1
|
Sadeghi G, Farjoo MH. Association of neurodegeneration, cognitive impairment, and short stature in Down syndrome; Could proinflammatory cytokines be the common factor? Brain Res Bull 2025; 224:111317. [PMID: 40139281 DOI: 10.1016/j.brainresbull.2025.111317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 03/05/2025] [Accepted: 03/21/2025] [Indexed: 03/29/2025]
Abstract
Down syndrome (DS), caused by an extra copy of chromosome 21, is the most prevalent chromosomal disorder. It leads to various complications including, cardiac and endocrine dysfunctions, impairment of the immune system, growth retardation, and certain neurological conditions. Stunted growth in this population might be linked to an increased risk of a variety of co-occurring conditions, particularly neurological disorders. Studies indicate that the levels of neurodegeneration and neuroinflammation markers are higher in shorter children with DS. The disruption of insulin-like growth factor 1 (IGF1) signalling pathway due to the overexpression of proinflammatory cytokine genes could help establish a connection between short stature and neurodegeneration in DS. These cytokines disrupt the production of IGF1 in the liver, thereby inhibiting IGF1 from promoting bone and brain growth. Additionally, elevated cytokines levels impair the production of sex hormones by affecting the gonadal axis, further exacerbating the aforementioned conditions. The group of GnRH neurons responsible for cognitive functions is also impaired in DS, and treatment with GnRH agonists has demonstrated improvements in cognition. Although GnRH agonists can delay the fusion of growth plates by inhibiting pulsatile GnRH secretion, they may also lead to cognitive impairments. Hypothyroidism, the most prevalent endocrine complication of DS, can also contribute to both cognitive impairment and short stature. In conclusion, the increase of proinflammatory cytokines, through various mechanisms, can play a significant role in the development of both cognitive impairments and short stature in DS.
Collapse
Affiliation(s)
- Ghazaleh Sadeghi
- Student Research Committee, School of medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Mohammad Hadi Farjoo
- Department of pharmacology, School of medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
2
|
Kaur S, Angrish N, Vasudevan M, Khare G. Global proteomics reveals pathways of mesenchymal stem cells altered by Mycobacterium tuberculosis. Sci Rep 2024; 14:30677. [PMID: 39730375 DOI: 10.1038/s41598-024-75722-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 10/08/2024] [Indexed: 12/29/2024] Open
Abstract
Mycobacterium tuberculosis (M. tb) has a remarkable ability to persist inside host cells. Several studies showed that M. tb infects and survives inside bone marrow mesenchymal stem cells (BM-MSCs) escaping the host immune system. Here, we have identified various cellular pathways that are modulated in human BM-MSCs upon infection with virulent M. tb and the proteomic profile of these cells varies from that of avirulent M. tb infected cells. We found that virulent M. tb infection reshapes host pathways such as stem cell differentiation, alternative splicing, cytokine production, mitochondrial function etc., which might be modulated by M. tb to persist inside this unconventional niche of human BM-MSCs. Additionally, we observed that virulent M. tb infection suppresses various cellular processes. This study uncovers the differences in the host proteomic profiles resulting from the virulent versus avirulent M. tb infection that can pave the way to identify host-directed therapeutic targets for the treatment of tuberculosis.
Collapse
Affiliation(s)
- Simran Kaur
- Department of Biochemistry, University of Delhi South Campus, New Delhi, 110021, India
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, Canada
| | - Nupur Angrish
- Department of Biochemistry, University of Delhi South Campus, New Delhi, 110021, India
| | - Madavan Vasudevan
- Genomics and Data Science Unit, Theomics International Pvt. Ltd, Bangalore, 560038, India
| | - Garima Khare
- Department of Biochemistry, University of Delhi South Campus, New Delhi, 110021, India.
| |
Collapse
|
3
|
Luo J, Wang W, Li J, Duan H, Xu C, Tian X, Zhang D. Epigenome-wide association study identifies DNA methylation loci associated with handgrip strength in Chinese monozygotic twins. Front Cell Dev Biol 2024; 12:1378680. [PMID: 38633108 PMCID: PMC11021642 DOI: 10.3389/fcell.2024.1378680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 03/22/2024] [Indexed: 04/19/2024] Open
Abstract
Background: The decline in muscle strength and function with aging is well recognized, but remains poorly characterized at the molecular level. Here, we report the epigenetic relationship between genome-wide DNA methylation and handgrip strength (HGS) among Chinese monozygotic (MZ) twins. Methods: DNA methylation (DNAm) profiling was conducted in whole blood samples through Reduced Representation Bisulfite Sequencing method. Generalized estimating equation was applied to regress the DNAm of each CpG with HGS. The Genomic Regions Enrichment of Annotations Tool was used to perform enrichment analysis. Differentially methylated regions (DMRs) were detected using comb-p. Causal inference was performed using Inference about Causation through Examination of Familial Confounding method. Finally, we validated candidate CpGs in community residents. Results: We identified 25 CpGs reaching genome-wide significance level. These CpGs located in 9 genes, especially FBLN1, RXRA, and ABHD14B. Many enriched terms highlighted calcium channels, neuromuscular junctions, and skeletal muscle organ development. We identified 21 DMRs of HGS, with several DMRs within FBLN1, SLC30A8, CST3, and SOCS3. Causal inference indicated that the DNAm of 16 top CpGs within FBLN1, RXRA, ABHD14B, MFSD6, and TYW1B might influence HGS, while HGS influenced DNAm at two CpGs within FBLN1 and RXRA. In validation analysis, methylation levels of six CpGs mapped to FLBN1 and one CpG mapped to ABHD14B were negatively associated with HGS weakness in community population. Conclusion: Our study identified multiple DNAm variants potentially related to HGS, especially CpGs within FBLN1 and ABHD14B. These findings provide new clues to the epigenetic modification underlying muscle strength decline.
Collapse
Affiliation(s)
- Jia Luo
- Department of Epidemiology and Health Statistics, School of Public Health, Qingdao University, Qingdao, Shandong, China
| | - Weijing Wang
- Department of Epidemiology and Health Statistics, School of Public Health, Qingdao University, Qingdao, Shandong, China
| | - Jingxian Li
- Department of Epidemiology and Health Statistics, School of Public Health, Qingdao University, Qingdao, Shandong, China
| | - Haiping Duan
- Qingdao Municipal Centre for Disease Control and Prevention, Qingdao, Shandong, China
- Qingdao Institute of Preventive Medicine, Qingdao, Shandong, China
| | - Chunsheng Xu
- Qingdao Municipal Centre for Disease Control and Prevention, Qingdao, Shandong, China
- Qingdao Institute of Preventive Medicine, Qingdao, Shandong, China
| | - Xiaocao Tian
- Qingdao Municipal Centre for Disease Control and Prevention, Qingdao, Shandong, China
- Qingdao Institute of Preventive Medicine, Qingdao, Shandong, China
| | - Dongfeng Zhang
- Department of Epidemiology and Health Statistics, School of Public Health, Qingdao University, Qingdao, Shandong, China
| |
Collapse
|
4
|
Zhu L, Ruan WH, Han WQ, Gu WZ. Anatomical and immunohistochemical analyses of the fusion of the premaxillary-maxillary suture in human fetuses. J Orofac Orthop 2024; 85:123-133. [PMID: 35810249 DOI: 10.1007/s00056-022-00410-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 05/29/2022] [Indexed: 11/30/2022]
Abstract
PURPOSE The development of the premaxillary-maxillary suture (PMS) in human fetuses and a possible association between the fusion time of the PMS and maxillary deficiency were investigated. Expression of transforming growth factor beta (TGF-β1 and TGF-β3) and of fibulins (fibulin‑1 and fibulin-5) were also investigated. METHODS We analyzed 36 human fetus cadavers (19 males, 17 females; average age 23.97 ± 2.57 gestational weeks [gws], range 11-35 gws). Two cases, diagnosed with Down syndrome (DS), were characterized with maxillary deficiency; 34 fetus cadavers did not show any craniofacial abnormalities. The PMS was analyzed anatomically, followed by semi-quantitative immunohistochemical (IHC)-based expression analyses (i.e., TGF-β1/-β3, fibulin-1/-5). Spearman correlation test was conducted to investigate correlations. RESULTS In the fetuses without DS, the labial region of the PMS was open at 11 gws, after which it began to ossify from the middle to the upper and lower ends of the suture, typically fusing completely at 27 gws. Fetuses with DS demonstrated complete fusion of the labial region of PMS with a spongy bone structure at 23 gws and those without DS at 27 gws. IHC revealed similar patterns of TGF-βs and fibulins expression in the PMS during the human fetal period. There were significant positive correlations between the expression of TGF-β1 and TGF-β3 (r = 0.64, p = 0.009), TGF-β1 and fibulin‑1 (r = 0.66, p = 0.008), and TGF-β3 and fibulin‑1 (r = 0.67, p = 0.006). CONCLUSION Premature fusion of the PMS in the labial region during the human fetal period may be associated with maxillary deficiency, which is related to a class III malocclusion. Overall, the similar expression patterns of TGF-β1, TGF-β3 and fibulin‑1 suggested a close relationship between these factors in regulating the development of the PMS.
