1
|
Basu S, Nag S, Kottan NB, Basu B. In silico study on probing atomistic insights into structural stability and tensile properties of Fe-doped hydroxyapatite single crystals. Sci Rep 2022; 12:20576. [PMID: 36446844 PMCID: PMC9709045 DOI: 10.1038/s41598-022-24904-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 11/22/2022] [Indexed: 11/30/2022] Open
Abstract
Hydroxyapatite (HA, Ca10PO4(OH)2) is a widely explored material in the experimental domain of biomaterials science, because of its resemblance with natural bone minerals. Specifically, in the bioceramic community, HA doped with multivalent cations (e.g., Mg2+, Fe2+, Sr2+, etc.) has been extensively investigated in the last few decades. Experimental research largely established the critical role of dopant content on mechanical and biocompatibility properties. The plethora of experimental measurements of mechanical response on doped HA is based on compression or indentation testing of polycrystalline materials. Such measurements, and more importantly the computational predictions of mechanical properties of single crystalline (doped) HA are scarce. On that premise, the present study aims to build atomistic models of Fe2+-doped HA with varying Fe content (10, 20, 30, and 40 mol%) and to explore their uniaxial tensile response, by means of molecular dynamics (MD) simulation. In the equilibrated unit cell structures, Ca(1) sites were found to be energetically favourable for Fe2+ substitution. The local distribution of Fe2+ ions significantly affects the atomic partial charge distribution and chemical symmetry surrounding the functional groups, and such signatures are found in the MD analyzed IR spectra. The significant decrease in the intensity of the IR bands found in the Fe-doped HA together with band splitting, because of the symmetry changes in the crystal structure. Another important objective of this work is to computationally predict the mechanical response of doped HA in their single crystal format. An interesting observation is that the elastic anisotropy of undoped HA was not compromised with Fe-doping. Tensile strength (TS) is systematically reduced in doped HA with Fe2+ dopant content and a decrease in TS with temperature can be attributed to the increased thermal agitation of atoms at elevated temperatures. The physics of the tensile response was rationalized in terms of the strain dependent changes in covalent/ionic bond framework (Ca-P distance, P-O bond strain, O-P-O angular strain, O-H bond distance). Further, the dynamic changes in covalent bond network were energetically analyzed by calculating the changes in O-H and P-O bond vibrational energy. Summarizing, the current work establishes our foundational understanding of the atomistic phenomena involved in the structural stability and tensile response of Fe-doped HA single crystals.
Collapse
Affiliation(s)
- Subhadip Basu
- Materials Research Centre, Indian Institute of Science, Bangalore, 560012, India
| | - Shubhadeep Nag
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore, 560012, India
| | - Nihal B Kottan
- Materials Research Centre, Indian Institute of Science, Bangalore, 560012, India
| | - Bikramjit Basu
- Materials Research Centre, Indian Institute of Science, Bangalore, 560012, India.
- Center for Biosystems Science and Engineering, Indian Institute of Science, Bangalore, 560012, India.
| |
Collapse
|
2
|
Abstract
Understanding the properties of bone is of both fundamental and clinical relevance. The basis of bone’s quality and mechanical resilience lies in its nanoscale building blocks (i.e., mineral, collagen, non-collagenous proteins, and water) and their complex interactions across length scales. Although the structure–mechanical property relationship in healthy bone tissue is relatively well characterized, not much is known about the molecular-level origin of impaired mechanics and higher fracture risks in skeletal disorders such as osteoporosis or Paget’s disease. Alterations in the ultrastructure, chemistry, and nano-/micromechanics of bone tissue in such a diverse group of diseased states have only been briefly explored. Recent research is uncovering the effects of several non-collagenous bone matrix proteins, whose deficiencies or mutations are, to some extent, implicated in bone diseases, on bone matrix quality and mechanics. Herein, we review existing studies on ultrastructural imaging—with a focus on electron microscopy—and chemical, mechanical analysis of pathological bone tissues. The nanometric details offered by these reports, from studying knockout mice models to characterizing exact disease phenotypes, can provide key insights into various bone pathologies and facilitate the development of new treatments.
Collapse
|
3
|
Smith AJ, Alcock SG, Davidson LS, Emmins JH, Hiller Bardsley JC, Holloway P, Malfois M, Marshall AR, Pizzey CL, Rogers SE, Shebanova O, Snow T, Sutter JP, Williams EP, Terrill NJ. I22: SAXS/WAXS beamline at Diamond Light Source - an overview of 10 years operation. JOURNAL OF SYNCHROTRON RADIATION 2021; 28:939-947. [PMID: 33950002 PMCID: PMC8127364 DOI: 10.1107/s1600577521002113] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 02/23/2021] [Indexed: 05/04/2023]
Abstract
Beamline I22 at Diamond Light Source is dedicated to the study of soft-matter systems from both biological and materials science. The beamline can operate in the range 3.7 keV to 22 keV for transmission SAXS and 14 keV to 20 keV for microfocus SAXS with beam sizes of 240 µm × 60 µm [full width half-maximum (FWHM) horizontal (H) × vertical (V)] at the sample for the main beamline, and approximately 10 µm × 10 µm for the dedicated microfocusing platform. There is a versatile sample platform for accommodating a range of facilities and user-developed sample environments. The high brilliance of the insertion device source on I22 allows structural investigation of materials under extreme environments (for example, fluid flow at high pressures and temperatures). I22 provides reliable access to millisecond data acquisition timescales, essential to understanding kinetic processes such as protein folding or structural evolution in polymers and colloids.
