1
|
Yin JX, Huang YY, Nguyen MT, Si XM, Huang YQ, Chen W, Zhang HY. Tibial adaptations to dietary 25-hydroxyvitamin D 3 supplementation under two distinct vitamin regimens in young ducks. Poult Sci 2025; 104:105145. [PMID: 40245539 PMCID: PMC12032329 DOI: 10.1016/j.psj.2025.105145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 03/31/2025] [Accepted: 04/06/2025] [Indexed: 04/19/2025] Open
Abstract
Tibia disorders in modern ducks are frequently associated with rapid weight gain and compromised bone quality, which is defined as the structural and material properties of bone tissue that determines its strength and fracture resistance. These factors significantly increase the risk of fractures and chronic pain. Studies suggest that 25-hydroxycholecalciferol (25-OH-D3), a vitamin D3 metabolite, effectively addresses bone disorders, potentially depending on dietary vitamin regimens, which are determined by the amount and ratio of vitamins in the diet. This study used a 2 × 2 factorial design to evaluate the effects of two vitamin regimens (regular and high) with or without exogenous 25-OH-D3 (0.069 mg/kg) on leg health and tibia quality in meat ducks (1-14 d). The high-vitamin regimen contained greater amounts of all vitamins except biotin and significantly enhanced ash content, tibial microstructure, fracture load, and reduced tibial dyschondroplasia (TD) scores (P < 0.05) compared to the regular regimen, despite no impact on growth performance or tibia length, weight, and diameter (P > 0.05). Additionally, dietary 25-OH-D3 supplementation increased weight gain (P < 0.05), improved bone quality, and strengthened bone formation and resorption processes. Notably, under the regular vitamin regimen, 25-OH-D3 reduced TD scores and enhanced weight gain, tibia mechanical properties, and the serum content of procollagen type I N-terminal propeptide (PN1P) that a marker of bone formation (all P < 0.05). However, these effects were diminished in ducks fed the high-vitamin diet. There were some interactions that were noticed regarding serum 25-OH-D3 content, trabecular area, tibia fracture load, and PN1P levels in the present study (P < 0.05). In conclusion, the biochemical effects of 25-OH-D3 were influenced by the baseline levels of dietary vitamins, a high-vitamin diet or treatment with 25-OH-D3 in a regular vitamin diet improved bone quality and reduced tibial dyschondroplasia by enhancing bone formation.
Collapse
Affiliation(s)
- J X Yin
- College of Animal Science and Technology, Henan Agricultural University, Henan, 450046, China
| | - Y Y Huang
- College of Animal Science and Technology, Henan Agricultural University, Henan, 450046, China
| | - Minh Tu Nguyen
- Department of Agriculture and Forestry, Hue University, Hue, 49000, Vietnam
| | - X M Si
- College of Animal Science and Technology, Henan Agricultural University, Henan, 450046, China
| | - Y Q Huang
- College of Animal Science and Technology, Henan Agricultural University, Henan, 450046, China
| | - W Chen
- College of Animal Science and Technology, Henan Agricultural University, Henan, 450046, China
| | - H Y Zhang
- College of Animal Science and Technology, Henan Agricultural University, Henan, 450046, China; Laboratory for Animal Nutrition and Animal Product Quality, Department of Animal Sciences and Aquatic Ecology, Ghent University, Ghent, 9000, Belgium.
| |
Collapse
|
2
|
Yang J, Yu X, Zhang Z, Xu R, Wu F, Wang T, Liu Y, Ouyang J, Deng F. Surface modification of titanium manufactured through selective laser melting inhibited osteoclast differentiation through mitogen-activated protein kinase signaling pathway. J Biomater Appl 2020; 35:169-181. [PMID: 32340522 DOI: 10.1177/0885328220920457] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Selective laser melting used in manufacturing custom-made titanium implants becomes more popular. In view of the important role played by osteoclasts in peri-implant bone resorption and osseointegration, we modified selective laser melting-manufactured titanium surfaces using sandblasting/alkali-heating and sandblasting/acid-etching, and investigated their effect on osteoclast differentiation as well as their underlying mechanisms. The properties of the surfaces, including elements, roughness, wettability and topography, were analyzed. We evaluated the proliferation and morphology of primary mouse bone marrow-derived monocytes, as well as induced osteoclasts derived from bone marrow-derived monocytes, on samples. Then, osteoclast differentiation was determined by the tartrate-resistant acid phosphatase activity assay, calcitonin receptors immunofluorescence staining and the expression of osteoclast-related genes. The results showed that sandblasting/alkali-heating established nanonet structure with the lowest water contact angle, and both sandblasting/alkali-heating and sandblasting/acid-etching significantly decreased surface roughness and heterogeneity compared with selective laser melting. Surface modifications of selective laser melting-produced titanium altered bone marrow-derived monocyte morphology and suppressed bone marrow-derived monocyte proliferation and osteoclastogenesis in vitro (sandblasting/alkali-heating>sandblasting/acid-etching>selective laser melting). These surface modifications reduced the activation of extracellular signal-regulated kinase and c-Jun N-terminal kinases compared to native-selective laser melting. Sandblasting/alkali-heating additionally blocked tumor necrosis factor receptor-associated factor 6 recruitment. The results suggested that sandblasting/alkali-heating and sandblasting/acid-etching modifications on selective laser melting titanium could inhibit osteoclast differentiation through suppressing extracellular signal-regulated kinase and c-Jun N-terminal kinase phosphorylation in mitogen-activated protein kinase signaling pathway and provide a promising technique which might reduce peri-implant bone resorption for optimizing native-selective laser melting implants.
