologna, Italy; Department of Biomedical and Neuromotor Sciences, University of Bologna, via Massarenti 9, 40138 Bologna, Italy
| | - Maria Letizia Focarete
- Department of Chemistry "G. Ciamician" and INSTM UdR of Bologna, University of Bologna, via Selmi 2, 40126 Bologna, Italy; Interdepartmental Center for Industrial Research on Health Sciences and Technologies, University of Bologna, Via Tolara di Sopra 41/E, 40064 Ozzano dell'Emilia, Italy
| | - Michele Bianchi
- Department of Life Sciences, Università di Modena e Reggio Emilia, via Campi 103, 41125 Modena, Italy
| | - Chiara Gualandi
- Department of Chemistry "G. Ciamician" and INSTM UdR of Bologna, University of Bologna, via Selmi 2, 40126 Bologna, Italy; Interdepartmental Center for Industrial Research on Health Sciences and Technologies, University of Bologna, Via Tolara di Sopra 41/E, 40064 Ozzano dell'Emilia, Italy; Interdepartmental Center for Industrial Research on Advanced Applications in Mechanical Engineering and Materials Technology, University of Bologna, Viale Risorgimento, 2, 40136 Bologna, Italy.
| | - Gabriela Graziani
- Biomedical Science and Technologies and Nanobiotechnology Lab, IRCCS Istituto Ortopedico Rizzoli, via di Barbiano 1/10, 40136 Bologna, Italy.
| |
Collapse
|
4
|
Choe H, Tatro JM, Hausman BS, Hujer KM, Marshall SH, Akkus O, Rather PN, Lee Z, Bonomo RA, Greenfield EM. Staphylococcus aureus and Acinetobacter baumannii Inhibit Osseointegration of Orthopedic Implants. Infect Immun 2022; 90:e0066921. [PMID: 35099267 PMCID: PMC8929340 DOI: 10.1128/iai.00669-21] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 01/06/2022] [Indexed: 11/20/2022] Open
Abstract
Bacterial infections routinely cause inflammation and thereby impair osseointegration of orthopedic implants. Acinetobacter spp., which cause osteomyelitis following trauma, on or off the battlefield, were, however, reported to cause neither osteomyelitis nor osteolysis in rodents. We therefore compared the effects of Acinetobacter strain M2 to those of Staphylococcus aureus in a murine implant infection model. Sterile implants and implants with adherent bacteria were inserted in the femur of mice. Bacterial burden, levels of proinflammatory cytokines, and osseointegration were measured. All infections were localized to the implant site. Infection with either S. aureus or Acinetobacter strain M2 increased the levels of proinflammatory cytokines and the chemokine CCL2 in the surrounding femurs, inhibited bone formation around the implant, and caused loss of the surrounding cortical bone, leading to decreases in both histomorphometric and biomechanical measures of osseointegration. Genetic deletion of TLR2 and TLR4 from the mice partially reduced the effects of Acinetobacter strain M2 on osseointegration but did not alter the effects of S. aureus. This is the first report that Acinetobacter spp. impair osseointegration of orthopedic implants in mice, and the murine model developed for this study will be useful for future efforts to clarify the mechanism of implant failure due to Acinetobacter spp. and to assess novel diagnostic tools or therapeutic agents.
Collapse
Affiliation(s)
- Hyonmin Choe
- Department of Orthopaedics, Case Western Reserve University, Cleveland, Ohio, USA
- Department of Orthopaedics, Yokohama City University, Yokohama, Kanagawa, Japan
| | - Joscelyn M. Tatro
- Department of Orthopaedics, Case Western Reserve University, Cleveland, Ohio, USA
| | - Bryan S. Hausman
- Department of Orthopaedics, Case Western Reserve University, Cleveland, Ohio, USA
| | - Kristine M. Hujer
- CWRU–Cleveland VAMC Center for Antimicrobial Resistance and Epidemiology (Case VA CARES), Cleveland, Ohio, USA
| | - Steve H. Marshall
- CWRU–Cleveland VAMC Center for Antimicrobial Resistance and Epidemiology (Case VA CARES), Cleveland, Ohio, USA
| | - Ozan Akkus
- Department of Mechanical Engineering, Case Western Reserve University, Cleveland, Ohio, USA
| | - Phillip N. Rather
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia, USA
- Research Service, Atlanta Veterans Affairs Medical Center, Decatur, Georgia, USA
| | - Zhenghong Lee
- Department of Radiology, Case Western Reserve University, Cleveland, Ohio, USA
| | - Robert A. Bonomo
- CWRU–Cleveland VAMC Center for Antimicrobial Resistance and Epidemiology (Case VA CARES), Cleveland, Ohio, USA
- Medical Service and GRECC, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, Ohio, USA
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
- Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
- Department of Molecular Biology and Microbiology, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
- Department of Biochemistry, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
- Center for Proteomics and Bioinformatics, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Edward M. Greenfield
- Department of Orthopaedics, Case Western Reserve University, Cleveland, Ohio, USA
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, Indiana, USA
| |
Collapse
|
5
|
Clinical Application and Biological Functionalization of Different Surface Coatings in Artificial Joint Prosthesis: A Comprehensive Research Review. COATINGS 2022. [DOI: 10.3390/coatings12020117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
With advances in materials science and biology, there have been continuing innovations in the field of artificial joint prostheses. Cementless prostheses have the advantages of long service life, easy revision, and good initial stability and are widely used in artificial joint replacement. Coatings are the key to cementless prostheses and are at the heart of their excellent functionality. This article mainly studies the clinical application of hydroxyapatite (HA) coating, standard porous coating represented by Porocoat coating, and new high-porosity coating represented by Gription coating. The clinical application and biological functionalization of different artificial joint prosthesis surface coatings are clarified, and it provides a reference for the clinical selection and development of different prosthesis surface coating materials.
