1
|
Cheng W, Wu Y, Shen J, Guan H, Zhang L, Zhen H, Tao Y, Xia W, Liu Z, Zhang F. Dynamic changes of bone microarchitecture and volumetric mineral density assessed by HR-pQCT in patients with cervical cancer after concurrent chemoradiotherapy: a prospective study. Biomark Res 2025; 13:46. [PMID: 40102859 PMCID: PMC11921580 DOI: 10.1186/s40364-025-00754-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 02/27/2025] [Indexed: 03/20/2025] Open
Abstract
Bone changes in patients undergoing pelvic radiotherapy remain unclear. This study initially utilized high-resolution peripheral quantitative computed tomography (HR-pQCT) to assess the dynamic changes in bone microarchitecture and volumetric bone mineral density (BMD) in patients with cervical cancer before and after concurrent chemoradiotherapy. This prospective, observational study included patients with squamous carcinoma of the cervix scheduled for concurrent chemoradiotherapy. Patients underwent HR-pQCT, dual-energy X-ray absorptiometry (DXA) and laboratory tests before chemoradiotherapy, and at three and six months post-chemoradiotherapy. DXA, serving as the clinical standard for measuring BMD, was employed alongside HR-pQCT to provide complementary insights into bone micro-changes. The primary endpoint comprised changes in total (Tt.vBMD), trabecular (Tb.vBMD) and cortical (Ct.vBMD) volumetric BMD at the distal radius and tibia between pre-chemoradiotherapy and 6 months post-chemoradiotherapy. A total of 21 patients were enrolled, and one patient chose to withdraw (median age: 54.5 years). Tt.vBMD significantly decreased three months (distal radius: -1.65%, P = 0.008; distal tibia: -2.4%, P < 0.001) and six months (distal radius: -3.03%, P = 0.003; distal tibia: -2.69%, P = 0.002) post-chemoradiotherapy compared to baseline. Similarly, Tb.vBMD and Ct.vBMD demonstrated a significant downward trend post-chemoradiotherapy, with mean percent changes at three months of -0.73% and - 1.59% for the distal radius, and - 1.95% and - 1.50% for the distal tibia, respectively. The trends in BMD changes measured by DXA align with those observed using HR-pQCT. Regarding the laboratory tests, estradiol levels significantly decreased post-chemoradiotherapy, while follicle stimulating hormone and luteinizing hormone levels significantly increased. The results found that concurrent chemoradiotherapy was associated with the changes in bone volume, microstructure and BMD, especially in BMD three months post-chemoradiotherapy. Most of the bone micro-changes had not reverted by six months. This study explored the feasibility of early fracture risk identification post-chemoradiotherapy, aiding physicians in taking timely measures to improve prognosis.
Collapse
Affiliation(s)
- Weishi Cheng
- Department of Radiation Oncology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Yijun Wu
- Department of Hematology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Jing Shen
- Department of Radiation Oncology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hui Guan
- Department of Radiation Oncology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Li Zhang
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hongnan Zhen
- Department of Radiation Oncology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yinjie Tao
- Department of Radiation Oncology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Weibo Xia
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Zhikai Liu
- Department of Radiation Oncology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Fuquan Zhang
- Department of Radiation Oncology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
2
|
Bugbird AR, Boisvert NMJ, Burt LA, Boyd SK. Choose your mother wisely: the familial resemblance of bone adaptation. Osteoporos Int 2025; 36:141-149. [PMID: 39579163 DOI: 10.1007/s00198-024-07321-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 11/15/2024] [Indexed: 11/25/2024]
Abstract
This study demonstrates how complex bone microarchitectural features can be summarized to describe bone adaptations seen with aging in women, which are consistent with the stages of osteoporosis. Additionally, we showed familial resemblance in these bone microarchitectural traits between mothers and daughters that can be used to predict bone adaptations. INTRODUCTION Patient-specific characterization of bone quality can reduce complex microarchitectural features to common combinations of bone characteristics, known as bone phenotypes. This study investigated whether there is a general trend in bone phenotype change over time seen with aging in females and whether there is a familial resemblance to phenotype membership between mothers and daughters. METHODS Bone phenotype membership was calculated on biological mother and daughter pairs (Participants = 101), scanned using high resolution peripheral quantitative computed tomography, to the three pre-defined phenotypes (healthy, low volume, and low density). The trajectory of bone phenotype with age was explored using all participant's data. Linear regression models were used to assess the familial resemblance of phenotyping in the mother-daughter pairs. RESULTS When stratified for age, the trajectory of the phenotype membership transitioned from healthy (20-40 years), to low volume (40-60 years), to low density (60-80 years), which similarly aligns with the stages of osteoporosis observed in females. Familial resemblance (½h2) was observed in the healthy phenotype (β = 0.432, p < 0.01). Predictive modelling showed a significant association in phenotype membership between mothers and daughters in the healthy (R2 = 0.347, p = 0.04) and low volume (R2 = 0.416, p < 0.01) phenotypes, adjusted for age, height, and weight. CONCLUSION Our results suggest that phenotype membership in females changes with age in a pattern that is consistent with the stages of osteoporosis. Additionally, we showed familial resemblance in bone phenotype, which can be used to predict bone adaptations between mothers and daughters that are associated with bone loss with aging.
Collapse
Affiliation(s)
- Annabel R Bugbird
- McCaig Institute for Bone and Joint Health, Cumming School of Medicine, University of Calgary, 3280 Hospital Dr NW, Calgary, AB, T2N 4Z6, Canada
| | - Nicole M J Boisvert
- Human Performance Lab, Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada
| | - Lauren A Burt
- McCaig Institute for Bone and Joint Health, Cumming School of Medicine, University of Calgary, 3280 Hospital Dr NW, Calgary, AB, T2N 4Z6, Canada
| | - Steven K Boyd
- McCaig Institute for Bone and Joint Health, Cumming School of Medicine, University of Calgary, 3280 Hospital Dr NW, Calgary, AB, T2N 4Z6, Canada.
| |
Collapse
|
3
|
Sornay-Rendu E, Duboeuf F, Chapurlat RD. Postmenopausal women with normal BMD who have fractures have deteriorated bone microarchitecture: A prospective analysis from The OFELY study. Bone 2024; 182:117072. [PMID: 38492712 DOI: 10.1016/j.bone.2024.117072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 03/01/2024] [Accepted: 03/13/2024] [Indexed: 03/18/2024]
Abstract
Most postmenopausal women who sustain fragility fracture (Fx) have their areal bone mineral density (BMD) above the osteoporosis threshold. A sizeable proportion of them have normal aBMD. This study aimed to prospectively investigate the association of fragility Fx with bone microarchitecture (MA) assessed by high-resolution peripheral computed tomography (HR-pQCT) in postmenopausal women without low BMD. At the 14th annual follow-up of the OFELY study, we measured bone MA at the distal radius and tibia with HR-pQCT in addition to areal BMD with DXA, in 586 postmenopausal women. Among them, 166 (29 %) women, mean (SD) age 65 (8) yr, had normal BMD defined as a T score ≥ -1 at the lumbar spine, femoral neck, and total hip. During a median [IQR] 15 [14-15] yr of follow-up, 46 of those women sustained incident fragility Fx, including 19 women with a major osteoporotic Fx (clinical spine, forearm, proximal humerus, hip). Women who sustained Fx did not differ for age, BMI, tobacco and alcohol use, diabetes, falls, FRAX®, aBMD, and TBS compared with women without incident Fx. In contrast, they had significant impairment of volumetric densities, cortical area (Ct. Ar) and thickness (Ct. Th), stiffness (K), and estimated failure load (FL) at the radius compared with women without incident Fx. At the radius, each SD decrease of volumetric densities, Ct.Ar, Ct.Th, K, and estimated FL were significantly associated with an increased risk of all fragility fractures with hazard ratios (HR) from 1.44 to 1.56 and of major osteoporotic fractures (HR from 1.66 to 2.57). Lesser impairment of bone MA was seen at the tibia. We conclude that even in women with normal areal BMD fragility fractures are associated with deterioration of bone microarchitecture.
Collapse
Affiliation(s)
| | - F Duboeuf
- INSERM UMR 1033 and Université de Lyon, France.
| | | |
Collapse
|
4
|
Jones BC, Wehrli FW, Kamona N, Deshpande RS, Vu BTD, Song HK, Lee H, Grewal RK, Chan TJ, Witschey WR, MacLean MT, Josselyn NJ, Iyer SK, Al Mukaddam M, Snyder PJ, Rajapakse CS. Automated, calibration-free quantification of cortical bone porosity and geometry in postmenopausal osteoporosis from ultrashort echo time MRI and deep learning. Bone 2023; 171:116743. [PMID: 36958542 PMCID: PMC10121925 DOI: 10.1016/j.bone.2023.116743] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 03/01/2023] [Accepted: 03/16/2023] [Indexed: 03/25/2023]
Abstract
BACKGROUND Assessment of cortical bone porosity and geometry by imaging in vivo can provide useful information about bone quality that is independent of bone mineral density (BMD). Ultrashort echo time (UTE) MRI techniques of measuring cortical bone porosity and geometry have been extensively validated in preclinical studies and have recently been shown to detect impaired bone quality in vivo in patients with osteoporosis. However, these techniques rely on laborious image segmentation, which is clinically impractical. Additionally, UTE MRI porosity techniques typically require long scan times or external calibration samples and elaborate physics processing, which limit their translatability. To this end, the UTE MRI-derived Suppression Ratio has been proposed as a simple-to-calculate, reference-free biomarker of porosity which can be acquired in clinically feasible acquisition times. PURPOSE To explore whether a deep learning method can automate cortical bone segmentation and the corresponding analysis of cortical bone imaging biomarkers, and to investigate the Suppression Ratio as a fast, simple, and reference-free biomarker of cortical bone porosity. METHODS In this retrospective study, a deep learning 2D U-Net was trained to segment the tibial cortex from 48 individual image sets comprised of 46 slices each, corresponding to 2208 training slices. Network performance was validated through an external test dataset comprised of 28 scans from 3 groups: (1) 10 healthy, young participants, (2) 9 postmenopausal, non-osteoporotic women, and (3) 9 postmenopausal, osteoporotic women. The accuracy of automated porosity and geometry quantifications were assessed with the coefficient of determination and the intraclass correlation coefficient (ICC). Furthermore, automated MRI biomarkers were compared between groups and to dual energy X-ray absorptiometry (DXA)- and peripheral quantitative CT (pQCT)-derived BMD. Additionally, the Suppression Ratio was compared to UTE porosity techniques based on calibration samples. RESULTS The deep learning model provided accurate labeling (Dice score 0.93, intersection-over-union 0.88) and similar results to manual segmentation in quantifying cortical porosity (R2 ≥ 0.97, ICC ≥ 0.98) and geometry (R2 ≥ 0.82, ICC ≥ 0.75) parameters in vivo. Furthermore, the Suppression Ratio was validated compared to established porosity protocols (R2 ≥ 0.78). Automated parameters detected age- and osteoporosis-related impairments in cortical bone porosity (P ≤ .002) and geometry (P values ranging from <0.001 to 0.08). Finally, automated porosity markers showed strong, inverse Pearson's correlations with BMD measured by pQCT (|R| ≥ 0.88) and DXA (|R| ≥ 0.76) in postmenopausal women, confirming that lower mineral density corresponds to greater porosity. CONCLUSION This study demonstrated feasibility of a simple, automated, and ionizing-radiation-free protocol for quantifying cortical bone porosity and geometry in vivo from UTE MRI and deep learning.
Collapse
Affiliation(s)
- Brandon C Jones
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, 1 Founders Building, 3400 Spruce St, Philadelphia, PA 19104, United States of America; Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, 210 South 33(rd) St, Philadelphia, PA 19104, United States of America.
| | - Felix W Wehrli
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, 1 Founders Building, 3400 Spruce St, Philadelphia, PA 19104, United States of America.
| | - Nada Kamona
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, 1 Founders Building, 3400 Spruce St, Philadelphia, PA 19104, United States of America; Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, 210 South 33(rd) St, Philadelphia, PA 19104, United States of America.
| | - Rajiv S Deshpande
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, 1 Founders Building, 3400 Spruce St, Philadelphia, PA 19104, United States of America; Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, 210 South 33(rd) St, Philadelphia, PA 19104, United States of America.
| | - Brian-Tinh Duc Vu
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, 1 Founders Building, 3400 Spruce St, Philadelphia, PA 19104, United States of America; Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, 210 South 33(rd) St, Philadelphia, PA 19104, United States of America.
| | - Hee Kwon Song
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, 1 Founders Building, 3400 Spruce St, Philadelphia, PA 19104, United States of America.
| | - Hyunyeol Lee
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, 1 Founders Building, 3400 Spruce St, Philadelphia, PA 19104, United States of America; School of Electronics Engineering, Kyungpook National University, 80 Daehakro, Bukgu, Daegu 41566, Republic of Korea.
| | - Rasleen Kaur Grewal
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, 1 Founders Building, 3400 Spruce St, Philadelphia, PA 19104, United States of America.
| | - Trevor Jackson Chan
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, 1 Founders Building, 3400 Spruce St, Philadelphia, PA 19104, United States of America; Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, 210 South 33(rd) St, Philadelphia, PA 19104, United States of America.
| | - Walter R Witschey
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, 1 Founders Building, 3400 Spruce St, Philadelphia, PA 19104, United States of America.
| | - Matthew T MacLean
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, 1 Founders Building, 3400 Spruce St, Philadelphia, PA 19104, United States of America.
| | - Nicholas J Josselyn
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, 1 Founders Building, 3400 Spruce St, Philadelphia, PA 19104, United States of America; Department of Data Science, Worcester Polytechnic Institute, 100 Institute Road, Worcester, MA 01609, United States of America.
| | - Srikant Kamesh Iyer
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, 1 Founders Building, 3400 Spruce St, Philadelphia, PA 19104, United States of America
| | - Mona Al Mukaddam
- Department of Medicine, Division of Endocrinology, Perelman School of Medicine, University of Pennsylvania, Perelman Center for Advanced Medicine, 3400 Civic Center Boulevard, Philadelphia, PA 19104, United States of America.
| | - Peter J Snyder
- Department of Medicine, Division of Endocrinology, Perelman School of Medicine, University of Pennsylvania, Perelman Center for Advanced Medicine, 3400 Civic Center Boulevard, Philadelphia, PA 19104, United States of America.
| | - Chamith S Rajapakse
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, 1 Founders Building, 3400 Spruce St, Philadelphia, PA 19104, United States of America.
| |
Collapse
|
5
|
Chlebek C, Rosen CJ. The Role of Bone Cell Energetics in Altering Bone Quality and Strength in Health and Disease. Curr Osteoporos Rep 2023; 21:1-10. [PMID: 36435911 DOI: 10.1007/s11914-022-00763-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/26/2022] [Indexed: 11/28/2022]
Abstract
PURPOSE OF REVIEW Bone quality and strength are diminished with age and disease but can be improved by clinical intervention. Energetic pathways are essential for cellular function and drive osteogenic signaling within bone cells. Altered bone quality is associated with changes in the energetic activity of bone cells following diet-based or therapeutic interventions. Energetic pathways may directly or indirectly contribute to changes in bone quality. The goal of this review is to highlight tissue-level and bioenergetic changes in bone health and disease. RECENT FINDINGS Bone cell energetics are an expanding field of research. Early literature primarily focused on defining energetic activation throughout the lifespan of bone cells. Recent studies have begun to connect bone energetic activity to health and disease. In this review, we highlight bone cell energetic demands, the effect of substrate availability on bone quality, altered bioenergetics associated with disease treatment and development, and additional biological factors influencing bone cell energetics. Bone cells use several energetic pathways during differentiation and maturity. The orchestration of bioenergetic pathways is critical for healthy cell function. Systemic changes in substrate availability alter bone quality, potentially due to the direct effects of altered bone cell bioenergetic activity. Bone cell bioenergetics may also contribute directly to the development and treatment of skeletal diseases. Understanding the role of energetic pathways in the cellular response to disease will improve patient treatment.