Collapse
Affiliation(s)
- Jiamin Yang
- Department of Oral Implantology, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, PR China.,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, PR China
| | - Xiaolin Yu
- Department of Oral Implantology, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, PR China.,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, PR China
| | - Zhengchuan Zhang
- Department of Oral Implantology, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, PR China.,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, PR China
| | - Ruogu Xu
- Department of Oral Implantology, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, PR China.,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, PR China
| | - Fan Wu
- Department of Oral Implantology, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, PR China.,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, PR China
| | - Tianlu Wang
- Department of Oral Implantology, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, PR China.,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, PR China
| | - Yun Liu
- Department of Oral Implantology, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, PR China.,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, PR China
| | - Jianglin Ouyang
- Guangzhou Institute of Advanced Technology, Chinese Academy of Science, Guangzhou, PR China.,Guangzhou Janus Biotechnology Co., Ltd, Chinese Academy of Sciences, Guangzhou, PR China
| | - Feilong Deng
- Department of Oral Implantology, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, PR China.,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, PR China
| |
Collapse
|
3
|
Xu X, Hirata H, Shiraki M, Kamohara A, Nishioka K, Miyamoto H, Kukita T, Kukita A. Prostate transmembrane protein androgen induced 1 is induced by activation of osteoclasts and regulates bone resorption. FASEB J 2018; 33:4365-4375. [PMID: 30557043 DOI: 10.1096/fj.201801573r] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Osteoclasts derived from hematopoietic cells are activated on bone surface. To resorb bone, osteoclasts release acid and lysosome acid hydrolase via membrane transport. Prostate transmembrane protein androgen induced 1 (Pmepa1) is a type I transmembrane protein that regulates proliferation, migration, and metastasis of cancer cells. Because recent reports showed that Pmepa1 is involved in membrane transport in cancer cells, we investigated the role of Pmepa1 in osteoclast function. Pmepa1 expression was barely detected in osteoclasts formed on plastic surfaces in vitro, but was markedly increased in activated osteoclasts formed on calcified matrix. Inhibitors of bone resorption, such as alendronate, bafilomycin A1, and the PI3K inhibitor LY294002, suppressed the expression of Pmepa1 in osteoclasts. Knockdown of Pmepa1 expression impaired bone resorption activity and inhibited formation of a ring-like, actin-rich podosome belt that is essential for osteoclast function. Pmepa1 protein localized to lysosomes in osteoclasts. In addition, in sites of bone destruction observed in rats with adjuvant-induced arthritis, a marked high level of Pmepa1 expression was associated with the osteoclasts' resorbing bone. Our results suggest that Pmepa1 is a critical regulator of bone resorption and is a promising marker for activated osteoclasts and a potential therapeutic target in pathologic bone destruction.-Xu, X., Hirata, H., Shiraki, M., Kamohara, A., Nishioka, K., Miyamoto, H., Kukita, T., Kukita, A. Prostate transmembrane protein androgen induced 1 is induced by activation of osteoclasts and regulates bone resorption.
Collapse
Affiliation(s)
- Xianghe Xu
- Department of Pathology and Microbiology, Faculty of Medicine, Saga University, Saga, Japan.,Department of Molecular Cell Biology and Oral Anatomy, Faculty of Dental Science, Kyushu University, Fukuoka, Japan; and
| | - Hirohito Hirata
- Department of Pathology and Microbiology, Faculty of Medicine, Saga University, Saga, Japan
| | - Makoto Shiraki
- Department of Pathology and Microbiology, Faculty of Medicine, Saga University, Saga, Japan
| | - Asana Kamohara
- Department of Pathology and Microbiology, Faculty of Medicine, Saga University, Saga, Japan
| | - Kenichi Nishioka
- Laboratory for Developmental Genetics, RIKEN Center for Integrative Medical Sciences (IMS), Yokohama City, Japan
| | - Hiroshi Miyamoto
- Department of Pathology and Microbiology, Faculty of Medicine, Saga University, Saga, Japan
| | - Toshio Kukita
- Department of Molecular Cell Biology and Oral Anatomy, Faculty of Dental Science, Kyushu University, Fukuoka, Japan; and
| | - Akiko Kukita
- Department of Pathology and Microbiology, Faculty of Medicine, Saga University, Saga, Japan
| |
Collapse
|
4
|
Uehara S, Udagawa N, Kobayashi Y. Non-canonical Wnt signals regulate cytoskeletal remodeling in osteoclasts. Cell Mol Life Sci 2018; 75:3683-3692. [PMID: 30051162 PMCID: PMC6154041 DOI: 10.1007/s00018-018-2881-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 07/18/2018] [Accepted: 07/19/2018] [Indexed: 12/11/2022]
Abstract
Osteoclasts are multinucleated cells responsible for bone resorption. Osteoclasts adhere to the bone surface through integrins and polarize to form actin rings, which are formed by the assembly of podosomes. The area contained within actin rings (also called sealing zones) has an acidic pH, which causes dissolution of bone minerals including hydroxyapatite and the degradation of matrix proteins including type I collagen by the protease cathepsin K. Osteoclasts resorb bone matrices while moving on bone surfaces. Osteoclasts change their cell shapes and exhibit three modes for bone resorption: motile resorbing mode for digging trenches, static resorbing mode for digging pits, and motile non-resorbing mode. Therefore, the actin cytoskeleton is actively remodeled in osteoclasts. Recent studies have revealed that many molecules, such as Rac, Cdc42, Rho, and small GTPase regulators and effectors, are involved in actin cytoskeletal remodeling during the formation of actin rings and resorption cavities on bone slices. In this review, we introduce how these molecules and non-canonical Wnt signaling regulate the bone-resorbing activity of osteoclasts.
Collapse
Affiliation(s)
- Shunsuke Uehara
- Department of Biochemistry, Matsumoto Dental University, Nagano, 399-0781, Japan
| | - Nobuyuki Udagawa
- Department of Biochemistry, Matsumoto Dental University, Nagano, 399-0781, Japan
| | - Yasuhiro Kobayashi
- Institute for Oral Science, Matsumoto Dental University, 1780 Gobara, Hiro-oka, Shiojiri, Nagano, 399-0781, Japan.
| |
Collapse
|
5
|
Subarnbhesaj A, Miyauchi M, Chanbora C, Mikuriya A, Nguyen PT, Furusho H, Ayuningtyas NF, Fujita M, Toratani S, Takechi M, Niida S, Takata T. Roles of VEGF-Flt-1 signaling in malignant behaviors of oral squamous cell carcinoma. PLoS One 2017; 12:e0187092. [PMID: 29149180 PMCID: PMC5693288 DOI: 10.1371/journal.pone.0187092] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 10/15/2017] [Indexed: 12/11/2022] Open
Abstract
Background Vascular endothelial growth factor (VEGF) is a highly specific signaling protein for vascular endothelial cells that plays a critical role in tumor growth and invasion through angiogenesis, and may contribute to cell migration and activation of pre-osteoclasts, osteoclasts and some tumor cells. Objectives We aimed to clarify the detailed roles of VEGF-Flt-1 signaling in bone invasion of oral squamous cell carcinoma (OSCC) cells. Results Forty-two (42) of 54 cases with gingival SCC (77.8%) strongly expressed VEGF, and had a significantly increased number of Flt-1+ osteoclasts (p<0.01) and more aggressive bone invasion (p<0.05). PlGF, a ligand of Flt-1, induced osteoclastogenesis in single culture of bone marrow cells (BMCs), and inhibition of Flt-1-signaling by VEGF tyrosine kinase inhibitor and It’s down stream (Akt and ERK1/2) inhibitos reduced osteoclastogenesis in PlGF-stimulated BMCs (p<0.01). In molecular level, PlGF stimulation significantly upregulated RANKL expression in Flt-1-expressing HSC2 cells via phosphorylation of Akt and ERK1/2. In the co-culture of VEGF-producing HSC2 cells and BMCs, number of TRAP-positive osteoclasts markedly increased (p<0.01). The osteoclastogenesis was significantly inhibited by RANKL-neutralizing antibody (p<0.01) as well as by VEGF tyrosine kinase inhibitor (p<0.01) and it’s downstream (Akt and ERK1/2) inhibitors (p<0.01, p<0.05, respectively). Conclusion VEGF-Flt-1 signaling induces osteoclastogenesis in OSCC through two possible ways: 1) VEGF produced from OSCC cells can directly stimulate the Flt-1 pathway in preosteoclasts to induce migration to future bone resorbing area and differentiation into osteoclasts, and 2) VEGF-Flt-1 signaling upregulates RANKL expression in OSCC cells, which indirectly leads to osteoclast differentiation. Therefore, blocking of the VEGF-Flt-1 signaling may help inhibit bone invasion of OSCC.