Collapse
Affiliation(s)
- A. J. Smith
- Diamond Light Source Ltd, Diamond House, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, United Kingdom
| | - S. G. Alcock
- Diamond Light Source Ltd, Diamond House, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, United Kingdom
| | - L. S. Davidson
- Diamond Light Source Ltd, Diamond House, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, United Kingdom
| | - J. H. Emmins
- Diamond Light Source Ltd, Diamond House, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, United Kingdom
| | - J. C. Hiller Bardsley
- King’s College London, Guy’s Campus, Great Maze Pond, London SE1 1UL, United Kingdom
| | - P. Holloway
- Diamond Light Source Ltd, Diamond House, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, United Kingdom
| | - M. Malfois
- ALBA Synchrotron, Carrer de la Llum 2-26, 08290 Cerdanyola del Vallès, Barcelona, Spain
| | - A. R. Marshall
- Diamond Light Source Ltd, Diamond House, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, United Kingdom
| | - C. L. Pizzey
- Diamond Light Source Ltd, Diamond House, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, United Kingdom
| | - S. E. Rogers
- ISIS Neutron and Muon Source, Science and Technology Facilities Council, Rutherford Appleton Laboratory, Didcot, Oxfordshire OX11 0QX, United Kingdom
| | - O. Shebanova
- Diamond Light Source Ltd, Diamond House, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, United Kingdom
| | - T. Snow
- Diamond Light Source Ltd, Diamond House, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, United Kingdom
| | - J. P. Sutter
- Diamond Light Source Ltd, Diamond House, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, United Kingdom
| | - E. P. Williams
- Diamond Light Source Ltd, Diamond House, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, United Kingdom
| | - N. J. Terrill
- Diamond Light Source Ltd, Diamond House, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, United Kingdom
| |
Collapse
|
4
|
Xi L, Zhang Y, Gupta H, Terrill N, Wang P, Zhao T, Fang D. A multiscale study of structural and compositional changes in a natural nanocomposite: Osteoporotic bone with chronic endogenous steroid excess. Bone 2021; 143:115666. [PMID: 33007528 DOI: 10.1016/j.bone.2020.115666] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 09/22/2020] [Accepted: 09/23/2020] [Indexed: 02/06/2023]
Abstract
Glucocorticoid (or steroid) induced osteoporosis (GIOP) is the leading form of secondary osteoporosis, affecting up to 50% of patients receiving chronic glucocorticoid therapy. Bone quantity (bone mass) changes in GIOP patients alone are inadequate to explain the increased fracture risk, and bone material changes (bone quality) at multiple levels have been implicated in the reduced mechanics. Quantitative analysis of specific material-level changes is limited. Here, we combined multiscale experimental techniques (scanning small/wide-angle X-ray scattering/diffraction, backscattered electron imaging, and X-ray radiography) to investigate these changes in a mouse model (Crh-120/+) with chronic endogenous steroid production. Nanoscale degree of orientation, the size distribution of mineral nanocrystals in the bone matrix, the spatial map of mineralization on the femoral cortex, and the microporosity showed significant changes between GIOP and the control, especially in the endosteal cortex. Our work can provide insight into the altered structure-property relationship leading to lowered mechanical properties in GIOP. SIGNIFICANCE STATEMENT: As a natural nanocomposite with a hierarchical structure, bone undergoes a staggered load transfer mechanism at the nanoscale. Disease and age-related deterioration of bone mechanics are caused by changes in bone structure at multiple length scales. Although clinical tools such as dual-energy X-ray absorptiometry (DXA) can be used to assess the reduction of bone quantity in these cases, little is known about how altered bone quality in diseased bone can increase fracture risk. It is clear that high-resolution diagnostic techniques need to be developed to narrow the gap between the onset and diagnosis of fracture-related changes. Here, by combining several scanning probe methods on a mouse model (Crh-120/+) of glucocorticoid-induced osteoporosis (GIOP), we developed quantitative and spatially resolved maps of ultrastructural changes in collagen fibrils and mineral nanocrystals, mineralization distribution (microscale), and morphology (macroscale) across femoral osteoporotic bone. Our results indicate that the altered bone remodelling in GIOP leads to 1) heterogeneous bone structure and mineralization, 2) reduced degree of orientation of collagen fibrils and mineral nanocrystals, and 3) reduced length and increased thickness of mineral nanocrystals, which contribute to mechanical abnormalities. The combined multiscale experimental approach presented here will be used to understand musculoskeletal degeneration in aging and osteoporosis.
Collapse
Affiliation(s)
- Li Xi
- Institute of Advanced Structure Technology, Beijing Institute of Technology, Beijing, China; School of Engineering and Materials Science, Queen Mary University of London, London E1 4NS, UK; Beamline I22, Diamond Light Source Ltd., Harwell Science and Innovation Campus, Oxfordshire, UK.
| | - Yi Zhang
- Institution of High Energy Physics, Chinese Academy of Science, Beijing, China
| | - Himadri Gupta
- School of Engineering and Materials Science, Queen Mary University of London, London E1 4NS, UK
| | - Nick Terrill
- Beamline I22, Diamond Light Source Ltd., Harwell Science and Innovation Campus, Oxfordshire, UK
| | - Pan Wang
- Institute of Advanced Structure Technology, Beijing Institute of Technology, Beijing, China.
| | - Tian Zhao
- Institute of Advanced Structure Technology, Beijing Institute of Technology, Beijing, China.