Collapse
Affiliation(s)
- Ling Zhu
- Department of Stomatology, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Health, 3333 Binsheng Road, 310052, Hangzhou, China
| | - Wen-Hua Ruan
- Department of Stomatology, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Health, 3333 Binsheng Road, 310052, Hangzhou, China.
| | - Wu-Qun Han
- Department of Ultrasound, The First People's Hospital of Fuyang District, 311400, Hangzhou, China
| | - Wei-Zhong Gu
- Department of Pathology, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Health, 310052, Hangzhou, China
| |
Collapse
|
5
|
Raman R, Antony M, Nivelle R, Lavergne A, Zappia J, Guerrero-Limón G, Caetano da Silva C, Kumari P, Sojan JM, Degueldre C, Bahri MA, Ostertag A, Collet C, Cohen-Solal M, Plenevaux A, Henrotin Y, Renn J, Muller M. The Osteoblast Transcriptome in Developing Zebrafish Reveals Key Roles for Extracellular Matrix Proteins Col10a1a and Fbln1 in Skeletal Development and Homeostasis. Biomolecules 2024; 14:139. [PMID: 38397376 PMCID: PMC10886564 DOI: 10.3390/biom14020139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/05/2024] [Accepted: 01/11/2024] [Indexed: 02/25/2024] Open
Abstract
Zebrafish are now widely used to study skeletal development and bone-related diseases. To that end, understanding osteoblast differentiation and function, the expression of essential transcription factors, signaling molecules, and extracellular matrix proteins is crucial. We isolated Sp7-expressing osteoblasts from 4-day-old larvae using a fluorescent reporter. We identified two distinct subpopulations and characterized their specific transcriptome as well as their structural, regulatory, and signaling profile. Based on their differential expression in these subpopulations, we generated mutants for the extracellular matrix protein genes col10a1a and fbln1 to study their functions. The col10a1a-/- mutant larvae display reduced chondrocranium size and decreased bone mineralization, while in adults a reduced vertebral thickness and tissue mineral density, and fusion of the caudal fin vertebrae were observed. In contrast, fbln1-/- mutants showed an increased mineralization of cranial elements and a reduced ceratohyal angle in larvae, while in adults a significantly increased vertebral centra thickness, length, volume, surface area, and tissue mineral density was observed. In addition, absence of the opercle specifically on the right side was observed. Transcriptomic analysis reveals up-regulation of genes involved in collagen biosynthesis and down-regulation of Fgf8 signaling in fbln1-/- mutants. Taken together, our results highlight the importance of bone extracellular matrix protein genes col10a1a and fbln1 in skeletal development and homeostasis.
Collapse
Affiliation(s)
- Ratish Raman
- Laboratory for Organogenesis and Regeneration (LOR), GIGA Institute, University of Liège, 4000 Liège, Belgium; (R.R.); (M.A.); (R.N.); (G.G.-L.); (J.R.)
| | - Mishal Antony
- Laboratory for Organogenesis and Regeneration (LOR), GIGA Institute, University of Liège, 4000 Liège, Belgium; (R.R.); (M.A.); (R.N.); (G.G.-L.); (J.R.)
| | - Renaud Nivelle
- Laboratory for Organogenesis and Regeneration (LOR), GIGA Institute, University of Liège, 4000 Liège, Belgium; (R.R.); (M.A.); (R.N.); (G.G.-L.); (J.R.)
| | - Arnaud Lavergne
- GIGA Genomics Platform, B34, GIGA Institute, University of Liège, 4000 Liège, Belgium;
| | - Jérémie Zappia
- MusculoSKeletal Innovative Research Lab, Center for Interdisciplinary Research on Medicines, University of Liège, 4000 Liège, Belgium (Y.H.)
| | - Gustavo Guerrero-Limón
- Laboratory for Organogenesis and Regeneration (LOR), GIGA Institute, University of Liège, 4000 Liège, Belgium; (R.R.); (M.A.); (R.N.); (G.G.-L.); (J.R.)
| | - Caroline Caetano da Silva
- Hospital Lariboisière, Reference Centre for Rare Bone Diseases, INSERM U1132, Université de Paris-Cité, F-75010 Paris, France; (C.C.d.S.); (A.O.); (C.C.); (M.C.-S.)
| | - Priyanka Kumari
- Laboratory of Pharmaceutical and Analytical Chemistry, Department of Pharmacy, CIRM, Sart Tilman, 4000 Liège, Belgium;
| | - Jerry Maria Sojan
- Department of Life and Environmental Sciences, Università Politecnica delle Marche, Via Brecce Bianche, 60131 Ancona, Italy;
| | - Christian Degueldre
- GIGA CRC In Vivo Imaging, University of Liège, Sart Tilman, 4000 Liège, Belgium; (C.D.); (M.A.B.); (A.P.)
| | - Mohamed Ali Bahri
- GIGA CRC In Vivo Imaging, University of Liège, Sart Tilman, 4000 Liège, Belgium; (C.D.); (M.A.B.); (A.P.)
| | - Agnes Ostertag
- Hospital Lariboisière, Reference Centre for Rare Bone Diseases, INSERM U1132, Université de Paris-Cité, F-75010 Paris, France; (C.C.d.S.); (A.O.); (C.C.); (M.C.-S.)
| | - Corinne Collet
- Hospital Lariboisière, Reference Centre for Rare Bone Diseases, INSERM U1132, Université de Paris-Cité, F-75010 Paris, France; (C.C.d.S.); (A.O.); (C.C.); (M.C.-S.)
- UF de Génétique Moléculaire, Hôpital Robert Debré, APHP, F-75019 Paris, France
| | - Martine Cohen-Solal
- Hospital Lariboisière, Reference Centre for Rare Bone Diseases, INSERM U1132, Université de Paris-Cité, F-75010 Paris, France; (C.C.d.S.); (A.O.); (C.C.); (M.C.-S.)
| | - Alain Plenevaux
- GIGA CRC In Vivo Imaging, University of Liège, Sart Tilman, 4000 Liège, Belgium; (C.D.); (M.A.B.); (A.P.)
| | - Yves Henrotin
- MusculoSKeletal Innovative Research Lab, Center for Interdisciplinary Research on Medicines, University of Liège, 4000 Liège, Belgium (Y.H.)
| | - Jörg Renn
- Laboratory for Organogenesis and Regeneration (LOR), GIGA Institute, University of Liège, 4000 Liège, Belgium; (R.R.); (M.A.); (R.N.); (G.G.-L.); (J.R.)
| | - Marc Muller
- Laboratory for Organogenesis and Regeneration (LOR), GIGA Institute, University of Liège, 4000 Liège, Belgium; (R.R.); (M.A.); (R.N.); (G.G.-L.); (J.R.)
| |
Collapse
|
6
|
Li SD, Xing W, Wang SC, Li YB, Jiang H, Zheng HX, Li XM, Yang J, Guo DB, Xie XY, Jiang RQ, Fan C, Li L, Xu X, Fei J. Fibulin2: a negative regulator of BMSC osteogenic differentiation in infected bone fracture healing. Exp Mol Med 2023; 55:443-456. [PMID: 36797542 PMCID: PMC9981700 DOI: 10.1038/s12276-023-00942-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 11/26/2022] [Accepted: 12/02/2022] [Indexed: 02/18/2023] Open
Abstract
Bone fracture remains a common occurrence, with a population-weighted incidence of approximately 3.21 per 1000. In addition, approximately 2% to 50% of patients with skeletal fractures will develop an infection, one of the causes of disordered bone healing. Dysfunction of bone marrow mesenchymal stem cells (BMSCs) plays a key role in disordered bone repair. However, the specific mechanisms underlying BMSC dysfunction caused by bone infection are largely unknown. In this study, we discovered that Fibulin2 expression was upregulated in infected bone tissues and that BMSCs were the source of infection-induced Fibulin2. Importantly, Fibulin2 knockout accelerated mineralized bone formation during skeletal development and inhibited inflammatory bone resorption. We demonstrated that Fibulin2 suppressed BMSC osteogenic differentiation by binding to Notch2 and inactivating the Notch2 signaling pathway. Moreover, Fibulin2 knockdown restored Notch2 pathway activation and promoted BMSC osteogenesis; these outcomes were abolished by DAPT, a Notch inhibitor. Furthermore, transplanted Fibulin2 knockdown BMSCs displayed better bone repair potential in vivo. Altogether, Fibulin2 is a negative regulator of BMSC osteogenic differentiation that inhibits osteogenesis by inactivating the Notch2 signaling pathway in infected bone.