Collapse
Affiliation(s)
- Ajiravudh Subarnbhesaj
- Department of Oral and Maxillofacial Pathobiology, School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Mutsumi Miyauchi
- Department of Oral and Maxillofacial Pathobiology, School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
- * E-mail: (MM); (TT)
| | - Chea Chanbora
- Department of Oral and Maxillofacial Pathobiology, School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Aki Mikuriya
- Department of Oral and Maxillofacial Pathobiology, School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Phuong Thao Nguyen
- Department of Global Dental Medicine and Pharmacy at Ho Chi Minh city, Integrated Health Sciences, School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Hisako Furusho
- Department of Oral and Maxillofacial Pathobiology, School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Nurina Febriyanti Ayuningtyas
- Department of Oral and Maxillofacial Pathobiology, School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Minoru Fujita
- Department of Oral and Maxillofacial Radiology, Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Shigeaki Toratani
- Department of Molecular Oral Medicine and Maxillofacial Surgery, Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima University, Hiroshima, Japan
| | - Masaaki Takechi
- Department of Oral and Maxillofacial Surgery, Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Shumpei Niida
- Biobank, Medical Genome Center, National Center for Geriatrics and Gerontology, Obu, Japan
| | - Takashi Takata
- Department of Oral and Maxillofacial Pathobiology, School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
- * E-mail: (MM); (TT)
| |
Collapse
|
6
|
Sun J, Li J, Li H, Yang H, Chen J, Yang B, Huo F, Guo W, Tian W. tBHQ Suppresses Osteoclastic Resorption in Xenogeneic-Treated Dentin Matrix-Based Scaffolds. Adv Healthc Mater 2017; 6. [PMID: 28696515 DOI: 10.1002/adhm.201700127] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2017] [Revised: 04/28/2017] [Indexed: 02/05/2023]
Abstract
Extracellularmatrix (ECM)-based scaffolds are important for their potential therapeutic application. Treated dentin matrix (TDM), a kind of ECM, seeded with allogeneic dental follicle stem cells (TDM/aDFC) provides a suitable inductive microenvironment for tooth root regeneration. Considering the limited sources, xenogeneic TDM (xTDM) is a possible alternative to allogeneic TDM; however, xTDM-based scaffold presents severe osteolysis and resorption lacunae causing regenerated tooth root failure. Immune response-induced excessive osteoclastogenesis plays a critical role in xenogeneic scaffold osteolysis and resorption. The impact of antioxidant, tert-butylhydroquinone (tBHQ), on xTDM/aDFCs-induced osteoclastogenesis and osteoclastic resorption in vivo and in vitro are investigated. tBHQ upregulates heme oxygenase-1 release and downregulates high mobility group box 1 mRNA expression. mRNA expression of other osteoclast-related genes including nuclear factor-kappa Bp65, receptor activator of nuclear factor kappa-B, nuclear factor of activated T-cells cytoplasmic 1, cathepsin K, and integrin β3, also decreases significantly. Furthermore, tBHQ-treated xTDM/aDFCs scaffolds implanted into rhesus macaques show reduced osteolysis and osteoclastic resorption by microcomputed tomography and tartrate-resistant acid phosphatase staining. tBHQ-induced suppression of xTDM/aDFC-induced osteoclastogenesis and osteoclastic resorption presents a new strategy for the regeneration of biological tooth root and could be applied to the regeneration of other complex tissues and organs.
Collapse
Affiliation(s)
- Jingjing Sun
- National Engineering Laboratory for Oral Regenerative Medicine West China Hospital of Stomatology Sichuan University Chengdu 610041 China
- Department of Oral and Maxillofacial Surgery West China School of Stomatology Sichuan University Chengdu 610041 China
| | - Jie Li
- National Engineering Laboratory for Oral Regenerative Medicine West China Hospital of Stomatology Sichuan University Chengdu 610041 China
- Department of Oral and Maxillofacial Surgery West China School of Stomatology Sichuan University Chengdu 610041 China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences College of Stomatology Chongqing Medical University Chongqing 401147 China
| | - Hui Li
- National Engineering Laboratory for Oral Regenerative Medicine West China Hospital of Stomatology Sichuan University Chengdu 610041 China
- Department of Oral and Maxillofacial Surgery West China School of Stomatology Sichuan University Chengdu 610041 China
| | - Hefeng Yang
- Department of Dental Research The Affiliated Stomatological Hospital of Kunming Medical University Kunming 650031 China
| | - Jinlong Chen
- National Engineering Laboratory for Oral Regenerative Medicine West China Hospital of Stomatology Sichuan University Chengdu 610041 China
- Department of Oral and Maxillofacial Surgery West China School of Stomatology Sichuan University Chengdu 610041 China
| | - Bo Yang
- National Engineering Laboratory for Oral Regenerative Medicine West China Hospital of Stomatology Sichuan University Chengdu 610041 China
- Department of Oral and Maxillofacial Surgery West China School of Stomatology Sichuan University Chengdu 610041 China
| | - Fangjun Huo
- National Engineering Laboratory for Oral Regenerative Medicine West China Hospital of Stomatology Sichuan University Chengdu 610041 China
- Department of Oral and Maxillofacial Surgery West China School of Stomatology Sichuan University Chengdu 610041 China
| | - Weihua Guo
- National Engineering Laboratory for Oral Regenerative Medicine West China Hospital of Stomatology Sichuan University Chengdu 610041 China
- Department of Oral and Maxillofacial Surgery West China School of Stomatology Sichuan University Chengdu 610041 China
- Department of Pediatric Dentistry West China School of Stomatology Sichuan University Chengdu 610041 China
| | - Weidong Tian
- National Engineering Laboratory for Oral Regenerative Medicine West China Hospital of Stomatology Sichuan University Chengdu 610041 China
- Department of Oral and Maxillofacial Surgery West China School of Stomatology Sichuan University Chengdu 610041 China
| |
Collapse
|
7
|
Uehara S, Udagawa N, Mukai H, Ishihara A, Maeda K, Yamashita T, Murakami K, Nishita M, Nakamura T, Kato S, Minami Y, Takahashi N, Kobayashi Y. Protein kinase N3 promotes bone resorption by osteoclasts in response to Wnt5a-Ror2 signaling. Sci Signal 2017; 10:10/494/eaan0023. [DOI: 10.1126/scisignal.aan0023] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
