1
|
Rathod B, Desai S, Samvelyan HJ, Bock L, Wu J, Ohlsson C, Palmquist A, Alm JJ, Newton PT, Andersson G, Windahl SH. Tartrate-resistant acid phosphatase (TRAP/ACP5) promotes bone length, regulates cortical and trabecular bone mass, and maintains growth plate architecture and width in a sex- and site-specific manner in mice. Bone 2024; 188:117223. [PMID: 39111379 DOI: 10.1016/j.bone.2024.117223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 08/01/2024] [Accepted: 08/02/2024] [Indexed: 09/09/2024]
Abstract
Tartrate-resistant acid phosphatase (TRAP) serum levels reflect osteoclast number, bone remodeling activity, and fracture risk. Deletion or loss of function of TRAP results in short stature in mice and man. Yet, the impact and mechanisms of TRAP for the site- and sex-specific development of bone and cartilage is not well understood. Here, we use a global TRAP knockout (TRAPKO) and wildtype littermate control (WT) mice of both sexes to investigate TRAP as a possible sex- and site-specific regulator of bone and growth plate development. TRAPKO mice of both sexes weighed less and had shorter tibial length than their WT, features that were more accentuated in male than female TRAPKO mice. These changes were not associated with a general reduction in growth as not all organs displayed a proportionally lower mass, and serum IGF-1 was unchanged. Using μCT and site-specificity analysis of the cortical bone revealed wider proximal tibia, a higher trabecular thickness, and lower trabecular separation in male TRAPKO compared to WT mice, an effect not seen in female mice. Histomorphometric analysis revealed that the growth plate height as well as height of terminal hypertrophic chondrocytes were markedly increased, and the number of columns was decreased in TRAPKO mice of both sexes. These effects were more accentuated in female mice. Proliferation and differentiation of bone marrow derived macrophages into osteoclasts, as well as C-terminal cross links were normal in TRAPKO mice of both sexes. Collectively, our results show that TRAP regulates bone and cartilage development in a sex-and site-specific manner in mice.
Collapse
Affiliation(s)
- Bhavik Rathod
- Karolinska Institutet, Department of Laboratory Medicine, Division of Pathology, Huddinge, Sweden; Karolinska Institutet, Department of Microbiology, Tumor and Cell Biology, and National Pandemic Center, Solna, Stockholm, Sweden
| | - Suchita Desai
- Karolinska Institutet, Department of Laboratory Medicine, Division of Pathology, Huddinge, Sweden
| | - Hasmik Jasmine Samvelyan
- School of Medicine, The Faculty of Health, Education, Medicine and Social Care, Anglia Ruskin University, Chelmsford, United Kingdom
| | - Laura Bock
- Karolinska Institutet, Department of Laboratory Medicine, Division of Pathology, Huddinge, Sweden
| | - Jianyao Wu
- Sahlgrenska Academy at The University of Gothenburg, Centre for Bone and Arthritis Research, Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Gothenburg, Sweden
| | - Claes Ohlsson
- Sahlgrenska Academy at The University of Gothenburg, Centre for Bone and Arthritis Research, Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Gothenburg, Sweden
| | - Anders Palmquist
- Sahlgrenska Academy at The University of Gothenburg, Department of Biomaterials, Gothenburg, Sweden
| | - Jessica J Alm
- Karolinska Institutet, Department of Microbiology, Tumor and Cell Biology, and National Pandemic Center, Solna, Stockholm, Sweden
| | - Phillip T Newton
- Karolinska Institutet, Department of Women's and Children's Health, Solna, Stockholm, Sweden; Astrid Lindgren Children's Hospital, Stockholm, Sweden
| | - Göran Andersson
- Karolinska Institutet, Department of Laboratory Medicine, Division of Pathology, Huddinge, Sweden
| | - Sara H Windahl
- Karolinska Institutet, Department of Laboratory Medicine, Division of Pathology, Huddinge, Sweden.
| |
Collapse
|
2
|
Coulombe JC, Mullen ZK, Lynch ME, Stodieck LS, Ferguson VL. Application of machine learning classifiers for microcomputed tomography data assessment of mouse bone microarchitecture. MethodsX 2021; 8:101497. [PMID: 34754768 PMCID: PMC8563473 DOI: 10.1016/j.mex.2021.101497] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 08/22/2021] [Indexed: 01/24/2023] Open
Abstract
The current standard approach for analyzing cortical bone structure and trabecular bone microarchitecture from micro-computed tomography (microCT) is through classic parametric (e.g., ANOVA, Student's T-test) and nonparametric (e.g., Mann-Whitney U test) statistical tests and the reporting of p-values to indicate significance. However, on their own, these univariate assessments of significance fall prey to a number of weaknesses, including an increased chance of Type 1 error from multiple comparisons. Machine learning classification methods (e.g., unsupervised, k-means cluster analysis and supervised Support Vector Machine classification, SVM) simultaneously utilize an entire dataset comprised of many cortical structure or trabecular microarchitecture measures, thus minimizing bias and Type 1 error that are generated through multiple testing. Through simultaneous evaluation of an entire dataset, k-means and SVM thus provide a complementary approach to classic statistical analysis and enable a more robust assessment of microCT measures.