Collapse
|
6
|
Geffner A, Hoellwarth J, Reif T, Rozbruch SR. Transcutaneous osseointegration for amputees with short residual bone: Is there increased risk for complications? – A pilot study. JOURNAL OF LIMB LENGTHENING & RECONSTRUCTION 2022. [DOI: 10.4103/jllr.jllr_22_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/28/2023]
|
7
|
The Impact of EBM-Manufactured Ti6Al4V ELI Alloy Surface Modifications on Cytotoxicity toward Eukaryotic Cells and Microbial Biofilm Formation. MATERIALS 2020; 13:ma13122822. [PMID: 32585940 PMCID: PMC7344637 DOI: 10.3390/ma13122822] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 06/19/2020] [Accepted: 06/19/2020] [Indexed: 11/17/2022]
Abstract
Electron beam melting (EBM) is an additive manufacturing technique, which allows forming customized implants that perfectly fit the loss of the anatomical structure of bone. Implantation efficiency depends not only on the implant's functional or mechanical properties but also on its surface properties, which are of great importance with regard to such biological processes as bone regeneration or microbial contamination. This work presents the impact of surface modifications (mechanical polishing, sandblasting, and acid-polishing) of EBM-produced Ti6Al4V ELI implants on essential biological parameters. These include wettability, cytotoxicity toward fibroblast and osteoblast cell line, and ability to form biofilm by Staphylococcus aureus, Pseudomonas aeruginosa, and Candida albicans. Obtained results indicated that all prepared surfaces exhibited hydrophilic character and the highest changes of wettability were obtained by chemical modification. All implants displayed no cytotoxicity against osteoblast and fibroblast cell lines regardless of the modification type. In turn, the quantitative microbiological tests and visualization of microbial biofilm by means of electron microscopy showed that type of implant's modification correlated with the species-specific ability of microbes to form biofilm on it. Thus, the results of the presented study confirm the relationship between such technological aspects as surface modification and biological properties. The provided data are useful with regard to applications of the EBM technology and present a significant step towards personalized, customized implantology practice.
Collapse
|
8
|
De Tullio I, Berardini M, Di Iorio D, Perfetti F, Perfetti G. Comparative evaluation among laser-treated, machined, and sandblasted/acid-etched implant surfaces: an in vivo histologic analysis on sheep. Int J Implant Dent 2020; 6:7. [PMID: 32072319 PMCID: PMC7028891 DOI: 10.1186/s40729-019-0204-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 12/24/2019] [Indexed: 11/10/2022] Open
Abstract
Purpose The aim of the present in vivo analysis was to evaluate the osseointegration process of titanium implants with three different surfaces (machined, sandblasted and acid-etched, and laser-treated) after 15 and 30 days of healing period. Materials and methods Thirty-six implants with different surfaces were placed in the iliac crest of four Bergamasca sheep. The implant surfaces tested were sandblasted and acid-etched (group A), laser-treated (group B), and fully machined (group C). Two animals were sacrificed after 15 days while the other two after 30 days. Histological and histomorphometric analyses were performed. Results After 30 days, the bone tissue layer onto implant groups A and B appeared almost continuous with small marrow spaces interruption, while on the machined surface (group C), larger spaces with marrow tissue alternated with the bony trabeculae onto the titanium surface. Implants in groups A and B showed significantly higher implant contact percentage (BIC%) value than group C (P < 0.05). Moreover, it was observed a BIC% increase in both groups A and B between 15 and 30 days while in the machined group (group C), the BIC% decreased. Conclusion Results from the present in vivo analysis revealed that both sandblasted/acid-etched and laser-treated titanium implants, compared to the machined ones, have higher values of osseointegration in less healing time.