Collapse
Affiliation(s)
- Carolyn Chlebek
- Maine Medical Center Research Institute, 81 Research Drive, Scarborough, ME, USA
| | - Clifford J Rosen
- Maine Medical Center Research Institute, 81 Research Drive, Scarborough, ME, USA.
| |
Collapse
|
6
|
Zhu Z, Yu P, Wu Y, Wu Y, Tan Z, Ling J, Ma J, Zhang J, Zhu W, Liu X. Sex Specific Global Burden of Osteoporosis in 204 Countries and Territories, from 1990 to 2030: An Age-Period-Cohort Modeling Study. J Nutr Health Aging 2023; 27:767-774. [PMID: 37754217 DOI: 10.1007/s12603-023-1971-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Accepted: 07/26/2023] [Indexed: 09/28/2023]
Abstract
BACKGROUND Osteoporosis is a highly prevalent disease with distinct sex pattern. We aimed to estimate the sex specific incidence, prevalence, and disability-adjusted life (DALYs) years of osteoporosis between 1990 and 2019, with additional predictions from 2020 to 2034. METHODS We collected osteoporosis disease burden data from the Global Burden of Disease study covering the years 1990 through 2019 in 204 countries and territories. The data included information on the number of incident cases of osteoporosis, DALYs, age-standardized incidence rates (ASIR), age-standardized prevalence rates (ASPR) and age-standardized DALYs rates. Additionally, we performed an age-period-cohort analysis to forecast the burden of osteoporosis. RESULTS The global number of incidence cases of osteoporosis, in 2019, reached 41.5 million cases. From 1990 to 2019, the low-middle socio-demographic index (SDI) region had the highest estimated annual percentage change in the world. Compared to males, female's ASIR and ASPR were all about 1.5 times higher than males for the same years in the same SDI regions. The projected global total number of incidence cases for osteoporosis between 2030 and 2034 is estimated to reach 263.2 million (154.4 million for females and 108.8 for males). Additionally, the burden in terms of DALYs is predicted to be 128.7 million (with 78.4 million for females and 50.3 million for males). CONCLUSION The global burden of osteoporosis is still increasing, mainly observed in high SDI countries. Females bear a burden 1.5 times higher than males in terms of incidence and DALYs. Steps should be taken to reduce the osteoporosis burden, especially in high SDI countries.
Collapse
Affiliation(s)
- Z Zhu
- Jing Zhang, Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, 1st Minde Road, Nanchang, Jiangxi, 330006, China, E-mail: ; Xiao Liu, Department of Cardiology, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, 510080, Guangdong, China, E-mail:
| | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Aude M, Jean-Jacques B, Laura I, Felicia B, Alexia C, Serge R, Mureille S, Pierre B, Florence B. Fracture distribution in postmenopausal women: a FRISBEE sub-study. Arch Osteoporos 2022; 18:3. [PMID: 36469184 DOI: 10.1007/s11657-022-01191-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 11/14/2022] [Indexed: 12/12/2022]
Abstract
We registered 1336 incident-validated fractures in a prospective cohort of 3560 postmenopausal (60-85 years) Belgian women (mean follow-up of 9.1 years). The increase of fracture incidence with age varied widely depending on the fracture site and was significantly steeper for central than for peripheral fractures (e.g., not significant for the ankle). INTRODUCTION The epidemiology of fracture sites other than MOFs has been less studied. We examined the incidence of fractures according to their sites in a prospective cohort of postmenopausal Belgian women. METHODS Three thousand five hundred sixty postmenopausal women, aged 60-85 years old, were recruited from 2007 to 2013 and surveyed yearly (FRISBEE). The number of validated incident fractures was recorded and analyzed in relation to age and the fracture site. RESULTS One thousand three hundred thirty-six fractures were recorded after a mean follow-up of 9.1 years. Seven hundred fifty-six fractures (57%) were MOFs and 580 (43%) non-MOFs, while 813 (61%) were central and 523 (39%) peripheral. The increase of fracture incidence with age differed between fracture sites and was steeper for central than for peripheral fractures. The ratio of MOFs to non-MOFs increased significantly with age, from 1.10 (95% CI: 0.83-1.45) for the 60-69 to 1.69 [1.42-2.01] for the 80-89-year subgroup (P = 0.017). This was also true for central versus peripheral fracture. We differentiated three groups of fracture incidence evolution with age: fractures with a mean increase/decade (compared to the 60-69 age group) of less than 1.5, 1.5-2.0, and 2.0-3.0. The lowest increase was seen for most peripheral fractures, whereas the greatest increase included hip, scapula, pelvis, ribs, and spine fractures. CONCLUSION The increase of fracture incidence with age varied widely depending on the fracture site, and the ratio of MOFs to non-MOFs rose significantly with age. Some peripheral fractures, such as the ankle, did not increase significantly with age, suggesting that bone fragility does not play a major role in their occurrence.
Collapse
Affiliation(s)
- Mugisha Aude
- Department of Geriatrics, CHU Brugmann, Université Libre de Bruxelles, Place van Gehuchten 4, 1020, Laeken, Brussels, Belgium.
| | - Body Jean-Jacques
- Department of Endocrinology, CHU Brugmann, Université Libre de Bruxelles, Brussels, Belgium
- Department of Internal Medicine, CHU Brugmann, Université Libre de Bruxelles, Brussels, Belgium
- Laboratory of Translational Medicine, CHU Brugmann, Université Libre de Bruxelles, Brussels, Belgium
| | - Iconaru Laura
- Department of Endocrinology, CHU Brugmann, Université Libre de Bruxelles, Brussels, Belgium
| | - Baleanu Felicia
- Department of Endocrinology, CHU Brugmann, Université Libre de Bruxelles, Brussels, Belgium
| | - Charles Alexia
- Department of Internal Medicine, CHU Brugmann, Université Libre de Bruxelles, Brussels, Belgium
| | - Rozenberg Serge
- Department of Gynecology-Obstetrics, CHU Saint-Pierre, Université Libre de Bruxelles, Brussels, Belgium
| | - Surquin Mureille
- Department of Geriatrics, CHU Brugmann, Université Libre de Bruxelles, Place van Gehuchten 4, 1020, Laeken, Brussels, Belgium
- Department of Internal Medicine, CHU Brugmann, Université Libre de Bruxelles, Brussels, Belgium
| | - Bergmann Pierre
- Laboratory of Translational Medicine, CHU Brugmann, Université Libre de Bruxelles, Brussels, Belgium
- Department of Nuclear Medicine, CHU Brugmann, Université Libre de Bruxelles, Brussels, Belgium
| | - Benoit Florence
- Department of Geriatrics, CHU Brugmann, Université Libre de Bruxelles, Place van Gehuchten 4, 1020, Laeken, Brussels, Belgium
| |
Collapse
|
8
|
Ohta T, Nagashima J, Fukuda W, Sasai H, Ishii N. Association of Knee Extensor Muscle Strength and Cardiorespiratory Fitness With Bone Stiffness in Japanese Adults: A Cross-sectional Study. J Epidemiol 2022; 32:543-550. [PMID: 33840650 PMCID: PMC9643791 DOI: 10.2188/jea.je20200581] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Knee extensor muscle strength and cardiorespiratory fitness (CRF) are major components of physical fitness. Because the interactive association of knee extensor muscle strength and CRF with bone health remains unclear, we aimed to investigate such association in Japanese adults. METHODS Altogether, 8,829 Japanese adults (3,731 men and 5,098 women) aged ≥45 years completed the maximum voluntary knee extension test, submaximal exercise test, medical examination, and a questionnaire on lifestyle habits. Using an osteo-sono assessment index, low bone stiffness tendency was defined as 80% under the young-adults mean. Multivariable odds ratios (ORs) and 95% confidence intervals (CIs) were calculated after confounder adjustment. RESULTS Overall, 542 men (14.5%) and 978 women (19.2%) had low bone stiffness tendency. We observed an inverse association between muscle strength and low bone stiffness tendency after adjustment for CRF in both sexes (P for linear trend <0.001). Compared with the lowest CRF, the multivariable ORs for low bone stiffness tendency in the highest CRF were 0.47 (95% CI, 0.36-0.62) for men and 1.05 (95% CI, 0.82-1.35) for post-menopausal women (P < 0.001 and P = 0.704, respectively). No interactive association between muscle strength and CRF for low bone stiffness tendency existed in both sexes and irrespective of menopausal status. CONCLUSION Knee extensor muscle strength and CRF were associated additively, not synergistically, with bone health. Maintaining high levels of both physical fitness components may improve musculoskeletal health in the cohort. The relationship between physical fitness and bone status should be longitudinally investigated in the future.
Collapse
Affiliation(s)
- Takahisa Ohta
- Graduate School of Health and Sport Science, Nippon Sport Science University, Tokyo, Japan,Yokohama Sports Medical Center, Nissan Stadium, Kanagawa, Japan,Research Team for Promoting Independence and Mental Health, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
| | - Junzo Nagashima
- Yokohama Sports Medical Center, Nissan Stadium, Kanagawa, Japan,Division of Cardiology, Department of Internal Medicine, St. Marianna University School of Medicine, Kanagawa, Japan
| | - Wataru Fukuda
- Graduate School of Health and Sport Science, Nippon Sport Science University, Tokyo, Japan,Yokohama Sports Medical Center, Nissan Stadium, Kanagawa, Japan,Research Team for Promoting Independence and Mental Health, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
| | - Hiroyuki Sasai
- Research Team for Promoting Independence and Mental Health, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
| | - Naokata Ishii
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
9
|
Alvarenga JC, Caparbo VF, Domiciano DS, Pereira RMR. Age-related reference data of bone microarchitecture, volumetric bone density, and bone strength parameters in a population of healthy Brazilian men: an HR-pQCT study. Osteoporos Int 2022; 33:1309-1321. [PMID: 35059775 DOI: 10.1007/s00198-021-06288-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 12/21/2021] [Indexed: 11/25/2022]
Abstract
UNLABELLED In a cross-sectional cohort of 340 healthy Brazilian men aged 20 to 92 years, data on density, structure, and strength of the distal radius and tibia were obtained using high-resolution peripheral quantitative computed tomography (HR-pQCT) to develop age- and site-specific reference curves. Age-dependent changes differed between the sites and bone compartments (trabecular and cortical). INTRODUCTION The aim of this study was to establish age-related reference curves for bone densities, microarchitectural properties, and estimated failure load measured by HR-pQCT (distal radius and tibia) in men. Also, to correlate bone stiffness with the other HR-pQCT parameters, areal bone mineral density (BMD) by DXA and trabecular bone score (TBS). METHODS Healthy Brazilian men (n = 340) between the ages of 20 and 92 years were recruited. Non-dominant radius and left tibia were scanned using HR-pQCT (Xtreme CT I). Standard and automated segmentation methods were performed, and bone strength estimated by FE analysis. Bone mineral density at lumbar spine, total hip, femoral neck, and TBS were measured using DXA (Hologic, QDR4500). RESULTS Age-related reference curves were constructed at the distal radius and tibia for volumetric bone density, morphometry, and estimated bone strength parameters. There was a linear relationship with age only for thickness measurements of distal radius (trabecular: R2 0.108, p<0.001; cortical: R2 0.062, p=0.002) and tibia (trabecular: R2 0.109, p<0.001; cortical: R2 0.063, p=0.010), and bone strength at distal radius (R2 0.157, p<0.001). The significant correlations (p <0.05) found by Pearson's correlations (r) between bone stiffness and all other variables measured by HR-pQCT and DXA showed to be stronger at the tibia site than the distal radius. CONCLUSION The current study expands the HR-pQCT worldwide database and presents an adequate methodology for the construction of reference data in other populations. Moreover, the correlation of bone strength estimated by FEA with other bone microstructural parameters provided by HR-pQCT helps to determine the contribution of each of these variables to fracture risk prediction in men.
Collapse
Affiliation(s)
- J C Alvarenga
- Bone Metabolism Laboratory, Rheumatology Division, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Av Dr Arnaldo, 455, 3° andar, sala 3193, Sao Paulo, SP, 01246-903, Brazil
| | - V F Caparbo
- Bone Metabolism Laboratory, Rheumatology Division, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Av Dr Arnaldo, 455, 3° andar, sala 3193, Sao Paulo, SP, 01246-903, Brazil
| | - D S Domiciano
- Bone Metabolism Laboratory, Rheumatology Division, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Av Dr Arnaldo, 455, 3° andar, sala 3193, Sao Paulo, SP, 01246-903, Brazil
| | - R M R Pereira
- Bone Metabolism Laboratory, Rheumatology Division, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Av Dr Arnaldo, 455, 3° andar, sala 3193, Sao Paulo, SP, 01246-903, Brazil.
| |
Collapse
|
10
|
Vilaca T, Eastell R, Schini M. Osteoporosis in men. Lancet Diabetes Endocrinol 2022; 10:273-283. [PMID: 35247315 DOI: 10.1016/s2213-8587(22)00012-2] [Citation(s) in RCA: 98] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 01/06/2022] [Accepted: 01/07/2022] [Indexed: 12/18/2022]
Abstract
Osteoporosis in men is a common but often overlooked disorder by clinicians. The criterion for osteoporosis diagnosis in men is similar to that in women-namely, a bone mineral density (BMD) that is 2·5 standard deviations or more below the mean for the young adult population (aged 20-29 years; T-score -2·5 or lower), measured at the hip or lumbar spine. Sex steroids are important for bone health in men and, as in women, oestrogens have a key role. Most men generally have bigger and stronger bones than women and typically have less bone loss during their lifetime. Men typically fracture less often than women, although they have a higher mortality rate after a fracture. Secondary osteoporosis is more common in men than in women. Lifestyle changes, adequate calcium, vitamin D intake, and exercise programmes are recommended for the management of osteoporosis in men. Bisphosphonates, denosumab, and teriparatide have been shown to increase BMD and are used for pharmacological treatment. In this Review, we report an updated overview of osteoporosis in men, describe new treatments and concepts, and discuss persistent controversies in the area.