| | - Daining Fang
- Institute of Advanced Structure Technology, Beijing Institute of Technology, Beijing, China; State Key Laboratory for Turbulence and Complex Systems, College of Engineering, Peking University, Beijing, China
| |
Collapse
|
5
|
Xi L, Song Y, Wu W, Qu Z, Wen J, Liao B, Tao R, Ge J, Fang D. Investigation of bone matrix composition, architecture and mechanical properties reflect structure-function relationship of cortical bone in glucocorticoid induced osteoporosis. Bone 2020; 136:115334. [PMID: 32224161 DOI: 10.1016/j.bone.2020.115334] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Revised: 03/21/2020] [Accepted: 03/25/2020] [Indexed: 12/12/2022]
Abstract
Glucocorticoid induced osteoporosis (GIOP) is the most common negative consequence of long-term glucocorticoid treatment, leading to increased fracture risk followed by loss of mobility and high mortality risk. These biologically induced changes in bone quality at molecular level lead to changes both in bone matrix architecture and bone matrix composition. However, the quantitative details of changes in bone quality - and especially their link to reduced macroscale mechanical properties are still largely missing. In this study, a mouse model for glucocorticoid-induced osteoporosis (GIOP) was used to investigate mechanical and material alterations in bone cortex (natural nanocomposite) at different scale. By combining quantitative backscattered electron (qBSE) imaging, nanoindentation and high brilliance synchrotron X-ray nanomechanical imaging on a genetically modified mouse model of GIOP, we were able to quantify the local indentation modulus, mineralization distribution and the alterations of nanoscale structures and deformation mechanisms in the mid-diaphysis of femur, and relate them to the macroscopic mechanical changes. Our results showed clear and significant changes in terms of material quality of bone at nanoscale and microscale, which manifests itself in development of spatial heterogeneities in mineralization and indentation moduli across the bone organ, with potential implications for increased fracture risk.
Collapse
Affiliation(s)
- Li Xi
- Institute of Advanced Structure Technology, Beijing Institute of Technology, Beijing, China; School of Engineering and Materials Science, Queen Mary University of London, London E1 4NS, UK; Beamline I22, Diamond Light Source Ltd., Harwell Science and Innovation Campus, Oxfordshire, UK
| | - Yu Song
- College of Textiles, North Carolina State University, NC, USA
| | - Wenwang Wu
- Department of Engineering Mechanics, School of Naval Architecture, Ocean and Civil Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China; Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, USA
| | - Zhaoliang Qu
- Institute of Advanced Structure Technology, Beijing Institute of Technology, Beijing, China
| | - Jiawei Wen
- Department of Mechanical Engineering, University of Moratuwa, Sri Lanka
| | - Binbin Liao
- Institute of Advanced Structure Technology, Beijing Institute of Technology, Beijing, China.
| | - Ran Tao
- Institute of Advanced Structure Technology, Beijing Institute of Technology, Beijing, China.
| | - Jingran Ge
- Institute of Advanced Structure Technology, Beijing Institute of Technology, Beijing, China.
| | - Daining Fang
- Institute of Advanced Structure Technology, Beijing Institute of Technology, Beijing, China; State Key Laboratory for Turbulence and Complex Systems, College of Engineering, Peking University, Beijing, China
| |
Collapse
|
6
|
An interface damage model that captures crack propagation at the microscale in cortical bone using XFEM. J Mech Behav Biomed Mater 2019; 90:556-565. [DOI: 10.1016/j.jmbbm.2018.09.045] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 09/05/2018] [Accepted: 09/26/2018] [Indexed: 11/23/2022]
|
7
|
Xi L, De Falco P, Barbieri E, Karunaratne A, Bentley L, Esapa CT, Terrill NJ, Brown SDM, Cox RD, Davis GR, Pugno NM, Thakker RV, Gupta HS. Bone matrix development in steroid-induced osteoporosis is associated with a consistently reduced fibrillar stiffness linked to altered bone mineral quality. Acta Biomater 2018; 76:295-307. [PMID: 29902593 PMCID: PMC6084282 DOI: 10.1016/j.actbio.2018.05.053] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 05/14/2018] [Accepted: 05/31/2018] [Indexed: 01/24/2023]
Abstract
Glucocorticoid-induced osteoporosis (GIOP) is a major secondary form of osteoporosis, with the fracture risk significantly elevated - at similar levels of bone mineral density - in patients taking glucocorticoids compared with non-users. The adverse bone structural changes at multiple hierarchical levels in GIOP, and their mechanistic consequences leading to reduced load-bearing capacity, are not clearly understood. Here we combine experimental X-ray nanoscale mechanical imaging with analytical modelling of the bone matrix mechanics to determine mechanisms causing bone material quality deterioration during development of GIOP. In situ synchrotron small-angle X-ray diffraction combined with tensile testing was used to measure nanoscale deformation mechanisms in a murine model of GIOP, due to a corticotrophin-releasing hormone promoter mutation, at multiple ages (8-, 12-, 24- and 36 weeks), complemented by quantitative micro-computed tomography and backscattered electron imaging to determine mineral concentrations. We develop a two-level hierarchical model of the bone matrix (mineralized fibril and lamella) to predict fibrillar mechanical response as a function of architectural parameters of the mineralized matrix. The fibrillar elastic modulus of GIOP-bone is lower than healthy bone throughout development, and nearly constant in time, in contrast to the progressively increasing stiffness in healthy bone. The lower mineral platelet aspect ratio value for GIOP compared to healthy bone in the multiscale model can explain the fibrillar deformation. Consistent with this result, independent measurement of mineral platelet lengths from wide-angle X-ray diffraction finds a shorter mineral platelet length in GIOP. Our results show how lowered mineralization combined with altered mineral nanostructure in GIOP leads to lowered mechanical competence. SIGNIFICANCE STATEMENT Increased fragility in musculoskeletal disorders like osteoporosis are believed to arise due to alterations in bone structure at multiple length-scales from the organ down to the supramolecular-level, where collagen molecules and elongated mineral nanoparticles form stiff fibrils. However, the nature of these molecular-level alterations are not known. Here we used X-ray scattering to determine both how bone fibrils deform in secondary osteoporosis, as well as how the fibril orientation and mineral nanoparticle structure changes. We found that osteoporotic fibrils become less stiff both because the mineral nanoparticles became shorter and less efficient at transferring load from collagen, and because the fibrils are more randomly oriented. These results will help in the design of new composite musculoskeletal implants for bone repair.