Collapse
Affiliation(s)
- I De Tullio
- Department of Medical, Oral and Biotechnological Sciences, University of Chieti-Pescara, Chieti, Italy
| | | | | | - F Perfetti
- Department of Medical, Oral and Biotechnological Sciences, University of Chieti-Pescara, Chieti, Italy
| | - G Perfetti
- Department of Medical, Oral and Biotechnological Sciences, University of Chieti-Pescara, Chieti, Italy
| |
Collapse
|
9
|
Jinno Y, Johansson K, Stocchero M, Toia M, Galli S, Stavropoulos A, Becktor JP. Impact of salivary contamination during placement of implants with simultaneous bony augmentation in iliac bone in sheep. Br J Oral Maxillofac Surg 2019; 57:1131-1136. [PMID: 31672257 DOI: 10.1016/j.bjoms.2019.10.302] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 10/10/2019] [Indexed: 11/19/2022]
Abstract
Our aim was to investigate the possible impact of contamination with saliva on osseointegration during placement of implants with simultaneous bone augmentation. Six hemispheric shape bone defects (8mm in diameter×4mm deep) were prepared in each iliac bone of six sheep. A dental implant (2.9mm in diameter×10mm long) was placed in the centre of each defect, and then pairs of defects were filled with one of the following bone augmentation materials: autogenous bone, autogenous bone plus bovine bone, or resorbable biphasic ceramic bone substitute. One site in each augmentation group was impregnated with saliva (contaminated group), while the other was not (non-contaminated group). Bone-to-implant contact (BIC) and bone area fraction occupancy (BAFO) within implant threads were measured after a healing period of five weeks, both in respect of the implant inserted in the augmented bone and in that inserted in the residual bone. Overall results showed that there was a significant difference between the contaminated and non-contaminated group for BIC in the augmented implant (p=0.028), while there were no significant differences in the implant in residual bone (p=0.722). For BAFO, there were no significant differences between the contaminated and non-contaminated groups among the different augmentation materials. The results showed that contamination with saliva during placement of an implant with simultaneous bone augmentation had a serious deleterious effect on osseointegration of the aspect of the implant within the augmented defect. Contamination with saliva during placement of an implant with simultaneous bone augmentation should therefore be avoided.
Collapse
Affiliation(s)
- Y Jinno
- Department of Oral and Maxillofacial Surgery and Oral Medicine, Faculty of Odontology, Malmö University, Malmö, Sweden.
| | - K Johansson
- Department of Oral and Maxillofacial Surgery and Oral Medicine, Faculty of Odontology, Malmö University, Malmö, Sweden
| | - M Stocchero
- Department of Oral and Maxillofacial Surgery and Oral Medicine, Faculty of Odontology, Malmö University, Malmö, Sweden
| | - M Toia
- Department of Oral and Maxillofacial Surgery and Oral Medicine, Faculty of Odontology, Malmö University, Malmö, Sweden
| | - S Galli
- Department of Prosthodontics, Faculty of Odontology, Malmö University, Malmö, Sweden
| | - A Stavropoulos
- Department of Periodontology, Faculty of Odontology, Malmö University, Malmö, Sweden
| | - J P Becktor
- Department of Oral and Maxillofacial Surgery and Oral Medicine, Faculty of Odontology, Malmö University, Malmö, Sweden
| |
Collapse
|
10
|
Wu H, Xie L, He M, Zhang R, Tian Y, Liu S, Gong T, Huo F, Yang T, Zhang Q, Guo S, Tian W. A wear-resistant TiO 2 nanoceramic coating on titanium implants for visible-light photocatalytic removal of organic residues. Acta Biomater 2019; 97:597-607. [PMID: 31398472 DOI: 10.1016/j.actbio.2019.08.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 07/25/2019] [Accepted: 08/02/2019] [Indexed: 12/18/2022]
Abstract
An effective treatment for peri-implantitis is to completely remove all the bacterial deposits from the contaminated implants, especially the organic residues, to regain biocompatibility and re-osseointegration, but none of the conventional decontamination treatments has achieve this goal. The photocatalytic activity of TiO2 coating on titanium implants to degrade organic contaminants has attracted researchers' attention recently. But a pure TiO2 coating only responses to harmful ultraviolet light. Additionally, the poor coating mechanical properties are unable to protect the coating integrity versus initial mechanical decontamination. To address these issues, a unique TiO2 nanoceramic coating was fabricated on titanium substrates through an innovative plasma electrolytic oxidation (PEO) based procedure, which showed a disordered layer with oxygen vacancies on the outmost part. As a result, the coating could decompose methylene blue, rhodamine B, and pre-adsorbed lipopolysaccharide (LPS) under visible light. Additionally, the coating showed two-fold higher hardness than untreated titanium and excellent wear resistance against steel decontamination instruments, which could be attributed to the specific micro-structure, including the densely packed nanocrystals and good metallurgical combination. Moreover, the in vitro response of MG63 cells confirmed that the coating had comparable biocompatibility and osteoconductivity to untreated titanium substrates. This study provides a unique coating technique as well as a photocatalytic cleaning strategy to enhance decontamination of titanium dental implants, which will favour the development of peri-implantitis treatments. STATEMENT OF SIGNIFICANCE: The treatment of peri-implantitis is based on the complete removal of bacterial deposits, especially the organic residues, but conventional decontamination treatments are hard to achieve it. The photocatalytic activity of TiO2 coating on titanium implants to degrade organic contaminants provides a promising strategy for deeper decontamination, but its nonactivation to visible light and poor mechanical properties have limited its application. To address these issues, a unique TiO2 nanoceramic coating was fabricated on titanium substrates based on plasma electrolytic oxidation. The coating showed enhanced visible-light photocatalytic activity, excellent wear resistance and satisfied biocompatibility. Based on this functional coating, it is promising to develop a more efficient strategy for deep decontamination of implant surface, which will favour the development of peri-implantitis treatments.