Collapse
Affiliation(s)
- Tatiane Vilaca
- Department of Oncology and Metabolism, Mellanby Centre for Musculoskeletal Research, University of Sheffield, Sheffield, UK.
| | - Richard Eastell
- Department of Oncology and Metabolism, Mellanby Centre for Musculoskeletal Research, University of Sheffield, Sheffield, UK
| | - Marian Schini
- Department of Oncology and Metabolism, Mellanby Centre for Musculoskeletal Research, University of Sheffield, Sheffield, UK
| |
Collapse
|
11
|
Warden SJ, Liu Z, Fuchs RK, van Rietbergen B, Moe SM. Reference data and calculators for second-generation HR-pQCT measures of the radius and tibia at anatomically standardized regions in White adults. Osteoporos Int 2022; 33:791-806. [PMID: 34590158 PMCID: PMC8934267 DOI: 10.1007/s00198-021-06164-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 09/18/2021] [Indexed: 01/18/2023]
Abstract
UNLABELLED High-resolution peripheral quantitative computed tomography (HR-pQCT) is a powerful tool to assess bone health. To determine how an individual's or population of interest's HR-pQCT outcomes compare to expected, reference data are required. This study provides reference data for HR-pQCT measures acquired in a population of White adults. PURPOSE To provide age- and sex-specific reference data for high-resolution peripheral quantitative computed tomography (HR-pQCT) measures of the distal and diaphyseal radius and tibia acquired using a second-generation scanner and percent-of-length offsets proximal from the end of the bone. METHODS Data were acquired in White adults (aged 18-80 years) living in the Midwest region of the USA. HR-pQCT scans were performed at the 4% distal radius, 30% diaphyseal radius, 7.3% distal tibia, and 30% diaphyseal tibia. Centile curves were fit to the data using the LMS approach. RESULTS Scans of 867 females and 317 males were included. The fitted centile curves reveal HR-pQCT differences between ages, sexes, and sites. They also indicate differences when compared to data obtained by others using fixed length offsets. Excel-based calculators based on the current data were developed and are provided to enable computation of subject-specific percentiles, z-scores, and t-scores and to plot an individual's outcomes on the fitted curves. In addition, regression equations are provided to convert estimated failure load acquired with the conventional criteria utilized with first-generation scanners and those specifically developed for second-generation scanners. CONCLUSION The current study provides unique data and resources. The combination of the reference data and calculators provide clinicians and investigators an ability to assess HR-pQCT outcomes in an individual or population of interest, when using the described scanning and analysis procedure. Ultimately, the expectation is these data will be expanded over time so the wealth of information HR-pQCT provides becomes increasingly interpretable and utilized.
Collapse
Affiliation(s)
- S J Warden
- Department of Physical Therapy, School of Health and Human Sciences, Indiana University, 1140 W. Michigan St., CF-120, Indianapolis, IN, 46202, USA.
- Indiana Center for Musculoskeletal Health, Indiana University, Indianapolis, IN, USA.
| | - Z Liu
- Indiana Center for Musculoskeletal Health, Indiana University, Indianapolis, IN, USA
- Department of Biostatistics, School of Medicine, Indiana University, Indianapolis, IN, USA
| | - R K Fuchs
- Department of Physical Therapy, School of Health and Human Sciences, Indiana University, 1140 W. Michigan St., CF-120, Indianapolis, IN, 46202, USA
- Indiana Center for Musculoskeletal Health, Indiana University, Indianapolis, IN, USA
| | - B van Rietbergen
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - S M Moe
- Indiana Center for Musculoskeletal Health, Indiana University, Indianapolis, IN, USA
- Division of Nephrology, Department of Medicine, School of Medicine, Indiana University, Indianapolis, IN, USA
| |
Collapse
|
12
|
Sornay-Rendu E, Duboeuf F, Ulivieri FM, Rinaudo L, Chapurlat R. The bone strain index predicts fragility fractures. The OFELY study. Bone 2022; 157:116348. [PMID: 35121211 DOI: 10.1016/j.bone.2022.116348] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 01/25/2022] [Accepted: 01/28/2022] [Indexed: 02/07/2023]
Abstract
Recently, the bone strain index (BSI), a new index of bone strength based on a finite element model (FEA) from dual X-ray absorptiometry (DXA), has been developed. BSI represents the average equivalent strain inside the bone, assuming that a higher strain level (high BSI) indicates a condition of higher risk. Our study aimed to analyze the relationship between BSI and age, BMI and areal BMD in pre- and postmenopausal women and to prospectively investigate fracture prediction (Fx) by BSI in postmenopausal women. Methods. At the 14th annual follow-up of the OFELY study, BSI was measured at spine (Spine BSI) and femoral scans (Neck and Total Hip BSI), in addition to areal BMD with DXA (Hologic QDR 4500) in 846 women, mean (SD) age 60 yr (15). The FRAX® (fracture risk assessment tool) for major osteoporotic fractures (MOF) was calculated with FN areal BMD (aBMD) at baseline; incident fragility fractures were annually registered until January 2016. Results. In premenopausal women (n = 261), Neck and Total Hip BSI were slightly negatively correlated with age (Spearman r = -0.13 and -0.15 respectively, p = 0.03), whereas all BSIs were positively correlated with BMI (r = +0.20 to 0.37, p < 0.01) and negatively with BMD (r = -0.69 to -0.37, p < 0.0001). In postmenopausal women (n = 585), Neck and Total Hip BSI were positively correlated with age (Spearman r = +0.26 and +0.31 respectively, p < 0.0001), whereas Spine BSI was positively correlated with BMI (r = +0.22, p < 0.0001) and all BSIs were negatively correlated with BMD (r = -0.81 to -0.60, p < 0.0001). During a median [IQ] 9.3 [1.0] years of follow-up, 133 postmenopausal women reported an incident fragility Fx, including 80 women with a major osteoporotic Fx (MOF) and 26 women with clinical vertebral Fx (VFx). Each SD increase of BSI value was associated with a significant increase of the risk of all fragility Fx with an age-adjusted HR of 1.23 for Neck BSI (p = 0.02); 1.27 for Total Hip BSI (p = 0.004) and 1.35 for Spine BSI (p < 0.0001). After adjustment for FRAX®, the association remained statistically significant for Total Hip BSI (HR 1.24, p = 0.02 for all fragility Fx; 1.31, p = 0.01 for MOF) and Spine BSI (HR 1.33, p < 0.0001 for all fragility Fx; 1.33, p = 0.005 for MOF; 1.67, p = 0.002 for clinical VFx). In conclusion, spine and femur BSI, an FEA DXA derived index, predict incident fragility fracture in postmenopausal women, regardless of FRAX®.
Collapse
Affiliation(s)
| | - François Duboeuf
- INSERM UMR 1033 and Université Claude Bernard-Lyon 1, Hôpital E Herriot, Lyon, France.
| | | | - Luca Rinaudo
- Technologic Srl, Lungo Dora Voghera 34/36A, 10153 Torino, Italy.
| | - Roland Chapurlat
- INSERM UMR 1033 and Université Claude Bernard-Lyon 1, Hôpital E Herriot, Lyon, France.
| |
Collapse
|
13
|
Coronary calcification and bone microarchitecture by high-resolution peripheral quantitative computed tomography from the São Paulo Ageing and Health (SPAH) Study. Sci Rep 2022; 12:5282. [PMID: 35347151 PMCID: PMC8960801 DOI: 10.1038/s41598-022-08839-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Accepted: 03/09/2022] [Indexed: 12/25/2022] Open
Abstract
Epidemiological studies reveal a link between osteoporosis and the risk of ischemic cardiovascular disease. We illustrate an association between coronary calcification and bone microarchitecture in older adults based on the SPAH study. This cross-sectional research comprised 256 individuals subjected to cardiac coronary computed tomography angiography (CCTA) for coronary artery calcification (CAC), high-resolution peripheral quantitative computed tomography (HR-pQCT) at the tibia and radius with standardized z score parameters, and dual-energy X-ray absorptiometry (DXA) to evaluate bone status. We used Student’s t test and the Mann–Whitney and Chi-squared tests for comparison of basal measurements. Association analysis was performed using the Poisson regression model with adjustment for CAC and sex. Multivariate analysis revealed different bone variables for predicting CAC in DXA and HR-pQCT scenarios. Although most of the bone parameters are related to vascular calcification, only cortical porosity (Ct.Po) remained uniform by HR-pQCT. Results for were as follows: the tibia—women (exp β = 1.12 (95% CI 1.10–1.13, p < 0.001) and men (exp β = 1.44, 95% CI 1.42–1.46, p < 0.001); the radius—women (exp β = 1.07 (95% CI 1.07–1.08, p < 0.001) and men (exp β = 1.33 (95% CI 1.30–1.37, p < 0.001). These findings suggest an inverse relationship between CAC and cortical bone content, as assessed by HR-pQCT, with higher coronary calcification in individuals older than 65 years.
Collapse
|
14
|
Koy EHS, Amouzougan A, Biver E, Chapurlat R, Chevalley T, Ferrari SL, Fouilloux A, Locrelle H, Marotte H, Normand M, Rizzoli R, Vico L, Thomas T. Reference microarchitectural values measured by HR-pQCT in a Franco-Swiss cohort of young adult women. Osteoporos Int 2022; 33:703-709. [PMID: 34642812 DOI: 10.1007/s00198-021-06193-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 10/04/2021] [Indexed: 10/20/2022]
Abstract
UNLABELLED Bone microarchitecture assessed by high-resolution peripheral quantitative computed tomography varies across populations of different origin. The study presents a reference dataset of microarchitectural parameters in a homogeneous group of participants aged within 22-27 range determined by a discriminant analysis of a larger cross-sectional cohort of 339 women. INTRODUCTION High-resolution peripheral quantitative computed tomography (HR-pQCT) non-invasively measures three-dimensional bone microarchitectural parameters and volumetric bone mineral density. Previous studies established normative reference HR-pQCT datasets for several populations, but there were few data assessed in a reference group of young women with Caucasian ethnicity living in Western Europe. It is important to obtain different specific reference dataset for a valid interpretation of cortical and trabecular microarchitecture data. The aim of our study was to find the population with the most optimal bone status in order to establish a descriptive reference HR-pQCT dataset in a young and healthy normal-weight female cohort living in a European area including Geneva, Switzerland, Lyon and Saint-Etienne, France. METHODS We constituted a cross-sectional cohort of 339 women aged 19-41 years with a BMI > 18 and < 30 kg/m2. All participants had HR-pQCT measurements at both non-dominant distal radius and tibia sites. RESULTS We observed that microarchitectural parameters begin to decline before the age of 30 years. Based on a discriminant analysis, the optimal bone profile in this population was observed between the age range of 22 to 27 years. Consequently, we considered 43 participants aged 22-27 years to establish a reference dataset with median values and percentiles. CONCLUSION This is the first study providing reference values of HR-pQCT measurements considering specific age bounds in a Franco-Swiss female cohort at the distal radius and tibia sites.
Collapse
Affiliation(s)
- E How Shing Koy
- Department of Rheumatology, Hôpital Nord, CHU Saint-Etienne, Saint-Etienne, France
- INSERM U1059, Université de Lyon, Saint-Etienne, France
| | - A Amouzougan
- Department of Rheumatology, Hôpital Nord, CHU Saint-Etienne, Saint-Etienne, France
- INSERM U1059, Université de Lyon, Saint-Etienne, France
| | - E Biver
- Service of Bone Diseases, Geneva University Hospitals and Faculty of Medicine, Geneva, Switzerland
| | - R Chapurlat
- INSERM U1033, Hôpital Edouard Herriot, HCL, Lyon, France
| | - T Chevalley
- Service of Bone Diseases, Geneva University Hospitals and Faculty of Medicine, Geneva, Switzerland
| | - S L Ferrari
- Service of Bone Diseases, Geneva University Hospitals and Faculty of Medicine, Geneva, Switzerland
| | - A Fouilloux
- INSERM U1059, Université de Lyon, Saint-Etienne, France
| | - H Locrelle
- Department of Rheumatology, Hôpital Nord, CHU Saint-Etienne, Saint-Etienne, France
- INSERM U1059, Université de Lyon, Saint-Etienne, France
| | - H Marotte
- Department of Rheumatology, Hôpital Nord, CHU Saint-Etienne, Saint-Etienne, France
- INSERM U1059, Université de Lyon, Saint-Etienne, France
| | - M Normand
- INSERM U1059, Université de Lyon, Saint-Etienne, France
| | - R Rizzoli
- Service of Bone Diseases, Geneva University Hospitals and Faculty of Medicine, Geneva, Switzerland
| | - L Vico
- INSERM U1059, Université de Lyon, Saint-Etienne, France
| | - T Thomas
- Department of Rheumatology, Hôpital Nord, CHU Saint-Etienne, Saint-Etienne, France.
- INSERM U1059, Université de Lyon, Saint-Etienne, France.
| |
Collapse
|
15
|
Bochud N, Laugier P. Axial Transmission: Techniques, Devices and Clinical Results. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1364:55-94. [DOI: 10.1007/978-3-030-91979-5_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
16
|
Wagner PP, Whittier DE, Foesser D, Boyd SK, Chapurlat R, Szulc P. Bone Microarchitecture Decline and Risk of Fall and Fracture in Men With Poor Physical Performance-The STRAMBO Study. J Clin Endocrinol Metab 2021; 106:e5180-e5194. [PMID: 34251437 DOI: 10.1210/clinem/dgab506] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Indexed: 01/06/2023]
Abstract
CONTEXT High fracture risk in individuals with low muscle strength is attributed to high risk of falls. OBJECTIVE This work aims to study the association of muscle mass and physical performance with bone microarchitecture decline and risk of fall and nonvertebral fracture in men. METHODS A prospective, 8-year follow-up of a cohort was conducted among the general population. A total of 821 volunteer men aged 60 and older participated. Hip areal bone mineral density (aBMD) and appendicular lean mass (ALM) were assessed at baseline by dual x-ray absorptiometry. Lower-limb relative ALM (RALM-LL) is ALM-LL/(leg length)2. The physical performance score reflects the ability to perform chair stands and static and dynamic balance. Bone microarchitecture was assessed by high-resolution peripheral quantitative computed tomography (HR-pQCT) at baseline and after 4 and 8 years. Statistical analyses were adjusted for shared risk factors. Outcome measurements included the rate of change in the HR-pQCT indices, incident falls, and fractures. RESULTS Cortical bone loss and estimated bone strength decline were faster in men with low vs normal RALM-LL (failure load: -0.74 ± 0.09 vs -0.43 ± 0.10%/year; P < .005). Differences were similar between men with poor and those with normal physical performance (failure load: -1.12 ± 0.09 vs -0.40 ± 0.05%/year; P < .001). Differences were similar between men having poor performance and low RALM-LL and men having normal RALM-LL and performance (failure load: -1.40 ± 0.17 vs -0.47 ± 0.03%/year; P < .001). Men with poor physical performance had a higher risk of fall (hazard ratio [HR] = 3.52; 95% CI, 1.57-7.90, P < .05) and fracture (HR = 2.68; 95% CI, 1.08-6.66, P < .05). CONCLUSION Rapid decline of bone microarchitecture and estimated strength in men with poor physical performance and low RALM-LL may contribute to higher fracture risk.
