1
|
Lofaro FD, Giuggioli D, Bonacorsi S, Orlandi M, Spinella A, De Pinto M, Secchi O, Ferri C, Boraldi F. BMP-4 and fetuin A in systemic sclerosis patients with or without calcinosis. Front Immunol 2024; 15:1502324. [PMID: 39697336 PMCID: PMC11653211 DOI: 10.3389/fimmu.2024.1502324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 11/14/2024] [Indexed: 12/20/2024] Open
Abstract
Introduction Systemic sclerosis (SSc) is a connective tissue disease at the interface between inflammation and autoimmunity progressively leading to diffuse microvascular and fibrotic involvement of the skin and of multiple internal organs. Approximately, 20-40% of SSc patients suffer from cutaneous calcinosis, a debilitating manifestation due to calcium salt deposition in soft connective tissues, causing pain, ulceration, infection, and deformities, responsible of severe functional limitations. Pathomechanisms are poorly understood as well as markers/molecules capable to predict the risk of patients to develop calcinosis. Methods An observational study was performed in 51 female patients, 25 with and 26 without calcinosis to compare clinical and laboratory parameters and to evaluate pro- and anti-calcifying circulating markers and the in vitro serum calcification potential (T50). Moreover, calcinosis samples were analyzed to characterize their mineral composition. Results and discussion Data demonstrate statistically significant differences in the prevalence of clinical manifestations and ACA and Scl70 autoantibodies in SSc patient with calcinosis compared to those without calcinosis. In SSc patients with calcinosis, serum levels of BMP-4 are higher, fetuin A might be regarded as a potential circulating prognostic marker and a negative correlation was observed between T50 and the global score of clinical manifestations, suggesting a potential predictive role of pro- and anti-calcifying molecules in SSc patients. Furthermore, calcinosis samples were characterized by the co-existence of phosphate and carbonate minerals with different stability and solubility. Further investigations on circulating markers in larger patient cohorts, especially at the early stages and throughout the natural course of the disease, may clarify their pathogenetic role in the SSc-related cutaneous calcinosis.
Collapse
Affiliation(s)
| | - Dilia Giuggioli
- Department of Maternal, Child and Adult Medical and Surgical Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Susanna Bonacorsi
- Dipartment of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Martina Orlandi
- Department of Maternal, Child and Adult Medical and Surgical Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Amelia Spinella
- Department of Maternal, Child and Adult Medical and Surgical Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Marco De Pinto
- Department of Maternal, Child and Adult Medical and Surgical Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Ottavio Secchi
- Department of Maternal, Child and Adult Medical and Surgical Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Clodoveo Ferri
- Department of Maternal, Child and Adult Medical and Surgical Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Federica Boraldi
- Dipartment of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| |
Collapse
|
2
|
Stücker S, Koßlowski F, Buchholz A, Lohmann CH, Bertrand J. High frequency of BCP, but less CPP crystal-mediated calcification in cartilage and synovial membrane of osteoarthritis patients. Osteoarthritis Cartilage 2024; 32:1542-1551. [PMID: 38735362 DOI: 10.1016/j.joca.2024.04.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 04/03/2024] [Accepted: 04/08/2024] [Indexed: 05/14/2024]
Abstract
OBJECTIVE Ectopic articular calcification is a common phenomenon of osteoarthritic joints, and closely related to disease progression. Identification of the involved calcium crystal types represents an important topic in research and clinical practice. Difficulties in accurate detection and crystal type identification have led to inconsistent data on the prevalence and spatial distribution of Basic calcium phosphate (BCP) and calcium pyrophosphate (CPP) deposition. METHOD Combining multiple imaging methods including conventional radiography, histology and Raman spectroscopy, this study provides a comprehensive analysis of BCP and CPP-based calcification, its frequency and distribution in cartilage and synovial membrane samples of 92 osteoarthritis patients undergoing knee replacement surgery. RESULTS Conventional radiography showed calcifications in 35% of patients. Von Kossa staining detected calcified deposits in 88% and 57% of cartilage and synovial samples, respectively. BCP crystals presented as brittle deposits on top of the cartilage surface or embedded in synovial tissue. CPP deposits appeared as larger granular needle-shaped clusters or dense circular pockets below the cartilage surface or within synovial tissue. Spectroscopic analysis detected BCP crystals in 75% of cartilage and 43% of synovial samples. CPP deposition was only detected in 18% of cartilage and 15% of synovial samples, often coinciding with BCP deposits. CONCLUSION BCP is the predominant crystal type in calcified cartilage and synovium while CPP deposition is rare, often coinciding with BCP. Distinct and qualitative information on BCP and CPP deposits in joint tissues gives rise to the speculation that different disease entities are involved that might need different treatment strategies.
Collapse
MESH Headings
- Humans
- Synovial Membrane/pathology
- Synovial Membrane/metabolism
- Synovial Membrane/diagnostic imaging
- Cartilage, Articular/metabolism
- Cartilage, Articular/pathology
- Cartilage, Articular/diagnostic imaging
- Calcium Phosphates/metabolism
- Aged
- Male
- Female
- Calcium Pyrophosphate/metabolism
- Osteoarthritis, Knee/metabolism
- Osteoarthritis, Knee/pathology
- Osteoarthritis, Knee/diagnostic imaging
- Middle Aged
- Chondrocalcinosis/metabolism
- Chondrocalcinosis/pathology
- Chondrocalcinosis/diagnostic imaging
- Spectrum Analysis, Raman
- Calcinosis/pathology
- Calcinosis/metabolism
- Aged, 80 and over
- Arthroplasty, Replacement, Knee
Collapse
Affiliation(s)
- Sina Stücker
- Department of Orthopaedic Surgery, Otto-von-Guericke-University, Leipziger Straße 44, 39120 Magdeburg, Germany
| | - Franziska Koßlowski
- Department of Orthopaedic Surgery, Otto-von-Guericke-University, Leipziger Straße 44, 39120 Magdeburg, Germany
| | - Adrian Buchholz
- Department of Orthopaedic Surgery, Otto-von-Guericke-University, Leipziger Straße 44, 39120 Magdeburg, Germany
| | - Christoph H Lohmann
- Department of Orthopaedic Surgery, Otto-von-Guericke-University, Leipziger Straße 44, 39120 Magdeburg, Germany
| | - Jessica Bertrand
- Department of Orthopaedic Surgery, Otto-von-Guericke-University, Leipziger Straße 44, 39120 Magdeburg, Germany.
| |
Collapse
|
3
|
Boraldi F, Lofaro FD, Bonacorsi S, Mazzilli A, Garcia-Fernandez M, Quaglino D. The Role of Fibroblasts in Skin Homeostasis and Repair. Biomedicines 2024; 12:1586. [PMID: 39062158 PMCID: PMC11274439 DOI: 10.3390/biomedicines12071586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 07/08/2024] [Accepted: 07/15/2024] [Indexed: 07/28/2024] Open
Abstract
Fibroblasts are typical mesenchymal cells widely distributed throughout the human body where they (1) synthesise and maintain the extracellular matrix, ensuring the structural role of soft connective tissues; (2) secrete cytokines and growth factors; (3) communicate with each other and with other cell types, acting as signalling source for stem cell niches; and (4) are involved in tissue remodelling, wound healing, fibrosis, and cancer. This review focuses on the developmental heterogeneity of dermal fibroblasts, on their ability to sense changes in biomechanical properties of the surrounding extracellular matrix, and on their role in aging, in skin repair, in pathologic conditions and in tumour development. Moreover, we describe the use of fibroblasts in different models (e.g., in vivo animal models and in vitro systems from 2D to 6D cultures) for tissue bioengineering and the informative potential of high-throughput assays for the study of fibroblasts under different disease contexts for personalized healthcare and regenerative medicine applications.