Collapse
|
11
|
Impact of surface contamination of implants with saliva during placement in augmented bone defects in sheep calvaria. Br J Oral Maxillofac Surg 2019; 57:41-46. [DOI: 10.1016/j.bjoms.2018.11.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 11/30/2018] [Indexed: 01/01/2023]
|
12
|
Morinaga K, Sasaki H, Park S, Hokugo A, Okawa H, Tahara Y, Colwell CS, Nishimura I. Neuronal PAS domain 2 (Npas2) facilitated osseointegration of titanium implant with rough surface through a neuroskeletal mechanism. Biomaterials 2018; 192:62-74. [PMID: 30428407 DOI: 10.1016/j.biomaterials.2018.11.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 11/01/2018] [Accepted: 11/02/2018] [Indexed: 12/13/2022]
Abstract
Titanium (Ti) biomaterials have been applied to a wide range of implantable medical devices. When placed in bone marrow, Ti-biomaterials integrate to the surrounding bone tissue by mechanisms that are not fully understood. We have previously identified an unexpected upregulation of circadian clock molecule neuronal PAS domain 2 (Npas2) in successfully integrated implant with a rough surface. This study aimed to elucidate the molecular mechanism of osseointegration through determining the role of Npas2. Human bone marrow stromal cells (BMSC) that were cultured on a Ti disc with SLA surface exhibited increased NPAS2 expression compared to BMSC cultured on a machined surface. A mouse model was developed in which miniature Ti implants were surgically placed into femur bone marrow. The implant push-out test and bone-to-implant contact measurements demonstrated the establishment of osseointegration in 3 weeks. By contrast, in Npas2 functional knockout (KO) mice, the implant push-out value measured for SLA surface Ti implant was significantly decreased. Npas2 KO mice demonstrated normal femur bone structure surrounding the Ti implant; however, the recovered implants revealed abnormal remnant mineralized tissue, which lacked dense collagen architecture typically found on recovered implants from wild type mice. To explore the mechanisms leading to the induced Npas2 expression, an unbiased chemical genetics analysis was conducted using mouse BMSC carrying an Npas2-reporter gene for high throughput screening of Library of Pharmacologically Active Compounds. Npas2 modulating compounds were found clustered in regulatory networks of the α2-adrenergic receptor and its downstream cAMP/CREB signaling pathway. Mouse primary BMSC exposed to SLA Ti disc significantly increased the expression of α2-adrenergic receptors, but the expression of β2-adrenergic receptor was unaffected. Our data provides the first evidence that peripheral clock gene component Npas2 plays a role in facilitating the enhanced osseointegration through neuroskeletal regulatory pathways induced by BMSC in contact with rough surface Ti implant.
Collapse
Affiliation(s)
- Kenzo Morinaga
- Weintraub Center for Reconstructive Biotechnology, UCLA School of Dentistry, Los Angeles, CA, USA; Department of Oral Rehabilitation, Section of Oral Implantology, Fukuoka Dental College, Fukuoka, Japan
| | - Hodaka Sasaki
- Weintraub Center for Reconstructive Biotechnology, UCLA School of Dentistry, Los Angeles, CA, USA; Department of Oral and Maxillofacial Implantology, Tokyo Dental College, Tokyo, Japan
| | - Sil Park
- Weintraub Center for Reconstructive Biotechnology, UCLA School of Dentistry, Los Angeles, CA, USA
| | - Akishige Hokugo
- Weintraub Center for Reconstructive Biotechnology, UCLA School of Dentistry, Los Angeles, CA, USA; Regenerative Bioengineering and Repair Laboratory, Division of Plastic and Reconstructive Surgery, Department of Surgery, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Hiroko Okawa
- Weintraub Center for Reconstructive Biotechnology, UCLA School of Dentistry, Los Angeles, CA, USA; Division of Molecular and Regenerative Prosthodontics, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - Yu Tahara
- Department of Psychiatry & Biobehavioral Science, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Christopher S Colwell
- Department of Psychiatry & Biobehavioral Science, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Ichiro Nishimura
- Weintraub Center for Reconstructive Biotechnology, UCLA School of Dentistry, Los Angeles, CA, USA.