Collapse
Affiliation(s)
- Shi-Dan Li
- Department of Orthopaedics, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University, Chongqing, 400042, People's Republic of China
| | - Wei Xing
- Department of Stem Cell and Regenerative Medicine, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University, Chongqing, 400042, People's Republic of China
| | - Shao-Chuan Wang
- Department of Orthopaedics, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University, Chongqing, 400042, People's Republic of China
| | - You-Bin Li
- Department of Orthopaedics, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University, Chongqing, 400042, People's Republic of China
| | - Hao Jiang
- Department of Orthopaedics, Affiliated Hospital of Southwest Medical University, Luzhou, 646000, People's Republic of China
| | - Han-Xuan Zheng
- Department of Nursing, Montreal Neurological Hospital, 3801 Rue University, Montréal, QC H3A 2B4, Canada
| | - Xiao-Ming Li
- Department of Military Traffic Injury Prevention, Daping Hospital, Army Medical University, Chongqing, 400042, People's Republic of China
| | - Jing Yang
- Department of Emergency, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University, Chongqing, 400042, People's Republic of China
| | - De-Bin Guo
- Department of Emergency, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University, Chongqing, 400042, People's Republic of China
| | - Xiao-Yu Xie
- Department of Orthopaedics, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University, Chongqing, 400042, People's Republic of China
| | - Ren-Qing Jiang
- Department for Combat Casualty Care Training, Training Base for Army Health Care, Third Military Medical University, Chongqing, 400042, People's Republic of China
| | - Chao Fan
- Medical Research Center, The Third People's Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, Southwest Jiaotong University, Chengdu, 610031, People's Republic of China
| | - Lei Li
- Department of Stem Cell and Regenerative Medicine, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University, Chongqing, 400042, People's Republic of China
| | - Xiang Xu
- Department of Stem Cell and Regenerative Medicine, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University, Chongqing, 400042, People's Republic of China.
| | - Jun Fei
- Department of Emergency, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University, Chongqing, 400042, People's Republic of China.
| |
Collapse
|
7
|
Pihlström S, Määttä K, Öhman T, Mäkitie RE, Aronen M, Varjosalo M, Mäkitie O, Pekkinen M. A multi-omics study to characterize the transdifferentiation of human dermal fibroblasts to osteoblast-like cells. Front Mol Biosci 2022; 9:1032026. [PMID: 36465561 PMCID: PMC9714459 DOI: 10.3389/fmolb.2022.1032026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 10/26/2022] [Indexed: 09/19/2023] Open
Abstract
Background: Various skeletal disorders display defects in osteoblast development and function. An in vitro model can help to understand underlying disease mechanisms. Currently, access to appropriate starting material for in vitro osteoblastic studies is limited. Native osteoblasts and their progenitors, the bone marrow mesenchymal stem cells, (MSCs) are problematic to isolate from affected patients and challenging to expand in vitro. Human dermal fibroblasts in vitro are a promising substitute source of cells. Method: We developed an in vitro culturing technique to transdifferentiate fibroblasts into osteoblast-like cells. We obtained human fibroblasts from forearm skin biopsy and differentiated them into osteoblast-like cells with ß-glycerophosphate, ascorbic acid, and dexamethasone treatment. Osteoblastic phenotype was confirmed by staining for alkaline phosphatase (ALP), calcium and phosphate deposits (Alizarin Red, Von Kossa) and by a multi-omics approach (transcriptomic, proteomic, and phosphoproteomic analyses). Result: After 14 days of treatment, both fibroblasts and MSCs (reference cells) stained positive for ALP together with a significant increase in bone specific ALP (p = 0.04 and 0.004, respectively) compared to untreated cells. At a later time point, both cell types deposited minerals, indicating mineralization. In addition, fibroblasts and MSCs showed elevated expression of several osteogenic genes (e.g. ALPL, RUNX2, BMPs and SMADs), and decreased expression of SOX9. Ingenuity Pathways Analysis of RNA sequencing data from fibroblasts and MSCs showed that the osteoarthritis pathway was activated in both cell types (p_adj. = 0.003 and 0.004, respectively). Discussion: These data indicate that our in vitro treatment induces osteoblast-like differentiation in fibroblasts and MSCs, producing an in vitro osteoblastic cell system. This culturing system provides an alternative tool for bone biology research and skeletal tissue engineering.
Collapse
Affiliation(s)
- Sandra Pihlström
- Institute of Genetics, Folkhälsan Research Center, Helsinki, Finland
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Kirsi Määttä
- Institute of Genetics, Folkhälsan Research Center, Helsinki, Finland
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Tiina Öhman
- Institute of Biotechnology and Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Riikka E. Mäkitie
- Institute of Genetics, Folkhälsan Research Center, Helsinki, Finland
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Department of Otorhinolaryngology—Head and Neck Surgery, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Mira Aronen
- Institute of Genetics, Folkhälsan Research Center, Helsinki, Finland
| | - Markku Varjosalo
- Institute of Biotechnology and Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Outi Mäkitie
- Institute of Genetics, Folkhälsan Research Center, Helsinki, Finland
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Children’s Hospital, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
- Department of Molecular Medicine and Surgery and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Minna Pekkinen
- Institute of Genetics, Folkhälsan Research Center, Helsinki, Finland
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Children’s Hospital, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| |
Collapse
|
8
|
Liu J, Yang C, Zhang H, Hu W, Bergquist J, Wang H, Deng T, Yang X, Zhang C, Zhu Y, Chi X, Mi J, Wang Y. Quantitative proteomics approach reveals novel biomarkers and pathological mechanism of keloid. Proteomics Clin Appl 2022; 16:e2100127. [PMID: 35435317 PMCID: PMC9541363 DOI: 10.1002/prca.202100127] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 04/01/2022] [Accepted: 04/16/2022] [Indexed: 12/30/2022]
Abstract
BACKGROUND Keloid is a pathological skin scar formation with complex and unclear molecular pathology mechanism. Novel biomarkers and associated mechanisms are needed to improve current therapies. OBJECTIVES To identify novel biomarkers and underlying pathological mechanisms of keloids. METHODS Six pairs of keloid scar tissues and corresponding normal skin tissues were quantitatively analyzed by a high-resolution label-free mass spectrometry-based proteomics approach. Differential protein expression data was further analyzed by a comprehensive bioinformatics approach to identify novel biomarkers and mechanistic pathways for keloid formation. Candidate biomarkers were validated experimentally. RESULTS In total, 1359 proteins were identified by proteomic analysis. Of these, 206 proteins exhibited a significant difference in expression between keloid scar and normal skin tissues. RCN3 and CALU were significantly upregulated in keloids. RCN1 and PDGFRL were uniquely expressed in keloids. Pathway analysis suggested that the XBP1-mediated unfolded protein response (UPR) pathway was involved in keloid formation. Moreover, a PDGFRL centric gene coexpression network was constructed to illustrate its function in skin. CONCLUSIONS AND CLINICAL RELEVANCE Our study proposed four novel biomarkers and highlighted the role of XBP1-mediated UPR pathway in the pathology of keloids. It provided novel biological insights that contribute to develop novel therapeutic strategies for keloids.