8
|
Yamashita T, Udagawa N, Thirukonda GJ, Uehara S, Yamauchi H, Suzuki N, Li F, Kobayashi Y, Takahashi N. Platypus and opossum calcitonins exhibit strong activities, even though they belong to mammals. Gen Comp Endocrinol 2017; 246:270-278. [PMID: 28062306 DOI: 10.1016/j.ygcen.2017.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Revised: 01/01/2017] [Accepted: 01/02/2017] [Indexed: 10/20/2022]
Abstract
In mammalian assay systems, calcitonin peptides of non-mammalian species exhibit stronger activity than those of mammals. Recently, comparative analyses of a wide-range of species revealed that platypus and opossum, which diverged early from other mammals, possess calcitonins that are more similar in amino acid sequence to those of non-mammals than mammals. We herein determined whether platypus and opossum calcitonins exhibit similar biological activities to those of non-mammalian calcitonins using an assay of actin ring formation in mouse osteoclasts. We also compared the dose-dependent effects of each calcitonin on cAMP production in osteoclasts. Consistent with the strong similarities in their primary amino acid sequences, platypus and opossum calcitonins disrupted actin rings with similar efficacies to that of salmon calcitonin. Human calcitonin exhibited the weakest inhibitory potency and required a 100-fold higher concentration (EC50=3×10-11M) than that of salmon calcitonin (EC50=2×10-13M). Platypus and opossum calcitonins also induced cAMP production in osteoclast cultures with the same efficacies as that of salmon calcitonin. Thus, platypus and opossum calcitonins exhibited strong biological activities, similar to those of the salmon. In addition, phylogenetic analysis revealed that platypus and opossum calcitonins clustered with the salmon-type group but not human- or porcine-type group. These results suggest that platypus and opossum calcitonins are classified into the salmon-type group, in terms of the biological activities and amino acid sequences.
Collapse
Affiliation(s)
- Teruhito Yamashita
- Institute for Oral Science, Matsumoto Dental University, 1780 Hirooka-Gobara, Shiojiri, Nagano 399-0781, Japan.
| | - Nobuyuki Udagawa
- Department of Oral Biochemistry, Matsumoto Dental University, 1780 Hirooka-Gobara, Shiojiri, Nagano 399-0781, Japan
| | | | - Shunsuke Uehara
- Department of Oral Biochemistry, Matsumoto Dental University, 1780 Hirooka-Gobara, Shiojiri, Nagano 399-0781, Japan
| | - Hirose Yamauchi
- Institute for Oral Science, Matsumoto Dental University, 1780 Hirooka-Gobara, Shiojiri, Nagano 399-0781, Japan; Japan Osteoporosis Foundation, 11-2 Nihonbashi-kobunacho, Chuo-ku, Tokyo 103-0024, Japan
| | - Nobuo Suzuki
- Noto Marine Laboratory, Institute of Nature and Environment Technology, Kanazawa University, 4-1 Ogi, Noto-cho, Ishikawa 927-0553, Japan
| | - Feng Li
- Institute of Nature Medicine, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| | - Yasuhiro Kobayashi
- Institute for Oral Science, Matsumoto Dental University, 1780 Hirooka-Gobara, Shiojiri, Nagano 399-0781, Japan
| | - Naoyuki Takahashi
- Institute for Oral Science, Matsumoto Dental University, 1780 Hirooka-Gobara, Shiojiri, Nagano 399-0781, Japan
| |
Collapse
|
9
|
Morishita K, Tatsukawa E, Shibata Y, Suehiro F, Kamitakahara M, Yokoi T, Ioku K, Umeda M, Nishimura M, Ikeda T. Diversity of multinucleated giant cells by microstructures of hydroxyapatite and plasma components in extraskeletal implantation model. Acta Biomater 2016; 39:180-191. [PMID: 27154501 DOI: 10.1016/j.actbio.2016.05.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Revised: 04/15/2016] [Accepted: 05/02/2016] [Indexed: 01/08/2023]
Abstract
UNLABELLED Foreign body giant cells (FBGCs) and osteoclasts are multinucleated giant cells (MNGCs), both of which are formed by the fusion of macrophage-derived mononuclear cells. Osteoclasts are distinct from FBGCs due to their bone resorption ability; however, not only morphological, but also functional similarities may exist between these cells. The characterization and diversity of FBGCs that appear in an in vivo foreign body reaction currently remain incomplete. In the present study, we investigated an in vivo foreign body reaction using an extraskeletal implantation model of hydroxyapatite (HA) with different microstructures. The implantation of HA granules in rat subcutaneous tissue induced a foreign body reaction that was accompanied by various MNGCs. HA granules composed of rod-shaped particles predominantly induced cathepsin K (CTSK)-positive FBGCs, whereas HA granules composed of globular-shaped particles predominantly induced CTSK-negative FBGCs. Plasma, which was used as the binder of ceramic granules, stimulated the induction of CTSK-positive FBGCs more strongly than purified fibrin. Furthermore, the implantation of HA composed of rod-shaped particles with plasma induced tartrate-resistant acid phosphatase (TRAP)-positive MNGCs in contrast to HA composed of globular-shaped particles with purified fibrin, which predominantly induced CTSK-negative and TRAP-negative typical FBGCs. These results suggest that CTSK-positive, TRAP-positive, and CTSK- and TRAP-negative MNGCs are induced in this subcutaneous implantation model in a manner that is dependent on the microstructure of HA and presence or absence of plasma. STATEMENT OF SIGNIFICANCE We attempted to elucidate the mechanisms responsible for the foreign body reaction induced by the implantation of hydroxyapatite granules with different microstructures in rat subcutaneous tissue with or without plasma components as the binder of ceramic granules. By analyzing the expression of two reliable osteoclast markers, we detected tartrate-resistant acid phosphatase-positive multinucleated giant cells, cathepsin K-positive multinucleated giant cells, and tartrate-resistant acid phosphatase- and cathepsin K-negative multinucleated giant cells. The induction of tartrate-resistant acid phosphatase-positive multinucleated giant cells was plasma component-dependent while the induction of cathepsin K-positive multinucleated giant cells was influenced by the microstructure of hydroxyapatite. This is the first study to show the conditions dividing the three kinds of multinucleated giant cells in the foreign body reaction.