Collapse
Affiliation(s)
- L Xi
- School of Engineering and Material Sciences, Queen Mary University of London, London E1 4NS, UK; Department of Nuclear Engineering, North Carolina State University, Raleigh, NC 27607, USA
| | - P De Falco
- School of Engineering and Material Sciences, Queen Mary University of London, London E1 4NS, UK; Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, D-14424 Potsdam-Golm, Germany.
| | - E Barbieri
- School of Engineering and Material Sciences, Queen Mary University of London, London E1 4NS, UK; Department of Mathematical Science and Advanced Technology (MAT), Yokohama Institute for Earth Sciences (YES) 3173-25, Showa-machi, Kanazawa-ku, Yokohama-city, Japan.
| | - A Karunaratne
- Department of Mechanical Engineering, University of Moratuwa, Sri Lanka
| | - L Bentley
- MRC Mammalian Genetics Unit and Mary Lyon Centre, MRC Harwell, Harwell Science and Innovation Campus, OX11 0RD, UK.
| | - C T Esapa
- MRC Mammalian Genetics Unit and Mary Lyon Centre, MRC Harwell, Harwell Science and Innovation Campus, OX11 0RD, UK; Academic Endocrine Unit, Nuffield Department of Clinical Medicine, Oxford Centre for Diabetes, Endocrinology and Metabolism (OCDEM), University of Oxford, Churchill Hospital, Headington, Oxford OX3 7JL, UK.
| | - N J Terrill
- Beamline I22, Diamond Light Source Ltd., Diamond House, Harwell Science and Innovation Campus, Chilton, Didcot, Oxfordshire OX11 0DE, UK.
| | - S D M Brown
- MRC Mammalian Genetics Unit and Mary Lyon Centre, MRC Harwell, Harwell Science and Innovation Campus, OX11 0RD, UK.
| | - R D Cox
- MRC Mammalian Genetics Unit and Mary Lyon Centre, MRC Harwell, Harwell Science and Innovation Campus, OX11 0RD, UK.
| | - G R Davis
- Queen Mary University of London, Barts and the London School of Medicine and Dentistry, Institute of Dentistry, E1 2AD, UK.
| | - N M Pugno
- Laboratory of Bio-Inspired & Graphene Nanomechanics, Department of Civil, Environmental and Mechanical Engineering, University of Trento, Via Mesiano, 77, 38123 Trento, Italy; School of Engineering and Material Sciences, Queen Mary University of London, London E1 4NS, UK; Ket Lab, Edoardo Amaldi Foundation, Italian Space Agency, Via del Politecnico snc, 00133 Rome, Italy.
| | - R V Thakker
- MRC Mammalian Genetics Unit and Mary Lyon Centre, MRC Harwell, Harwell Science and Innovation Campus, OX11 0RD, UK; Academic Endocrine Unit, Nuffield Department of Clinical Medicine, Oxford Centre for Diabetes, Endocrinology and Metabolism (OCDEM), University of Oxford, Churchill Hospital, Headington, Oxford OX3 7JL, UK.
| | - H S Gupta
- School of Engineering and Material Sciences, Queen Mary University of London, London E1 4NS, UK.