Collapse
Affiliation(s)
- Jian Liu
- Department of Plastic Surgery, Shandong Provincial Qianfoshan HospitalCheeloo College of Medicine, Shandong UniversityJinanShandongChina,Department of Plastic SurgeryThe First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan HospitalJinanShandongChina,Jinan Clinical Research Center for Tissue Engineering Skin Regeneration and wound RepairJinanShandongChina
| | - Chunhua Yang
- Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, School of PharmacyBinzhou Medical UniversityYantaiShandongChina
| | - Huayu Zhang
- Department of Plastic Surgery, Shandong Provincial Qianfoshan HospitalCheeloo College of Medicine, Shandong UniversityJinanShandongChina,Jinan Clinical Research Center for Tissue Engineering Skin Regeneration and wound RepairJinanShandongChina
| | - Wei Hu
- Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, School of PharmacyBinzhou Medical UniversityYantaiShandongChina
| | - Jonas Bergquist
- Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, School of PharmacyBinzhou Medical UniversityYantaiShandongChina,Department of Chemistry – BMC, Analytical Chemistry and NeurochemistryUppsala UniversityUppsalaSweden
| | - Helen Wang
- Department of Medical Biochemistry and Microbiology, BMCUppsala UniversityUppsalaSweden
| | - Tingzhi Deng
- Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, School of PharmacyBinzhou Medical UniversityYantaiShandongChina
| | - Xueling Yang
- Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, School of PharmacyBinzhou Medical UniversityYantaiShandongChina
| | - Chao Zhang
- Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, School of PharmacyBinzhou Medical UniversityYantaiShandongChina
| | - Yanping Zhu
- Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, School of PharmacyBinzhou Medical UniversityYantaiShandongChina
| | - Xiaodong Chi
- Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, School of PharmacyBinzhou Medical UniversityYantaiShandongChina
| | - Jia Mi
- Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, School of PharmacyBinzhou Medical UniversityYantaiShandongChina
| | - Yibing Wang
- Department of Plastic Surgery, Shandong Provincial Qianfoshan HospitalCheeloo College of Medicine, Shandong UniversityJinanShandongChina,Department of Plastic SurgeryThe First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan HospitalJinanShandongChina,Jinan Clinical Research Center for Tissue Engineering Skin Regeneration and wound RepairJinanShandongChina
| |
Collapse
|
9
|
Rodrigues BM, Mathias LS, Deprá IDC, Cury SS, de Oliveira M, Olimpio RMC, De Sibio MT, Gonçalves BM, Nogueira CR. Effects of Triiodothyronine on Human Osteoblast-Like Cells: Novel Insights From a Global Transcriptome Analysis. Front Cell Dev Biol 2022; 10:886136. [PMID: 35784485 PMCID: PMC9248766 DOI: 10.3389/fcell.2022.886136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 05/06/2022] [Indexed: 11/13/2022] Open
Abstract
Background: Thyroid hormones play a significant role in bone development and maintenance, with triiodothyronine (T3) particularly being an important modulator of osteoblast differentiation, proliferation, and maintenance. However, details of the biological processes (BPs) and molecular pathways affected by T3 in osteoblasts remain unclear.Methods: To address this issue, primary cultures of human adipose-derived mesenchymal stem cells were subjected to our previously established osteoinduction protocol, and the resultant osteoblast-like cells were treated with 1 nm or 10 nm T3 for 72 h. RNA sequencing (RNA-Seq) was performed using the Illumina platform, and differentially expressed genes (DEGs) were identified from the raw data using Kallisto and DESeq2. Enrichment analysis of DEGs was performed against the Gene Ontology Consortium database for BP terms using the R package clusterProfiler and protein network analysis by STRING.Results: Approximately 16,300 genes were analyzed by RNA-Seq, with 343 DEGs regulated in the 1 nm T3 group and 467 upregulated in the 10 nm T3 group. Several independent BP terms related to bone metabolism were significantly enriched, with a number of genes shared among them (FGFR2, WNT5A, WNT3, ROR2, VEGFA, FBLN1, S1PR1, PRKCZ, TGFB3, and OSR1 for 1nM T3; and FZD1, SMAD6, NOG, NEO1, and ENG for 10 nm T3). An osteoblast-related search in the literature regarding this set of genes suggests that both T3 doses are unfavorable for osteoblast development, mainly hindering BMP and canonical and non-canonical WNT signaling.Conclusions: Therefore, this study provides new directions toward the elucidation of the mechanisms of T3 action on osteoblast metabolism, with potential future implications for the treatment of endocrine-related bone pathologies.
Collapse
Affiliation(s)
- Bruna Moretto Rodrigues
- Department of Internal Medicine, Medical School Botucatu, São Paulo State University (UNESP), Botucatu, Brazil
| | - Lucas Solla Mathias
- Department of Internal Medicine, Medical School Botucatu, São Paulo State University (UNESP), Botucatu, Brazil
| | - Igor de Carvalho Deprá
- Department of Internal Medicine, Medical School Botucatu, São Paulo State University (UNESP), Botucatu, Brazil
| | - Sarah Santiloni Cury
- Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, Brazil
| | - Miriane de Oliveira
- Department of Internal Medicine, Medical School Botucatu, São Paulo State University (UNESP), Botucatu, Brazil
| | | | - Maria Teresa De Sibio
- Department of Internal Medicine, Medical School Botucatu, São Paulo State University (UNESP), Botucatu, Brazil
| | - Bianca Mariani Gonçalves
- Department of Internal Medicine, Medical School Botucatu, São Paulo State University (UNESP), Botucatu, Brazil
| | - Célia Regina Nogueira
- Department of Internal Medicine, Medical School Botucatu, São Paulo State University (UNESP), Botucatu, Brazil
- *Correspondence: Célia Regina Nogueira,
| |
Collapse
|
10
|
Du Y, Wang Y, Xu Q, Zhu J, Lin Y. TMT-based quantitative proteomics analysis reveals the key proteins related with the differentiation process of goat intramuscular adipocytes. BMC Genomics 2021; 22:417. [PMID: 34090334 PMCID: PMC8180059 DOI: 10.1186/s12864-021-07730-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Accepted: 05/19/2021] [Indexed: 02/15/2023] Open
Abstract
Background Intramuscular adipocytes differentiation is a complex process, which is regulated by various transcription factor, protein factor regulators and signal transduction pathways. However, the proteins and signal pathways that regulates goat intramuscular adipocytes differentiation remains unclear. Result In this study, based on nanoscale liquid chromatography mass spectrometry analysis (LC-MS/MS), the tandem mass tag (TMT) labeling analysis was used to investigate the differentially abundant proteins (DAPs) related with the differentiation process of goat intramuscular adipocytes. Gene Ontology, Kyoto Encyclopedia of Genes and Genomes enrichment and protein-protein interaction network analyses were performed for the characterization of the identified DAPs. The candidate proteins were verified by parallel reaction monitoring analysis. As a result, a total of 123 proteins, 70 upregulation proteins and 53 downregulation proteins, were identified as DAPs which may be related with the differentiation process of goat intramuscular adipocytes. Furthermore, the cholesterol metabolism pathway, glucagon signaling pathway and glycolysis / gluconeogenesis pathway were noticed that may be the important signal pathways for goat Intramuscular adipocytes differentiation. Conclusions By proteomic comparison between goat intramuscular preadipocytes (P_IMA) and intramuscular adipocytes (IMA), we identified a series protein that might play important role in the goat intramuscular fat differentiation, such as SRSF10, CSRP3, APOH, PPP3R1, CRTC2, FOS, SERPINE1 and AIF1L, could serve as candidates for further elucidate the molecular mechanism of IMF differentiation in goats. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07730-y.