Collapse
Affiliation(s)
- Kota Morishita
- Department of Clinical Oncology, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki 852-8588, Japan; Department of Oral Pathology and Bone Metabolism, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki 852-8588, Japan
| | - Eri Tatsukawa
- Department of Oral Pathology and Bone Metabolism, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki 852-8588, Japan
| | - Yasuaki Shibata
- Department of Oral Pathology and Bone Metabolism, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki 852-8588, Japan
| | - Fumio Suehiro
- Department of Prosthodontics, Kagoshima University Graduate School, 8-35-1 Sakuragaoka, Kagoshima 890-8544, Japan
| | - Masanobu Kamitakahara
- Graduate School of Environmental Studies, Tohoku University, 6-6-20 Aramaki, Aoba-ku, Sendai, Miyagi 980-8579, Japan
| | - Taishi Yokoi
- Graduate School of Environmental Studies, Tohoku University, 6-6-20 Aramaki, Aoba-ku, Sendai, Miyagi 980-8579, Japan
| | - Koji Ioku
- Department of Chemistry, Faculty of Economics, Keio University, 4-4-1 Yokohama, Kanagawa 223-8521, Japan
| | - Masahiro Umeda
- Department of Clinical Oncology, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki 852-8588, Japan
| | - Masahiro Nishimura
- Department of Prosthodontics, Kagoshima University Graduate School, 8-35-1 Sakuragaoka, Kagoshima 890-8544, Japan
| | - Tohru Ikeda
- Department of Oral Pathology and Bone Metabolism, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki 852-8588, Japan.
| |
Collapse
|
10
|
Thirukonda GJ, Uehara S, Nakayama T, Yamashita T, Nakamura Y, Mizoguchi T, Takahashi N, Yagami K, Udagawa N, Kobayashi Y. The dynamin inhibitor dynasore inhibits bone resorption by rapidly disrupting actin rings of osteoclasts. J Bone Miner Metab 2016; 34:395-405. [PMID: 26063501 DOI: 10.1007/s00774-015-0683-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Accepted: 05/09/2015] [Indexed: 01/02/2023]
Abstract
The cytoskeletal organization of osteoclasts is required for bone resorption. Binding of dynamin with guanosine triphosphate (GTP) was previously suggested to be required for the organization of the actin cytoskeleton. However, the role of the GTPase activity of dynamin in the organization of the actin cytoskeleton as well as in the bone-resorbing activity of osteoclasts remains unclear. This study investigated the effects of dynasore, an inhibitor of the GTPase activity of dynamin, on the bone-resorbing activity of and actin ring formation in mouse osteoclasts in vitro and in vivo. Dynasore inhibited the formation of resorption pits in osteoclast cultures by suppressing actin ring formation and rapidly disrupting actin rings in osteoclasts. A time-lapse image analysis showed that dynasore shrank actin rings in osteoclasts within 30 min. The intraperitoneal administration of dynasore inhibited receptor activator of nuclear factor κB ligand (RANKL)-induced trabecular bone loss in mouse femurs. These in vitro and in vivo results suggest that the GTPase activity of dynamin is critical for the bone-resorbing activity of osteoclasts and that dynasore is a seed for the development of novel anti-resorbing agents.
Collapse
Affiliation(s)
- Gnanasagar J Thirukonda
- Institute for Oral Science, Matsumoto Dental University, 1780 Gobara, Hiro-oka, Shiojiri-shi, Nagano, 399-0781, Japan
| | - Shunsuke Uehara
- Department of Biochemistry, Matsumoto Dental University, Nagano, 399-0781, Japan
| | - Takahiro Nakayama
- Department of Periodontology, Matsumoto Dental University, Nagano, 399-0781, Japan
| | - Teruhito Yamashita
- Institute for Oral Science, Matsumoto Dental University, 1780 Gobara, Hiro-oka, Shiojiri-shi, Nagano, 399-0781, Japan
| | - Yukio Nakamura
- Department of Orthopaedic Surgery, School of Medicine, Shinshu University, Nagano, 390-8621, Japan
| | - Toshihide Mizoguchi
- Institute for Oral Science, Matsumoto Dental University, 1780 Gobara, Hiro-oka, Shiojiri-shi, Nagano, 399-0781, Japan
| | - Naoyuki Takahashi
- Institute for Oral Science, Matsumoto Dental University, 1780 Gobara, Hiro-oka, Shiojiri-shi, Nagano, 399-0781, Japan
| | - Kimitoshi Yagami
- Department of Oral Implantology, Matsumoto Dental University, Nagano, 399-0781, Japan
| | - Nobuyuki Udagawa
- Department of Biochemistry, Matsumoto Dental University, Nagano, 399-0781, Japan
| | - Yasuhiro Kobayashi
- Institute for Oral Science, Matsumoto Dental University, 1780 Gobara, Hiro-oka, Shiojiri-shi, Nagano, 399-0781, Japan.
| |
Collapse
|
11
|
Zhao H, Liu X, Zou H, Dai N, Yao L, Zhang X, Gao Q, Liu W, Gu J, Yuan Y, Bian J, Liu Z. Osteoprotegerin disrupts peripheral adhesive structures of osteoclasts by modulating Pyk2 and Src activities. Cell Adh Migr 2016; 10:299-309. [PMID: 26743491 DOI: 10.1080/19336918.2015.1129480] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Osteoprotegerin has previously been shown to modulate bone mass by blocking osteoclast maturation and function. The detailed mechanisms of osteoprotegerin-induced disassembly of podosomes, disruption of adhesive structures and modulation of adhesion-related proteins in osteoclasts, however, are not well characterized. In this study, tartrate-resistant acidic phosphatase staining demonstrated that osteoprotegerin inhibited differentiation of osteoclasts. The use of scanning electron microscopy, real-time cell monitoring and confocal microscopy indicated that osteoclasts responded in a time and dose-dependent manner to osteoprotegerin treatments with retraction of peripheral adhesive structures and detachment from the extracellular substrate. Combined imaging and Western blot studies showed that osteoprotegerin induced dephosphorylation of Tyr 402 in Pyk2 and decreased its labeling in peripheral adhesion regions. osteoprotegerin induced increased intracellular labeling of Tyr 402 in Pyk2, Tyr 416 in Src, increased dephosphorylation of Tyr 527 in Src, and increased Pyk2/Src association in the central region of osteoclasts. This evidence suggests that Src may function as an adaptor protein that competes for Pyk2 and relocates it from the peripheral adhesive zone to the central region of osteoclasts in response to osteoprotegerin treatment. Osteoprotegerin may induce podosome reassembly and peripheral adhesive structure detachment by modulating phosphorylation of Pyk2 and Src and their intracellular distribution in osteoclasts.