Collapse
Affiliation(s)
| | - Danielle E Whittier
- McCaig Institute for Bone and Joint Health, Cumming School of Medicine, University of Calgary, Calgary, Alberta T2N 4Z6, Canada
- Department of Radiology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | | | - Steven K Boyd
- McCaig Institute for Bone and Joint Health, Cumming School of Medicine, University of Calgary, Calgary, Alberta T2N 4Z6, Canada
- Department of Radiology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Roland Chapurlat
- INSERM UMR1033, Université de Lyon, Lyon, France
- Department of Rheumatology, Hospices Civils de Lyon, Hôpital Edouard Herriot, Lyon, France
| | - Pawel Szulc
- INSERM UMR1033, Université de Lyon, Lyon, France
- Department of Rheumatology, Hospices Civils de Lyon, Hôpital Edouard Herriot, Lyon, France
| |
Collapse
|
17
|
Okazaki N, Chiba K, Burghardt AJ, Kondo C, Doi M, Yokota K, Yonekura A, Tomita M, Osaki M. Differences in bone mineral density and morphometry measurements by fixed versus relative offset methods in high-resolution peripheral quantitative computed tomography. Bone 2021; 149:115973. [PMID: 33895434 DOI: 10.1016/j.bone.2021.115973] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 04/16/2021] [Accepted: 04/19/2021] [Indexed: 10/21/2022]
Abstract
INTRODUCTION High-resolution peripheral quantitative computed tomography (HR-pQCT), which enables in vivo analysis of bone morphometry, is widely used in osteoporosis research. The scan position is usually determined by the fixed offset method; however, there are concerns that the scan position can become relatively proximal if limb length is short. The present study compared bone mineral density and morphometry measured using the fixed and relative offset methods, in which the scan position is determined based on the lengths of the forearm and lower leg, and investigated factors responsible for measurement differences between the two methods. METHODS A total of 150 healthy Japanese subjects, comprising 75 men and 75 women, with a mean age of 45.1 years, were enrolled in this study. The distal radius and tibia were scanned using the fixed and relative offset methods; the fixed offset method involved scanning the radius and tibia at 9 mm and 22 mm, respectively, proximal to their distal articular surfaces. By contrast, the relative offset method entailed scanning the radius at 4% of the forearm length and the tibia at 7.3% of the lower leg length, proximal to their respective distal articular surfaces. The percent overlap between the scan positions of the two methods was measured using the scout views. Measurement values obtained with the two methods were compared. The correlation between the differences in the values among the two methods and forearm length, lower leg length, and body height was examined. RESULTS The subjects had a mean height of 164.3 ± 14.3 cm, mean forearm length of 252.9 ± 17.3 mm, and mean lower leg length of 346.7 ± 22.3 mm. The mean percent overlap was 85.0 ± 9.1% (59.2-99.6%) for the radius and 79.8 ± 12.5% (48.3-99.8%) for the tibia. Fixed offset scanning yielded higher total volumetric bone mineral density (Tt.vBMD) and cortical vBMD (Ct.vBMD) and greater cortical thickness (Ct.Th) (all p < 0.001). The differences between the two methods in terms of Tt.vBMD, Ct.vBMD and Ct.Th were significantly greater with shorter forearm length, lower leg length, and body height (radius: 0.51 < |r| < 0.63, tibia: 0.61 < |r| < 0.95). CONCLUSION Measurements of bone mineral density and morphometry obtained using the fixed offset method differed from those obtained using the relative offset method, which takes body size into account. Shorter body height, forearm length, and lower leg length were found to correlate with greater measurement differences. In populations with smaller stature, use of the fixed offset method results in relatively proximal images; thus, caution should be exercised when comparing groups of different height.
Collapse
Affiliation(s)
- Narihiro Okazaki
- Department of Orthopaedic Surgery, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan.
| | - Ko Chiba
- Department of Orthopaedic Surgery, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Andrew J Burghardt
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, USA
| | - Choko Kondo
- Department of Orthopaedic Surgery, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Mitsuru Doi
- Department of Orthopaedic Surgery, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Kazuaki Yokota
- Department of Orthopaedic Surgery, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Akihiko Yonekura
- Department of Orthopaedic Surgery, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Masato Tomita
- Department of Orthopaedic Surgery, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Makoto Osaki
- Department of Orthopaedic Surgery, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| |
Collapse
|
18
|
van den Bergh JP, Szulc P, Cheung AM, Bouxsein M, Engelke K, Chapurlat R. The clinical application of high-resolution peripheral computed tomography (HR-pQCT) in adults: state of the art and future directions. Osteoporos Int 2021; 32:1465-1485. [PMID: 34023944 PMCID: PMC8376700 DOI: 10.1007/s00198-021-05999-z] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 05/06/2021] [Indexed: 12/13/2022]
Abstract
High-resolution peripheral computed tomography (HR-pQCT) was developed to image bone microarchitecture in vivo at peripheral skeletal sites. Since the introduction of HR-pQCT in 2005, clinical research to gain insight into pathophysiology of skeletal fragility and to improve prediction of fractures has grown. Meanwhile, the second-generation HR-pQCT device has been introduced, allowing novel applications such as hand joint imaging, assessment of subchondral bone and cartilage thickness in the knee, and distal radius fracture healing. This article provides an overview of the current clinical applications and guidance on interpretation of results, as well as future directions. Specifically, we provide an overview of (1) the differences and reference data for HR-pQCT variables by age, sex, and race/ethnicity; (2) fracture risk prediction using HR-pQCT; (3) the ability to monitor response of anti-osteoporosis therapy with HR-pQCT; (4) the use of HR-pQCT in patients with metabolic bone disorders and diseases leading to secondary osteoporosis; and (5) novel applications of HR-pQCT imaging. Finally, we summarize the status of the application of HR-pQCT in clinical practice and discuss future directions. From the clinical perspective, there are both challenges and opportunities for more widespread use of HR-pQCT. Assessment of bone microarchitecture by HR-pQCT improves fracture prediction in mostly normal or osteopenic elderly subjects beyond DXA of the hip, but the added value is marginal. The prospects of HR-pQCT in clinical practice need further study with respect to medication effects, metabolic bone disorders, rare bone diseases, and other applications such as hand joint imaging and fracture healing. The mostly unexplored potential may be the differentiation of patients with only moderately low BMD but severe microstructural deterioration, which would have important implications for the decision on therapeutical interventions.
Collapse
Affiliation(s)
- J P van den Bergh
- Department of Internal Medicine, VieCuri Medical Center, Venlo, The Netherlands.
- Department of Internal Medicine, Maastricht University Medical Center, Maastricht, The Netherlands.
- Faculty of Medicine, Hasselt University, Hasselt, Belgium.
| | - P Szulc
- INSERM UMR 1033, Université de Lyon, Hôpital E Herriot, 69437 cedex 03, Lyon, France
| | - A M Cheung
- Department of Medicine and Joint Department of Medical Imaging, University Health Network; and Department of Medicine and Centre of Excellence in Skeletal Health Assessment, University of Toronto, Toronto, Ontario, Canada
| | - M Bouxsein
- Center for Advanced Orthopedic Studies, Beth Israel Deaconess Medical Center and Department of Orthopedic Surgery, Harvard Medical School, Boston, MA, USA
| | - K Engelke
- Department of Medicine 3, FAU University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - R Chapurlat
- INSERM UMR 1033, Université de Lyon, Hôpital E Herriot, 69437 cedex 03, Lyon, France
| |
Collapse
|
19
|
O'Leary TJ, Wardle SL, Gifford RM, Double RL, Reynolds RM, Woods DR, Greeves JP. Tibial Macrostructure and Microarchitecture Adaptations in Women During 44 Weeks of Arduous Military Training. J Bone Miner Res 2021; 36:1300-1315. [PMID: 33856703 DOI: 10.1002/jbmr.4290] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 03/01/2021] [Accepted: 03/12/2021] [Indexed: 12/14/2022]
Abstract
Bone adapts to unaccustomed, high-impact loading but loses mechanosensitivity quickly. Short periods of military training (≤12 weeks) increase the density and size of the tibia in women. The effect of longer periods of military training, where the incidence of stress fracture is high, on tibial macrostructure and microarchitecture in women is unknown. This observational study recruited 51 women (age 19 to 30 years) at the start of 44 weeks of British Army Officer training. Tibial volumetric bone mineral density (vBMD), geometry, and microarchitecture were measured by high-resolution peripheral quantitative computed tomography (HRpQCT). Scans of the right tibial metaphysis (4% site) and diaphysis (30% site) were performed at weeks 1, 14, 28, and 44. Measures of whole-body areal bone mineral density (aBMD) were obtained using dual-energy X-ray absorptiometry (DXA). Blood samples were taken at weeks 1, 28, and 44, and were analyzed for markers of bone formation and resorption. Trabecular vBMD increased from week 1 to 44 at the 4% site (3.0%, p < .001). Cortical vBMD decreased from week 1 to 14 at the 30% site (-0.3%, p < .001). Trabecular area decreased at the 4% site (-0.4%); trabecular bone volume fraction (3.5%), cortical area (4.8%), and cortical thickness (4.0%) increased at the 4% site; and, cortical perimeter increased at the 30% site (0.5%) from week 1 to 44 (p ≤ .005). Trabecular number (3.5%) and thickness (2.1%) increased, and trabecular separation decreased (-3.1%), at the 4% site from week 1 to 44 (p < .001). Training increased failure load at the 30% site from week 1 to 44 (2.5%, p < .001). Training had no effect on aBMD or markers of bone formation or resorption. Tibial macrostructure and microarchitecture continued to adapt across 44 weeks of military training in young women. Temporal decreases in cortical density support a role of intracortical remodeling in the pathogenesis of stress fracture. © 2021 Crown copyright. Journal of Bone and Mineral Research © 2021 American Society for Bone and Mineral Research (ASBMR). This article is published with the permission of the Controller of HMSO and the Queen's Printer for Scotland.
Collapse
Affiliation(s)
- Thomas J O'Leary
- Army Health and Performance Research, Army Headquarters, Andover, UK.,Division of Surgery and Interventional Science, University College London (UCL), London, UK
| | - Sophie L Wardle
- Army Health and Performance Research, Army Headquarters, Andover, UK.,Division of Surgery and Interventional Science, University College London (UCL), London, UK
| | - Robert M Gifford
- University/British Heart Foundation Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK.,Research and Clinical Innovation, Royal Centre for Defence Medicine, Birmingham, UK
| | - Rebecca L Double
- Army Health and Performance Research, Army Headquarters, Andover, UK
| | - Rebecca M Reynolds
- University/British Heart Foundation Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - David R Woods
- Research and Clinical Innovation, Royal Centre for Defence Medicine, Birmingham, UK.,Research Institute for Sport, Physical Activity and Leisure, Leeds Beckett University, Leeds, UK.,Northumbria and Newcastle National Health Service (NHS) Trusts, Wansbeck General and Royal Victoria Infirmary, Newcastle, UK.,University of Newcastle, Newcastle, UK
| | - Julie P Greeves
- Army Health and Performance Research, Army Headquarters, Andover, UK.,Division of Surgery and Interventional Science, University College London (UCL), London, UK.,Norwich Medical School, University of East Anglia, Norwich, UK
| |
Collapse
|
20
|
Fujii N, Tsukamoto M, Okimoto N, Mori M, Ikejiri Y, Yoshioka T, Kawasaki M, Kito N, Ozawa J, Nakamura R, Takano S, Fujiwara S. Differences in the effects of BMI on bone microstructure between loaded and unloaded bones assessed by HR-pQCT in Japanese postmenopausal women. Osteoporos Sarcopenia 2021; 7:54-62. [PMID: 34278000 PMCID: PMC8261728 DOI: 10.1016/j.afos.2021.05.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 05/05/2021] [Accepted: 05/06/2021] [Indexed: 01/22/2023] Open
Abstract
Objectives The relationship between weight-related load and bone mineral density (BMD)/bone microstructure under normal load conditions using high-resolution peripheral quantitative computed tomography (HR-pQCT) remains unconfirmed. The study aims to investigate the differences in effect of body mass index (BMI) on BMD/bone microstructure of loaded and unloaded bones, respectively, in Japanese postmenopausal women. Methods Fifty-seven postmenopausal women underwent HR-pQCT on the tibia and radius. Correlation analysis, principal component (PC) analysis, and hierarchical multiple regression were performed to examine the relationship between BMI and HR-pQCT parameters. Results Several microstructural parameters of the tibia and radius correlated with BMI through a simple correlation analysis, and these relationships remained unchanged even with an age-adjusted partial correlation analysis. PC analysis was conducted using seven bone microstructure parameters. The first PC (PC1) reflected all parameters of trabecular and cortical bone microstructures, except for cortical porosity, whereas the second PC (PC2) reflected only cortical bone microstructure. Hierarchical multiple regression analysis indicated that BMI was more strongly related to BMD/bone microstructure in the tibia than in the radius. Furthermore, BMI was associated with trabecular/cortical BMD, and PC1 (not PC2) of the tibia and radius. Thus, BMI was strongly related to the trabecular bone microstructure rather than the cortical bone microstructure. Conclusions Our data confirmed that BMI is associated with volumetric BMD and trabecular bone microstructure parameters in the tibia and radius. However, although BMI may be more related to HR-pQCT parameters in the tibia than in the radius, the magnitude of association is modest.