Collapse
Affiliation(s)
- Yu Du
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization of Education Ministry, Southwest Minzu University, Chengdu, China.,Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Exploitation of Sichuan Province, Southwest Minzu University, Chengdu, China
| | - Yong Wang
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization of Education Ministry, Southwest Minzu University, Chengdu, China.,Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Exploitation of Sichuan Province, Southwest Minzu University, Chengdu, China
| | - Qing Xu
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization of Education Ministry, Southwest Minzu University, Chengdu, China.,Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Exploitation of Sichuan Province, Southwest Minzu University, Chengdu, China.,College of Animal & Veterinary Science, Southwest Minzu University, Chengdu, China
| | - Jiangjiang Zhu
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization of Education Ministry, Southwest Minzu University, Chengdu, China.,Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Exploitation of Sichuan Province, Southwest Minzu University, Chengdu, China
| | - Yaqiu Lin
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization of Education Ministry, Southwest Minzu University, Chengdu, China. .,Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Exploitation of Sichuan Province, Southwest Minzu University, Chengdu, China. .,College of Animal & Veterinary Science, Southwest Minzu University, Chengdu, China.
| |
Collapse
|
11
|
Identification of circRNA-associated ceRNA network in BMSCs of OVX models for postmenopausal osteoporosis. Sci Rep 2020; 10:10896. [PMID: 32616775 PMCID: PMC7331745 DOI: 10.1038/s41598-020-67750-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 06/11/2020] [Indexed: 12/12/2022] Open
Abstract
Circular RNAs (circRNAs) serve as competing endogenous RNAs (ceRNAs) and indirectly regulate gene expression through shared microRNAs (miRNAs). However, the potential circRNAs functioning as ceRNAs in osteoporosis remain unclear. The bone marrow mesenchymal stem cells (BMSCs) were isolated from ovariectomy (OVX) mice and controls. We systematically analyzed RNA‐seq and miRNA‐microarray data, miRNA‐target interactions, and prominently coexpressed gene pairs to identify aberrantly expressed circRNAs, miRNAs, and messenger RNAs (mRNAs) between the OVX mice and controls. A total of 45 circRNAs, 22 miRNAs, and 548 mRNAs were significantly dysregulated (fold change > 1.5; p < 0.05). Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway analyses were conducted for differentially expressed mRNAs, and subsequently a circRNA‐associated ceRNA network involved in osteoporosis was constructed. We identified two ceRNA regulatory pathways in this osteoporosis mouse model—novel circRNA 0020/miR-206-3p/Nnmt and circRNA 3832/miR-3473e/Runx3, which were validated by real-time PCR. This is the first study to elucidate the circRNA-associated ceRNA network in OVX and control mice using deep RNA-seq and RNA-microarray analysis. The data further expanded the understanding of circRNA-associated ceRNA networks, and the regulatory functions of circRNAs, miRNAs and mRNAs in the pathogenesis and pathology of osteoporosis.
Collapse
|
12
|
Gao X, Tang Y, Amra S, Sun X, Cui Y, Cheng H, Wang B, Huard J. Systemic investigation of bone and muscle abnormalities in dystrophin/utrophin double knockout mice during postnatal development and the mechanisms. Hum Mol Genet 2020; 28:1738-1751. [PMID: 30689868 DOI: 10.1093/hmg/ddz012] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 01/04/2019] [Accepted: 01/08/2019] [Indexed: 12/31/2022] Open
Abstract
The dystrophin-/-/utrophin-/-/ double knockout (dKO-Hom) mouse is a murine model of human Duchenne muscular dystrophy. This study investigated the bone and muscle abnormalities of dKO-Hom mouse and mechanisms. We collected bone and skeletal muscle samples from control mice and three muscular dystrophic mouse models at different ages and performed micro-computer tomography and histological analyses of both bone and skeletal muscle tissues. Serum receptor activator of nuclear factor kappa-Β ligand (RANKL) and sclerostin (SOST) levels, osteoclastogenesis and serum proteomics were also analyzed. Our results indicated that dKO-Hom mice developed skeletal muscle histopathologies by 5 days of age, whereas bone abnormalities developed at 4 weeks of age. Furthermore, our results indicated that the numbers of osteoblasts and osteoclasts were decreased in the proximal tibia and spine trabecular bone of dKO-Hom mice compared to wild-type (WT) mice, which correlated with a significant reduction in serum RANKL levels. The number of tibia cortical osteocytes also decreased, whereas serum SOST levels increased significantly in dKO-Hom mice than WT mice. Osteoblastic number was significantly lower, but osteoclast number increased, in the spine L6 of dKO-Hom mice than WT mice at 6 weeks of age, resulting in a decrease in bone formation and an increase in bone resorption. Serum proteomics results revealed abnormal proteome profiles in dKO-Hom mice compared to control mice. In conclusion, our study elucidated the timing of development of bone and muscle abnormalities. The bone abnormalities in dKO-Hom mice are correlated with lower serum RANKL and higher SOST levels that resulted in dysregulation of osteogenesis and osteoclastogenesis and bone loss.
Collapse
Affiliation(s)
- Xueqin Gao
- Department of Orthopaedic Surgery, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA.,Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, USA.,Steadman Philippon Research Institute, Vail, CO, USA
| | - Ying Tang
- Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, USA
| | - Sarah Amra
- Department of Orthopaedic Surgery, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Xuying Sun
- Department of Orthopaedic Surgery, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Yan Cui
- Department of Orthopaedic Surgery, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Haizi Cheng
- Department of Orthopaedic Surgery, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Bing Wang
- Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, USA
| | - Johnny Huard
- Department of Orthopaedic Surgery, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA.,Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, USA.,Steadman Philippon Research Institute, Vail, CO, USA
| |
Collapse
|
13
|
Zhu B, Xue F, Li G, Zhang C. CRYAB promotes osteogenic differentiation of human bone marrow stem cells via stabilizing β-catenin and promoting the Wnt signalling. Cell Prolif 2019; 53:e12709. [PMID: 31638302 PMCID: PMC6985673 DOI: 10.1111/cpr.12709] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 08/12/2019] [Accepted: 09/02/2019] [Indexed: 12/14/2022] Open
Abstract
Objectives The osteogenesis differentiation of human bone marrow stem cells (BMSCs) is essential for bone formation and bone homeostasis. In this study, we aim to elucidate novel molecular targets for bone metabolism diseases. Materials and methods The dataset GSE80614 which includes mRNA expression profile during BMSCs osteogenic differentiation was obtained from the GEO database (https://www.ncbi.nlm.nih.gov/geo/). The osteogenic differentiation of BMSCs was measured by ALP staining, AR staining and expression of osteogenic markers in vitro. For in vivo assay, we seeded BMSCs onto beta‐tricalcium phosphate (β‐TCP) and transplanted them into muscle pockets of nude mice. Luciferase assay, co‐immunoprecipitation assay and in vitro ubiquitination assay were carried out to investigate the molecular mechanism. Results We found that α‐B‐crystallin (CRYAB) expression was elevated during the process of BMSCs osteogenic differentiation. Further studies showed that upregulation of CRYAB significantly enhanced the osteogenic differentiation, while downregulation of CRYAB suppressed it. CRYAB regulated BMSCs osteogenic differentiation mainly through the canonical Wnt/β‐catenin signalling. In addition, we found that CRYAB could physically interact with β‐catenin and protect it from ubiquitination and degradation, which stabilized β‐catenin and promoted the Wnt signalling. Conclusions The present study provides evidences that CRYAB is an important regulator of BMSCs osteogenic differentiation by protecting β‐catenin from ubiquitination and degradation and promoting the Wnt signalling. It may serve as a potential therapeutic target for diseases related to bone metabolism.
Collapse
Affiliation(s)
- Bin Zhu
- Department of Orthopaedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Feng Xue
- Department of Orthopaedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Guangyi Li
- Department of Orthopaedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Changqing Zhang
- Department of Orthopaedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| |
Collapse
|
14
|
Shaik S, Martin EC, Hayes DJ, Gimble JM, Devireddy RV. Transcriptomic Profiling of Adipose Derived Stem Cells Undergoing Osteogenesis by RNA-Seq. Sci Rep 2019; 9:11800. [PMID: 31409848 PMCID: PMC6692320 DOI: 10.1038/s41598-019-48089-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 07/25/2019] [Indexed: 02/06/2023] Open
Abstract
Adipose-derived stromal/stem cells (ASCs) are multipotent in nature that can be differentiated into various cells lineages such as adipogenic, osteogenic, and chondrogenic. The commitment of a cell to differentiate into a particular lineage is regulated by the interplay between various intracellular pathways and their resultant secretome. Similarly, the interactions of cells with the extracellular matrix (ECM) and the ECM bound growth factors instigate several signal transducing events that ultimately determine ASC differentiation. In this study, RNA-sequencing (RNA-Seq) was performed to identify the transcriptome profile of osteogenic induced ASCs to understand the associated genotype changes. Gene ontology (GO) functional annotations analysis using Database for Annotation Visualization and Integrated Discovery (DAVID) bioinformatics resources on the differentially expressed genes demonstrated the enrichment of pathways mainly associated with ECM organization and angiogenesis. We, therefore, studied the expression of genes coding for matrisome proteins (glycoproteins, collagens, proteoglycans, ECM-affiliated, regulators, and secreted factors) and ECM remodeling enzymes (MMPs, integrins, ADAMTSs) and the expression of angiogenic markers during the osteogenesis of ASCs. The upregulation of several pro-angiogenic ELR+ chemokines and other angiogenic inducers during osteogenesis indicates the potential role of the secretome from differentiating ASCs in the vascular development and its integration with the bone tissue. Furthermore, the increased expression of regulatory genes such as CTNNB1, TGBR2, JUN, FOS, GLI3, and MAPK3 involved in the WNT, TGF-β, JNK, HedgeHog and ERK1/2 pathways suggests the regulation of osteogenesis through interplay between these pathways. The RNA-Seq data was also validated by performing QPCR on selected up- and down-regulated genes (COL10A1, COL11A1, FBLN, FERMT1, FN1, FOXF1, LAMA3, LAMA4, LAMB1, IGF1, WNT10B, MMP1, MMP3, MMP16, ADAMTS6, and ADAMTS14).