Collapse
Affiliation(s)
- Federica Boraldi
- Department of Life Science, University of Modena and Reggio Emilia, 41125 Modena, Italy; (F.D.L.); (S.B.); (A.M.)
| | - Francesco Demetrio Lofaro
- Department of Life Science, University of Modena and Reggio Emilia, 41125 Modena, Italy; (F.D.L.); (S.B.); (A.M.)
| | - Susanna Bonacorsi
- Department of Life Science, University of Modena and Reggio Emilia, 41125 Modena, Italy; (F.D.L.); (S.B.); (A.M.)
| | - Alessia Mazzilli
- Department of Life Science, University of Modena and Reggio Emilia, 41125 Modena, Italy; (F.D.L.); (S.B.); (A.M.)
| | - Maria Garcia-Fernandez
- Department of Human Physiology, Institute of Biomedical Investigation (IBIMA), University of Málaga, 29010 Málaga, Spain;
| | - Daniela Quaglino
- Department of Life Science, University of Modena and Reggio Emilia, 41125 Modena, Italy; (F.D.L.); (S.B.); (A.M.)
| |
Collapse
|
4
|
Zhang W, Patterson NH, Verbeeck N, Moore JL, Ly A, Caprioli RM, De Moor B, Norris JL, Claesen M. Multimodal MALDI imaging mass spectrometry for improved diagnosis of melanoma. PLoS One 2024; 19:e0304709. [PMID: 38820337 PMCID: PMC11142536 DOI: 10.1371/journal.pone.0304709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 05/17/2024] [Indexed: 06/02/2024] Open
Abstract
Imaging mass spectrometry (IMS) provides promising avenues to augment histopathological investigation with rich spatio-molecular information. We have previously developed a classification model to differentiate melanoma from nevi lesions based on IMS protein data, a task that is challenging solely by histopathologic evaluation. Most IMS-focused studies collect microscopy in tandem with IMS data, but this microscopy data is generally omitted in downstream data analysis. Microscopy, nevertheless, forms the basis for traditional histopathology and thus contains invaluable morphological information. In this work, we developed a multimodal classification pipeline that uses deep learning, in the form of a pre-trained artificial neural network, to extract the meaningful morphological features from histopathological images, and combine it with the IMS data. To test whether this deep learning-based classification strategy can improve on our previous results in classification of melanocytic neoplasia, we utilized MALDI IMS data with collected serial H&E stained sections for 331 patients, and compared this multimodal classification pipeline to classifiers using either exclusively microscopy or IMS data. The multimodal pipeline achieved the best performance, with ROC-AUCs of 0.968 vs. 0.938 vs. 0.931 for the multimodal, unimodal microscopy and unimodal IMS pipelines respectively. Due to the use of a pre-trained network to perform the morphological feature extraction, this pipeline does not require any training on large amounts of microscopy data. As such, this framework can be readily applied to improve classification performance in other experimental settings where microscopy data is acquired in tandem with IMS experiments.
Collapse
Affiliation(s)
- Wanqiu Zhang
- STADIUS Center for Dynamical Systems, Signal Processing, and Data Analytics, Department of Electrical Engineering (ESAT), KU Leuven, Leuven, Belgium
- Aspect Analytics NV, Genk, Belgium
| | - Nathan Heath Patterson
- Frontier Diagnostics, LLC, Nashville, Tennessee, United States of America
- Mass Spectrometry Research Center, Department of Biochemistry, Vanderbilt University, Nashville, Tennessee, United States of America
| | | | - Jessica L. Moore
- Frontier Diagnostics, LLC, Nashville, Tennessee, United States of America
| | - Alice Ly
- Aspect Analytics NV, Genk, Belgium
| | - Richard M. Caprioli
- Frontier Diagnostics, LLC, Nashville, Tennessee, United States of America
- Mass Spectrometry Research Center, Department of Biochemistry, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Bart De Moor
- STADIUS Center for Dynamical Systems, Signal Processing, and Data Analytics, Department of Electrical Engineering (ESAT), KU Leuven, Leuven, Belgium
| | - Jeremy L. Norris
- Frontier Diagnostics, LLC, Nashville, Tennessee, United States of America
- Mass Spectrometry Research Center, Department of Biochemistry, Vanderbilt University, Nashville, Tennessee, United States of America
| | | |
Collapse
|
5
|
Lofaro FD, Costa S, Simone ML, Quaglino D, Boraldi F. Fibroblasts' secretome from calcified and non-calcified dermis in Pseudoxanthoma elasticum differently contributes to elastin calcification. Commun Biol 2024; 7:577. [PMID: 38755434 PMCID: PMC11099146 DOI: 10.1038/s42003-024-06283-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 05/03/2024] [Indexed: 05/18/2024] Open
Abstract
Pseudoxanthoma elasticum (PXE) is a rare disease characterized by ectopic calcification, however, despite the widely spread effect of pro/anti-calcifying systemic factors associated with this genetic metabolic condition, it is not known why elastic fibers in the same patient are mainly fragmented or highly mineralized in clinically unaffected (CUS) and affected (CAS) skin, respectively. Cellular morphology and secretome are investigated in vitro in CUS and CAS fibroblasts. Here we show that, compared to CUS, CAS fibroblasts exhibit: a) differently distributed and organized focal adhesions and stress fibers; b) modified cell-matrix interactions (i.e., collagen gel retraction); c) imbalance between matrix metalloproteinases and tissue inhibitor of metalloproteinases; d) differentially expressed pro- and anti-calcifying proteoglycans and elastic-fibers associated glycoproteins. These data emphasize that in the development of pathologic mineral deposition fibroblasts play an active role altering the stability of elastic fibers and of the extracellular matrix milieu creating a local microenvironment guiding the level of matrix remodeling at an extent that may lead to degradation (in CUS) or to degradation and calcification (in CAS) of the elastic component. In conclusion, this study contributes to a better understanding of the mechanisms of the mineral deposition that can be also associated with several inherited or age-related diseases (e.g., diabetes, atherosclerosis, chronic kidney diseases).