| |
Collapse
|
8
|
Spiesz EM, Thorpe CT, Thurner PJ, Screen HRC. Structure and collagen crimp patterns of functionally distinct equine tendons, revealed by quantitative polarised light microscopy (qPLM). Acta Biomater 2018; 70:281-292. [PMID: 29409868 PMCID: PMC5894809 DOI: 10.1016/j.actbio.2018.01.034] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 01/19/2018] [Accepted: 01/24/2018] [Indexed: 01/15/2023]
Abstract
Structure-function relationships in tendons are directly influenced by the arrangement of collagen fibres. However, the details of such arrangements in functionally distinct tendons remain obscure. This study demonstrates the use of quantitative polarised light microscopy (qPLM) to identify structural differences in two major tendon compartments at the mesoscale: fascicles and interfascicular matrix (IFM). It contrasts functionally distinct positional and energy storing tendons, and considers changes with age. Of particular note, the technique facilitates the analysis of crimp parameters, in which cutting direction artefact can be accounted for and eliminated, enabling the first detailed analysis of crimp parameters across functionally distinct tendons. IFM shows lower birefringence (0.0013 ± 0.0001 [−]), as compared to fascicles (0.0044 ± 0.0005 [−]), indicating that the volume fraction of fibres must be substantially lower in the IFM. Interestingly, no evidence of distinct fibre directional dispersions between equine energy storing superficial digital flexor tendons (SDFTs) and positional common digital extensor tendons (CDETs) were noted, suggesting either more subtle structural differences between tendon types or changes focused in the non-collagenous components. By contrast, collagen crimp characteristics are strongly tendon type specific, indicating crimp specialisation is crucial in the respective mechanical function. SDFTs showed much finer crimp (21.1 ± 5.5 µm) than positional CDETs (135.4 ± 20.1 µm). Further, tendon crimp was finer in injured tendon, as compared to its healthy equivalents. Crimp angle differed strongly between tendon types as well, with average of 6.5 ± 1.4° in SDFTs and 13.1 ± 2.0° in CDETs, highlighting a substantially tighter crimp in the SDFT, likely contributing to its effective recoil capacity. Statement of Significance This is the first study to quantify birefringence in fascicles and interfascicular matrix of functionally distinct energy storing and positional tendons. It adopts a novel method – quantitative polarised light microscopy (qPLM) to measure collagen crimp angle, avoiding artefacts related to the direction of histological sectioning, and provides the first direct comparison of crimp characteristics of functionally distinct tendons of various ages. A comparison of matched picrosirius red stained and unstained tendons sections identified non-homogenous staining effects, and leads us to recommend that only unstained sections are analysed in the quantitative manner. qPLM is successfully used to assess birefringence in soft tissue sections, offering a promising tool for investigating the structural arrangements of fibres in (soft) tissues and other composite materials.
Collapse
Affiliation(s)
- Ewa M Spiesz
- School of Engineering and Materials Science, Queen Mary University of London, Mile End Rd, London E1 4NS, United Kingdom; Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands.
| | - Chavaunne T Thorpe
- School of Engineering and Materials Science, Queen Mary University of London, Mile End Rd, London E1 4NS, United Kingdom; Comparative Biomedical Sciences, Royal Veterinary College, Royal College Street, London NW1 0TU, United Kingdom.
| | - Philipp J Thurner
- Institute of Lightweight Design and Structural Biomechanics, TU Wien, Getreidemarkt 9, A-1060 Vienna, Austria.
| | - Hazel R C Screen
- School of Engineering and Materials Science, Queen Mary University of London, Mile End Rd, London E1 4NS, United Kingdom.
| |
Collapse
|
9
|
Gustafsson A, Mathavan N, Turunen MJ, Engqvist J, Khayyeri H, Hall SA, Isaksson H. Linking multiscale deformation to microstructure in cortical bone using in situ loading, digital image correlation and synchrotron X-ray scattering. Acta Biomater 2018; 69:323-331. [PMID: 29410089 DOI: 10.1016/j.actbio.2018.01.037] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 12/20/2017] [Accepted: 01/25/2018] [Indexed: 11/27/2022]
Abstract
The incidence of fragility fractures is expected to increase in the near future due to an aging population. Therefore, improved tools for fracture prediction are required to treat and prevent these injuries efficiently. For such tools to succeed, a better understanding of the deformation mechanisms in bone over different length scales is needed. In this study, an experimental setup including mechanical tensile testing in combination with digital image correlation (DIC) and small/wide angle X-ray scattering (SAXS/WAXS) was used to study deformation at multiple length scales in bovine cortical bone. Furthermore, micro-CT imaging provided detailed information about tissue microstructure. The combination of these techniques enabled measurements of local deformations at the tissue- and nanoscales. The orientation of the microstructure relative to the tensile loading was found to influence the strain magnitude on all length scales. Strains in the collagen fibers were 2-3 times as high as the strains found in the mineral crystals for samples with microstructure oriented parallel to the loading. The local tissue strain at fracture was found to be around 0.5%, independent of tissue orientation. However, the maximum force and the irregularity of the crack path were higher when the load was applied parallel to the tissue orientation. This study clearly shows the potential of combining these different experimental techniques concurrently with mechanical testing to gain a better understanding of bone damage and fracture over multiple length scales in cortical bone. STATEMENT OF SIGNIFICANCE To understand the pathophysiology of bone, it is important to improve our knowledge about the deformation and fracture mechanisms in bone. In this study, we combine several recently available experimental techniques with mechanical loading to investigate the deformation mechanisms in compact bone tissue on several length scales simultaneously. The experimental setup included mechanical tensile testing in combination with digital image correlation, microCT imaging, and small/wide angle X-ray scattering. The combination of techniques enabled measurements of local deformations at the tissue- and nanoscales. The study clearly shows the potential of combining different experimental techniques concurrently with mechanical testing to gain a better understanding of structure-property-function relationships in bone tissue.
Collapse
Affiliation(s)
- Anna Gustafsson
- Department of Biomedical Engineering, Lund University, Box 118, SE-221 00 Lund, Sweden.
| | - Neashan Mathavan
- Department of Biomedical Engineering, Lund University, Box 118, SE-221 00 Lund, Sweden.
| | - Mikael J Turunen
- Department of Biomedical Engineering, Lund University, Box 118, SE-221 00 Lund, Sweden; Department of Applied Physics, University of Eastern Finland, POB 1627, FI-702 11 Kuopio, Finland.
| | - Jonas Engqvist
- Division of Solid Mechanics, Lund University, Box 118, SE-221 00 Lund, Sweden.
| | - Hanifeh Khayyeri
- Department of Biomedical Engineering, Lund University, Box 118, SE-221 00 Lund, Sweden.