Collapse
Affiliation(s)
- Shahensha Shaik
- Bioengineering Laboratory, Department of Mechanical Engineering, Louisiana State University, Baton Rouge, LA, USA
| | - Elizabeth C Martin
- Department of Biological and Agricultural Engineering, Louisiana State University, Baton Rouge, LA, USA
| | - Daniel J Hayes
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA, USA
| | - Jeffrey M Gimble
- La Cell LLC and Center for Stem Cell Research & Regenerative Medicine and Departments of Medicine, Structural & Cellular Biology, and Surgery, Tulane University School of Medicine, New Orleans, LA, USA
| | - Ram V Devireddy
- Bioengineering Laboratory, Department of Mechanical Engineering, Louisiana State University, Baton Rouge, LA, USA.
| |
Collapse
|
15
|
Zimmerman H, Yin Z, Zou F, Everett ET. Interfrontal Bone Among Inbred Strains of Mice and QTL Mapping. Front Genet 2019; 10:291. [PMID: 31001328 PMCID: PMC6454051 DOI: 10.3389/fgene.2019.00291] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 03/18/2019] [Indexed: 11/24/2022] Open
Abstract
The interfrontal bone (IF) is a minor skeletal trait residing between the frontal bones. IF is considered a quasi-continuous trait. Genetic and environmental factors appear to play roles in its development. The mechanism(s) underlying IF bone development are poorly understood. We sought to survey inbred strains of mice for the prevalence of IF and to perform QTL mapping studies. Archived mouse skulls from a mouse phenome project (MPP) were available for this study. 27 inbred strains were investigated with 6–20 mice examined for each strain. Skulls were viewed dorsally and the IF measured using a zoom stereomicroscope equipped with a calibrated reticle. A two generation cross between C3H/HeJ and C57BL/6J mice was performed to generate a panel of 468 F2 mice. F2 mice were phenotyped for presence or absence of IF bone and among mice with the IF bone maximum widths and lengths were measured. F2 mice were genotyped for 573 SNP markers informative between the two strains and subjected to linkage map construction and interval QTL mapping. Results: Strain dependent differences in the prevalence of IF bones were observed. Overall, 77.8% or 21/27, of the inbred strains examined had IF bones. Six strains (C3H/HeJ, MOLF/EiJ, NZW/LacJ, SPRET/EiJ, SWR/J, and WSB/EiJ) lack IF bones. Among the strains with IF bones, the prevalence ranged from 100% for C57BL/6J, C57/LJ, CBA/J, and NZB/B1NJ and down to 5% for strains such as CAST/Ei. QTL mapping for IF bone length and widths identifies for each trait one strong QTL detected on chromosome 14 along with several other significant QTLs on chromosomes 3, 4, 7, and 11. Strain dependent differences in IF will facilitate investigation of genetic factors contributing to IF development. IF bone formation may be a model to understand intrasutural bone formation.
Collapse
Affiliation(s)
- Heather Zimmerman
- Dental Research, School of Dentistry, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Zhaoyu Yin
- Department of Biostatistics, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Fei Zou
- Department of Biostatistics, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Eric T Everett
- Dental Research, School of Dentistry, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States.,Department of Pediatric Dentistry, School of Dentistry, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| |
Collapse
|
16
|
Fernando RC, Mazzotti DR, Azevedo H, Sandes AF, Rizzatti EG, de Oliveira MB, Alves VLF, Eugênio AIP, de Carvalho F, Dalboni MA, Martins DC, Colleoni GWB. Transcriptome Analysis of Mesenchymal Stem Cells from Multiple Myeloma Patients Reveals Downregulation of Genes Involved in Cell Cycle Progression, Immune Response, and Bone Metabolism. Sci Rep 2019; 9:1056. [PMID: 30705326 PMCID: PMC6355867 DOI: 10.1038/s41598-018-38314-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Accepted: 12/19/2018] [Indexed: 02/08/2023] Open
Abstract
A growing body of evidence suggests a key role of tumor microenvironment, especially for bone marrow mesenchymal stem cells (MSC), in the maintenance and progression of multiple myeloma (MM), through direct and indirect interactions with tumor plasma cells. Thus, this study aimed to investigate the gene expression and functional alterations of MSC from MM patients (MM-MSC) in comparison with their normal counterparts from normal donors (ND-MSC). Gene expression analysis (Affymetrix) was performed in MM-MSC and ND-MSC after in vitro expansion. To validate these findings, some genes were selected to be evaluated by quantitative real time PCR (RT-qPCR), and also functional in vitro analyses were performed. We demonstrated that MM-MSC have a distinct gene expression profile than ND-MSC, with 485 differentially expressed genes (DEG) - 280 upregulated and 205 downregulated. Bioinformatics analyses revealed that the main enriched functions among downregulated DEG were related to cell cycle progression, immune response activation and bone metabolism. Four genes were validated by qPCR - ZNF521 and SEMA3A, which are involved in bone metabolism, and HLA-DRA and CHIRL1, which are implicated in the activation of immune response. Taken together, our results suggest that MM-MSC have constitutive abnormalities that remain present even in the absence of tumors cells. The alterations found in cell cycle progression, immune system activation, and osteoblastogenesis suggest, respectively, that MM-MSC are permanently dependent of tumor cells, might contribute to immune evasion and play an essential role in bone lesions frequently found in MM patients.
Collapse
Affiliation(s)
- Rodrigo Carlini Fernando
- Department of Experimental and Clinical Oncology, Discipline of Hematology and Hemotherapy, Federal University of São Paulo, UNIFESP, São Paulo, Brazil
| | - Diego Robles Mazzotti
- Center for Sleep and Circadian Neurobiology, University of Pennsylvania, Pennsylvania, USA
| | - Hatylas Azevedo
- Department of Pediatrics, Faculty of Medicine of the University of São Paulo, FMUSP, São Paulo, Brazil
| | | | | | - Mariana Bleker de Oliveira
- Department of Experimental and Clinical Oncology, Discipline of Hematology and Hemotherapy, Federal University of São Paulo, UNIFESP, São Paulo, Brazil
| | - Veruska Lia Fook Alves
- Department of Experimental and Clinical Oncology, Discipline of Hematology and Hemotherapy, Federal University of São Paulo, UNIFESP, São Paulo, Brazil
| | - Angela Isabel Pereira Eugênio
- Department of Experimental and Clinical Oncology, Discipline of Hematology and Hemotherapy, Federal University of São Paulo, UNIFESP, São Paulo, Brazil
| | - Fabrício de Carvalho
- Department of Experimental and Clinical Oncology, Discipline of Hematology and Hemotherapy, Federal University of São Paulo, UNIFESP, São Paulo, Brazil
| | - Maria Aparecida Dalboni
- Departament of Post-Graduation in Medicine, University Nine of July, UNINOVE, São Paulo, Brazil
| | - David Correa Martins
- Center of Mathematics, Computation and Congnition, Federal University of ABC, UFABC, Santo André, Brazil
| | - Gisele Wally Braga Colleoni
- Department of Experimental and Clinical Oncology, Discipline of Hematology and Hemotherapy, Federal University of São Paulo, UNIFESP, São Paulo, Brazil.