Collapse
Affiliation(s)
| | - Sonia Costa
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Maria Luisa Simone
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Daniela Quaglino
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy.
| | - Federica Boraldi
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy.
| |
Collapse
|
6
|
Kunitake JA, Sudilovsky D, Johnson LM, Loh HC, Choi S, Morris PG, Jochelson MS, Iyengar NM, Morrow M, Masic A, Fischbach C, Estroff LA. Biomineralogical signatures of breast microcalcifications. SCIENCE ADVANCES 2023; 9:eade3152. [PMID: 36812311 PMCID: PMC9946357 DOI: 10.1126/sciadv.ade3152] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Microcalcifications, primarily biogenic apatite, occur in cancerous and benign breast pathologies and are key mammographic indicators. Outside the clinic, numerous microcalcification compositional metrics (e.g., carbonate and metal content) are linked to malignancy, yet microcalcification formation is dependent on microenvironmental conditions, which are notoriously heterogeneous in breast cancer. We interrogate multiscale heterogeneity in 93 calcifications from 21 breast cancer patients using an omics-inspired approach: For each microcalcification, we define a "biomineralogical signature" combining metrics derived from Raman microscopy and energy-dispersive spectroscopy. We observe that (i) calcifications cluster into physiologically relevant groups reflecting tissue type and local malignancy; (ii) carbonate content exhibits substantial intratumor heterogeneity; (iii) trace metals including zinc, iron, and aluminum are enhanced in malignant-localized calcifications; and (iv) the lipid-to-protein ratio within calcifications is lower in patients with poor composite outcome, suggesting that there is potential clinical value in expanding research on calcification diagnostic metrics to include "mineral-entrapped" organic matrix.
Collapse
Affiliation(s)
| | - Daniel Sudilovsky
- Department of Pathology and Laboratory Medicine, Cayuga Medical Center at Ithaca, Ithaca, NY 14850, USA
- Pathology Department, Kingman Regional Medical Center, Kingman, AZ 86409, USA
- Pathology Department, Western Arizona Medical Center, Bullhead City, AZ 86442, USA
- Pathology Department, Yuma Regional Medical Center, Yuma, AZ 85364, USA
| | - Lynn M. Johnson
- Cornell Statistical Consulting Unit, Cornell University, Ithaca, NY 14850, USA
| | - Hyun-Chae Loh
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Siyoung Choi
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14850, USA
| | - Patrick G. Morris
- Medical Oncology Service, Beaumont Hospital, Dublin, Ireland
- Breast Medicine Service, Department of Medicine, Memorial Sloan Kettering Cancer Center/Evelyn H. Lauder Breast and Imaging Center, New York, NY 10065, USA
- Department of Medicine, Weill Cornell Medical College, New York, NY 10021, USA
| | - Maxine S. Jochelson
- Department of Radiology, Memorial Sloan Kettering Cancer Center/Evelyn H. Lauder Breast and Imaging Center, New York, NY 10065, USA
| | - Neil M. Iyengar
- Department of Medicine, Weill Cornell Medical College, New York, NY 10021, USA
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Monica Morrow
- Breast Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Admir Masic
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Corresponding author. (L.A.E.); (C.F.); (A.M.)
| | - Claudia Fischbach
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14850, USA
- Kavli Institute at Cornell for Nanoscale Science, Cornell University, Ithaca, NY 14850, USA
- Corresponding author. (L.A.E.); (C.F.); (A.M.)
| | - Lara A. Estroff
- Department of Materials Science and Engineering, Cornell University, Ithaca, NY 14850, USA
- Kavli Institute at Cornell for Nanoscale Science, Cornell University, Ithaca, NY 14850, USA
- Corresponding author. (L.A.E.); (C.F.); (A.M.)
| |
Collapse
|
7
|
Lofaro FD, Mucciolo DP, Murro V, Pavese L, Quaglino D, Boraldi F. From Clinical Diagnosis to the Discovery of Multigene Rare Sequence Variants in Pseudoxanthoma elasticum: A Case Report. Front Med (Lausanne) 2021; 8:726856. [PMID: 34513887 PMCID: PMC8427021 DOI: 10.3389/fmed.2021.726856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 07/30/2021] [Indexed: 12/03/2022] Open
Abstract
Pseudoxanthoma elasticum (PXE) is a rare autosomal recessive disease clinically characterised by early cutaneous alterations, and by late clinically relevant ocular, and cardiovascular manifestations. ABCC6 genetic tests are used to confirm clinical PXE diagnosis, but this strategy may be rather challenging when only one ABCC6 pathogenic variant is found. A next-generation sequencing approach focusing on 362 genes related to the calcification process and/or to inherited retinal diseases was performed on a patient with clinical PXE diagnosis (skin papules and laxity, angioid streaks, and atrophy) who was carrier of only one ABCC6 rare sequence variant. Beside ABCC6, several rare sequence variants were detected which can contribute either to the occurrence of calcification (GGCX and SERPINF1 genes) and/or to ophthalmological manifestations (ABCA4, AGBL5, CLUAP1, and KCNV2 genes). This wide-spectrum analysis approach facilitates the identification of rare variants possibly involved in PXE, thus avoiding invasive skin biopsy as well as expensive and time-consuming diagnostic odyssey and allows to broaden and to deepen the knowledge on this complex rare disease and to improve patients' counselling, also with a future perspective of personalised medicine.
Collapse
Affiliation(s)
| | - Dario Pasquale Mucciolo
- Department of Neuroscience, Psychology, Drug Research and Child Health, University of Florence, Eye Clinic, Florence, Italy
| | - Vittoria Murro
- Department of Neuroscience, Psychology, Drug Research and Child Health, University of Florence, Eye Clinic, Florence, Italy
| | - Laura Pavese
- Department of Neuroscience, Psychology, Drug Research and Child Health, University of Florence, Eye Clinic, Florence, Italy
| | - Daniela Quaglino
- Department of Life Science, University of Modena and Reggio Emilia, Modena, Italy
| | - Federica Boraldi
- Department of Life Science, University of Modena and Reggio Emilia, Modena, Italy
| |
Collapse
|
8
|
Al-Rohil RN, Moore JL, Patterson NH, Nicholson S, Verbeeck N, Claesen M, Muhammad JZ, Caprioli RM, Norris JL, Kantrow S, Compton M, Robbins J, Alomari AK. Diagnosis of melanoma by imaging mass spectrometry: Development and validation of a melanoma prediction model. J Cutan Pathol 2021; 48:1455-1462. [PMID: 34151458 DOI: 10.1111/cup.14083] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 05/24/2021] [Accepted: 05/30/2021] [Indexed: 11/30/2022]
Abstract
BACKGROUND The definitive diagnosis of melanocytic neoplasia using solely histopathologic evaluation can be challenging. Novel techniques that objectively confirm diagnoses are needed. This study details the development and validation of a melanoma prediction model from spatially resolved multivariate protein expression profiles generated by imaging mass spectrometry (IMS). METHODS Three board-certified dermatopathologists blindly evaluated 333 samples. Samples with triply concordant diagnoses were included in this study, divided into a training set (n = 241) and a test set (n = 92). Both the training and test sets included various representative subclasses of unambiguous nevi and melanomas. A prediction model was developed from the training set using a linear support vector machine classification model. RESULTS We validated the prediction model on the independent test set of 92 specimens (75 classified correctly, 2 misclassified, and 15 indeterminate). IMS detects melanoma with a sensitivity of 97.6% and a specificity of 96.4% when evaluating each unique spot. IMS predicts melanoma at the sample level with a sensitivity of 97.3% and a specificity of 97.5%. Indeterminate results were excluded from sensitivity and specificity calculations. CONCLUSION This study provides evidence that IMS-based proteomics results are highly concordant to diagnostic results obtained by careful histopathologic evaluation from a panel of expert dermatopathologists.