Collapse
Affiliation(s)
- Hongyan Zhao
- a College of Veterinary Medicine, Yangzhou University , Yangzhou , Jiangsu , P.R. China.,b Jiangsu Co-innovation Center for Prevention and Control of Important, Animal Infectious Diseases and Zoonoses , Yangzhou , Jiangsu , P.R. China
| | - Xuezhong Liu
- a College of Veterinary Medicine, Yangzhou University , Yangzhou , Jiangsu , P.R. China.,b Jiangsu Co-innovation Center for Prevention and Control of Important, Animal Infectious Diseases and Zoonoses , Yangzhou , Jiangsu , P.R. China
| | - Hui Zou
- a College of Veterinary Medicine, Yangzhou University , Yangzhou , Jiangsu , P.R. China.,b Jiangsu Co-innovation Center for Prevention and Control of Important, Animal Infectious Diseases and Zoonoses , Yangzhou , Jiangsu , P.R. China
| | - Nannan Dai
- a College of Veterinary Medicine, Yangzhou University , Yangzhou , Jiangsu , P.R. China.,b Jiangsu Co-innovation Center for Prevention and Control of Important, Animal Infectious Diseases and Zoonoses , Yangzhou , Jiangsu , P.R. China
| | - Lulian Yao
- a College of Veterinary Medicine, Yangzhou University , Yangzhou , Jiangsu , P.R. China.,b Jiangsu Co-innovation Center for Prevention and Control of Important, Animal Infectious Diseases and Zoonoses , Yangzhou , Jiangsu , P.R. China
| | - Xiao Zhang
- a College of Veterinary Medicine, Yangzhou University , Yangzhou , Jiangsu , P.R. China.,b Jiangsu Co-innovation Center for Prevention and Control of Important, Animal Infectious Diseases and Zoonoses , Yangzhou , Jiangsu , P.R. China
| | - Qian Gao
- a College of Veterinary Medicine, Yangzhou University , Yangzhou , Jiangsu , P.R. China.,b Jiangsu Co-innovation Center for Prevention and Control of Important, Animal Infectious Diseases and Zoonoses , Yangzhou , Jiangsu , P.R. China
| | - Wei Liu
- a College of Veterinary Medicine, Yangzhou University , Yangzhou , Jiangsu , P.R. China.,b Jiangsu Co-innovation Center for Prevention and Control of Important, Animal Infectious Diseases and Zoonoses , Yangzhou , Jiangsu , P.R. China
| | - Jianhong Gu
- a College of Veterinary Medicine, Yangzhou University , Yangzhou , Jiangsu , P.R. China.,b Jiangsu Co-innovation Center for Prevention and Control of Important, Animal Infectious Diseases and Zoonoses , Yangzhou , Jiangsu , P.R. China
| | - Yan Yuan
- a College of Veterinary Medicine, Yangzhou University , Yangzhou , Jiangsu , P.R. China.,b Jiangsu Co-innovation Center for Prevention and Control of Important, Animal Infectious Diseases and Zoonoses , Yangzhou , Jiangsu , P.R. China
| | - Jianchun Bian
- a College of Veterinary Medicine, Yangzhou University , Yangzhou , Jiangsu , P.R. China.,b Jiangsu Co-innovation Center for Prevention and Control of Important, Animal Infectious Diseases and Zoonoses , Yangzhou , Jiangsu , P.R. China
| | - Zongping Liu
- a College of Veterinary Medicine, Yangzhou University , Yangzhou , Jiangsu , P.R. China.,b Jiangsu Co-innovation Center for Prevention and Control of Important, Animal Infectious Diseases and Zoonoses , Yangzhou , Jiangsu , P.R. China
| |
Collapse
|
12
|
Wang T, Wang Q, Song R, Zhang Y, Zhang K, Yuan Y, Bian J, Liu X, Gu J, Liu Z. Autophagy Plays a Cytoprotective Role During Cadmium-Induced Oxidative Damage in Primary Neuronal Cultures. Biol Trace Elem Res 2015; 168:481-9. [PMID: 26041154 DOI: 10.1007/s12011-015-0390-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Accepted: 05/26/2015] [Indexed: 11/30/2022]
Abstract
Cadmium (Cd) induces significant oxidative damage in cells. Recently, it was reported that autophagy could be induced by Cd in neurons. However, little is known about the role of reactive oxygen species (ROS) during Cd-induced autophagy. In our study, we examined the cross-talk between ROS and autophagy by using N-acetyl cysteine (NAC, an antioxidant) and chloroquine (CQ, a pharmacological inhibitor of autophagy) in a primary rat neuronal cell cultures. We observed accumulation of acidic vesicular organelles and the increased expression of endogenous protein light chain 3 (LC3) in Cd-treated neurons, revealing that Cd induced a high level of autophagy. Moreover, increased levels of ROS were observed in neurons treated with Cd, showing that ROS accumulation was closely associated with neuron's exposure to Cd. Furthermore, we found that autophagy was inhibited by using CQ and/or NAC with further aggravation of mitochondrial damage, lactate dehydrogenase (LDH) leakage and hypoploid apoptotic cell number in Cd-treated neurons. These results proved that autophagy has a cytoprotective role during Cd-induced toxicity in neurons, and it can prevent the oxidative damage. These findings may enable the development of novel therapeutic strategies for neurological diseases.
Collapse
Affiliation(s)
- Tao Wang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, People's Republic of China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, People's Republic of China
| | - Qiwen Wang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, People's Republic of China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, People's Republic of China
- Bijie Pilot Area Research Institute of Bijie University, Bijie, 551700, People's Republic of China
| | - Ruilong Song
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, People's Republic of China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, People's Republic of China
| | - Yajing Zhang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, People's Republic of China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, People's Republic of China
| | - Kangbao Zhang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, People's Republic of China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, People's Republic of China
| | - Yan Yuan
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, People's Republic of China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, People's Republic of China
| | - Jianchun Bian
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, People's Republic of China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, People's Republic of China
| | - Xuezhong Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, People's Republic of China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, People's Republic of China
| | - Jianhong Gu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, People's Republic of China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, People's Republic of China
| | - Zongping Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, People's Republic of China.