| |
Collapse
|
13
|
Mombelli A, Hashim D, Cionca N. What is the impact of titanium particles and biocorrosion on implant survival and complications? A critical review. Clin Oral Implants Res 2018; 29 Suppl 18:37-53. [DOI: 10.1111/clr.13305] [Citation(s) in RCA: 115] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/22/2018] [Indexed: 12/27/2022]
Affiliation(s)
- Andrea Mombelli
- Division of Periodontology; University Clinics of Dental Medicine; University of Geneva; Geneva Switzerland
| | - Dena Hashim
- Division of Periodontology; University Clinics of Dental Medicine; University of Geneva; Geneva Switzerland
| | - Norbert Cionca
- Division of Periodontology; University Clinics of Dental Medicine; University of Geneva; Geneva Switzerland
| |
Collapse
|
14
|
A Review on Ionic Substitutions in Hydroxyapatite Thin Films: Towards Complete Biomimetism. COATINGS 2018. [DOI: 10.3390/coatings8080269] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Plasma sprayed coatings composed of stoichiometric hydroxyapatite have been extensively used to improve integration of metallic implants in the host bone, as hydroxyapatite (HA) is normally regarded as similar to the mineralized phase of bone. However, these coatings exhibited several drawbacks that limited their success. On the one hand biological apatite is a carbonated-HA, containing significant amounts of foreign ions, having low crystallinity and a small crystals size. This means that it differs from stoichiometric HA in terms of composition, stoichiometry, crystallinity degree, crystal size/morphology and, as a direct consequence, solubility, and ions release in the peri-implant environment. On the other hand, thick plasma sprayed coatings can undergo cracking and delamination and are scarcely uniform. For these reasons, research is pushing into two directions: (i) Increasing the similarity of apatite coatings to real bone, and (ii) exploring deposition by alternative plasma assisted techniques, allowing to achieve thin films, and having superior adhesion and a better control over the coating composition. In this article, we review the latest advances in the field of plasma-assisted deposition of ion-substituted hydroxyapatite thin films, highlighting the state of the art, the limitations, potentialities, open challenges, and the future scenarios for their application.
Collapse
|
15
|
Sánchez-Pérez A, Cano-Tovar AB, Martín-de-Llano JJ, Sarobe-Oyarzun FJ, Davis S, Carda-Batalla C. Effect of Rotary Instrument Mineral Oil Lubricant on Osseointegration: A Randomized, Blinded Study in Rabbits. J ORAL IMPLANTOL 2018; 45:12-17. [PMID: 30036145 DOI: 10.1563/aaid-joi-d-18-00080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The mechanisms of early failures in dental implant osseointegration are unclear. A possible cause of low levels of bone formation is lubricant contamination on implants during insertion. To explore the impact of lubricant contamination on dental implants, we used 5 New Zealand rabbits and inserted 2 implants per tibia in each animal for a total of 4 implants per animal (20 implants in total). In general, bicorticalization was achieved. The first implant was placed as suggested by the manufacturer with no lubricant used (control). The second implant was placed using a freshly lubricated contra-angle handpiece, which was used only for the test implants. Implant allocation was randomized, and the examining histologist was blinded to the results. All implants were placed by the same surgeon. The animals were maintained in accordance with animal experimentation guidelines. None of the implants failed to osseointegrate. Moreover, no significant difference was observed between the test and control groups. Based on the results of this study, the use of rotary instrument mineral oil lubricant did not jeopardize the osseointegration of dental implants in New Zealand rabbits.
Collapse
Affiliation(s)
- Arturo Sánchez-Pérez
- 1 Periodontics Unit, Faculty of Medicine and Dentistry, University of Murcia, Spain
| | | | | | | | - Scott Davis
- 5 Port Macquarie and Coffs Harbour, NSW Australia
| | - Carmen Carda-Batalla
- 3 Departamento de Patología, Facultad de Medicina y Odontología, Universitat de València; INCLIVA, Spain
| |
Collapse
|
16
|
Pellegrini G, Francetti L, Barbaro B, del Fabbro M. Novel surfaces and osseointegration in implant dentistry. ACTA ACUST UNITED AC 2018; 9:e12349. [DOI: 10.1111/jicd.12349] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 04/28/2018] [Indexed: 12/18/2022]
Affiliation(s)
- Gaia Pellegrini
- Department of Biomedical, Surgical, and Dental Sciences; University of the Study of Milan; Milan Italy
- Institute of Hospitalization and Care with a Scientific Character (IRCCS) Galeazzi Orthopaedic Institute; Milan Italy
| | - Luca Francetti
- Department of Biomedical, Surgical, and Dental Sciences; University of the Study of Milan; Milan Italy
- Institute of Hospitalization and Care with a Scientific Character (IRCCS) Galeazzi Orthopaedic Institute; Milan Italy
| | - Bruno Barbaro
- Department of Biomedical, Surgical, and Dental Sciences; University of the Study of Milan; Milan Italy
- Institute of Hospitalization and Care with a Scientific Character (IRCCS) Galeazzi Orthopaedic Institute; Milan Italy
| | - Massimo del Fabbro
- Department of Biomedical, Surgical, and Dental Sciences; University of the Study of Milan; Milan Italy
- Institute of Hospitalization and Care with a Scientific Character (IRCCS) Galeazzi Orthopaedic Institute; Milan Italy
| |
Collapse
|
17
|
D'Este F, Oro D, Boix-Lemonche G, Tossi A, Skerlavaj B. Evaluation of free or anchored antimicrobial peptides as candidates for the prevention of orthopaedic device-related infections. J Pept Sci 2017; 23:777-789. [DOI: 10.1002/psc.3026] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 06/21/2017] [Accepted: 06/23/2017] [Indexed: 12/26/2022]
Affiliation(s)
- Francesca D'Este
- Department of Medicine; University of Udine; P.le Kolbe 4 33100 Udine Italy
| | - Debora Oro
- Department of Medicine; University of Udine; P.le Kolbe 4 33100 Udine Italy
| | | | - Alessandro Tossi
- Department of Life Sciences; University of Trieste; Via Giorgieri 5 34127 Trieste Italy
| | - Barbara Skerlavaj
- Department of Medicine; University of Udine; P.le Kolbe 4 33100 Udine Italy
| |