Collapse
Affiliation(s)
- Rami N Al-Rohil
- Departments of Pathology and Dermatology, Duke University School of Medicine, Durham, North Carolina, USA
| | | | - Nathan Heath Patterson
- Frontier Diagnostics, LLC, Nashville, Tennessee, USA.,Mass Spectrometry Research Center, Department of Biochemistry, Vanderbilt University, Nashville, Tennessee, USA
| | | | | | | | | | - Richard M Caprioli
- Frontier Diagnostics, LLC, Nashville, Tennessee, USA.,Mass Spectrometry Research Center, Department of Biochemistry, Vanderbilt University, Nashville, Tennessee, USA
| | - Jeremy L Norris
- Frontier Diagnostics, LLC, Nashville, Tennessee, USA.,Mass Spectrometry Research Center, Department of Biochemistry, Vanderbilt University, Nashville, Tennessee, USA
| | - Sara Kantrow
- Pathology Associates of Saint Thomas, Nashville, Tennessee, USA
| | - Margaret Compton
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Jason Robbins
- Pathology Associates of Saint Thomas, Nashville, Tennessee, USA
| | - Ahmed K Alomari
- Departments of Pathology and Dermatology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| |
Collapse
|
9
|
Lofaro FD, Boraldi F, Garcia-Fernandez M, Estrella L, Valdivielso P, Quaglino D. Relationship Between Mitochondrial Structure and Bioenergetics in Pseudoxanthoma elasticum Dermal Fibroblasts. Front Cell Dev Biol 2020; 8:610266. [PMID: 33392199 PMCID: PMC7773789 DOI: 10.3389/fcell.2020.610266] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 11/17/2020] [Indexed: 12/14/2022] Open
Abstract
Pseudoxanthoma elasticum (PXE) is a genetic disease considered as a paradigm of ectopic mineralization disorders, being characterized by multisystem clinical manifestations due to progressive calcification of skin, eyes, and the cardiovascular system, resembling an age-related phenotype. Although fibroblasts do not express the pathogenic ABCC6 gene, nevertheless these cells are still under investigation because they regulate connective tissue homeostasis, generating the "arena" where cells and extracellular matrix components can promote pathologic calcification and where activation of pro-osteogenic factors can be associated to pathways involving mitochondrial metabolism. The aim of the present study was to integrate structural and bioenergenetic features to deeply investigate mitochondria from control and from PXE fibroblasts cultured in standard conditions and to explore the role of mitochondria in the development of the PXE fibroblasts' pathologic phenotype. Proteomic, biochemical, and morphological data provide new evidence that in basal culture conditions (1) the protein profile of PXE mitochondria reveals a number of differentially expressed proteins, suggesting changes in redox balance, oxidative phosphorylation, and calcium homeostasis in addition to modified structure and organization, (2) measure of oxygen consumption indicates that the PXE mitochondria have a low ability to cope with a sudden increased need for ATP via oxidative phosphorylation, (3) mitochondrial membranes are highly polarized in PXE fibroblasts, and this condition contributes to increased reactive oxygen species levels, (4) ultrastructural alterations in PXE mitochondria are associated with functional changes, and (5) PXE fibroblasts exhibit a more abundant, branched, and interconnected mitochondrial network compared to control cells, indicating that fusion prevail over fission events. In summary, the present study demonstrates that mitochondria are modified in PXE fibroblasts. Since mitochondria are key players in the development of the aging process, fibroblasts cultured from aged individuals or aged in vitro are more prone to calcify, and in PXE, calcified tissues remind features of premature aging syndromes; it can be hypothesized that mitochondria represent a common link contributing to the development of ectopic calcification in aging and in diseases. Therefore, ameliorating mitochondrial functions and cell metabolism could open new strategies to positively regulate a number of signaling pathways associated to pathologic calcification.
Collapse
Affiliation(s)
| | - Federica Boraldi
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Maria Garcia-Fernandez
- Department of Human Physiology, Biomedical Research Institute of Málaga, University of Malaga, Málaga, Spain
| | - Lara Estrella
- Department of Human Physiology, Biomedical Research Institute of Málaga, University of Malaga, Málaga, Spain
| | - Pedro Valdivielso
- Department of Medicine and Dermatology, Instituto de Investigación Biomédica de Málaga, University of Malaga, Málaga, Spain
- Internal Medicine Unit, Hospital Virgen de la Victoria, Málaga, Spain
| | - Daniela Quaglino
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| |
Collapse
|
10
|
Jayathirtha M, Dupree EJ, Manzoor Z, Larose B, Sechrist Z, Neagu AN, Petre BA, Darie CC. Mass Spectrometric (MS) Analysis of Proteins and Peptides. Curr Protein Pept Sci 2020; 22:92-120. [PMID: 32713333 DOI: 10.2174/1389203721666200726223336] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Revised: 05/12/2020] [Accepted: 05/28/2020] [Indexed: 01/09/2023]
Abstract
The human genome is sequenced and comprised of ~30,000 genes, making humans just a little bit more complicated than worms or flies. However, complexity of humans is given by proteins that these genes code for because one gene can produce many proteins mostly through alternative splicing and tissue-dependent expression of particular proteins. In addition, post-translational modifications (PTMs) in proteins greatly increase the number of gene products or protein isoforms. Furthermore, stable and transient interactions between proteins, protein isoforms/proteoforms and PTM-ed proteins (protein-protein interactions, PPI) add yet another level of complexity in humans and other organisms. In the past, all of these proteins were analyzed one at the time. Currently, they are analyzed by a less tedious method: mass spectrometry (MS) for two reasons: 1) because of the complexity of proteins, protein PTMs and PPIs and 2) because MS is the only method that can keep up with such a complex array of features. Here, we discuss the applications of mass spectrometry in protein analysis.