| | - Stephen A Hall
- Division of Solid Mechanics, Lund University, Box 118, SE-221 00 Lund, Sweden.
| | - Hanna Isaksson
- Department of Biomedical Engineering, Lund University, Box 118, SE-221 00 Lund, Sweden.
| |
Collapse
|
10
|
Georgiadis M, Müller R, Schneider P. Techniques to assess bone ultrastructure organization: orientation and arrangement of mineralized collagen fibrils. J R Soc Interface 2017; 13:rsif.2016.0088. [PMID: 27335222 DOI: 10.1098/rsif.2016.0088] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 05/18/2016] [Indexed: 12/13/2022] Open
Abstract
Bone's remarkable mechanical properties are a result of its hierarchical structure. The mineralized collagen fibrils, made up of collagen fibrils and crystal platelets, are bone's building blocks at an ultrastructural level. The organization of bone's ultrastructure with respect to the orientation and arrangement of mineralized collagen fibrils has been the matter of numerous studies based on a variety of imaging techniques in the past decades. These techniques either exploit physical principles, such as polarization, diffraction or scattering to examine bone ultrastructure orientation and arrangement, or directly image the fibrils at the sub-micrometre scale. They make use of diverse probes such as visible light, X-rays and electrons at different scales, from centimetres down to nanometres. They allow imaging of bone sections or surfaces in two dimensions or investigating bone tissue truly in three dimensions, in vivo or ex vivo, and sometimes in combination with in situ mechanical experiments. The purpose of this review is to summarize and discuss this broad range of imaging techniques and the different modalities of their use, in order to discuss their advantages and limitations for the assessment of bone ultrastructure organization with respect to the orientation and arrangement of mineralized collagen fibrils.
Collapse
Affiliation(s)
| | - Ralph Müller
- Institute for Biomechanics, ETH Zurich, Zurich, Switzerland
| | - Philipp Schneider
- Institute for Biomechanics, ETH Zurich, Zurich, Switzerland Bioengineering Science Research Group, Faculty of Engineering and the Environment, University of Southampton, Southampton, UK
| |
Collapse
|
11
|
REN LI, WANG ZHE, HUANG LINGWEI, YANG PENGFEI, SHANG PENG. TECHNOLOGIES FOR STRAIN ASSESSMENT FROM WHOLE BONE TO MINERALIZED OSTEOID LEVEL: A CRITICAL REVIEW. J MECH MED BIOL 2016. [DOI: 10.1142/s0219519416300027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Bone has distinctive structures and mechanical properties at the whole bone, perilacunar and mineralized osteoid levels. A systematic understanding of bone strain magnitudes at different anatomical levels and their internal interactions is the prerequisite to advances in bone mechanobiology. However, due to the intrinsic shortcomings of the strain-measuring technologies, the systematic assessment of bone strain at different anatomical levels under physiological conditions and a deep understanding of their internal interactions are still restricted. To promote technological advances and provide systematic and valuable information for mechanical engineers and bone biomechanical researchers, the most useful methods for measuring bone strain at different anatomical levels are demonstrated in this review, and suggestions for the future development of the technologies and their potential integrated applications are proposed.
Collapse
Affiliation(s)
- LI REN
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Science, Northwestern Polytechnical University, 127 Youyi Xilu, Xi'an 710072, P. R. China
| | - ZHE WANG
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Science, Northwestern Polytechnical University, 127 Youyi Xilu, Xi'an 710072, P. R. China
| | - LINGWEI HUANG
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Science, Northwestern Polytechnical University, 127 Youyi Xilu, Xi'an 710072, P. R. China
| | - PENGFEI YANG
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Science, Northwestern Polytechnical University, 127 Youyi Xilu, Xi'an 710072, P. R. China
| | - PENG SHANG
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Science, Northwestern Polytechnical University, 127 Youyi Xilu, Xi'an 710072, P. R. China
| |
Collapse
|
12
|
Karunaratne A, Xi L, Bentley L, Sykes D, Boyde A, Esapa CT, Terrill NJ, Brown SDM, Cox RD, Thakker RV, Gupta HS. Multiscale alterations in bone matrix quality increased fragility in steroid induced osteoporosis. Bone 2016; 84:15-24. [PMID: 26657825 PMCID: PMC4764652 DOI: 10.1016/j.bone.2015.11.019] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Revised: 10/30/2015] [Accepted: 11/27/2015] [Indexed: 12/31/2022]
Abstract
A serious adverse clinical effect of glucocorticoid steroid treatment is secondary osteoporosis, enhancing fracture risk in bone. This rapid increase in bone fracture risk is largely independent of bone loss (quantity), and must therefore arise from degradation of the quality of the bone matrix at the micro- and nanoscale. However, we lack an understanding of both the specific alterations in bone quality n steroid-induced osteoporosis as well as the mechanistic effects of these changes. Here we demonstrate alterations in the nanostructural parameters of the mineralized fibrillar collagen matrix, which affect bone quality, and develop a model linking these to increased fracture risk in glucocorticoid induced osteoporosis. Using a mouse model with an N-ethyl-N-nitrosourea (ENU)-induced corticotrophin releasing hormone promoter mutation (Crh(-120/+)) that developed hypercorticosteronaemia and osteoporosis, we utilized in situ mechanical testing with small angle X-ray diffraction, synchrotron micro-computed tomography and quantitative backscattered electron imaging to link altered nano- and microscale deformation mechanisms in the bone matrix to abnormal macroscopic mechanics. We measure the deformation of the mineralized collagen fibrils, and the nano-mechanical parameters including effective fibril modulus and fibril to tissue strain ratio. A significant reduction (51%) of fibril modulus was found in Crh(-120/+) mice. We also find a much larger fibril strain/tissue strain ratio in Crh(-120/+) mice (~1.5) compared to the wild-type mice (~0.5), indicative of a lowered mechanical competence at the nanoscale. Synchrotron microCT show a disruption of intracortical architecture, possibly linked to osteocytic osteolysis. These findings provide a clear quantitative demonstration of how bone quality changes increase macroscopic fragility in secondary osteoporosis.