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, People's Republic of China.
| |
Collapse
|
13
|
Kobayashi Y, Thirukonda GJ, Nakamura Y, Koide M, Yamashita T, Uehara S, Kato H, Udagawa N, Takahashi N. Wnt16 regulates osteoclast differentiation in conjunction with Wnt5a. Biochem Biophys Res Commun 2015; 463:1278-83. [PMID: 26093292 DOI: 10.1016/j.bbrc.2015.06.102] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Accepted: 06/15/2015] [Indexed: 10/23/2022]
Abstract
The canonical Wnt/β-catenin signaling pathway in osteoblast-lineage cells inhibits osteoclastogenesis through the expression of osteoprotegerin (Opg), a decoy receptor of receptor activator of Nf-κb (Rank) ligands. Wnt5a, a typical non-canonical Wnt ligand, enhances the expression of Rank in osteoclast precursors, which, in turn, promotes the Rank ligand (Rankl)-induced formation of osteoclasts. In contrast, Wnt16 and Wnt4 have been shown to inhibit the Rankl-induced formation of osteoclasts through non-canonical Wnt signals. However, the relationships among these Wnt ligands in osteoclastogenesis remained to be elucidated. We herein showed that Wnt16, but not Wnt4, inhibited the Rankl-induced osteoclastogenesis in bone marrow-derived macrophage (BMM) cultures. Wnt3a and Wnt4 inhibited the 1α,25-dihydroxy vitamin D3 (1,25D3)-induced osteoclastogenesis in co-cultures prepared from wild-type mice, but not in those from Opg(-/-) nice. Wnt16 inhibited the 1,25D3-induced formation of osteoclasts in both wild-type and Opg(-/-) co-cultures. Wnt16, Wnt4, and Wnt3a failed to inhibit the pit-forming activity of osteoclasts. Wnt16 failed to inhibit the Wnt5a-induced expression of Rank in osteoclast precursors. In contrast, Wnt5a abrogated the inhibitory effects of Wnt16 on Rankl-induced osteoclastogenesis. These results suggested that Wnt16 inhibited osteoclastogenesis, but not the function of osteoclasts and that Wnt16, an inhibitory Wnt ligand for osteoclastogenesis, regulates bone resorption in conjunction with Wnt5a.
Collapse
Affiliation(s)
- Yasuhiro Kobayashi
- Institute for Oral Science, Matsumoto Dental University, Nagano 399-0781, Japan.
| | | | - Yukio Nakamura
- Department of Orthopaedic Surgery, School of Medicine, Shinshu University, Nagano 390-8621, Japan
| | - Masanori Koide
- Institute for Oral Science, Matsumoto Dental University, Nagano 399-0781, Japan
| | - Teruhito Yamashita
- Institute for Oral Science, Matsumoto Dental University, Nagano 399-0781, Japan
| | - Shunsuke Uehara
- Department of Biochemistry, Matsumoto Dental University, Nagano 399-0781, Japan
| | - Hiroyuki Kato
- Department of Orthopaedic Surgery, School of Medicine, Shinshu University, Nagano 390-8621, Japan
| | - Nobuyuki Udagawa
- Department of Biochemistry, Matsumoto Dental University, Nagano 399-0781, Japan
| | - Naoyuki Takahashi
- Institute for Oral Science, Matsumoto Dental University, Nagano 399-0781, Japan
| |
Collapse
|
14
|
Nakayama T, Thirukonda GJ, Nagasawa S, Kawahara I, Udagawa N, Yagami K, Kawatani M, Osada H, Doi Y, Yoshinari N, Takahashi N. Polarization of osteoclasts on dental implant materials is similar to that observed on bone. J Oral Biosci 2014. [DOI: 10.1016/j.job.2014.06.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
15
|
Li S, Liu B, Zhang L, Rong L. Amyloid beta peptide is elevated in osteoporotic bone tissues and enhances osteoclast function. Bone 2014; 61:164-75. [PMID: 24473375 DOI: 10.1016/j.bone.2014.01.010] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Revised: 12/23/2013] [Accepted: 01/17/2014] [Indexed: 12/13/2022]
Abstract
PURPOSE Epidemiological studies show that patients with Alzheimer's disease (AD) have an increased risk of developing osteoporotic hip fracture. However, whether abnormal amyloid beta peptide (Aβ) deposition, one of the pathological hallmarks of AD, also occurs in osteoporosis and the relationship between Aβ and human osteoporosis remain unknown. This study addressed these issues. METHODS Forty-five female patients (osteoporosis 21, osteopenia 16 and normal 8) with osteoporotic/traumatic vertebral compression fractures were enrolled and Aβ42 and amyloid precursor protein (APP) levels assessed in the biopsy specimens of vertebral trabecular bone using immunohistochemistry (IHC) staining and semi-quantitative evaluation assays. Spearman rank correlation analysis was applied to explore the association between Aβ42/APP levels and the corresponding bone mineral density (BMD). Moreover, immunofluorescent assays and laser scanning confocal microscopy assays were used to examine the expression patterns of Aβ42/APP in patient bone tissues and osteocytes. Additionally, eight female patients with osteoporotic/traumatic femoral neck fractures, including two control patients were selected and Aβ42 and APP were identified in the femoral necks by RT-PCR and Western blotting (WB) assays. Next, a rat model of ovariectomy-induced osteoporosis was created and we evaluated Aβ42 and APP expression differences in the proximal tibia by IHC and RT-PCR and WB assays in comparison with a sham-operation group. Finally, the RAW264.7 cell line and human bone marrow monocyte (hBMMC) derived osteoclasts and human Aβ42 co-culture assays were performed to investigate the effect of Aβ42 on osteoclasts cell viability, number, differentiation and activation by the Cell Counting Kit-8 assay, tartrate resistant acid phosphatase staining assay, RT-PCR assay measuring the lytic gene expression and hydroxyapatite resorption assay respectively. RESULTS The mRNA and protein expression levels of Aβ42 and APP were elevated remarkably in the osteoporotic bone tissues both from human and ovariectomized rats when compared with the age-/sex-matched controls. Moreover, the expression levels had a negative correlation with corresponding BMD in patients (RAβ42=-0.617, p<0.0001; RAPP=-0.531, p=0.0002). In addition, Aβ42 was located mainly in the membrane and cytoplasm of osteocytes and in the extracellular matrix, while APP was largely located in the membrane of the osteocytes. Finally, Aβ42 can potently enhance osteoclasts differentiation and activation but had no effect on osteoclasts cell viability or number (dose- and time-dependency did not exist and oligomerization of Aβ42 was not a prerequisite in the osteoclastogenesis assay). CONCLUSIONS Aβ is relevant to human osteoporosis and may have an important role in the pathogenesis of osteoporosis.