Collapse
Affiliation(s)
- Madhuri Jayathirtha
- Biochemistry & Proteomics Group, Department of Chemistry and Biomolecular Science, Clarkson University, 8 Clarkson Avenue, Potsdam, NY, United States
| | - Emmalyn J Dupree
- Biochemistry & Proteomics Group, Department of Chemistry and Biomolecular Science, Clarkson University, 8 Clarkson Avenue, Potsdam, NY, United States
| | - Zaen Manzoor
- Biochemistry & Proteomics Group, Department of Chemistry and Biomolecular Science, Clarkson University, 8 Clarkson Avenue, Potsdam, NY, United States
| | - Brianna Larose
- Biochemistry & Proteomics Group, Department of Chemistry and Biomolecular Science, Clarkson University, 8 Clarkson Avenue, Potsdam, NY, United States
| | - Zach Sechrist
- Biochemistry & Proteomics Group, Department of Chemistry and Biomolecular Science, Clarkson University, 8 Clarkson Avenue, Potsdam, NY, United States
| | - Anca-Narcisa Neagu
- Laboratory of Animal Histology, Faculty of Biology, "Alexandru Ioan Cuza" University of Iasi, Iasi, Romania
| | - Brindusa Alina Petre
- Laboratory of Biochemistry, Department of Chemistry, Al. I. Cuza University of Iasi, Iasi, Romania, Center for Fundamental Research and Experimental Development in Translation Medicine - TRANSCEND, Regional Institute of Oncology, Iasi, Romania
| | - Costel C Darie
- Biochemistry & Proteomics Group, Department of Chemistry and Biomolecular Science, Clarkson University, 8 Clarkson Avenue, Potsdam, NY, United States
| |
Collapse
|
11
|
Roudnický P, Potěšil D, Zdráhal Z, Gelnar M, Kašný M. Laser capture microdissection in combination with mass spectrometry: Approach to characterization of tissue-specific proteomes of Eudiplozoon nipponicum (Monogenea, Polyopisthocotylea). PLoS One 2020; 15:e0231681. [PMID: 32555742 PMCID: PMC7299319 DOI: 10.1371/journal.pone.0231681] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 05/25/2020] [Indexed: 12/14/2022] Open
Abstract
Eudiplozoon nipponicum (Goto, 1891) is a hematophagous monogenean ectoparasite which inhabits the gills of the common carp (Cyprinus carpio). Heavy infestation can lead to anemia and in conjunction with secondary bacterial infections cause poor health and eventual death of the host. This study is based on an innovative approach to protein localization which has never been used in parasitology before. Using laser capture microdissection, we dissected particular areas of the parasite body without contaminating the samples by surrounding tissue and in combination with analysis by mass spectrometry obtained tissue-specific proteomes of tegument, intestine, and parenchyma of our model organism, E. nipponicum. We successfully verified the presence of certain functional proteins (e.g. cathepsin L) in tissues where their presence was expected (intestine) and confirmed that there were no traces of these proteins in other tissues (tegument and parenchyma). Additionally, we identified a total of 2,059 proteins, including 72 peptidases and 33 peptidase inhibitors. As expected, the greatest variety was found in the intestine and the lowest variety in the parenchyma. Our results are significant on two levels. Firstly, we demonstrated that one can localize all proteins in one analysis and without using laboratory animals (antibodies for immunolocalization of single proteins). Secondly, this study offers the first complex proteomic data on not only the E. nipponicum but within the whole class of Monogenea, which was from this point of view until recently neglected.
Collapse
Affiliation(s)
- Pavel Roudnický
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Brno, Czech Republic
- * E-mail:
| | - David Potěšil
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Zbyněk Zdráhal
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Milan Gelnar
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Martin Kašný
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Brno, Czech Republic
| |
Collapse
|
12
|
Quaglino D, Boraldi F, Lofaro FD. The biology of vascular calcification. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2020; 354:261-353. [PMID: 32475476 DOI: 10.1016/bs.ircmb.2020.02.007] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Vascular calcification (VC), characterized by different mineral deposits (i.e., carbonate apatite, whitlockite and hydroxyapatite) accumulating in blood vessels and valves, represents a relevant pathological process for the aging population and a life-threatening complication in acquired and in genetic diseases. Similarly to bone remodeling, VC is an actively regulated process in which many cells and molecules play a pivotal role. This review aims at: (i) describing the role of resident and circulating cells, of the extracellular environment and of positive and negative factors in driving the mineralization process; (ii) detailing the types of VC (i.e., intimal, medial and cardiac valve calcification); (iii) analyzing rare genetic diseases underlining the importance of altered pyrophosphate-dependent regulatory mechanisms; (iv) providing therapeutic options and perspectives.
Collapse
Affiliation(s)
- Daniela Quaglino
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy.
| | - Federica Boraldi
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | | |
Collapse
|
13
|
Exome sequencing and bioinformatic approaches reveals rare sequence variants involved in cell signalling and elastic fibre homeostasis: new evidence in the development of ectopic calcification. Cell Signal 2019; 59:131-140. [DOI: 10.1016/j.cellsig.2019.03.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Revised: 03/25/2019] [Accepted: 03/25/2019] [Indexed: 12/30/2022]
|
14
|
Martín-Montañez E, Pavia J, Valverde N, Boraldi F, Lara E, Oliver B, Hurtado-Guerrero I, Fernandez O, Garcia-Fernandez M. The S1P mimetic fingolimod phosphate regulates mitochondrial oxidative stress in neuronal cells. Free Radic Biol Med 2019; 137:116-130. [PMID: 31035004 DOI: 10.1016/j.freeradbiomed.2019.04.022] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 04/03/2019] [Accepted: 04/17/2019] [Indexed: 12/17/2022]
Abstract
Fingolimod is one of the few oral drugs available for the treatment of multiple sclerosis (MS), a chronic, inflammatory, demyelinating and neurodegenerative disease. The mechanism of action proposed for this drug is based in the phosphorylation of the molecule to produce its active metabolite fingolimod phosphate (FP) which, in turns, through its interaction with S1P receptors, triggers the functional sequestration of T lymphocytes in lymphoid nodes. On the other hand, part if not most of the damage produced in MS and other neurological disorders seem to be mediated by reactive oxygen species (ROS), and mitochondria is one of the main sources of ROS. In the present work, we have evaluated the anti-oxidant profile of FP in a model of mitochondrial oxidative damage induced by menadione (Vitk3) on neuronal cultures. We provide evidence that incubation of neuronal cells with FP alleviates the Vitk3-induced toxicity, due to a decrease in mitochondrial ROS production. It also decreases regulated cell death triggered by imbalance in oxidative stress (restore values of advanced oxidation protein products and total thiol levels). Also restores mitochondrial function (cytochrome c oxidase activity, mitochondrial membrane potential and oxygen consumption rate) and morphology. Furthermore, increases the expression and activity of protective factors (increases Nrf2, HO1 and Trx2 expression and GST and NQO1 activity), being some of these effects modulated by its interaction with the S1P receptor. FP seems to increase mitochondrial stability and restore mitochondrial dynamics under conditions of oxidative stress, making this drug a potential candidate for the treatment of neurodegenerative diseases other than MS.