Collapse
Affiliation(s)
- Jennifer C. Coulombe
- Department of Mechanical Engineering, UCB 427, University of Colorado, Boulder, CO 80309, United States of America
- BioFrontiers Institute, UCB 596, University of Colorado, Boulder, CO 80309, United States of America
| | - Zachary K. Mullen
- Laboratory for Interdisciplinary Statistical Analysis / Department of Computer Science, UCB 427, University of Colorado, Boulder, CO 80309, United States of America
| | - Maureen E. Lynch
- Department of Mechanical Engineering, UCB 427, University of Colorado, Boulder, CO 80309, United States of America
- BioFrontiers Institute, UCB 596, University of Colorado, Boulder, CO 80309, United States of America
| | - Louis S. Stodieck
- Aerospace Engineering Sciences / BioServe Space Technologies, UCB 429, University of Colorado, Boulder, CO 80309, United States of America
| | - Virginia L. Ferguson
- Department of Mechanical Engineering, UCB 427, University of Colorado, Boulder, CO 80309, United States of America
- BioFrontiers Institute, UCB 596, University of Colorado, Boulder, CO 80309, United States of America
- Aerospace Engineering Sciences / BioServe Space Technologies, UCB 429, University of Colorado, Boulder, CO 80309, United States of America
| |
Collapse
|
3
|
Galea GL, Delisser PJ, Meakin L, Price JS, Windahl SH. Bone gain following loading is site-specifically enhanced by prior and concurrent disuse in aged male mice. Bone 2020; 133:115255. [PMID: 31991251 PMCID: PMC7057260 DOI: 10.1016/j.bone.2020.115255] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 01/24/2020] [Accepted: 01/24/2020] [Indexed: 11/28/2022]
Abstract
The primary aim of osteoanabolic therapies is to strategically increase bone mass in skeletal regions likely to experience high strains. In the young healthy skeleton, this is primarily achieved by bone's adaptation to loading. This adaptation appears to fail with age, resulting in osteoporosis and fractures. We previously demonstrated that prior and concurrent disuse enhances bone gain following loading in old female mice. Here, we applied site specificity micro-computed tomography analysis to map regional differences in bone anabolic responses to axial loading of the tibia between young (19-week-old) and aged (19-month-old), male and female mice. Loading increased bone mass specifically in the proximal tibia in both sexes and ages. Young female mice gained more cortical bone than young males in specific regions of the tibia. However, these site-specific sex differences were lost with age such that bone gain following loading was not significantly different between old males and females. To test whether disuse enhances functional adaption in old male mice as it does in females, old males were subjected to sciatic neurectomy or sham surgery, and loading was initiated four days after surgery. Disuse augmented tibial cortical bone gain in response to loading in old males, but only in regions which were load-responsive in the young. Prior and concurrent disuse also increased loading-induced trabecular thickening in the proximal tibia of old males. Understanding how diminished background loading rejuvenates the osteogenic loading response in the old may improve osteogenic exercise regimes and lead to novel osteoanabolic therapies.
Collapse
Affiliation(s)
- Gabriel L Galea
- Developmental Biology and Cancer, UCL GOS Institute of Child Health, London, UK; Comparative Biomedical Sciences, Royal Veterinary College, London, UK.
| | - Peter J Delisser
- School of Veterinary Sciences, University of Bristol, Bristol, United Kingdom; Veterinary Specialist Services, Brisbane, Australia.
| | - Lee Meakin
- School of Veterinary Sciences, University of Bristol, Bristol, United Kingdom.
| | - Joanna S Price
- School of Veterinary Sciences, University of Bristol, Bristol, United Kingdom; Royal Agricultural University Cirencester, Cirencester, United Kingdom.
| | - Sara H Windahl
- School of Veterinary Sciences, University of Bristol, Bristol, United Kingdom; Department of Laboratory Medicine, Karolinska Institutet, Huddinge, Sweden.