Collapse
Affiliation(s)
- Norifumi Fujii
- Department of Rehabilitation, Shimura Hospital, Hiroshima, Japan.,Hiroshima International University Major in Medical Engineering and Technology Graduate School of Medical Technology and Health Welfare Sciences, Hiroshima, Japan
| | - Manabu Tsukamoto
- Department of Orthopedic Surgery, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Nobukazu Okimoto
- Okimoto Clinic, Hiroshima, Japan.,Department of Orthopedic Surgery, Shimura Hospital, Hiroshima, Japan
| | - Miyuki Mori
- Department of Radiology, Shimura Hospital, Hiroshima, Japan
| | - Yoshiaki Ikejiri
- Department of Orthopedic Surgery, Shimura Hospital, Hiroshima, Japan
| | - Toru Yoshioka
- Department of Orthopedic Surgery, Shimura Hospital, Hiroshima, Japan
| | - Makoto Kawasaki
- Department of Orthopedic Surgery, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Nobuhiro Kito
- Department of Rehabilitation, Hiroshima International University, Hiroshima, Japan
| | - Junya Ozawa
- Department of Rehabilitation, Hiroshima International University, Hiroshima, Japan
| | - Ryoichi Nakamura
- Department of Rehabilitation, Shimura Hospital, Hiroshima, Japan
| | - Shogo Takano
- Department of Rehabilitation, Shimura Hospital, Hiroshima, Japan
| | - Saeko Fujiwara
- Department of Pharmacy, Yasuda Women's University, Hiroshima, Japan
| |
Collapse
|
21
|
Putman MS, Greenblatt LB, Bruce M, Joseph T, Lee H, Sawicki G, Uluer A, Sicilian L, Neuringer I, Gordon CM, Bouxsein ML, Finkelstein JS. The Effects of Ivacaftor on Bone Density and Microarchitecture in Children and Adults with Cystic Fibrosis. J Clin Endocrinol Metab 2021; 106:e1248-e1261. [PMID: 33258950 PMCID: PMC7947772 DOI: 10.1210/clinem/dgaa890] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Indexed: 11/19/2022]
Abstract
CONTEXT Cystic fibrosis (CF) transmembrane conductance (CFTR) dysfunction may play a role in CF-related bone disease (CFBD). Ivacaftor is a CFTR potentiator effective in improving pulmonary and nutritional outcomes in patients with the G551D-CFTR mutation. The effects of ivacaftor on bone health are unknown. OBJECTIVE To determine the impact of ivacaftor on bone density and microarchitecture in children and adults with CF. DESIGN Prospective observational multiple cohort study. SETTING Outpatient clinical research center within a tertiary academic medical center. PATIENTS OR OTHER PARTICIPANTS Three cohorts of age-, race-, and gender-matched subjects were enrolled: 26 subjects (15 adults and 11 children) with CF and the G551D-CFTR mutation who were planning to start or had started treatment with ivacaftor within 3 months (Ivacaftor cohort), 26 subjects with CF were not treated with ivacaftor (CF Control cohort), and 26 healthy volunteers. INTERVENTIONS All treatments, including Ivacaftor, were managed by the subjects' pulmonologists. MAIN OUTCOME MEASURES Bone microarchitecture by high-resolution peripheral quantitative computed tomography (HR-pQCT), areal bone mineral density (aBMD) by dual-energy X-ray absorptiometry (DXA) and bone turnover markers at baseline, 1, and 2 years. RESULTS Cortical volume, area, and porosity at the radius and tibia increased significantly in adults in the Ivacaftor cohort. No significant differences were observed in changes in aBMD, trabecular microarchitecture, or estimated bone strength in adults or in any outcome measures in children. CONCLUSIONS Treatment with ivacaftor was associated with increases in cortical microarchitecture in adults with CF. Further studies are needed to understand the implications of these findings.
Collapse
Affiliation(s)
- Melissa S Putman
- Endocrine Unit, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
- Division of Endocrinology, Boston Children’s Hospital, Boston, MA, USA
- Correspondence and Reprint Requests: Melissa S. Putman, Endocrine Unit, Massachusetts General Hospital, 50 Blossom Street, THR-1051, Boston, MA 02114. E-mail:
| | - Logan B Greenblatt
- Endocrine Unit, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Michael Bruce
- Endocrine Unit, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Taisha Joseph
- Endocrine Unit, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Hang Lee
- Massachusetts General Hospital Biostatistics Center, Boston, MA, USA
| | - Gregory Sawicki
- Division of Pulmonology, Boston Children’s Hospital, Boston, MA, USA
| | - Ahmet Uluer
- Division of Pulmonology, Boston Children’s Hospital, Boston, MA, USA
- Division of Pulmonology and Critical Care, Department of Medicine, Brigham and Women’s Hospital, Boston, MA, USA
| | - Leonard Sicilian
- Division of Pulmonology and Critical Care, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Isabel Neuringer
- Division of Pulmonology and Critical Care, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Catherine M Gordon
- Division of Endocrinology, Boston Children’s Hospital, Boston, MA, USA
- Division of Adolescent and Young Adult Medicine, Boston Children’s Hospital, Boston, MA, USA
| | - Mary L Bouxsein
- Endocrine Unit, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Joel S Finkelstein
- Endocrine Unit, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| |
Collapse
|
22
|
Tamimi I, Cortes ARG, Sánchez-Siles JM, Ackerman JL, González-Quevedo D, García Á, Yaghoubi F, Abdallah MN, Eimar H, Alsheghri A, Laurenti M, Al-Subaei A, Guerado E, García-de-Quevedo D, Tamimi F. Composition and characteristics of trabecular bone in osteoporosis and osteoarthritis. Bone 2020; 140:115558. [PMID: 32730941 DOI: 10.1016/j.bone.2020.115558] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 07/04/2020] [Accepted: 07/07/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND Bone strength depends on multiple factors such as bone density, architecture and composition turnover. However, the role these factors play in osteoporotic fractures is not well understood. PURPOSE The aim of this study was to analyze trabecular bone architecture, and its crystal and organic composition in humans, by comparing samples taken from patients who had a hip fracture (HF) and individuals with hip osteoarthritis (HOA). METHODS The study included 31 HF patients and 42 cases of HOA who underwent joint replacement surgery between 1/1/2013 and 31/12/2013. Trabecular bone samples were collected from the femoral heads and analyzed using a dual-energy X-ray absorptiometry, micro-CT, and solid-state high-resolution magic-angle-spinning nuclear magnetic resonance (MAS-NMR) spectroscopy. RESULTS No differences in proton or phosphorus concentration were found between the two groups using 1H single pulse, 31P single pulse, 31P single pulse with proton decoupling NMR spectroscopy, in hydroxyapatite (HA) c-axis or a-axis crystal length. Bone volume fraction (BV/TV), trabecular number (Tb.N), and bone mineral density (BMD) were higher in the HO group than in the HF group [28.6% ± 10.5 vs 20.3% ± 6.6 (p = 0.026); 2.58 mm-1 ± 1.57 vs 1.5 mm-1 ± 0.79 (p = 0.005); and 0.39 g/cm2 ± 0.10 vs. 0.28 g/cm2 ± 0.05 (p = 0.002), respectively]. The trabecular separation (Tp.Sp) was lower in the HO group 0.42 mm ± 0.23 compared with the HF group 0.58 mm ± 0.27 (p = 0.036). In the HO group, BMD was correlated with BV/TV (r = 0.704, p < 0.001), BMC (r = 0.853, p < 0.001), Tb.N (r = 0.653, p < 0.001), Tb.Sp (-0.561, p < 0.001) and 1H concentration (-0.580, p < 0.001) in the HO group. BMD was not correlated with BV/TV, Tb.Sp, Tb.Th, Tb.N, Tb.PF, 1H concentration or HA crystal size in the HF group. CONCLUSIONS Patients with HO who did not sustain previous hip fractures had a higher femoral head BMD, BV/TV, and Tb.N than HF patients. In HO patients, BMD was positively correlated with the BV/TV and Tb.N and negatively correlated with the femoral head organic content and trabecular separation. Interestingly, these correlations were not found in HF patients with relatively lower bone densities. Therefore, osteoporotic patients with similar low bone densities could have significant microstructural differences. No differences were found between the two groups at a HA crystal level.
Collapse
Affiliation(s)
- Iskandar Tamimi
- Department of Orthopedic Surgery, Regional University Hospital of Málaga, Spain.
| | - Arthur Rodríguez González Cortes
- Department of Radiology, Massachusetts General Hospital, Charlestown, USA; Department of Dental Surgery, Faculty of Dental Surgery, University of Malta
| | | | - Jerome L Ackerman
- Department of Radiology, Massachusetts General Hospital, Charlestown, USA
| | | | - Ángel García
- Department of Orthopedic Surgery, Regional University Hospital of Málaga, Spain
| | - Farid Yaghoubi
- Faculty of Dentistry, McGill University, Montreal, Canada
| | | | - Hazem Eimar
- Faculty of Medicine and Dentistry, University of Alberta, Canada
| | - Ammar Alsheghri
- Department of Mining and Materials Engineering, McGill University, Montreal, Canada
| | - Marco Laurenti
- Faculty of Pharmacy, Complutense University of Madrid, Spain
| | | | | | | | - Faleh Tamimi
- Faculty of Dentistry, McGill University, Montreal, Canada
| |
Collapse
|
23
|
Yu F, Xu Y, Hou Y, Lin Y, Jiajue R, Jiang Y, Wang O, Li M, Xing X, Zhang L, Qin L, Hsieh E, Xia W. Age-, Site-, and Sex-Specific Normative Centile Curves for HR-pQCT-Derived Microarchitectural and Bone Strength Parameters in a Chinese Mainland Population. J Bone Miner Res 2020; 35:2159-2170. [PMID: 32564403 PMCID: PMC9719438 DOI: 10.1002/jbmr.4116] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 06/03/2020] [Accepted: 06/13/2020] [Indexed: 12/18/2022]
Abstract
High-resolution peripheral quantitative computed tomography (HR-pQCT) is an advanced 3D imaging technology that has the potential to contribute to fracture risk assessment and early diagnosis of osteoporosis. However, to date no studies have sought to establish normative reference ranges for HR-pQCT measures among individuals from the Chinese mainland, significantly restricting its use. In this study, we collected HR-pQCT scans from 863 healthy Chinese men and women aged 20 to 80 years using the latest-generation scanner (Scanco XtremeCT II, Scanco Medical AG, Brüttisellen, Switzerland). Parameters including volumetric bone mineral density, bone geometry, bone microarchitecture, and bone strength were evaluated. Age-, site-, and sex-specific centile curves were established using generalized additive models for location, scale, and shape with age as the only explanatory variable. Based on established models, age-related variations for different parameters were also quantified. For clinical purposes, the expected values of HR-pQCT parameters for a defined age and a defined percentile or Z-score were provided. We found that the majority of trabecular and bone strength parameters reached their peak at 20 years of age, regardless of sex and site, then declined steadily thereafter. However, most of the cortical bone loss was observed after the age of 50 years. Among the measures, cortical porosity changed most dramatically, and overall, changes were more notable at the radius than the tibia and among women compared with men. Establishing such normative HR-pQCT reference data will provide an important basis for clinical and research applications in mainland China aimed at elucidating microstructural bone damage driven by different disease states or nutritional status. © 2020 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Fan Yu
- Department of Endocrinology, Key Laboratory of Endocrinology, Ministry of Health, Peking Union Medical College Hospital, Chinese Academy of Medical Science, Beijing, China
| | - Yuping Xu
- Department of Endocrinology, Key Laboratory of Endocrinology, Ministry of Health, Peking Union Medical College Hospital, Chinese Academy of Medical Science, Beijing, China
| | - Yanfang Hou
- Department of Endocrinology, Key Laboratory of Endocrinology, Ministry of Health, Peking Union Medical College Hospital, Chinese Academy of Medical Science, Beijing, China
| | - Yuanyuan Lin
- Department of Endocrinology, Key Laboratory of Endocrinology, Ministry of Health, Peking Union Medical College Hospital, Chinese Academy of Medical Science, Beijing, China
| | - Ruizhi Jiajue
- Department of Endocrinology, Key Laboratory of Endocrinology, Ministry of Health, Peking Union Medical College Hospital, Chinese Academy of Medical Science, Beijing, China
| | - Yan Jiang
- Department of Endocrinology, Key Laboratory of Endocrinology, Ministry of Health, Peking Union Medical College Hospital, Chinese Academy of Medical Science, Beijing, China
| | - Ou Wang
- Department of Endocrinology, Key Laboratory of Endocrinology, Ministry of Health, Peking Union Medical College Hospital, Chinese Academy of Medical Science, Beijing, China
| | - Mei Li
- Department of Endocrinology, Key Laboratory of Endocrinology, Ministry of Health, Peking Union Medical College Hospital, Chinese Academy of Medical Science, Beijing, China
| | - Xiaoping Xing
- Department of Endocrinology, Key Laboratory of Endocrinology, Ministry of Health, Peking Union Medical College Hospital, Chinese Academy of Medical Science, Beijing, China
| | - Li Zhang
- Department of Endocrinology, Key Laboratory of Endocrinology, Ministry of Health, Peking Union Medical College Hospital, Chinese Academy of Medical Science, Beijing, China
| | - Ling Qin
- Bone Quality and Health Center, Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong, China
| | - Evelyn Hsieh
- Section of Rheumatology, Allergy, and Immunology, Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Weibo Xia
- Department of Endocrinology, Key Laboratory of Endocrinology, Ministry of Health, Peking Union Medical College Hospital, Chinese Academy of Medical Science, Beijing, China
| |
Collapse
|
24
|
Yokota K, Chiba K, Okazaki N, Kondo C, Doi M, Yamada S, Era M, Nishino Y, Yonekura A, Tomita M, Osaki M. Deterioration of bone microstructure by aging and menopause in Japanese healthy women: analysis by HR-pQCT. J Bone Miner Metab 2020; 38:826-838. [PMID: 32519249 DOI: 10.1007/s00774-020-01115-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Accepted: 05/14/2020] [Indexed: 11/26/2022]
Abstract
INTRODUCTION Second-generation high-resolution peripheral quantitative computed tomography (HR-pQCT) has provide higher quality of bone images with a voxel size of 61 µm, enabling direct measurements of trabecular thickness. In addition to the standard parameters, the non-metric trabecular parameters such as trabecular morphology (plate to rod-like structures), connectivity, and anisotropy can also be analyzed. The purpose of this study is to investigate deterioration of bone microstructure in healthy Japanese women by measuring standard and non-metric parameters using HR-pQCT. MATERIALS AND METHODS Study participants were 61 healthy Japanese women (31-70 years). The distal radius and tibia were scanned using second-generation HR-pQCT, and microstructures of trabecular and cortical bone were measured. Non-metric trabecular parameters included structure model index (SMI), trabecular bone pattern factor (TBPf), connectivity density (Conn.D), number of nodes (N.Nd/TV), degree of anisotropy (DA), and star volume of marrow space (V*ms). Estimated bone strength was evaluated by micro finite element analysis. Associations between bone microstructure, estimated bone strength, age, and menopause were analyzed. RESULTS Trabecular number declined with age, and trabecular separation increased. SMI and TBPf increased, Conn.D and N.Nd/TV declined, and V*ms increased. Cortical BMD and thickness declined with age, and porosity increased. Stiffness and failure load decreased with age. Cortical thickness and estimated bone strength were affected by menopause. Cortical thickness was most associated with estimated bone strength. CONCLUSIONS Trabecular and cortical bone microstructure were deteriorated markedly with age. Cortical thickness decreased after menopause and was most related to bone strength. Non-metric parameters give additional information about osteoporotic changes of trabecular bone.