Collapse
Affiliation(s)
- E Martín-Montañez
- Department of Pharmacology and Paediatrics, Faculty of Medicine, Malaga University, Malaga, Spain.
| | - J Pavia
- Department of Pharmacology and Paediatrics, Faculty of Medicine, Malaga University, Malaga, Spain.
| | - N Valverde
- Department of Human Physiology, Faculty of Medicine, Malaga University, Malaga, Spain
| | - F Boraldi
- Department of Life Sciences, University of Modena e Reggio Emilia, Modena, Italy
| | - E Lara
- Department of Human Physiology, Faculty of Medicine, Malaga University, Malaga, Spain
| | - B Oliver
- Neuroscience Unit, Biomedical Research Institute of Malaga (IBIMA), Malaga University Hospital, Malaga, Spain
| | - I Hurtado-Guerrero
- Neuroscience Unit, Biomedical Research Institute of Malaga (IBIMA), Malaga University Hospital, Malaga, Spain
| | - O Fernandez
- Department of Pharmacology and Paediatrics, Faculty of Medicine, Malaga University, Malaga, Spain.
| | - M Garcia-Fernandez
- Department of Human Physiology, Faculty of Medicine, Malaga University, Malaga, Spain.
| |
Collapse
|
15
|
Bhanu NV, Sidoli S, Yuan ZF, Molden RC, Garcia BA. Regulation of proline-directed kinases and the trans-histone code H3K9me3/H4K20me3 during human myogenesis. J Biol Chem 2019; 294:8296-8308. [PMID: 30872405 DOI: 10.1074/jbc.ra118.004977] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 02/22/2019] [Indexed: 01/14/2023] Open
Abstract
We present a system-level analysis of proteome, phosphoproteome, and chromatin state of precursors of muscle cells (myoblasts) differentiating into specialized myotubes. Using stable isotope labeling of amino acids in cell culture and nano-liqud chromatography-mass spectrometry/mass spectrometry, we found that phosphorylation motifs targeted by the kinases protein kinase C, cyclin-dependent kinase, and mitogen-activated protein kinase showed increased phosphorylation during myodifferentiation of LHCN-M2 human skeletal myoblast cell line. Drugs known to inhibit these kinases either promoted (PD0325901 and GW8510) or stalled (CHIR99021 and roscovitine) differentiation, resulting in myotube and myoblast phenotypes, respectively. The proteomes, especially the myogenic and chromatin-related proteins including histone methyltransferases, correlated with their phenotypes, leading us to quantify histone post-translational modifications and identify two gene-silencing marks, H3K9me3 and H4K20me3, with relative abundances changing in correlation with these phenotypes. ChIP-quantitative PCR demonstrated that H3K9me3 is erased from the gene loci of myogenic regulatory factors namely MYOD1, MYOG, and MYF5 in differentiating myotubes. Together, our work integrating histone post-translational modification, phosphoproteomics, and full proteome analysis gives a comprehensive understanding of the close connection between signaling pathways and epigenetics during myodifferentiation in vitro.
Collapse
Affiliation(s)
- Natarajan V Bhanu
- Epigenetics Institute, Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Simone Sidoli
- Epigenetics Institute, Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Zuo-Fei Yuan
- Epigenetics Institute, Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Rosalynn C Molden
- Epigenetics Institute, Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Benjamin A Garcia
- Epigenetics Institute, Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104.
| |
Collapse
|
16
|
Neagu AN. Proteome Imaging: From Classic to Modern Mass Spectrometry-Based Molecular Histology. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1140:55-98. [PMID: 31347042 DOI: 10.1007/978-3-030-15950-4_4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
In order to overcome the limitations of classic imaging in Histology during the actually era of multiomics, the multi-color "molecular microscope" by its emerging "molecular pictures" offers quantitative and spatial information about thousands of molecular profiles without labeling of potential targets. Healthy and diseased human tissues, as well as those of diverse invertebrate and vertebrate animal models, including genetically engineered species and cultured cells, can be easily analyzed by histology-directed MALDI imaging mass spectrometry. The aims of this review are to discuss a range of proteomic information emerging from MALDI mass spectrometry imaging comparative to classic histology, histochemistry and immunohistochemistry, with applications in biology and medicine, concerning the detection and distribution of structural proteins and biological active molecules, such as antimicrobial peptides and proteins, allergens, neurotransmitters and hormones, enzymes, growth factors, toxins and others. The molecular imaging is very well suited for discovery and validation of candidate protein biomarkers in neuroproteomics, oncoproteomics, aging and age-related diseases, parasitoproteomics, forensic, and ecotoxicology. Additionally, in situ proteome imaging may help to elucidate the physiological and pathological mechanisms involved in developmental biology, reproductive research, amyloidogenesis, tumorigenesis, wound healing, neural network regeneration, matrix mineralization, apoptosis and oxidative stress, pain tolerance, cell cycle and transformation under oncogenic stress, tumor heterogeneity, behavior and aggressiveness, drugs bioaccumulation and biotransformation, organism's reaction against environmental penetrating xenobiotics, immune signaling, assessment of integrity and functionality of tissue barriers, behavioral biology, and molecular origins of diseases. MALDI MSI is certainly a valuable tool for personalized medicine and "Eco-Evo-Devo" integrative biology in the current context of global environmental challenges.
Collapse
Affiliation(s)
- Anca-Narcisa Neagu
- Laboratory of Animal Histology, Faculty of Biology, "Alexandru Ioan Cuza" University of Iasi, Iasi, Romania.
| |
Collapse
|
17
|
Patterson NH, Tuck M, Lewis A, Kaushansky A, Norris JL, Van de Plas R, Caprioli RM. Next Generation Histology-Directed Imaging Mass Spectrometry Driven by Autofluorescence Microscopy. Anal Chem 2018; 90:12404-12413. [PMID: 30274514 DOI: 10.1021/acs.analchem.8b02885] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Histology-directed imaging mass spectrometry (IMS) is a spatially targeted IMS acquisition method informed by expert annotation that provides rapid molecular characterization of select tissue structures. The expert annotations are usually determined on digital whole slide images of histological stains where the staining preparation is incompatible with optimal IMS preparation, necessitating serial sections: one for annotation, one for IMS. Registration is then used to align staining annotations onto the IMS tissue section. Herein, we report a next-generation histology-directed platform implementing IMS-compatible autofluorescence (AF) microscopy taken prior to any staining or IMS. The platform enables two histology-directed workflows, one that improves the registration process between two separate tissue sections using automated, computational monomodal AF-to-AF microscopy image registration, and a registration-free approach that utilizes AF directly to identify ROIs and acquire IMS on the same section. The registration approach is fully automated and delivers state of the art accuracy in histology-directed workflows for transfer of annotations (∼3-10 μm based on 4 organs from 2 species) while the direct AF approach is registration-free, allowing targeting of the finest structures visible by AF microscopy. We demonstrate the platform in biologically relevant case studies of liver stage malaria and human kidney disease with spatially targeted acquisition of sparsely distributed (composing less than one tenth of 1% of the tissue section area) malaria infected mouse hepatocytes and glomeruli in the human kidney case study.