| |
Collapse
|
17
|
Noise-Induced Dysregulation of Quaking RNA Binding Proteins Contributes to Auditory Nerve Demyelination and Hearing Loss. J Neurosci 2018; 38:2551-2568. [PMID: 29437856 DOI: 10.1523/jneurosci.2487-17.2018] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 01/22/2018] [Accepted: 01/29/2018] [Indexed: 11/21/2022] Open
Abstract
Noise exposure causes auditory nerve (AN) degeneration and hearing deficiency, though the proximal biological consequences are not entirely understood. Most AN fibers and spiral ganglion neurons are ensheathed by myelinating glia that provide insulation and ensure rapid transmission of nerve impulses from the cochlea to the brain. Here we show that noise exposure administered to mice of either sex rapidly affects myelinating glial cells, causing molecular and cellular consequences that precede nerve degeneration. This response is characterized by demyelination, inflammation, and widespread expression changes in myelin-related genes, including the RNA splicing regulator Quaking (QKI) and numerous QKI target genes. Analysis of mice deficient in QKI revealed that QKI production in cochlear glial cells is essential for proper myelination of spiral ganglion neurons and AN fibers, and for normal hearing. Our findings implicate QKI dysregulation as a critical early component in the noise response, influencing cochlear glia function that leads to AN demyelination and, ultimately, to hearing deficiency.SIGNIFICANCE STATEMENT Auditory glia cells ensheath a majority of spiral ganglion neurons with myelin, protect auditory neurons, and allow for fast conduction of electrical impulses along the auditory nerve. Here we show that noise exposure causes glial dysfunction leading to myelin abnormality and altered expression of numerous genes in the auditory nerve, including QKI, a gene implicated in regulating myelination. Study of a conditional mouse model that specifically depleted QKI in glia showed that QKI deficiency alone was sufficient to elicit myelin-related abnormality and auditory functional declines. These results establish QKI as a key molecular target in the noise response and a causative agent in hearing loss.
Collapse
|
18
|
Role of Fibulins 2 and 5 in Retinal Development and Maintenance. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1074:275-280. [PMID: 29721953 DOI: 10.1007/978-3-319-75402-4_33] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Fibulins 2 and 5 are part of a seven-member family of proteins integral to the retinal extracellular matrix. Our study aimed to further explore the roles of both fibulins in retinal function. We obtained knockout mouse models of both fibulins and performed immunohistochemistry, electroretinography, and histology to investigate the outcome of eliminating these proteins. Immunohistochemical analysis showed that both fibulins are localized to the RPE, choroid, and Bruch's membrane. Functional testing showed a significantly reduced scotopic A response at 1 month of age, when compared to their wild-type counterpart. This functional reduction remained constant throughout the age of the animal and only declined as a result of normal aging. The functional decline was associated with reduced number of photoreceptor cells. The results presented clearly demonstrate that fibulins 2 and 5, as extracellular proteins, are necessary for normal retinal development.
Collapse
|
19
|
Hebels DG, Carlier A, Coonen ML, Theunissen DH, de Boer J. cBiT: A transcriptomics database for innovative biomaterial engineering. Biomaterials 2017; 149:88-97. [DOI: 10.1016/j.biomaterials.2017.10.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 09/20/2017] [Accepted: 10/02/2017] [Indexed: 01/07/2023]
|
20
|
Fibulins and matrilins are novel structural components of the periodontium in the mouse. Arch Oral Biol 2017; 82:216-222. [PMID: 28654783 DOI: 10.1016/j.archoralbio.2017.06.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 05/16/2017] [Accepted: 06/11/2017] [Indexed: 11/23/2022]
Abstract
Periodontitis refers to inflammatory disease of the periodontal structures (the gingiva, dental cementum, periodontal ligament (PDL) and alveolar bone) that ultimately leads to their destruction. Whereas collagens are well-examined main components of the periodontium, little is known about the other structural proteins that make up this tissue. The aim of this study was to identify new extracellular matrix (ECM) components, including fibulins and matrilins, in the periodontium of mice. After sacrificing 14 mice (Sv/129 strain), jaws were prepared. Each tissue sample contained a molar and its surrounding alveolar bone. Immunohistochemistry was carried out on paraffin-embedded sections. Our results show that mice exhibit fibulin-3, -4 and -5 and matrilin-1, -2, -3 and -4 in PDL and in blood vessels of alveolar bone and PDL as well as in the pericellular matrix of osteocytes and cementocytes. In dental cementum, only fibulin-4 is expressed. For the first time, we show that fibulin-3, -4 and -5 and matrilin-1, -2, -3 and -4 are essential components of the periodontal tissues. Our findings indicate an association of these proteins with collagens and oxytalan fibers that might be of future interest in regenerative periodontitis therapy.
Collapse
|
21
|
Hang Pham LB, Yoo YR, Park SH, Back SA, Kim SW, Bjørge I, Mano J, Jang JH. Investigating the effect of fibulin-1 on the differentiation of human nasal inferior turbinate-derived mesenchymal stem cells into osteoblasts. J Biomed Mater Res A 2017; 105:2291-2298. [PMID: 28445604 DOI: 10.1002/jbm.a.36095] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Revised: 03/16/2017] [Accepted: 04/20/2017] [Indexed: 12/12/2022]
Abstract
Many extracellular matrix proteins have positive influences on the adhesion, proliferation, and differentiation of stem cells into specific cell linages. Fibulin-1 (FBLN1), a member of a growing family of extracellular glycoproteins, contributes to the structure of the extracellular matrix. Here, we investigated the effect of FBLN1 on the ability of human nasal inferior turbinate-derived mesenchymal stem cells (hTMSCs) to undergo osteogenic differentiation. After we generated recombinant FBLN1, the characteristics of FBLN1-treated hTMSCs were evaluated using MTT assay, ALP and mineralization activities, and quantitative real-time PCR. FBLN1 significantly enhanced the adhesion activity (p < 0.001) and proliferation of hTMSCs (p < 0.05). The ALP and mineralization activities of cells were dramatically increased (p < 0.01) after 9 and 12 days of FBLN1 treatment, respectively. This indicated the ability of FBLN1 to induce hTMSCs to differentiate into osteoblasts. Furthermore, increasing the mRNA levels of osteogenic marker genes, such as a transcriptional coactivator with a PDZ-binding motif (TAZ), alkaline phosphatase (ALP), collagen type I (Col I), and osteocalcin (OCN), improved bone repair and regeneration. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 2291-2298, 2017.
Collapse
Affiliation(s)
- Le B Hang Pham
- Department of Biochemistry, Inha University School of Medicine, Incheon, 22212, Korea
| | - Yie-Ri Yoo
- Department of Biochemistry, Inha University School of Medicine, Incheon, 22212, Korea
| | - Sun Hwa Park
- Department of Biomedical Science, The Catholic University of Korea, College of Medicine, Seoul Korea
| | - Sang A Back
- Department of Biomedical Science, The Catholic University of Korea, College of Medicine, Seoul Korea
| | - Sung Won Kim
- Department of Biomedical Science, The Catholic University of Korea, College of Medicine, Seoul Korea.,Department of Otolaryngology-Head and Neck Surgery, The Catholic University of Korea College of Medicine, Seoul Korea
| | - Isabel Bjørge
- Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - João Mano
- Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - Jun-Hyeog Jang
- Department of Biochemistry, Inha University School of Medicine, Incheon, 22212, Korea
| |
Collapse
|
22
|
Sánchez-Duffhues G, Hiepen C, Knaus P, Ten Dijke P. Emerging regulators of BMP bioavailability. Bone 2016; 93:220-221. [PMID: 26825814 DOI: 10.1016/j.bone.2016.01.022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Accepted: 01/25/2016] [Indexed: 01/01/2023]
Affiliation(s)
- Gonzalo Sánchez-Duffhues
- Department of Molecular Cell Biology and Cancer Genomics Center Netherlands, Leiden University Medical Center, The Netherlands
| | - Christian Hiepen
- Institute for Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany; Berlin Brandenburg School of Regenerative Therapies (BSRT), Charité Universitätsmedizin, Berlin, Germany
| | - Petra Knaus
- Institute for Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany; Berlin Brandenburg School of Regenerative Therapies (BSRT), Charité Universitätsmedizin, Berlin, Germany
| | - Peter Ten Dijke
- Department of Molecular Cell Biology and Cancer Genomics Center Netherlands, Leiden University Medical Center, The Netherlands.