Collapse
Affiliation(s)
- Kazuaki Yokota
- Department of Orthopedic Surgery, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki, 852-8501, Japan
| | - Ko Chiba
- Department of Orthopedic Surgery, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki, 852-8501, Japan.
| | - Narihiro Okazaki
- Department of Orthopedic Surgery, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki, 852-8501, Japan
| | - Choko Kondo
- Department of Orthopedic Surgery, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki, 852-8501, Japan
| | - Mitsuru Doi
- Department of Orthopedic Surgery, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki, 852-8501, Japan
| | - Shuta Yamada
- Department of Orthopedic Surgery, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki, 852-8501, Japan
| | - Makoto Era
- Department of Orthopedic Surgery, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki, 852-8501, Japan
| | - Yuichiro Nishino
- Department of Orthopedic Surgery, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki, 852-8501, Japan
| | - Akihiko Yonekura
- Department of Orthopedic Surgery, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki, 852-8501, Japan
| | - Masato Tomita
- Department of Orthopedic Surgery, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki, 852-8501, Japan
| | - Makoto Osaki
- Department of Orthopedic Surgery, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki, 852-8501, Japan
| |
Collapse
|
25
|
Whittier DE, Boyd SK, Burghardt AJ, Paccou J, Ghasem-Zadeh A, Chapurlat R, Engelke K, Bouxsein ML. Guidelines for the assessment of bone density and microarchitecture in vivo using high-resolution peripheral quantitative computed tomography. Osteoporos Int 2020; 31:1607-1627. [PMID: 32458029 PMCID: PMC7429313 DOI: 10.1007/s00198-020-05438-5] [Citation(s) in RCA: 224] [Impact Index Per Article: 44.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 04/23/2020] [Indexed: 12/29/2022]
Abstract
INTRODUCTION The application of high-resolution peripheral quantitative computed tomography (HR-pQCT) to assess bone microarchitecture has grown rapidly since its introduction in 2005. As the use of HR-pQCT for clinical research continues to grow, there is an urgent need to form a consensus on imaging and analysis methodologies so that studies can be appropriately compared. In addition, with the recent introduction of the second-generation HrpQCT, which differs from the first-generation HR-pQCT in scan region, resolution, and morphological measurement techniques, there is a need for guidelines on appropriate reporting of results and considerations as the field adopts newer systems. METHODS A joint working group between the International Osteoporosis Foundation, American Society of Bone and Mineral Research, and European Calcified Tissue Society convened in person and by teleconference over several years to produce the guidelines and recommendations presented in this document. RESULTS An overview and discussion is provided for (1) standardized protocol for imaging distal radius and tibia sites using HR-pQCT, with the importance of quality control and operator training discussed; (2) standardized terminology and recommendations on reporting results; (3) factors influencing accuracy and precision error, with considerations for longitudinal and multi-center study designs; and finally (4) comparison between scanner generations and other high-resolution CT systems. CONCLUSION This article addresses the need for standardization of HR-pQCT imaging techniques and terminology, provides guidance on interpretation and reporting of results, and discusses unresolved issues in the field.
Collapse
Affiliation(s)
- D E Whittier
- McCaig Institute for Bone and Joint Health, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Department of Radiology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - S K Boyd
- McCaig Institute for Bone and Joint Health, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Department of Radiology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - A J Burghardt
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, USA
| | - J Paccou
- Department of Rheumatology, MABlab UR 4490, CHU Lille, Univ. Lille, 59000, Lille, France
| | - A Ghasem-Zadeh
- Departments of Endocrinology and Medicine, Austin Health, The University of Melbourne, Melbourne, Australia
| | - R Chapurlat
- INSERM UMR 1033, Université de Lyon, Lyon, France
- Hôpital Edouard Herriot, Hospice Civils de Lyon, Lyon, France
| | - K Engelke
- Department of Medicine 3, FAU University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
- Bioclinica, Inc., Hamburg, Germany
| | - M L Bouxsein
- Center for Advanced Orthopedic Studies, Beth Israel Deaconess Medical Center, Boston, MA, USA.
- Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
26
|
Oxytocin and bone quality in the femoral neck of rats in periestropause. Sci Rep 2020; 10:7937. [PMID: 32404873 PMCID: PMC7220952 DOI: 10.1038/s41598-020-64683-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Accepted: 04/17/2020] [Indexed: 11/08/2022] Open
Abstract
The objective of this study is to identify whether oxytocin (OT) contributes to the reduction of osteopenia in the femoral neck of rats in periestropause. Animals in irregular estrous cycles received two NaCl injections (0.15 mol/L) or OT (134 μg/kg) over a 12-h interval, and after thirty-five days without treatments, the biological sample collection was performed. The oxytocin group (Ot) demonstrated the highest enzymatic activity of alkaline phosphatase (p = 0.0138), lowest enzymatic activity of tartrate-resistant acid phosphatase (p = 0.0045), higher percentage of compact bone (p = 0.0359), cortical expression of runt-related transcription factor 2 (p = 0.0101), osterix (p = 0.0101), bone morphogenetic protein-2/4 (p = 0.0101) and periostin (p = 0.0455). Furthermore, the mineral-to-matrix ratio (ν1PO4/Proline) was higher and type-B carbonate substitution (CO3/ν1PO4) was lower (p = 0.0008 and 0.0303) in Ot group. The Ot showed higher areal bone mineral density (p = 0.0050), cortical bone area (p = 0.0416), polar moment of inertia, maximum, minimum (p = 0.0480, 0.0480, 0.0035), bone volume fraction (p = 0.0166), connectivity density (p < 0.0001), maximal load (p = 0.0003) and bone stiffness (p = 0.0145). In Ot percentage of cortical pores (p = 0.0102) and trabecular number (p = 0.0088) was lower. The results evidence action of OT in the reduction of osteopenia, suggesting that it is a promising anabolic strategy for the prevention of primary osteoporosis during the periestropause period.
Collapse
|
27
|
Bone Metabolism Impairment in Heart Transplant: Results From a Prospective Cohort Study. Transplantation 2020; 104:873-880. [DOI: 10.1097/tp.0000000000002906] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
28
|
Creecy A, Uppuganti S, Girard MR, Schlunk SG, Amah C, Granke M, Unal M, Does MD, Nyman JS. The age-related decrease in material properties of BALB/c mouse long bones involves alterations to the extracellular matrix. Bone 2020; 130:115126. [PMID: 31678497 PMCID: PMC6885131 DOI: 10.1016/j.bone.2019.115126] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 10/28/2019] [Accepted: 10/29/2019] [Indexed: 12/28/2022]
Abstract
One possibility for the disproportionate increase in fracture risk with aging relative to the decrease in bone mass is an accumulation of changes to the bone matrix which deleteriously affect fracture resistance. In order to effectively develop new targets for osteoporosis, a preclinical model of the age-related loss in fracture resistance needs to be established beyond known age-related decreases in bone mineral density and bone volume fraction. To that end, we examined long bones of male and female BALB/c mice at 6-mo. and 20-mo. of age and assessed whether material and matrix properties of cortical bone significantly differed between the age groups. The second moment of area of the diaphysis (minimum and maximum principals for femur and radius, respectively) as measured by ex vivo micro-computed tomography (μCT) was higher at 20-mo. than at 6-mo. for both males and females, but ultimate moment as measured by three-point bending tests did not decrease with age. Cortical thickness was lower with age for males, but higher for old females. Partially accounting for differences in structure, material estimates of yield, ultimate stress, and toughness (left femur) were 12.6%, 11.1%, and 40.9% lower, respectively, with age for both sexes. The ability of the cortical bone to resist crack growth (right femur) was also 18.1% less for the old than for the young adult mice. These decreases in material properties were not due to changes in intracortical porosity as pore number decreased with age. Rather, age-related alterations in the matrix were observed for both sexes: enzymatic and non-enzymatic crosslinks by high performance liquid chromatography increased (femur), volume fraction of bound water by 1H-nuclear magnetic resonance relaxometry decreased (femur), cortical tissue mineral density by μCT increased (femur and radius), and an Amide I sub-peak ratio I1670/I1640 by Raman spectroscopy increased (tibia). Overall, there are multiple matrix changes to potentially target that could prevent the age-related decrease in fracture resistance observed in BALB/c mouse.
Collapse
Affiliation(s)
- Amy Creecy
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37232, United States; Department of Orthopaedic Surgery, Vanderbilt University Medical Center, Nashville, TN 37232, United States; Center for Bone Biology, Vanderbilt University Medical Center, Nashville, TN 37232, United States
| | - Sasidhar Uppuganti
- Department of Orthopaedic Surgery, Vanderbilt University Medical Center, Nashville, TN 37232, United States; Center for Bone Biology, Vanderbilt University Medical Center, Nashville, TN 37232, United States
| | - Madeline R Girard
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37232, United States
| | - Siegfried G Schlunk
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37232, United States
| | - Chidi Amah
- Meharry Medical College, Nashville, TN 37208, United States
| | - Mathilde Granke
- Department of Orthopaedic Surgery, Vanderbilt University Medical Center, Nashville, TN 37232, United States; Center for Bone Biology, Vanderbilt University Medical Center, Nashville, TN 37232, United States
| | - Mustafa Unal
- Department of Orthopaedic Surgery, Vanderbilt University Medical Center, Nashville, TN 37232, United States; Center for Bone Biology, Vanderbilt University Medical Center, Nashville, TN 37232, United States; Department of Mechanical Engineering, Karamanoglu Mehmetbey University, Karaman, 70100, Turkey
| | - Mark D Does
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37232, United States
| | - Jeffry S Nyman
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37232, United States; Department of Orthopaedic Surgery, Vanderbilt University Medical Center, Nashville, TN 37232, United States; Center for Bone Biology, Vanderbilt University Medical Center, Nashville, TN 37232, United States; Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, TN 37212, United States.
| |
Collapse
|
29
|
Minonzio JG, Bochud N, Vallet Q, Ramiandrisoa D, Etcheto A, Briot K, Kolta S, Roux C, Laugier P. Ultrasound-Based Estimates of Cortical Bone Thickness and Porosity Are Associated With Nontraumatic Fractures in Postmenopausal Women: A Pilot Study. J Bone Miner Res 2019; 34:1585-1596. [PMID: 30913320 DOI: 10.1002/jbmr.3733] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 02/21/2019] [Accepted: 03/10/2019] [Indexed: 01/02/2023]
Abstract
Recent ultrasound (US) axial transmission techniques exploit the multimode waveguide response of long bones to yield estimates of cortical bone structure characteristics. This pilot cross-sectional study aimed to evaluate the performance at the one-third distal radius of a bidirectional axial transmission technique (BDAT) to discriminate between fractured and nonfractured postmenopausal women. Cortical thickness (Ct.Th) and porosity (Ct.Po) estimates were obtained for 201 postmenopausal women: 109 were nonfractured (62.6 ± 7.8 years), 92 with one or more nontraumatic fractures (68.8 ± 9.2 years), 17 with hip fractures (66.1 ± 10.3 years), 32 with vertebral fractures (72.4 ± 7.9 years), and 17 with wrist fractures (67.8 ± 9.6 years). The areal bone mineral density (aBMD) was obtained using DXA at the femur and spine. Femoral aBMD correlated weakly, but significantly with Ct.Th (R = 0.23, p < 0.001) and Ct.Po (R = -0.15, p < 0.05). Femoral aBMD and both US parameters were significantly different between the subgroup of all nontraumatic fractures combined and the control group (p < 0.05). The main findings were that (1) Ct.Po was discriminant for all nontraumatic fractures combined (OR = 1.39; area under the receiver operating characteristic curve [AUC] equal to 0.71), for vertebral (OR = 1.96; AUC = 0.84) and wrist fractures (OR = 1.80; AUC = 0.71), whereas Ct.Th was discriminant for hip fractures only (OR = 2.01; AUC = 0.72); there was a significant association (2) between increased Ct.Po and vertebral and wrist fractures when these fractures were not associated with any measured aBMD variables; (3) between increased Ct.Po and all nontraumatic fractures combined independently of aBMD neck; and (4) between decreased Ct.Th and hip fractures independently of aBMD femur. BDAT variables showed comparable performance to that of aBMD neck with all types of fractures (OR = 1.48; AUC = 0.72) and that of aBMD femur with hip fractures (OR = 2.21; AUC = 0.70). If these results are confirmed in prospective studies, cortical BDAT measurements may be considered useful for assessing fracture risk in postmenopausal women. © 2019 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- J-G Minonzio
- Laboratoire d'Imagerie Biomédicale, Sorbonne Université, CNRS, INSERM, Paris, France
| | - N Bochud
- Laboratoire d'Imagerie Biomédicale, Sorbonne Université, CNRS, INSERM, Paris, France
| | - Q Vallet
- Laboratoire d'Imagerie Biomédicale, Sorbonne Université, CNRS, INSERM, Paris, France
| | - D Ramiandrisoa
- Laboratoire d'Imagerie Biomédicale, Sorbonne Université, CNRS, INSERM, Paris, France
| | - A Etcheto
- Department of Rheumatology, Cochin Hospital, Epidemiology and Biostatistics Sorbonne Paris Cité, Research Center, INSERM U1153, Paris Descartes University, Paris, France
| | - K Briot
- Department of Rheumatology, Cochin Hospital, Epidemiology and Biostatistics Sorbonne Paris Cité, Research Center, INSERM U1153, Paris Descartes University, Paris, France
| | - S Kolta
- Department of Rheumatology, Cochin Hospital, Epidemiology and Biostatistics Sorbonne Paris Cité, Research Center, INSERM U1153, Paris Descartes University, Paris, France
| | - C Roux
- Department of Rheumatology, Cochin Hospital, Epidemiology and Biostatistics Sorbonne Paris Cité, Research Center, INSERM U1153, Paris Descartes University, Paris, France
| | - P Laugier
- Laboratoire d'Imagerie Biomédicale, Sorbonne Université, CNRS, INSERM, Paris, France
| |
Collapse
|
30
|
Sampaio-Barros MM, Alvarenga JC, Takayama L, Assad APL, Sampaio-Barros PD, Pereira RMR. Distal radius and tibia bone microarchitecture impairment in female patients with diffuse systemic sclerosis. Osteoporos Int 2019; 30:1679-1691. [PMID: 31030240 DOI: 10.1007/s00198-019-04965-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Accepted: 04/07/2019] [Indexed: 01/01/2023]
Abstract
UNLABELLED Radius and tibia bone microarchitecture, analyzed through a high-resolution peripheral quantitative computed tomography, were significantly impaired in female patients with diffuse systemic sclerosis compared with healthy controls. Acroosteolysis, quality of life-grip strength, hand disability, and disease duration were significantly associated with this bone deterioration. INTRODUCTION The effect of diffuse systemic sclerosis (dSSc) on the bone is not completely understood. The objective of this study was to analyze the volumetric bone mineral density (vBMD), microarchitecture, and biomechanical parameters at the distal radius and tibia using high-resolution peripheral quantitative computed tomography (HR-pQCT, XtremeCT) in female patients with dSSc and identify clinical and laboratory variables associated with these parameters. METHODS Thirty-eight women with dSSc and 76 healthy controls were submitted to HR-pQCT at the distal radius and tibia. Clinical and laboratory findings, bone mineral density(BMD), nailfold capillaroscopy (NC), total passive range of motion(ROM), and quality of life (health assessment questionnaire-HAQ) were associated with HR-pQCT (Scanco Medical AG, Brüttisellen, Switzerland) parameters. Multiple linear regression models adjusted for clinical and laboratory variables, ROM and HAQ, were performed. RESULTS Density, microarchitecture, and biomechanical parameters at the distal radius and tibia were significantly impaired in dSSc patients compared with healthy controls (p < 0.001). Multiple linear regression models showed that lower trabecular density (Tb.vBMD) (radius R2 = 0.561, p = 0.002; and tibia R2 = 0.533, p = 0.005), and lower trabecular number (Tb.N) (tibia R2 = 0.533, p = 0.005) were significantly associated with acroosteolysis. Higher trabecular separation (Tb.Sp) was associated with disease duration and higher HAQ-grip strength (radius R2 = 0.489, p = 0.013), while cortical density (Ct.vBMD) was associated with ROM (radius R2 = 0.294, p = 0.002). CONCLUSION Bone microarchitecture in patients with dSSc, analyzed through HR-pQCT, showed impairment of trabecular and cortical bone at distal radius and tibia. Variables associated with hand involvement (acroosteolysis, quality of life-grip strength, and ROM) and disease duration may be considered prognostic factors of this bone impairment.