Collapse
Affiliation(s)
| | | | - Adam Lewis
- Center for Infectious Disease Research , formerly Seattle Biomedical Research Institute, Seattle , Washington 98109 , United States.,Department of Global Health , University of Washington , Seattle , Washington 98195 , United States
| | - Alexis Kaushansky
- Center for Infectious Disease Research , formerly Seattle Biomedical Research Institute, Seattle , Washington 98109 , United States.,Department of Global Health , University of Washington , Seattle , Washington 98195 , United States
| | | | - Raf Van de Plas
- Delft Center for Systems and Control (DCSC) , Delft University of Technology , 2628 CD , Delft , The Netherlands
| | | |
Collapse
|
18
|
Othman Z, Cillero Pastor B, van Rijt S, Habibovic P. Understanding interactions between biomaterials and biological systems using proteomics. Biomaterials 2018; 167:191-204. [PMID: 29571054 DOI: 10.1016/j.biomaterials.2018.03.020] [Citation(s) in RCA: 114] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2017] [Revised: 03/02/2018] [Accepted: 03/12/2018] [Indexed: 12/22/2022]
Abstract
The role that biomaterials play in the clinical treatment of damaged organs and tissues is changing. While biomaterials used in permanent medical devices were required to passively take over the function of a damaged tissue in the long term, current biomaterials are expected to trigger and harness the self-regenerative potential of the body in situ and then to degrade, the foundation of regenerative medicine. To meet these different requirements, it is imperative to fully understand the interactions biomaterials have with biological systems, in space and in time. This knowledge will lead to a better understanding of the regenerative capabilities of biomaterials aiding their design with improved functionalities (e.g. biocompatibility, bioactivity). Proteins play a pivotal role in the interaction between biomaterials and cells or tissues. Protein adsorption on the material surface is the very first event of this interaction, which is determinant for the subsequent processes of cell growth, differentiation, and extracellular matrix formation. Against this background, the aim of the current review is to provide insight in the current knowledge of the role of proteins in cell-biomaterial and tissue-biomaterial interactions. In particular, the focus is on proteomics studies, mainly using mass spectrometry, and the knowledge they have generated on protein adsorption of biomaterials, protein production by cells cultured on materials, safety and efficacy of new materials based on nanoparticles and the analysis of extracellular matrices and extracellular matrix-derived products. In the outlook, the potential and limitations of this approach are discussed and mass spectrometry imaging is presented as a powerful technique that complements existing mass spectrometry techniques by providing spatial molecular information about the material-biological system interactions.
Collapse
Affiliation(s)
- Ziryan Othman
- MERLN Institute for Technology-Inspired Regenerative Medicine, Department of Instructive Biomaterials Engineering, Maastricht University, Universiteitssingel 40, 6229 ER Maastricht, The Netherlands
| | - Berta Cillero Pastor
- The Maastricht Multimodal Molecular Imaging Institute (M4I), Division of Imaging Mass Spectrometry, Maastricht University, Universiteitssingel 50, 6229 ER Maastricht, The Netherlands
| | - Sabine van Rijt
- MERLN Institute for Technology-Inspired Regenerative Medicine, Department of Instructive Biomaterials Engineering, Maastricht University, Universiteitssingel 40, 6229 ER Maastricht, The Netherlands
| | - Pamela Habibovic
- MERLN Institute for Technology-Inspired Regenerative Medicine, Department of Instructive Biomaterials Engineering, Maastricht University, Universiteitssingel 40, 6229 ER Maastricht, The Netherlands.
| |
Collapse
|
19
|
MALDI (matrix assisted laser desorption ionization) Imaging Mass Spectrometry (IMS) of skin: Aspects of sample preparation. Talanta 2017; 174:325-335. [PMID: 28738588 DOI: 10.1016/j.talanta.2017.06.018] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 05/15/2017] [Accepted: 06/02/2017] [Indexed: 12/15/2022]
Abstract
MALDI (matrix assisted laser desorption ionization) Imaging Mass Spectrometry (IMS) allows molecular analysis of biological materials making possible the identification and localization of molecules in tissues, and has been applied to address many questions on skin pathophysiology, as well as on studies about drug absorption and metabolism. Sample preparation for MALDI IMS is the most important part of the workflow, comprising specimen collection and preservation, tissue embedding, cryosectioning, washing, and matrix application. These steps must be carefully optimized for specific analytes of interest (lipids, proteins, drugs, etc.), representing a challenge for skin analysis. In this review, critical parameters for MALDI IMS sample preparation of skin samples will be described. In addition, specific applications of MALDI IMS of skin samples will be presented including wound healing, neoplasia, and infection.
Collapse
|
20
|
Ogunleke A, Bobroff V, Chen HH, Rowlette J, Delugin M, Recur B, Hwu Y, Petibois C. Fourier-transform vs. quantum-cascade-laser infrared microscopes for histo-pathology: From lab to hospital? Trends Analyt Chem 2017. [DOI: 10.1016/j.trac.2017.02.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
21
|
Rizzo DG, Prentice BM, Moore JL, Norris JL, Caprioli RM. Enhanced Spatially Resolved Proteomics Using On-Tissue Hydrogel-Mediated Protein Digestion. Anal Chem 2017; 89:2948-2955. [DOI: 10.1021/acs.analchem.6b04395] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- David G. Rizzo
- Department
of Chemistry, ‡Department of Biochemistry, §Mass Spectrometry Research Center, and ∥Departments
of Pharmacology and Medicine, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Boone M. Prentice
- Department
of Chemistry, ‡Department of Biochemistry, §Mass Spectrometry Research Center, and ∥Departments
of Pharmacology and Medicine, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Jessica L. Moore
- Department
of Chemistry, ‡Department of Biochemistry, §Mass Spectrometry Research Center, and ∥Departments
of Pharmacology and Medicine, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Jeremy L. Norris
- Department
of Chemistry, ‡Department of Biochemistry, §Mass Spectrometry Research Center, and ∥Departments
of Pharmacology and Medicine, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Richard M. Caprioli
- Department
of Chemistry, ‡Department of Biochemistry, §Mass Spectrometry Research Center, and ∥Departments
of Pharmacology and Medicine, Vanderbilt University, Nashville, Tennessee 37232, United States
| |
Collapse
|
22
|
Taverna D, Mignogna C, Gabriele C, Santise G, Donato G, Cuda G, Gaspari M. An optimized procedure for on-tissue localized protein digestion and quantification using hydrogel discs and isobaric mass tags: analysis of cardiac myxoma. Anal Bioanal Chem 2017; 409:2919-2930. [PMID: 28190108 DOI: 10.1007/s00216-017-0237-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Revised: 01/20/2017] [Accepted: 01/31/2017] [Indexed: 01/22/2023]
Abstract
An optimized workflow for multiplexed and spatially localized on-tissue quantitative protein analysis is here presented. The method is based on the use of an enzyme delivery platform, a polymeric hydrogel disc, allowing for a localized digestion directly onto the tissue surface coupled with an isobaric mass tag strategy for peptide labeling and relative quantification. The digestion occurs within such hydrogels, followed by peptide solvent extraction and identification by liquid chromatography coupled to high-resolution tandem mass spectrometry (LC-MS/MS). Since this is a histology-directed on-tissue analysis, multiple hydrogels were placed onto morphologically and spatially different regions of interest (ROIs) within the tissue surface, e.g., cardiac myxoma tumor vascularized region and the adjacent hypocellular area. After a microwave digestion step (2 min), enzymatically cleaved peptides were labeled using TMT reagents with isobaric mass tags, enabling analysis of multiple samples per experiment. Thus, N = 8 hydrogel-digested samples from cardiac myxoma serial tissue sections (N = 4 from the vascularized ROIs and N = 4 from the adjacent hypocellular areas) were processed and then combined before a single LC-MS/MS analysis. Regulated proteins from both cardiac myxoma regions were assayed in a single experiment. Graphical abstract The workflow for histology-guided on-tissue localized protein digestion followed by isobaric mass tagging and LC-MS/MS analysis for proteins quantification is here summarized.