| |
Collapse
|
23
|
Xiaoyu S, Panpan D, Yixin M, Xumin L, Shengbin H. A crucial role for upstream regulators of the bone morphogenetic protein (BMP) signaling in osteoblast differentiation. Bone 2016; 93:219. [PMID: 26825815 DOI: 10.1016/j.bone.2016.01.021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Accepted: 01/25/2016] [Indexed: 01/19/2023]
Affiliation(s)
- Sun Xiaoyu
- Institute of Stomatology, School and Hospital of Stomatology, Wenzhou Medical University, No. 373, Xueyuan West Road, Lucheng District, Wenzhou, PR China
| | - Dai Panpan
- Institute of Stomatology, School and Hospital of Stomatology, Wenzhou Medical University, No. 373, Xueyuan West Road, Lucheng District, Wenzhou, PR China
| | - Mao Yixin
- Institute of Stomatology, School and Hospital of Stomatology, Wenzhou Medical University, No. 373, Xueyuan West Road, Lucheng District, Wenzhou, PR China
| | - Li Xumin
- Institute of Stomatology, School and Hospital of Stomatology, Wenzhou Medical University, No. 373, Xueyuan West Road, Lucheng District, Wenzhou, PR China
| | - Huang Shengbin
- Institute of Stomatology, School and Hospital of Stomatology, Wenzhou Medical University, No. 373, Xueyuan West Road, Lucheng District, Wenzhou, PR China.
| |
Collapse
|
24
|
Abstract
The discovery of the transforming growth factor β (TGF-β) family ligands and the realization that their bioactivities need to be tightly controlled temporally and spatially led to intensive research that has identified a multitude of extracellular modulators of TGF-β family ligands, uncovered their functions in developmental and pathophysiological processes, defined the mechanisms of their activities, and explored potential modulator-based therapeutic applications in treating human diseases. These studies revealed a diverse repertoire of extracellular and membrane-associated molecules that are capable of modulating TGF-β family signals via control of ligand availability, processing, ligand-receptor interaction, and receptor activation. These molecules include not only soluble ligand-binding proteins that were conventionally considered as agonists and antagonists of TGF-β family of growth factors, but also extracellular matrix (ECM) proteins and proteoglycans that can serve as "sink" and control storage and release of both the TGF-β family ligands and their regulators. This extensive network of soluble and ECM modulators helps to ensure dynamic and cell-specific control of TGF-β family signals. This article reviews our knowledge of extracellular modulation of TGF-β growth factors by diverse proteins and their molecular mechanisms to regulate TGF-β family signaling.
Collapse
Affiliation(s)
- Chenbei Chang
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama 35294
| |
Collapse
|
25
|
Identification of new regulators of embryonic patterning and morphogenesis in Xenopus gastrulae by RNA sequencing. Dev Biol 2016; 426:429-441. [PMID: 27209239 DOI: 10.1016/j.ydbio.2016.05.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Revised: 05/11/2016] [Accepted: 05/11/2016] [Indexed: 12/19/2022]
Abstract
During early vertebrate embryogenesis, cell fate specification is often coupled with cell acquisition of specific adhesive, polar and/or motile behaviors. In Xenopus gastrulae, tissues fated to form different axial structures display distinct motility. The cells in the early organizer move collectively and directionally toward the animal pole and contribute to anterior mesendoderm, whereas the dorsal and the ventral-posterior trunk tissues surrounding the blastopore of mid-gastrula embryos undergo convergent extension and convergent thickening movements, respectively. While factors regulating cell lineage specification have been described in some detail, the molecular machinery that controls cell motility is not understood in depth. To gain insight into the gene battery that regulates both cell fates and motility in particular embryonic tissues, we performed RNA sequencing (RNA-seq) to investigate differentially expressed genes in the early organizer, the dorsal and the ventral marginal zone of Xenopus gastrulae. We uncovered many known signaling and transcription factors that have been reported to play roles in embryonic patterning during gastrulation. We also identified many uncharacterized genes as well as genes that encoded extracellular matrix (ECM) proteins or potential regulators of actin cytoskeleton. Co-expression of a selected subset of the differentially expressed genes with activin in animal caps revealed that they had distinct ability to block activin-induced animal cap elongation. Most of these factors did not interfere with mesodermal induction by activin, but an ECM protein, EFEMP2, inhibited activin signaling and acted downstream of the activated type I receptor. By focusing on a secreted protein kinase PKDCC1, we showed with overexpression and knockdown experiments that PKDCC1 regulated gastrulation movements as well as anterior neural patterning during early Xenopus development. Overall, our studies identify many differentially expressed signaling and cytoskeleton regulators in different embryonic regions of Xenopus gastrulae and imply their functions in regulating cell fates and/or behaviors during gastrulation.
Collapse
|
26
|
Noda K, Nakamura T, Komatsu Y. Fibulin-5 deficiency causes developmental defect of premaxillary bone in mice. Biochem Biophys Res Commun 2015; 466:585-91. [PMID: 26399686 DOI: 10.1016/j.bbrc.2015.09.089] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Accepted: 09/16/2015] [Indexed: 12/26/2022]
Abstract
Craniofacial sutures govern the shape of the craniofacial skeleton during postnatal development. The differentiation of suture mesenchymal cells to osteoblasts is precisely regulated in part by signaling through cell surface receptors that interact with extracellular proteins. Here we report that fibulin-5, a key extracellular matrix protein, is important for craniofacial skeletal development in mice. Fibulin-5 is deposited as a fibrous matrix in cranial neural crest-derived mesenchymal tissues, including craniofacial sutures. Fibulin-5-null mice show decreased premaxillary bone outgrowth during postnatal stages. While premaxillo-maxillary suture mesenchymal cells in fibulin-5-null mice were capable of differentiating into osteoblasts, suture cells in mutant mice were less proliferative. Our study provides the first evidence that fibulin-5 is indispensable for the regulation of facial suture mesenchymal cell proliferation required for craniofacial skeletal morphogenesis.
Collapse
Affiliation(s)
- Kazuo Noda
- Department of Pediatrics, The University of Texas Medical School at Houston, Houston, TX 77030, USA.
| | - Tomoyuki Nakamura
- Department of Pharmacology, Kansai Medical University, Hirakata, Osaka 573-1010, Japan
| | - Yoshihiro Komatsu
- Department of Pediatrics, The University of Texas Medical School at Houston, Houston, TX 77030, USA; Graduate Program in Genes and Development, The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX 77030, USA
| |
Collapse
|
27
|
Li F, Wu W, Xiang L, Weng G, Hong H, Jiang H, Qian J. Sustained release of VH and rhBMP-2 from nanoporous magnesium-zinc-silicon xerogels for osteomyelitis treatment and bone repair. Int J Nanomedicine 2015; 10:4071-80. [PMID: 26124660 PMCID: PMC4482378 DOI: 10.2147/ijn.s82486] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Nanoporous magnesium-zinc-silicon (n-MZS) xerogels with a pore size ∼4 nm, a surface area of 718 cm(2)/g, and a pore volume of 1.24 cm(3)/g were synthesized by a sol-gel method. The n-MZS xerogels had high capacity to load vancomycin hydrochloride (VH) and human bone morphogenetic protein-2 (rhBMP-2), after soaking in phosphate buffered saline (PBS) for 24 hours (1.5 and 0.8 mg/g, respectively). Moreover, the n-MZS xerogels exhibited the sustained release of VH and rhBMP-2 as compared with magnesium-zinc-silicon (MZS) xerogels without nanopores (showing a burst release). The VH/rhBMP-2/n-MZS system not only exhibited a good antibacterial property but also promoted the MG63 cell proliferation and differentiation demonstrating good bactericidal activity and cytocompatibility. The results suggested that n-MZS with larger surface area and high pore volume might be a promising carrier for loading and sustained release of VH and rhBMP-2. Hence, the VH/rhBMP-2/n-MZS system might be one of the promising biomaterials for osteomyelitis treatment and bone repair.
Collapse
Affiliation(s)
- Fengqian Li
- Department of Pharmacy, Shanghai Xuhui Dahua Hospital, Shanghai Jiaotong University, Shanghai, People’s Republic of China
| | - Wen Wu
- Department of Orthopaedics, Ninth People’s Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, People’s Republic of China
| | - Li Xiang
- Department of Pharmacy, Shanghai Xuhui Dahua Hospital, Shanghai Jiaotong University, Shanghai, People’s Republic of China
| | - Gan Weng
- Department of Pharmacy, Shanghai Xuhui Dahua Hospital, Shanghai Jiaotong University, Shanghai, People’s Republic of China
| | - Hua Hong
- Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology, Shanghai, People’s Republic of China
| | - Hong Jiang
- School of Materials Science and Engineering, University of Shanghai for Science and Technology, Shanghai, People’s Republic of China
| | - Jun Qian
- Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology, Shanghai, People’s Republic of China
| |
Collapse
|