Collapse
|
18
|
Graziani G, Bianchi M, Sassoni E, Russo A, Marcacci M. Ion-substituted calcium phosphate coatings deposited by plasma-assisted techniques: A review. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 74:219-229. [DOI: 10.1016/j.msec.2016.12.018] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Revised: 11/14/2016] [Accepted: 12/04/2016] [Indexed: 01/19/2023]
|
19
|
França R, Alfa M, Olson N, Yahia L, Sacher E. Characterization of endotoxins on orthopaedic fixation screws, using physicochemical surface analyses. J Orthop Res 2017; 35:240-247. [PMID: 27107265 DOI: 10.1002/jor.23271] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Accepted: 04/04/2016] [Indexed: 02/04/2023]
Abstract
The objective of this study was to determine if surface analysis techniques could be used to detect endotoxin on stainless steel malleolus screws. New malleolus screws were compared to ones that had been coated in purified lipopolysaccharide (LPS) or Artificial Test Soil (ATS) containing lipopolysaccharide. X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), and time-of flight secondary ion mass spectrometry (TOF-SIMS) were used to assess the fixation screws surface. Organic material was visualized on the LPS and ATS-LPS inoculated screws but not on the new unsoiled screws. This was further supported by the peaks observed at masses between 40 and 100 D in TOF-SIMS spectra of the LPS and ATS-LPS inoculated screws. After deconvolution of N1s high resolution XPS spectra, the LPS inoculated screws showed amide groups whereas the ATS-LPS inoculated screws showed predominantly nitroso groups (C-NO). Our data demonstrate that surface analysis can be used to detect organic residuals present on fixation screws. The XPS data confirmed that LPS reacted predominantly with positively charged surface metallic ions (Fe and Cr), whereas proteins reacted with the surface oxide layer of fixation screws, forming C-NO groups. The application of these surface analysis techniques will be helpful in determining if the reprocessing of such items results in an accumulation of organic material that might lead to aseptic loosening, when implanted. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:240-247, 2017.
Collapse
Affiliation(s)
- Rodrigo França
- Dental Biomaterials Research Laboratory, Faculty of Health Sciences, Department of Restorative Dentistry, University of Manitoba, 780 Bannatyne Avenue, Winnipeg, Manitoba R3E 0W2, Canada.,Laboratoire d'Innovation et d'Analyse de Bioperformance, École Polytechnique de Montréal, C.P. 5079, Succursale Centre-ville, Montréal, Québec H3C 3A7, Canada
| | - Michelle Alfa
- St-Boniface Hospital Research Center, 351 Tache Avenue, Winnipeg, Manitoba R2H 2A6, Canada.,Department of Medical Microbiology, University of Manitoba, Winnipeg, Manitoba R3E 0l9, Canada
| | - Nancy Olson
- St-Boniface Hospital Research Center, 351 Tache Avenue, Winnipeg, Manitoba R2H 2A6, Canada
| | - L'Hocine Yahia
- Laboratoire d'Innovation et d'Analyse de Bioperformance, École Polytechnique de Montréal, C.P. 5079, Succursale Centre-ville, Montréal, Québec H3C 3A7, Canada
| | - Edward Sacher
- Regroupement Québecois de Matériaux de Pointe and Département de Génie Physique, École Polytechnique de Montréal, C.P. 6079, Succursale Centre-ville, Montréal, Québec H3C 3A7, Canada
| |
Collapse
|
20
|
Abstract
BACKGROUND Innate defense regulator peptide-1018 (IDR-1018) is a 12-amino acid, synthetic, immunomodulatory host defense peptide that can reduce soft tissue infections and is less likely to induce bacterial resistance than conventional antibiotics. However, IDRs have not been tested on orthopaedic infections and the immunomodulatory effects of IDR-1018 have only been characterized in response to lipopolysacharide, which is exclusively produced by Gram-negative bacteria. QUESTIONS/PURPOSES We sought (1) to more fully characterize the immunomodulatory effects of IDR-1018, especially in response to Staphylococcus aureus; and (2) to determine whether IDR-1018 decreases S aureus infection of orthopaedic implants in mice and thereby protects the implants from failure to osseointegrate. METHODS In vitro effects of IDR-1018 on S aureus were assessed by determining minimum inhibitory concentrations in bacterial broth without and with supplementation of physiologic ion levels. In vitro effects of IDR-1018 on macrophages were determined by measuring production of monocyte chemoattractant protein-1 (MCP-1) and proinflammatory cytokines by enzyme-linked immunosorbent assay. In vivo effects of IDR-1018 were determined in a murine model of S aureus implant infection by quantitating bacterial burden, macrophage recruitment, MCP-1, proinflammatory cytokines, and osseointegration in nine mice per group on Day 1 postimplantation and 20 mice per group on Day 15 postimplantation. RESULTS IDR-1018 demonstrated antimicrobial activity by directly killing S aureus even in the presence of physiologic ion levels, increasing recruitment of macrophages to the site of infections by 40% (p = 0.036) and accelerating S aureus clearance in vivo (p = 0.008) with a 2.6-fold decrease in bacterial bioburden on Day 7 postimplantation. In vitro immunomodulatory activity of IDR-1018 included inducing production of MCP-1 in the absence of other inflammatory stimuli and to potently blunt excess production of proinflammatory cytokines and MCP-1 induced by lipopolysaccharide. Higher concentrations of IDR-1018 were required to blunt production of proinflammatory cytokines and MCP-1 in the presence S aureus. The largest in vivo immunomodulatory effect of IDR-1018 was to reduce tumor necrosis factor-α levels induced by S aureus by 60% (p = 0.006). Most importantly, IDR-1018 reduced S aureus-induced failures of osseointegration by threefold (p = 0.022) and increased osseointegration as measured by ultimate force (5.4-fold, p = 0.033) and average stiffness (4.3-fold, p = 0.049). CONCLUSIONS IDR-1018 is potentially useful to reduce orthopaedic infections by directly killing bacteria and by recruiting macrophages to the infection site. CLINICAL RELEVANCE These findings make IDR-1018 an attractive candidate to explore in larger animal models to ascertain whether its effects in our in vitro and mouse experiments can be replicated in more clinically relevant settings.