| |
Collapse
|
4
|
Genetics of Skeletal Evolution in Unusually Large Mice from Gough Island. Genetics 2016; 204:1559-1572. [PMID: 27694627 DOI: 10.1534/genetics.116.193805] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Accepted: 09/26/2016] [Indexed: 11/18/2022] Open
Abstract
Organisms on islands often undergo rapid morphological evolution, providing a platform for understanding mechanisms of phenotypic change. Many examples of evolution on islands involve the vertebrate skeleton. Although the genetic basis of skeletal variation has been studied in laboratory strains, especially in the house mouse Mus musculus domesticus, the genetic determinants of skeletal evolution in natural populations remain poorly understood. We used house mice living on the remote Gough Island-the largest wild house mice on record-to understand the genetics of rapid skeletal evolution in nature. Compared to a mainland reference strain from the same subspecies (WSB/EiJ), the skeleton of Gough Island mice is considerably larger, with notable expansions of the pelvis and limbs. The Gough Island mouse skeleton also displays changes in shape, including elongations of the skull and the proximal vs. distal elements in the limbs. Quantitative trait locus (QTL) mapping in a large F2 intercross between Gough Island mice and WSB/EiJ reveals hundreds of QTL that control skeletal dimensions measured at 5, 10, and/or 16 weeks of age. QTL exhibit modest, mostly additive effects, and Gough Island alleles are associated with larger skeletal size at most QTL. The QTL with the largest effects are found on a few chromosomes and affect suites of skeletal traits. Many of these loci also colocalize with QTL for body weight. The high degree of QTL colocalization is consistent with an important contribution of pleiotropy to skeletal evolution. Our results provide a rare portrait of the genetic basis of skeletal evolution in an island population and position the Gough Island mouse as a model system for understanding mechanisms of rapid evolution in nature.
Collapse
|
5
|
Moran MM, Virdi AS, Sena K, Mazzone SR, McNulty MA, Sumner DR. Intramembranous bone regeneration differs among common inbred mouse strains following marrow ablation. J Orthop Res 2015; 33:1374-81. [PMID: 25808034 DOI: 10.1002/jor.22901] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Accepted: 03/10/2015] [Indexed: 02/06/2023]
Abstract
Various intact and post-injury bone phenotypes are heritable traits. In this study, we sought to determine if intramembranous bone regeneration following marrow ablation differed among common inbred mouse strains and to identify how early the differences appear. We found a ∼four-fold difference in the regenerated bone volume 21 days after marrow ablation in females from four inbred mouse strains: FVB/N (15.7 ± 8.1%, mean and standard deviation), C3H/He (15.5 ± 4.2%), C57BL/6 (12.2 ± 5.2%), and BALB/c (4.0 ± 4.4%); with BALB/c different from FVB/N (p = 0.007) and C3H/He (p = 0.002). A second experiment showed that FVB/N compared to BALB/c mice had more regenerated bone 7 and 14 days after ablation (p < 0.001), while at 21 days FVB/N mice had a greater fraction of mineralizing surface (p = 0.008) without a difference in mineral apposition rate. Thus, differences among strains are evident early during intramembranous bone regeneration following marrow ablation and appear to be associated with differences in osteogenic cell recruitment, but not osteoblast activity. The amount of regenerating bone was not correlated with other heritable traits such as the intact bone phenotype or soft tissue wound healing, suggesting that there may be independent genetic pathways for these traits.
Collapse
Affiliation(s)
- Meghan M Moran
- Department of Anatomy and Cell Biology, Rush University Medical Center, Chicago
| | - Amarjit S Virdi
- Department of Anatomy and Cell Biology, Rush University Medical Center, Chicago
| | - Kotaro Sena
- Department of Periodontology, Kagoshima University, Kagoshima, Japan
| | - Steven R Mazzone
- Department of Anatomy and Cell Biology, Rush University Medical Center, Chicago
| | - Margaret A McNulty
- Department Comparative Biomedical Sciences, Louisiana State University School of Veterinary Medicine, Baton Rouge
| | - Dale R Sumner
- Department of Anatomy and Cell Biology, Rush University Medical Center, Chicago
| |
Collapse
|
6
|
Nikolskiy I, Conrad DF, Chun S, Fay JC, Cheverud JM, Lawson HA. Using whole-genome sequences of the LG/J and SM/J inbred mouse strains to prioritize quantitative trait genes and nucleotides. BMC Genomics 2015; 16:415. [PMID: 26016481 PMCID: PMC4445795 DOI: 10.1186/s12864-015-1592-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Accepted: 04/28/2015] [Indexed: 12/04/2022] Open
Abstract
Background The laboratory mouse is the most commonly used model for studying variation in complex traits relevant to human disease. Here we present the whole-genome sequences of two inbred strains, LG/J and SM/J, which are frequently used to study variation in complex traits as diverse as aging, bone-growth, adiposity, maternal behavior, and methamphetamine sensitivity. Results We identified small nucleotide variants (SNVs) and structural variants (SVs) in the LG/J and SM/J strains relative to the reference genome and discovered novel variants in these two strains by comparing their sequences to other mouse genomes. We find that 39% of the LG/J and SM/J genomes are identical-by-descent (IBD). We characterized amino-acid changing mutations using three algorithms: LRT, PolyPhen-2 and SIFT. We also identified polymorphisms between LG/J and SM/J that fall in regulatory regions and highly informative transcription factor binding sites (TFBS). We intersected these functional predictions with quantitative trait loci (QTL) mapped in advanced intercrosses of these two strains. We find that QTL are both over-represented in non-IBD regions and highly enriched for variants predicted to have a functional impact. Variants in QTL associated with metabolic (231 QTL identified in an F16 generation) and developmental (41 QTL identified in an F34 generation) traits were interrogated and we highlight candidate quantitative trait genes (QTG) and nucleotides (QTN) in a QTL on chr13 associated with variation in basal glucose levels and in a QTL on chr6 associated with variation in tibia length. Conclusions We show how integrating genomic sequence with QTL reduces the QTL search space and helps researchers prioritize candidate genes and nucleotides for experimental follow-up. Additionally, given the LG/J and SM/J phylogenetic context among inbred strains, these data contribute important information to the genomic landscape of the laboratory mouse. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1592-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Igor Nikolskiy
- Department of Genetics, Washington University School of Medicine, Campus Box 8108, 660 S Euclid Ave, St Louis, MO, 63110, USA.