Collapse
Affiliation(s)
- M M Sampaio-Barros
- Bone Metabolism Laboratory, Rheumatology Division, Hospital das Clinicas HCFMUSP, Universidade de Sao Paulo, Av. Dr. Arnaldo, 455, 3° andar, sala 3193, São Paulo, SP, 01246-903, Brazil
| | - J C Alvarenga
- Bone Metabolism Laboratory, Rheumatology Division, Hospital das Clinicas HCFMUSP, Universidade de Sao Paulo, Av. Dr. Arnaldo, 455, 3° andar, sala 3193, São Paulo, SP, 01246-903, Brazil
| | - L Takayama
- Bone Metabolism Laboratory, Rheumatology Division, Hospital das Clinicas HCFMUSP, Universidade de Sao Paulo, Av. Dr. Arnaldo, 455, 3° andar, sala 3193, São Paulo, SP, 01246-903, Brazil
| | - A P L Assad
- Bone Metabolism Laboratory, Rheumatology Division, Hospital das Clinicas HCFMUSP, Universidade de Sao Paulo, Av. Dr. Arnaldo, 455, 3° andar, sala 3193, São Paulo, SP, 01246-903, Brazil
| | - P D Sampaio-Barros
- Bone Metabolism Laboratory, Rheumatology Division, Hospital das Clinicas HCFMUSP, Universidade de Sao Paulo, Av. Dr. Arnaldo, 455, 3° andar, sala 3193, São Paulo, SP, 01246-903, Brazil
| | - R M R Pereira
- Bone Metabolism Laboratory, Rheumatology Division, Hospital das Clinicas HCFMUSP, Universidade de Sao Paulo, Av. Dr. Arnaldo, 455, 3° andar, sala 3193, São Paulo, SP, 01246-903, Brazil.
| |
Collapse
|
31
|
O'Leary TJ, Izard RM, Walsh NP, Tang JCY, Fraser WD, Greeves JP. Skeletal macro- and microstructure adaptations in men undergoing arduous military training. Bone 2019; 125:54-60. [PMID: 31077851 DOI: 10.1016/j.bone.2019.05.009] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 05/07/2019] [Accepted: 05/07/2019] [Indexed: 12/14/2022]
Abstract
PURPOSE Short periods of basic military training increase the density and size of the tibia, but the adaptive response of bone microarchitecture, a key component of bone strength, is not fully understood. METHODS Tibial volumetric bone mineral density (vBMD), geometry, microarchitecture and mechanical properties were measured using high-resolution peripheral quantitative computed tomography in 43 male British Army infantry recruits (mean ± SD, age 21 ± 3 years, height 1.76 ± 0.06 m, body mass 76.5 ± 9.4 kg). Bilateral scans were performed at the distal tibia at the start (week 1) and end (week 13) of basic military training. Concurrent measures were obtained for whole-body areal bone mineral density (aBMD) using DXA, and markers of bone metabolism (βCTX, P1NP, PTH, total 25(OH)D and ACa) from venous blood. RESULTS Training increased areal BMD for total body (1.4%) and arms (5.2%) (P ≤ 0.031), but not legs and trunk (P ≥ 0.094). Training increased trabecular (1.3 to 1.9%) and cortical vBMD (0.6 to 0.9%), trabecular volume (1.3 to 1.9%), cortical thickness (3.2 to 5.2%) and cortical area (2.6 to 2.8%), and reduced trabecular area (-0.4 to -0.5%) in both legs (P < 0.001). No changes in trabecular number, thickness and separation, cortical porosity, stiffness or failure load were observed (P ≥ 0.188). βCTX decreased (-0.11 μg∙l-1, P < 0.001) and total 25(OH)D increased (9.4 nmol∙l-1, P = 0.029), but no differences in P1NP, PTH or ACa were observed between timepoints (P ≥ 0.233). CONCLUSION A short period of basic military training increased density and altered geometry of the distal tibia in male military recruits. The osteogenic effects of basic military training are likely due to an increase in unaccustomed, dynamic and high-impact loading.
Collapse
Affiliation(s)
- Thomas J O'Leary
- Army Personnel Research Capability, Army Headquarters, Andover, United Kingdom.
| | - Rachel M Izard
- Department of Occupational Medicine, HQ Army Recruiting and Initial Training Command, Upavon, United Kingdom.
| | - Neil P Walsh
- Extremes Research Group, Bangor University, Bangor, United Kingdom.
| | - John C Y Tang
- Norwich Medical School, University of East Anglia, Norwich, United Kingdom.
| | - William D Fraser
- Norwich Medical School, University of East Anglia, Norwich, United Kingdom; Norfolk and Norwich University Hospital, Norwich, United Kingdom.
| | - Julie P Greeves
- Army Personnel Research Capability, Army Headquarters, Andover, United Kingdom; Norwich Medical School, University of East Anglia, Norwich, United Kingdom.
| |
Collapse
|
32
|
Iori G, Schneider J, Reisinger A, Heyer F, Peralta L, Wyers C, Gräsel M, Barkmann R, Glüer CC, van den Bergh JP, Pahr D, Raum K. Large cortical bone pores in the tibia are associated with proximal femur strength. PLoS One 2019; 14:e0215405. [PMID: 30995279 PMCID: PMC6469812 DOI: 10.1371/journal.pone.0215405] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 04/01/2019] [Indexed: 11/23/2022] Open
Abstract
Alterations of structure and density of cortical bone are associated with fragility fractures and can be assessed in vivo in humans at the tibia. Bone remodeling deficits in aging women have been recently linked to an increase in size of cortical pores. In this ex vivo study, we characterized the cortical microarchitecture of 19 tibiae from human donors (aged 69 to 94 years) to address, whether this can reflect impairments of the mechanical competence of the proximal femur, i.e., a major fracture site in osteoporosis. Scanning acoustic microscopy (12 μm pixel size) provided reference microstructural measurements at the left tibia, while the bone vBMD at this site was obtained using microcomputed tomography (microCT). The areal bone mineral density of both left and right femoral necks (aBMDneck) was measured by dual‐energy X‐ray absorptiometry (DXA), while homogenized nonlinear finite element models based on high-resolution peripheral quantitative computed tomography provided hip stiffness and strength for one-legged standing and sideways falling loads. Hip strength was associated with aBMDneck (r = 0.74 to 0.78), with tibial cortical thickness (r = 0.81) and with measurements of the tibial cross-sectional geometry (r = 0.48 to 0.73) of the same leg. Tibial vBMD was associated with hip strength only for standing loads (r = 0.59 to 0.65). Cortical porosity (Ct.Po) of the tibia was not associated with any of the femoral parameters. However, the proportion of Ct.Po attributable to large pores (diameter > 100 μm) was associated with hip strength in both standing (r = -0.61) and falling (r = 0.48) conditions. When added to aBMDneck, the prevalence of large pores could explain up to 17% of the femur ultimate force. In conclusion, microstructural characteristics of the tibia reflect hip strength as well as femoral DXA, but it remains to be tested whether such properties can be measured in vivo.
Collapse
Affiliation(s)
- Gianluca Iori
- Berlin-Brandenburg Center for Regenerative Therapies, Charité –Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Johannes Schneider
- Berlin-Brandenburg Center for Regenerative Therapies, Charité –Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Andreas Reisinger
- Division Biomechanics, Karl Landsteiner University of Health Sciences, Krems, Austria
| | - Frans Heyer
- Department of Internal Medicine, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, Maastricht, The Netherlands
- Department of Internal Medicine, VieCuri Medical Center, Venlo, The Netherlands
| | - Laura Peralta
- Laboratoire d’Imagerie Biomédicale, Sorbonne Universités, INSERM UMR S 1146, CNRS UMR 7371, Paris, France
- Department of Biomedical Engineering, School of Biomedical Engineering & Imaging Sciences, King’s College London, London, United Kingdom
| | - Caroline Wyers
- Department of Internal Medicine, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, Maastricht, The Netherlands
- Department of Internal Medicine, VieCuri Medical Center, Venlo, The Netherlands
| | - Melanie Gräsel
- Sektion Biomedizinische Bildgebung, Klinik für Radiologie und Neuroradiologie, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| | - Reinhard Barkmann
- Sektion Biomedizinische Bildgebung, Klinik für Radiologie und Neuroradiologie, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| | - Claus C. Glüer
- Sektion Biomedizinische Bildgebung, Klinik für Radiologie und Neuroradiologie, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| | - J. P. van den Bergh
- Department of Internal Medicine, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, Maastricht, The Netherlands
- Department of Internal Medicine, VieCuri Medical Center, Venlo, The Netherlands
| | - Dieter Pahr
- Division Biomechanics, Karl Landsteiner University of Health Sciences, Krems, Austria
- Institute for Lightweight Design and Structural Biomechanics, TU Wien, Vienna, Austria
| | - Kay Raum
- Berlin-Brandenburg Center for Regenerative Therapies, Charité –Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- * E-mail:
| |
Collapse
|
33
|
Pediatric bone evaluation with HR-pQCT: A comparison between standard and height-adjusted positioning protocols in a cohort of teenagers with chronic kidney disease. Arch Pediatr 2019; 26:151-157. [PMID: 30827777 DOI: 10.1016/j.arcped.2019.02.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 12/07/2018] [Accepted: 02/03/2019] [Indexed: 01/16/2023]
Abstract
BACKGROUND High-resolution peripheral quantitative computed tomography (HR-pQCT) evaluates different components of bone fragility. The positioning and length of the region of interest (ROI) in growing populations remain to be defined. METHODS Using HR-pQCT at the ultradistal tibia, we compared a single-center cohort of 28 teenagers with chronic kidney disease (CKD) at a median age of 13.6 (range, 10.2-19.9) years to local age-, gender-, and puberty-matched healthy peers. Because of the potential impact of short stature, bone parameters were assessed on two different leg-length-adjusted ROIs in comparison to the standard analysis, namely the one applied in adults. The results are presented as median (range). RESULTS After matching, SDS height was -0.9 (-3.3;1.6) and 0.3 (-1.4;2.0) in patients and controls, respectively (P<0.001). In younger children (e.g., prepubertal, n=11), bone texture parameters and bone strength were not different using standard analysis. However, using a height-adjusted ROI enabled better characterization of cortical bone structure. In older patients (e.g., pubertal, n=17), there were no differences for height between patients and controls: with the standard evaluation, cortical bone area and cortical thickness were significantly lower in CKD patients: 85 (50-124) vs. 108 (67-154) mm2 and 0.89 (0.46-1.31) vs 1.09 (0.60-1.62) mm, respectively (both P<0.05). CONCLUSIONS Adapting the ROI to leg length enables better assessment of bone structure, especially when height discrepancies exist between controls and patients. Larger cohorts are required to prospectively validate this analytic HR-pQCT technique.
Collapse
|
34
|
Beresheim AC, Pfeiffer SK, Grynpas MD, Alblas A. Use of backscattered scanning electron microscopy to quantify the bone tissues of mid‐thoracic human ribs. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2019; 168:262-278. [DOI: 10.1002/ajpa.23716] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 09/10/2018] [Accepted: 09/11/2018] [Indexed: 01/08/2023]
Affiliation(s)
- Amy C. Beresheim
- Department of AnthropologyUniversity of Toronto Toronto Ontario Canada
| | - Susan K. Pfeiffer
- Department of AnthropologyUniversity of Toronto Toronto Ontario Canada
- Department of ArchaeologyUniversity of Cape Town Rondebosch Cape Town South Africa
- Department of Anthropology and Center for Advanced Study of Human PaleobiologyGeorge Washington University Washington, D.C
| | - Marc D. Grynpas
- Department of Laboratory Medicine and Pathobiology and Institute for Biomaterials and Biomedical EngineeringUniversity of Toronto Toronto Ontario Canada
- Lunenfeld‐Tanenbaum Research Institute, Mount Sinai Hospital Toronto Ontario Canada
| | - Amanda Alblas
- Division of Anatomy and Histology, Department of Biomedical SciencesStellenbosch University Cape Town South Africa
| |
Collapse
|
35
|
Abstract
Osteoporosis is a "skeletal disorder characterized by compromised bone strength predisposing a person to an increased risk of fracture" which, in light of demographic change, is becoming an increasing burden on health care worldwide. Increasing age and female gender are associated with the condition, although a wider range of clinical risk factors are being used increasingly to identify those at risk of osteoporosis and its most important sequelae, fracture.While osteoporosis and fracture have long been associated with women in the post-menopausal age, fracture incidence increases because of the ageing of our population. Interventions to abate the progression of osteoporosis and to prevent fractures must focus on the old and the very old. Evidence associating nutritional factors, particularly calcium and vitamin D are reviewed as are the association of falls risk with fracture and the potential for interventions to prevent falls. Finally, the assessment of frailty in the oldest old, associated sarcopenia and multi-morbidity are considered in the evaluation of fall and fracture risk and the management of osteoporosis in the ninth decade of life and beyond.