Collapse
Affiliation(s)
- A Karunaratne
- Queen Mary University of London, School of Engineering and Material Science, Mile End Road, London E1 4NS, UK.
| | - L Xi
- Queen Mary University of London, School of Engineering and Material Science, Mile End Road, London E1 4NS, UK.
| | - L Bentley
- MRC Mammalian Genetics Unit and Mary Lyon Centre, MRC Harwell, Harwell Science and Innovation Campus, OX11 0RD, UK.
| | - D Sykes
- Core Research Laboratories, The Natural History Museum, London SW7 5BD, UK.
| | - A Boyde
- Queen Mary University of London, Barts and the London School of Medicine and Dentistry, Institute of Dentistry, E1 2AD, UK.
| | - C T Esapa
- MRC Mammalian Genetics Unit and Mary Lyon Centre, MRC Harwell, Harwell Science and Innovation Campus, OX11 0RD, UK; Academic Endocrine Unit, Nuffield Department of Clinical Medicine, Oxford Centre for Diabetes, Endocrinology and Metabolism (OCDEM), University of Oxford, Churchill Hospital, Headington, Oxford OX3 7JL, UK.
| | - N J Terrill
- Diamond Light Source Ltd., Beamline I22, Diamond House, Harwell Science and Innovation Campus, Chilton, Didcot, Oxfordshire, OX11 0DE, UK; Department of Chemistry, University of Sheffield, Dainton Building, Brookhill, Sheffield S3 7HF, UK.
| | - S D M Brown
- MRC Mammalian Genetics Unit and Mary Lyon Centre, MRC Harwell, Harwell Science and Innovation Campus, OX11 0RD, UK.
| | - R D Cox
- MRC Mammalian Genetics Unit and Mary Lyon Centre, MRC Harwell, Harwell Science and Innovation Campus, OX11 0RD, UK.
| | - R V Thakker
- Academic Endocrine Unit, Nuffield Department of Clinical Medicine, Oxford Centre for Diabetes, Endocrinology and Metabolism (OCDEM), University of Oxford, Churchill Hospital, Headington, Oxford OX3 7JL, UK.
| | - H S Gupta
- Queen Mary University of London, School of Engineering and Material Science, Mile End Road, London E1 4NS, UK.
| |
Collapse
|
13
|
Ren L, Yang P, Wang Z, Zhang J, Ding C, Shang P. Biomechanical and biophysical environment of bone from the macroscopic to the pericellular and molecular level. J Mech Behav Biomed Mater 2015; 50:104-22. [DOI: 10.1016/j.jmbbm.2015.04.021] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Revised: 04/12/2015] [Accepted: 04/17/2015] [Indexed: 02/06/2023]
|
14
|
Bala Y, Seeman E. Bone's Material Constituents and their Contribution to Bone Strength in Health, Disease, and Treatment. Calcif Tissue Int 2015; 97:308-26. [PMID: 25712256 DOI: 10.1007/s00223-015-9971-y] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Accepted: 02/11/2015] [Indexed: 12/24/2022]
Abstract
Type 1 collagen matrix volume, its degree of completeness of its mineralization, the extent of collagen crosslinking and water content, and the non-collagenous proteins like osteopontin and osteocalcin comprise the main constituents of bone's material composition. Each influences material strength and change in different ways during advancing age, health, disease, and drug therapy. These traits are not quantifiable using bone densitometry and their plurality is better captured by the term bone 'qualities' than 'quality'. These qualities are the subject of this manuscript.
Collapse
Affiliation(s)
- Y Bala
- Laboratoire Vibrations Acoustique, Institut National des Sciences Appliquées de Lyon, Campus LyonTech la Doua, Villeurbanne, France
| | | |
Collapse
|
15
|
Georgiadis M, Guizar-Sicairos M, Zwahlen A, Trüssel AJ, Bunk O, Müller R, Schneider P. 3D scanning SAXS: a novel method for the assessment of bone ultrastructure orientation. Bone 2015; 71:42-52. [PMID: 25306893 DOI: 10.1016/j.bone.2014.10.002] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2014] [Revised: 09/27/2014] [Accepted: 10/03/2014] [Indexed: 11/23/2022]
Abstract
The arrangement and orientation of the ultrastructure plays an important role for the mechanical properties of inhomogeneous and anisotropic materials, such as polymers, wood, or bone. However, there is a lack of techniques to spatially resolve and quantify the material's ultrastructure orientation in a macroscopic context. In this study, a new method is presented, which allows deriving the ultrastructural 3D orientation in a quantitative and spatially resolved manner. The proposed 3D scanning small-angle X-ray scattering (3D sSAXS) method was demonstrated on a thin trabecular bone specimen of a human vertebra. A micro-focus X-ray beam from a synchrotron radiation source was used to raster scan the sample for different rotation angles. Furthermore, a mathematical framework was developed, validated and employed to describe the relation between the SAXS data for the different rotation angles and the local 3D orientation and degree of orientation (DO) of the bone ultrastructure. The resulting local 3D orientation was visualized by a 3D orientation map using vector fields. Finally, by applying the proposed 3D scanning SAXS method on consecutive bone sections, a 3D map of the local orientation of a complete trabecular element could be reconstructed for the first time. The obtained 3D orientation map provided information on the bone ultrastructure organization and revealed links between trabecular bone microarchitecture and local bone ultrastructure. More specifically, we observed that trabecular bone ultrastructure is organized in orientation domains of tens of micrometers in size. In addition, it was observed that domains with a high DO were more likely to be found near the surface of the trabecular structure, and domains with lower DO (or transition zones) were located in-between the domains with high DO. The method reproducibility was validated by comparing the results obtained when scanning the sample under different sample tilt angles. 3D orientation maps such as the ones created using 3D scanning SAXS will help to quantify and understand structure-function relationships between bone ultrastructure and bone mechanics. Beyond that, the proposed method can also be used in other research fields such as material sciences, with the aim to locally determine the 3D orientation of material components.