| | - Donald F Conrad
- Department of Genetics, Washington University School of Medicine, Campus Box 8108, 660 S Euclid Ave, St Louis, MO, 63110, USA.
| | - Sung Chun
- Division of Genetics, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.
| | - Justin C Fay
- Department of Genetics, Washington University School of Medicine, Campus Box 8108, 660 S Euclid Ave, St Louis, MO, 63110, USA.
| | | | - Heather A Lawson
- Department of Genetics, Washington University School of Medicine, Campus Box 8108, 660 S Euclid Ave, St Louis, MO, 63110, USA.
| |
Collapse
|
7
|
Solomon G, Atkins A, Shahar R, Gertler A, Monsonego-Ornan E. Effect of peripherally administered leptin antagonist on whole body metabolism and bone microarchitecture and biomechanical properties in the mouse. Am J Physiol Endocrinol Metab 2014; 306:E14-27. [PMID: 24169045 DOI: 10.1152/ajpendo.00155.2013] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Leptin's in vivo effect on the rodent skeleton depends on the model used and the mode of administration. Superactive mouse leptin antagonist (SMLA) was produced and then pegylated (PEG) to prolong and enhance its in vivo activity. We blocked leptin signaling by injecting this antagonist peripherally into normal mice at various time points and studied their metabolic and skeletal phenotypes. Subcutaneous PEG-SMLA injections into 4-wk-old female C57BL/6J mice increased weight gain and food consumption significantly after only 1 mo, and the effect lasted for the 3 mo of the experiment, proving its central inhibiting activity. Mice showed a significant increase in serum glucose, cholesterol, triglycerides, insulin, and HOMA-IR throughout the experiment. Quantification of gene expression in "metabolic" tissues also indicated the development of insulin resistance. Bone analyses revealed a significant increase in trabecular and cortical parameters measured in both the lumbar vertebrae and tibiae in PEG-SMLA-treated mice in the 1st and 3rd months as well as a significant increase in tibia biomechanical parameters. Interestingly, 30 days of treatment with the antagonist in older mice (aged 3 and 6 mo) affected body weight and eating behavior, just as they had in the 1-mo-old mice, but had no effect on bone parameters, suggesting that leptin's effect on bones, either directly or through its obesogenic effect, is dependent upon stage of skeletal development. This potent and reversible antagonist enabled us to study leptin's in vivo role in whole body and bone metabolism and holds potential for future therapeutic use in diseases involving leptin signaling.
Collapse
|
8
|
Abstract
The etiology of skeletal disease is driven by genetic and environmental factors. Genome-wide association studies (GWAS) of osteoporotic phenotypes have identified novel candidate genes, but have only uncovered a small proportion of the trait variance explained. This "missing heritability" is caused by several factors, including the failure to consider gene-by-environmental (G*E) interactions. Some G*E interactions have been investigated, but new approaches to integrate environmental data into genomic studies are needed. Advances in genotyping and meta-analysis techniques now allow combining genotype data from multiple studies, but the measurement of key environmental factors in large human cohorts still lags behind, as do the statistical tools needed to incorporate these measures in genome-wide association meta-studies. This review focuses on discussing ways to enhance G*E interaction studies in humans and how the use of rodent models can inform genetic studies. Understanding G*E interactions will provide opportunities to effectively target intervention strategies for individualized therapy.
Collapse
|