Collapse
Affiliation(s)
- Domenico Taverna
- Research Center for Advanced Biochemistry and Molecular Biology, Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, Campus "S. Venuta", Viale Europa, Loc. Germaneto, 88100, Catanzaro, Italy.
| | - Chiara Mignogna
- Department of Health Science, Magna Graecia University of Catanzaro, Viale Europa, 88100, Catanzaro, Italy
| | - Caterina Gabriele
- Research Center for Advanced Biochemistry and Molecular Biology, Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, Campus "S. Venuta", Viale Europa, Loc. Germaneto, 88100, Catanzaro, Italy
| | - Gianluca Santise
- Cardiothoracic Surgery Unit, Sant'Anna Hospital, Via Pio X, 111, 88100, Catanzaro, Italy
| | - Giuseppe Donato
- Department of Health Science, Magna Graecia University of Catanzaro, Viale Europa, 88100, Catanzaro, Italy
| | - Giovanni Cuda
- Research Center for Advanced Biochemistry and Molecular Biology, Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, Campus "S. Venuta", Viale Europa, Loc. Germaneto, 88100, Catanzaro, Italy
| | - Marco Gaspari
- Research Center for Advanced Biochemistry and Molecular Biology, Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, Campus "S. Venuta", Viale Europa, Loc. Germaneto, 88100, Catanzaro, Italy
| |
Collapse
|
23
|
Norris JL, Tsui T, Gutierrez DB, Caprioli RM. Pathology interface for the molecular analysis of tissue by mass spectrometry. J Pathol Inform 2016; 7:13. [PMID: 27141319 PMCID: PMC4837791 DOI: 10.4103/2153-3539.179903] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Accepted: 02/29/2016] [Indexed: 11/19/2022] Open
Abstract
Background: Imaging mass spectrometry (IMS) generates molecular images directly from tissue sections to provide better diagnostic insights and expand the capabilities of clinical anatomic pathology. Although IMS technology has matured over recent years, the link between microscopy imaging currently used by pathologists and MS-based molecular imaging has not been established. Methods: We adapted the Vanderbilt University Tissue Core workflow for IMS into a web-based system that facilitates remote collaboration. The platform was designed to perform within acceptable web response times for viewing, annotating, and processing high resolution microscopy images. Results: We describe a microscopy-driven approach to tissue analysis by IMS. Conclusion: The Pathology Interface for Mass Spectrometry is designed to provide clinical access to IMS technology and deliver enhanced diagnostic value.
Collapse
Affiliation(s)
- Jeremy L Norris
- Department of Biochemistry, National Research Resource for Imaging Mass Spectrometry, Mass Spectrometry Research Center, Vanderbilt University School of Medicine, Nashville, Tennessee 37240, USA
| | - Tina Tsui
- Department of Biochemistry, National Research Resource for Imaging Mass Spectrometry, Mass Spectrometry Research Center, Vanderbilt University School of Medicine, Nashville, Tennessee 37240, USA
| | - Danielle B Gutierrez
- Department of Biochemistry, National Research Resource for Imaging Mass Spectrometry, Mass Spectrometry Research Center, Vanderbilt University School of Medicine, Nashville, Tennessee 37240, USA
| | - Richard M Caprioli
- Department of Biochemistry, National Research Resource for Imaging Mass Spectrometry, Mass Spectrometry Research Center, Vanderbilt University School of Medicine, Nashville, Tennessee 37240, USA
| |
Collapse
|
24
|
Taverna D, Di Donna L, Bartella L, Napoli A, Sindona G, Mazzotti F. Fast analysis of caffeine in beverages and drugs by paper spray tandem mass spectrometry. Anal Bioanal Chem 2016; 408:3783-7. [DOI: 10.1007/s00216-016-9468-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Revised: 02/09/2016] [Accepted: 03/04/2016] [Indexed: 12/19/2022]
|
25
|
Taverna D, Pollins AC, Nanney LB, Sindona G, Caprioli RM. Histology-guided protein digestion/extraction from formalin-fixed and paraffin-embedded pressure ulcer biopsies. Exp Dermatol 2015; 25:143-6. [PMID: 26440596 DOI: 10.1111/exd.12870] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/28/2015] [Indexed: 12/24/2022]
Abstract
Herein we present a simple, reproducible and versatile approach for in situ protein digestion and identification on formalin-fixed and paraffin-embedded (FFPE) tissues. This adaptation is based on the use of an enzyme delivery platform (hydrogel discs) that can be positioned on the surface of a tissue section. By simultaneous deposition of multiple hydrogels over select regions of interest within the same tissue section, multiple peptide extracts can be obtained from discrete histological areas. After enzymatic digestion, the hydrogel extracts are submitted for LC-MS/MS analysis followed by database inquiry for protein identification. Further, imaging mass spectrometry (IMS) is used to reveal the spatial distribution of the identified peptides within a serial tissue section. Optimization was achieved using cutaneous tissue from surgically excised pressure ulcers that were subdivided into two prime regions of interest: the wound bed and the adjacent dermal area. The robust display of tryptic peptides within these spectral analyses of histologically defined tissue regions suggests that LC-MS/MS in combination with IMS can serve as useful exploratory tools.
Collapse
Affiliation(s)
- Domenico Taverna
- Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, Arcavacata di Rende, Italy.,Mass Spectrometry Research Center, Vanderbilt School of Medicine, Nashville, TN, USA
| | - Alonda C Pollins
- Department of Plastic Surgery, Vanderbilt School of Medicine, Nashville, TN, USA
| | - Lillian B Nanney
- Department of Plastic Surgery, Vanderbilt School of Medicine, Nashville, TN, USA.,Department of Cell & Developmental Biology, Vanderbilt School of Medicine, Nashville, TN, USA
| | - Giovanni Sindona
- Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, Arcavacata di Rende, Italy
| | - Richard M Caprioli
- Mass Spectrometry Research Center, Vanderbilt School of Medicine, Nashville, TN, USA.,Department of Biochemistry, Vanderbilt School of Medicine, Nashville, TN, USA
| |
Collapse
|
26
|
Crecelius AC, Schubert US, von Eggeling F. MALDI mass spectrometric imaging meets “omics”: recent advances in the fruitful marriage. Analyst 2015; 140:5806-20. [DOI: 10.1039/c5an00990a] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Matrix-assisted laser desorption/ionization mass spectrometric imaging (MALDI MSI) is a method that allows the investigation of the molecular content of surfaces, in particular, tissues, within its morphological context.
Collapse
Affiliation(s)
- A. C. Crecelius
- Laboratory of Organic and Macromolecular Chemistry (IOMC)
- Friedrich Schiller University Jena
- 07743 Jena
- Germany
- Jena Center for Soft Matter (JCSM)
| | - U. S. Schubert
- Laboratory of Organic and Macromolecular Chemistry (IOMC)
- Friedrich Schiller University Jena
- 07743 Jena
- Germany
- Jena Center for Soft Matter (JCSM)
| | - F. von Eggeling
- Jena Center for Soft Matter (JCSM)
- Friedrich Schiller University Jena
- 07743 Jena
- Germany
- Institute of Physical Chemistry
| |
Collapse
|