Collapse
|
21
|
Mariscal-Muñoz E, Costa CAS, Tavares HS, Bianchi J, Hebling J, Machado JPB, Lerner UH, Souza PPC. Osteoblast differentiation is enhanced by a nano-to-micro hybrid titanium surface created by Yb:YAG laser irradiation. Clin Oral Investig 2015. [PMID: 26224513 DOI: 10.1007/s00784-015-1533-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
OBJECTIVES The aim of this study was to analyze the capacity of a new modified laser surface to stimulate calvarial osteoblasts isolated from neonatal mouse bones to differentiate and form mineralized nodules. METHODS Titanium discs were subjectezd or not to laser irradiation according to specific parameters and characterized. Osteoblasts isolated from neonatal mouse calvaria were cultured over the discs, and the capacity of these cells to proliferate (MTT assay), form mineralized nodules (Alizarin red assay), and enhance alkaline phosphatase activity (ALPase activity) was analyzed. Real-time PCR was used for quantification of gene expression. RESULTS Laser-irradiated titanium discs (L) presented a rough nano-to-micrometric oxidized surface contrasting with the smooth pattern on polished discs (P). The Ra on the micrometric level increased from 0.32 ± 0.01 μm on P surfaces to 10.57 ± 0.39 μm on L surfaces. When compared with P, L promoted changes in osteoblast morphology, increased mineralized nodule formation in osteoblasts cultured on the surfaces for 14 days, and enhanced ALPase activity at days 7 and 14. Transcription factors triggering osteoblast differentiation (Runx2 and Sp7) and genes encoding the bone extracellular matrix proteins collagen type-1 (Col1a1), osteopontin (Spp1), and osteocalcin (Bglap) were upregulated in cells on L surfaces compared with those on P surfaces at days 1-14. CONCLUSION Laser treatment of titanium surfaces created a rough surface that stimulated osteoblast differentiation. CLINICAL RELEVANCE Laser treatment of titanium generates a reproducible and efficient surface triggering osteoblast differentiation that can be of importance for osteointegration.
Collapse
Affiliation(s)
- Eduardo Mariscal-Muñoz
- Department of Physiology and Pathology, Faculty of Dentistry at Araraquara, Univ. Estadual Paulista-UNESP, Araraquara, São Paulo, 14801-903, Brazil
| | - Carlos A S Costa
- Department of Physiology and Pathology, Faculty of Dentistry at Araraquara, Univ. Estadual Paulista-UNESP, Araraquara, São Paulo, 14801-903, Brazil
| | - Hewerson S Tavares
- Department of Physiology and Pathology, Faculty of Dentistry at Araraquara, Univ. Estadual Paulista-UNESP, Araraquara, São Paulo, 14801-903, Brazil
| | - Jonas Bianchi
- Department of Physiology and Pathology, Faculty of Dentistry at Araraquara, Univ. Estadual Paulista-UNESP, Araraquara, São Paulo, 14801-903, Brazil
| | - Josimeri Hebling
- Department of Orthodontics and Pediatric Dentistry, Faculty of Dentistry at Araraquara, Univ. Estadual Paulista-UNESP, Araraquara, São Paulo, 14801-903, Brazil
| | - João P B Machado
- National Institute for Space Research-INPE, São José dos Campos, São Paulo, 12227-010, Brazil
| | - Ulf H Lerner
- Umeå University, Umeå, S-901 87, Sweden.,Sahlgrenska Academy at University of Gothenburg, Gothenburg, S-405 30, Sweden
| | - Pedro P C Souza
- Department of Physiology and Pathology, Faculty of Dentistry at Araraquara, Univ. Estadual Paulista-UNESP, Araraquara, São Paulo, 14801-903, Brazil.