Collapse
Affiliation(s)
- Shangfu Li
- Department of Spine Surgery, the Third Affiliated Hospital of Sun Yat-sen University, TianHe Road 600, TianHe District, Guangzhou Guangdong, 510630, PR China.
| | - Bin Liu
- Department of Spine Surgery, the Third Affiliated Hospital of Sun Yat-sen University, TianHe Road 600, TianHe District, Guangzhou Guangdong, 510630, PR China.
| | - Liangming Zhang
- Department of Spine Surgery, the Third Affiliated Hospital of Sun Yat-sen University, TianHe Road 600, TianHe District, Guangzhou Guangdong, 510630, PR China.
| | - Limin Rong
- Department of Spine Surgery, the Third Affiliated Hospital of Sun Yat-sen University, TianHe Road 600, TianHe District, Guangzhou Guangdong, 510630, PR China.
| |
Collapse
|
16
|
Zhang Q, Liu M, Zhou Y, Liu W, Shen J, Shen Y, Liu L. The effect of alendronate on the expression of important cell factors in osteoclasts. Mol Med Rep 2013; 8:1195-203. [PMID: 23942871 DOI: 10.3892/mmr.2013.1630] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Accepted: 06/24/2013] [Indexed: 11/05/2022] Open
Abstract
This study investigated the effects of alendronate (ALN) on critical cell factors in osteoclasts. RAW 264.7 cells were induced by sRANKL to change to mature osteoclasts. On the sixth day of incubation, the osteoclasts were treated with ALN at various concentrations and for different incubation times. The concentration groups included 10-5 M, 10-6 M and 10-7 M ALN, respectively. The cells were incubated for 0 (control group), 2, 4, 6 and 8 h for each dose group. The mRNA and protein expression of tartrate‑resistant acid phosphatase, carbonic anhydrase II, osteoclast‑associated receptor and FAS/FASL genes in osteoclasts was analyzed. A concentration- and time‑dependent decrease in the mRNA and protein expression levels of the five genes was observed, and no significant difference between the two control groups was observed (P>0.05). Notably, significant differences between any two experimental groups were observed (P<0.05). Thus, ALN significantly decreased the expression of critical factors involved in osteoclast function.
Collapse
Affiliation(s)
- Qinghong Zhang
- Department of Prosthodontics, Stomatology Hospital, College of Medical Sciences, Zhejiang University, Hangzhou, Zhejiang 310006, P.R. China
| | | | | | | | | | | | | |
Collapse
|
17
|
Fu YX, Gu JH, Zhang YR, Tong XS, Zhao HY, Yuan Y, Liu XZ, Bian JC, Liu ZP. Inhibitory effects of osteoprotegerin on osteoclast formation and function under serum-free conditions. J Vet Sci 2013; 14:405-12. [PMID: 23820214 PMCID: PMC3885733 DOI: 10.4142/jvs.2013.14.4.405] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Accepted: 02/16/2013] [Indexed: 12/31/2022] Open
Abstract
The purpose of this study was to determine whether osteoprotegerin (OPG) could affect osteoclat differentiation and activation under serum-free conditions. Both duck embryo bone marrow cells and RAW264.7 cells were incubated with macrophage colony stimulatory factor (M-CSF) and receptor activator for nuclear factor κB ligand (RANKL) in serum-free medium to promote osteoclastogenesis. During cultivation, 0, 10, 20, 50, and 100 ng/mL OPG were added to various groups of cells. Osteoclast differentiation and activation were monitored via tartrate-resistant acid phosphatase (TRAP) staining, filamentous-actin rings analysis, and a bone resorption assay. Furthermore, the expression osteoclast-related genes, such as TRAP and receptor activator for nuclear factor κB (RANK), that was influenced by OPG in RAW264.7 cells was examined using real-time polymerase chain reaction. In summary, findings from the present study suggested that M-CSF with RANKL can promote osteoclast differentiation and activation, and enhance the expression of TRAP and RANK mRNA in osteoclasts. In contrast, OPG inhibited these activities under serum-free conditions.
Collapse
Affiliation(s)
- Ying-Xiao Fu
- College of Veterinary Medicine, Yangzhou University, and Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Hirvonen MJ, Fagerlund K, Lakkakorpi P, Väänänen HK, Mulari MTK. Novel perspectives on the transcytotic route in osteoclasts. BONEKEY REPORTS 2013; 2:306. [PMID: 23951543 PMCID: PMC3722746 DOI: 10.1038/bonekey.2013.40] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2012] [Accepted: 02/08/2013] [Indexed: 11/09/2022]
Abstract
We analyzed the characteristics of degraded bone matrix-delivering vesicles along the transcytotic route from the ruffled border to the functional secretory domain (FSD) in bone-penetrating osteoclasts. Cells of rat or human origin were cultured on bovine bone slices and analyzed via confocal microscopy. Helix pomatia lectin binding indicated that transcytotic vesicles expose aberrant N-acetylgalactosamine glycoconjugates, which is associated with a poor prognosis for a range of metastasizing human adenocarcinomas. Transcytotic vesicles fuse with the autophagosomal compartments and represent raft concentrates. Furthermore, the results of a vertical vesicle analysis suggest that multiple vesicle populations arise from the ruffled border and that some of these vesicles undergo a maturation process along the transcytotic route. Finally, our data suggest that the targeting of these membrane pathways may be determined by a novel F-actin-containing and FSD-circumscribing molecular barrier.
Collapse
Affiliation(s)
- Mirkka J Hirvonen
- Department of Cell Biology and Anatomy, Institute of Biomedicine, University of Turku , Turku, Finland
| | | | | | | | | |
Collapse
|
19
|
Kikuta J, Wada Y, Kowada T, Wang Z, Sun-Wada GH, Nishiyama I, Mizukami S, Maiya N, Yasuda H, Kumanogoh A, Kikuchi K, Germain RN, Ishii M. Dynamic visualization of RANKL and Th17-mediated osteoclast function. J Clin Invest 2013; 123:866-73. [PMID: 23321670 DOI: 10.1172/jci65054] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2012] [Accepted: 11/29/2012] [Indexed: 11/17/2022] Open
Abstract
Osteoclasts are bone resorbing, multinucleate cells that differentiate from mononuclear macrophage/monocyte-lineage hematopoietic precursor cells. Although previous studies have revealed important molecular signals, how the bone resorptive functions of such cells are controlled in vivo remains less well characterized. Here, we visualized fluorescently labeled mature osteoclasts in intact mouse bone tissues using intravital multiphoton microscopy. Within this mature population, we observed cells with distinct motility behaviors and function, with the relative proportion of static - bone resorptive (R) to moving - nonresorptive (N) varying in accordance with the pathophysiological conditions of the bone. We also found that rapid application of the osteoclast-activation factor RANKL converted many N osteoclasts to R, suggesting a novel point of action in RANKL-mediated control of mature osteoclast function. Furthermore, we showed that Th17 cells, a subset of RANKL-expressing CD4+ T cells, could induce rapid N-to-R conversion of mature osteoclasts via cell-cell contact. These findings provide new insights into the activities of mature osteoclasts in situ and identify actions of RANKL-expressing Th17 cells in inflammatory bone destruction.
Collapse
Affiliation(s)
- Junichi Kikuta
- Laboratory of Cellular Dynamics, WPI–Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|