Collapse
Affiliation(s)
| | | | | | | | - Oliver Bunk
- Paul Scherrer Institut, Villigen PSI, Switzerland
| | - Ralph Müller
- Institute for Biomechanics, ETH Zurich, Zurich, Switzerland
| | - Philipp Schneider
- Institute for Biomechanics, ETH Zurich, Zurich, Switzerland; Faculty of Engineering and the Environment, University of Southampton, Southampton, UK.
| |
Collapse
|
16
|
Bras W, Koizumi S, Terrill NJ. Beyond simple small-angle X-ray scattering: developments in online complementary techniques and sample environments. IUCRJ 2014; 1:478-91. [PMID: 25485128 PMCID: PMC4224466 DOI: 10.1107/s2052252514019198] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2014] [Accepted: 08/25/2014] [Indexed: 05/20/2023]
Abstract
Small- and wide-angle X-ray scattering (SAXS, WAXS) are standard tools in materials research. The simultaneous measurement of SAXS and WAXS data in time-resolved studies has gained popularity due to the complementary information obtained. Furthermore, the combination of these data with non X-ray based techniques, via either simultaneous or independent measurements, has advanced understanding of the driving forces that lead to the structures and morphologies of materials, which in turn give rise to their properties. The simultaneous measurement of different data regimes and types, using either X-rays or neutrons, and the desire to control parameters that initiate and control structural changes have led to greater demands on sample environments. Examples of developments in technique combinations and sample environment design are discussed, together with a brief speculation about promising future developments.
Collapse
Affiliation(s)
- Wim Bras
- Netherlands Organization for Scientific Research (NWO), DUBBLE@ESRF, BP 220, 6 Rue Jules Horowitz, Grenoble 38043, France
| | - Satoshi Koizumi
- College of Engineering, Ibaraki University, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Nicholas J Terrill
- Science Division, Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, UK
| |
Collapse
|
17
|
Abstract
In situ synchrotron X-ray scattering and diffraction, in combination with micromechanical testing, can provide quantitative information on the nanoscale mechanics of biomineralized composites, such as bone, nacre, and enamel. Due to the hierarchical architecture of these systems, the methodology for extraction of mechanical parameters at the molecular and supramolecular scale requires special considerations regarding design of mechanical test apparatus, sample preparation and testing, data analysis, and interpretation of X-ray structural information in terms of small-scale mechanics. In this chapter, this methodology is described using as a case study the deformation mechanisms at the fibrillar and mineral particle level in cortical bone. Following a description of the sample preparation, testing, and analysis procedures for bone in general, two applications of the method-to understand fibrillar-level mechanics in tension and bending in a mouse model of rachitic disease-are presented, together with a discussion of how to relate in situ scattering and diffraction data acquired during mechanical testing to nanostructural models for deformation of biomineralized composites.
Collapse
Affiliation(s)
- Angelo Karunaratne
- Queen Mary University of London, School of Engineering and Material Sciences, London, United Kingdom
| | | | | |
Collapse
|
18
|
Pabisch S, Wagermaier W, Zander T, Li C, Fratzl P. Imaging the nanostructure of bone and dentin through small- and wide-angle X-ray scattering. Methods Enzymol 2013; 532:391-413. [PMID: 24188777 DOI: 10.1016/b978-0-12-416617-2.00018-7] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
X-ray scattering is a powerful nondestructive experimental method that is well suited to study biomineralized tissues such as bone. Small-angle X-ray scattering (SAXS) gives information about the size, shape, and predominant orientation of the nanometer-sized mineral particles in the bone. Wide-angle X-ray diffraction (WAXD) allows the characterization of structural parameters, describing size and orientation of the hydroxyapatite crystals. Furthermore, scanning an area with nano- or micrometer-sized X-ray beams allows one to extend this local information to map large bone or dentin sections. Therefore, this method contributes to obtaining information on several length scales simultaneously. Combining results from scanning SAXS and WAXD with those from other position-sensitive methods such as backscattered electron imaging or X-ray fluorescence spectroscopy of the same bone sections allows the exploration of complex biological processes. The method is described and illustrated by a few examples, including the mapping of a complete tooth and the effect of osteoporosis treatment on the bone mineral.
Collapse
Affiliation(s)
- Silvia Pabisch
- Max Planck Institute for Colloids and Interfaces, Potsdam, Germany
| | | | | | | | | |
Collapse
|