| |
Collapse
|
22
|
Bonsignore LA, Goldberg VM, Greenfield EM. Machine oil inhibits the osseointegration of orthopaedic implants by impairing osteoblast attachment and spreading. J Orthop Res 2015; 33:979-87. [PMID: 25676177 PMCID: PMC8201705 DOI: 10.1002/jor.22850] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Accepted: 01/31/2015] [Indexed: 02/04/2023]
Abstract
The most important factor contributing to short-term and long-term success of cementless total joint arthroplasties is osseointegration. Osseointegration leads to a direct structural and functional connection between living bone and the surface of an implant. Surface contaminants may remain on orthopaedic implants after sterilization procedures and impair osseointegration. For example, specific lots of hip replacement Sulzer Inter-OP(TM) acetabular shells that were associated with impaired osseointegration and early failure rates were found to be contaminated with both bacterial debris and machine oil residues. However, the effect of machine oil on implant integration is unknown. Therefore, the goal of this study was to determine if machine oil inhibits the osseointegration of orthopaedic implants. To test this hypothesis in vivo we used our murine model of osseointegration where titanium alloy implants are implanted into a unicortical pilot hole in the mid-diaphysis of the femur. We found that machine oil inhibited bone-to-implant contact and biomechanical pullout measures. Machine oil on titanium alloy discs inhibited early stages of MC3T3-E1 osteogenesis in vitro such as attachment and spreading. Inhibition of osteoblast attachment and spreading occurred in both areas with and without detectable oil. Osteoblast growth was in turn inhibited on discs with machine oil due to both a decrease in proliferation and an increase in cell death. Later stages of osteogenic differentiation and mineralization on titanium alloy discs were also inhibited. Thus, machine oil can inhibit osseointegration through cell autonomous effects on osteoblast cells. These results support routine testing by manufacturers of machine oil residues on orthopaedic implants.
Collapse
Affiliation(s)
- Lindsay A. Bonsignore
- Department of Orthopaedics, Case Western Reserve University, Cleveland, Ohio,Department of Pathology, Case Western Reserve University, Cleveland, Ohio
| | - Victor M. Goldberg
- Department of Orthopaedics, Case Western Reserve University, Cleveland, Ohio
| | - Edward M. Greenfield
- Department of Orthopaedics, Case Western Reserve University, Cleveland, Ohio,Department of Pathology, Case Western Reserve University, Cleveland, Ohio,National Center for Regenerative Medicine, Case Western Reserve University, Cleveland, Ohio
| |
Collapse
|
23
|
Xing H, Taguchi Y, Komasa S, Yamawaki I, Sekino T, Umeda M, Okazaki J. Effect of Porphyromonas gingivalis Lipopolysaccharide on Bone Marrow Mesenchymal Stem Cell Osteogenesis on a Titanium Nanosurface. J Periodontol 2015; 86:448-55. [DOI: 10.1902/jop.2014.140386] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
24
|
Bonsignore LA, Anderson JR, Lee Z, Goldberg VM, Greenfield EM. Adherent lipopolysaccharide inhibits the osseointegration of orthopedic implants by impairing osteoblast differentiation. Bone 2013; 52:93-101. [PMID: 22995462 PMCID: PMC3513552 DOI: 10.1016/j.bone.2012.09.011] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2012] [Revised: 09/07/2012] [Accepted: 09/08/2012] [Indexed: 10/27/2022]
Abstract
Osseointegration is the process by which an orthopedic implant makes direct bone-to-implant contact and is crucial for the long-term function of the implant. Surface contaminants, such as bacterial debris and manufacturing residues, may remain on orthopedic implants after sterilization and impair osseointegration. For example, specific lots of implants that were associated with impaired osseointegration and high failure rates were discovered to have contaminants including bacterial debris. Therefore, the goals of this study were to determine if bacterial debris exists on sterile orthopedic implants and if adherent bacterial debris inhibits the osseointegration of orthopedic implants. We found that debris containing lipopolysaccharide (LPS) from Gram-negative bacteria exists on both sterile craniofacial implants and wrist implants. Levels of bacterial debris vary not only between different lots of implants but within an individual lot. Using our murine model of osseointegration, we found that ultrapure LPS adherent to the implants inhibited bone-to-implant contact and biomechanical pullout measures. Analysis of osseointegration in knock-out mice demonstrated that adherent LPS inhibited osseointegration by signaling through its primary receptor, Toll-like receptor 4, and not by signaling through Toll-like receptor 2. Ultrapure LPS adherent to titanium alloy discs had no detectable effect on early stages of MC3T3-E1 osteogenesis in vitro such as attachment, spreading or growth. However, later stages of osteogenic differentiation and mineralization were inhibited by adherent LPS. Thus, LPS may inhibit osseointegration in part through cell autonomous effects on osteoblasts. These results highlight bacterial debris as a type of surface contaminant that can impair the osseointegration of orthopedic implants.
Collapse
Affiliation(s)
- Lindsay A Bonsignore
- Department of Orthopaedics, Case Western Reserve University, Cleveland, OH 44106, USA
| | | | | | | | | |
Collapse
|
25
|
Alfa MJ. The 'pandora's box' dilemma: reprocessing of implantable screws and plates in orthopedic tray sets. Biomed Instrum Technol 2012; Suppl:55-9. [PMID: 22559778 DOI: 10.2345/0899-8205-12.1.55] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|