Collapse
Affiliation(s)
- Terry J Aspray
- NIHR Biomedical Research Centre, Newcastle University, Campus for Ageing and Vitality, Newcastle upon Tyne, UK. .,Institute of Cellular Medicine, Newcastle University, Newcastle-Upon-Tyne, UK. .,Institute of Ageing, Newcastle University, Newcastle-Upon-Tyne, UK.
| | - Tom R Hill
- Institute of Cellular Medicine, Newcastle University, Newcastle-Upon-Tyne, UK.,Institute of Ageing, Newcastle University, Newcastle-Upon-Tyne, UK.,Human Nutrition Research Centre, Newcastle University, Newcastle-Upon-Tyne, UK
| |
Collapse
|
36
|
Alvarenga JC, Boyd SK, Pereira RMR. The relationship between estimated bone strength by finite element analysis at the peripheral skeleton to areal BMD and trabecular bone score at lumbar spine. Bone 2018; 117:47-53. [PMID: 30219479 DOI: 10.1016/j.bone.2018.09.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 09/03/2018] [Accepted: 09/12/2018] [Indexed: 01/16/2023]
Abstract
Bone strength, estimated by finite element (FE) analysis based on high resolution peripheral quantitative computed tomography (HR-pQCT) images is an important contributor to understanding risk of fracture. However, it is a peripheral device and cannot be evaluated in vivo at lumbar spine L1-L4. The aim of this study was to investigate if the axial bone quality can be predicted by strength measurements of peripheral bone. Peripheral bone microarchitecture, areal bone mineral density (aBMD) and trabecular bone score (TBS) were measured in adults individuals (n = 262, 60 years and older; 63% women). Stiffness and failure load were estimated by FE analysis at HR-pQCT images at radius and tibia. Areal BMD and TBS were measured by dual energy X-ray absorptiometry (DXA) at L1-L4. Correlations between peripheral and axial data were estimated for each gender adjusted by age, weight, and height. Areal BMD L1-L4 resulted in weak to moderate significant correlations with stiffness and failure load at radius (women: R2 = 0.178, p < 0.05 and R2 = 0.187, p < 0.001, respectively; men: R2 = 0.454 and R2 = 0.451, p < 0.001, respectively) and at tibia (women: R2 = 0.211 and R2 = 0.216, p < 0.001, respectively; men: R2 = 0.488 and R2 = 0.502, p < 0.001, respectively). TBS showed a very weak or no correlation with stiffness and failure load at radius (women: R2 = 0.148 and R2 = 0.150, p < 0.05, respectively; men: R2 = 0.108 and R2 = 0.106, p < 0.05, respectively) and at tibia (women: R2 = 0.146 and R2 = 0.150, p < 0.05, respectively; men: R2 = 0.072 and R2 = 0.078, respectively). These data suggest that aBMD L1-L4 was better explained by peripheral bone strength characteristics than the TBS, mainly in men and tibia is generally the site with a better relationship.
Collapse
Affiliation(s)
- Jackeline C Alvarenga
- Bone Laboratory Metabolism, Rheumatology Division, Faculdade Medicina FMUSP da Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Steven K Boyd
- McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, Canada
| | - Rosa M R Pereira
- Bone Laboratory Metabolism, Rheumatology Division, Faculdade Medicina FMUSP da Universidade de Sao Paulo, Sao Paulo, Brazil.
| |
Collapse
|
37
|
Minonzio JG, Bochud N, Vallet Q, Bala Y, Ramiandrisoa D, Follet H, Mitton D, Laugier P. Bone cortical thickness and porosity assessment using ultrasound guided waves: An ex vivo validation study. Bone 2018; 116:111-119. [PMID: 30056165 DOI: 10.1016/j.bone.2018.07.018] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 06/13/2018] [Accepted: 07/23/2018] [Indexed: 11/21/2022]
Abstract
Several studies showed the ability of the cortex of long bones such as the radius and tibia to guide mechanical waves. Such experimental evidence has given rise to the emergence of a category of quantitative ultrasound techniques, referred to as the axial transmission, specifically developed to measure the propagation of ultrasound guided waves in the cortical shell along the axis of long bones. An ultrasound axial transmission technique, with an automated approach to quantify cortical thickness and porosity is described. The guided modes propagating in the cortex are recorded with a 1-MHz custom made linear transducer array. Measurement of the dispersion curves is achieved using a two-dimensional spatio-temporal Fourier transform combined with singular value decomposition. Automatic parameters identification is obtained through the solution of an inverse problem in which the dispersion curves are predicted with a two-dimensional transverse isotropic free plate model. Thirty-one radii and fifteen tibiae harvested from human cadavers underwent axial transmission measurements. Estimates of cortical thickness and porosity were obtained on 40 samples out of 46. The reproducibility, given by the root mean square error of the standard deviation of estimates, was 0.11 mm for thickness and 1.9% for porosity. To assess accuracy, site-matched micro-computed tomography images of the bone specimens imaged at 9 μm voxel size served as the gold standard. Agreement between micro-computed tomography and axial transmission for quantification of thickness and porosity at the radius and tibia ranged from R2=0.63 for porosity (root mean square error RMSE=1.8%) to 0.89 for thickness (RMSE=0.3 mm). Despite an overall good agreement for porosity, the method performs less well for porosities lower than 10%. The heterogeneity and general complexity of cortical bone structure, which are not fully accounted for by our model, are suspected to weaken the model approximation. This study presents the first validation study for assessing cortical thickness and porosity using the axial transmission technique. The automatic signal processing minimizes operator-dependent errors for parameters determination. Recovering the waveguide characteristics, that is to say cortical thickness and porosity, could provide reliable information about skeletal status and future fracture risk.
Collapse
Affiliation(s)
- J-G Minonzio
- Sorbonne Université, CNRS, INSERM, Laboratoire d'Imagerie Biomédicale LIB, Paris F-75006, France
| | - N Bochud
- Sorbonne Université, CNRS, INSERM, Laboratoire d'Imagerie Biomédicale LIB, Paris F-75006, France.
| | - Q Vallet
- Sorbonne Université, CNRS, INSERM, Laboratoire d'Imagerie Biomédicale LIB, Paris F-75006, France
| | - Y Bala
- Univ Lyon, Université Claude Bernard Lyon 1, INSERM Unit UMR1033, F-69622 Lyon, France
| | - D Ramiandrisoa
- Sorbonne Université, CNRS, INSERM, Laboratoire d'Imagerie Biomédicale LIB, Paris F-75006, France
| | - H Follet
- Univ Lyon, Université Claude Bernard Lyon 1, INSERM Unit UMR1033, F-69622 Lyon, France
| | - D Mitton
- Univ Lyon, Université Claude Bernard Lyon 1, IFSTTAR, LBMC UMR T9406, Lyon F-69622, France
| | - P Laugier
- Sorbonne Université, CNRS, INSERM, Laboratoire d'Imagerie Biomédicale LIB, Paris F-75006, France
| |
Collapse
|
38
|
Zhu TY, Yip BH, Hung VW, Choy CW, Cheng KL, Kwok TC, Cheng JC, Qin L. Normative Standards for HRpQCT Parameters in Chinese Men and Women. J Bone Miner Res 2018; 33:1889-1899. [PMID: 29893993 DOI: 10.1002/jbmr.3481] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 05/10/2018] [Accepted: 06/03/2018] [Indexed: 01/18/2023]
Abstract
Assessing bone architecture using high-resolution peripheral quantitative computed tomography (HRpQCT) has the potential to improve fracture risk assessment. The Normal Reference Study aimed to establish sex-specific reference centile curves for HRpQCT parameters. This was an age-stratified cross-sectional study and 1072 ambulatory Chinese men (n = 544) and women (n = 528) aged 20 to 79 years, who were free from conditions and medications that could affect bone metabolism and had no history of fragility fracture. They were recruited from local communities of Hong Kong. Reference centile curves for each HRpQCT parameter were constructed using generalized additive models for location, scale, and shape with age as the only explanatory variable. Patterns of reference centile curves reflected age-related changes of bone density, microarchitecture, and estimated bone strength. In both sexes, loss of cortical bone was only evident in mid-adulthood, particularly in women with a more rapid fashion probably concurrent with the onset of menopause. In contrast, loss of trabecular bone was subtle or gradual or occurred at an earlier age. Expected values of HRpQCT parameters for a defined sex and age and a defined percentile or Z-score were obtained from these curves. T-scores were calculated using the population with the peak values as the reference and reflected age- or menopause-related bone loss in an older individual or the room to reach the peak potential in a younger individual. These reference centile curves produced a standard describing a norm or desirable target that enables value clinical judgements. Percentiles, Z-scores, and T-scores would be helpful in detecting abnormalities in bone density and microarchitecture arising from various conditions and establishing entry criteria for clinical trials. They also hold the potential to refine the diagnosis of osteoporosis and assessment of fracture risk. © 2018 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Tracy Y Zhu
- Bone Quality and Health Center, Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong SAR
| | - Benjamin Hk Yip
- Division of Family Medicine and Primary Health Care, Jockey Club School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong SAR
| | - Vivian Wy Hung
- Bone Quality and Health Center, Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong SAR
| | - Carol Wy Choy
- Bone Quality and Health Center, Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong SAR
| | - Ka-Lo Cheng
- Bone Quality and Health Center, Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong SAR
| | - Timothy Cy Kwok
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong SAR
| | - Jack Cy Cheng
- Bone Quality and Health Center, Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong SAR
| | - Ling Qin
- Bone Quality and Health Center, Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong SAR
| |
Collapse
|
39
|
Thietart S, Louati K, Gatfosse M, Sornay-Rendu E, Gaigneux E, Lemeunier L, Delmaire P, Riviere S, Mahevas T, Sellam J, Berenbaum F, Fain O, Roland C, Mekinian A. Overview of osteo-articular involvement in systemic sclerosis: Specific risk factors, clinico-sonographic evaluation, and comparison with healthy women from the French OFELY cohort. Best Pract Res Clin Rheumatol 2018; 32:591-604. [PMID: 31174827 DOI: 10.1016/j.berh.2019.01.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Osteoarticular involvement in systemic sclerosis (SSc) is frequent and varied. Data are scarce on the prevalence and risk factors of osteoporosis (OP). We aimed to assess clinical parameters, radiological parameters, US articular involvements, and the frequency of OP and evaluate SSc-specific risk factors. In a prospective cohort of 54 patients with SSc, data of OP risk factors, SSc organ involvements, tender and swollen joint counts, DAS28-CRP, hand US sonographies, X-ray hand views, and bone mineral density (BMD) were assessed. BMD values were compared to those from a healthy female population (OFELY cohort). Nineteen patients (40%) had OP. SSc was a risk factor of lower BMD in the patient group than in the control group. OP was associated with SSc-related risk factors and not with conventional OP risk factors. Nine patients had clinical synovitis (16%), and 23 (68%) patients had at least one US synovitis. No correlation was found with articular destruction, disease severity, autoantibody profile, or other organ impairment.
Collapse
Affiliation(s)
- Sara Thietart
- Service de Medecine Interne, Hopital Saint Antoine, AP-HP, Universite Paris 6, 75012 Paris, France; Sorbonne Universites, INSERM U938, Centre de Recherche Saint-Antoine (CRSA), Paris, France.
| | - Karine Louati
- Sorbonne Universites, INSERM U938, Centre de Recherche Saint-Antoine (CRSA), Paris, France; Service de Rhumatologie, Hopital Saint Antoine, AP-HP, DHU i2B, Inserm UMRS_938, Univ Paris 06, 75012 Paris, France.
| | - Marc Gatfosse
- Service de Medecine Interne, Hopital Saint Antoine, AP-HP, Universite Paris 6, 75012 Paris, France; Sorbonne Universites, INSERM U938, Centre de Recherche Saint-Antoine (CRSA), Paris, France.
| | - Elisabeth Sornay-Rendu
- Unite Inserm UMR 1033, Universite de Lyon, Service de Rhumatologie et Pathologie Osseuse, Hopital E Herriot, Lyon, France.
| | - Emeline Gaigneux
- Sorbonne Universites, INSERM U938, Centre de Recherche Saint-Antoine (CRSA), Paris, France; Service de Rhumatologie, Hopital Saint Antoine, AP-HP, DHU i2B, Inserm UMRS_938, Univ Paris 06, 75012 Paris, France.
| | - Lucie Lemeunier
- Sorbonne Universites, INSERM U938, Centre de Recherche Saint-Antoine (CRSA), Paris, France; Service de Rhumatologie, Hopital Saint Antoine, AP-HP, DHU i2B, Inserm UMRS_938, Univ Paris 06, 75012 Paris, France.
| | - Philippe Delmaire
- Service de Medecine Nucleaire et Biophysique, Hopital Saint Antoine, AP-HP, Universite Paris 6, 75012 Paris, France.
| | - Sébastien Riviere
- Service de Medecine Interne, Hopital Saint Antoine, AP-HP, Universite Paris 6, 75012 Paris, France; Sorbonne Universites, INSERM U938, Centre de Recherche Saint-Antoine (CRSA), Paris, France.
| | - Thibault Mahevas
- Service de Medecine Interne, Hopital Saint Antoine, AP-HP, Universite Paris 6, 75012 Paris, France; Sorbonne Universites, INSERM U938, Centre de Recherche Saint-Antoine (CRSA), Paris, France.
| | - Jérémie Sellam
- Sorbonne Universites, INSERM U938, Centre de Recherche Saint-Antoine (CRSA), Paris, France; Service de Rhumatologie, Hopital Saint Antoine, AP-HP, DHU i2B, Inserm UMRS_938, Univ Paris 06, 75012 Paris, France.
| | - Francis Berenbaum
- Sorbonne Universites, INSERM U938, Centre de Recherche Saint-Antoine (CRSA), Paris, France; Service de Rhumatologie, Hopital Saint Antoine, AP-HP, DHU i2B, Inserm UMRS_938, Univ Paris 06, 75012 Paris, France.
| | - Olivier Fain
- Service de Medecine Interne, Hopital Saint Antoine, AP-HP, Universite Paris 6, 75012 Paris, France; Sorbonne Universites, INSERM U938, Centre de Recherche Saint-Antoine (CRSA), Paris, France.
| | - Chapurlat Roland
- Unite Inserm UMR 1033, Universite de Lyon, Service de Rhumatologie et Pathologie Osseuse, Hopital E Herriot, Lyon, France.
| | - Arsène Mekinian
- Service de Medecine Interne, Hopital Saint Antoine, AP-HP, Universite Paris 6, 75012 Paris, France; Sorbonne Universites, INSERM U938, Centre de Recherche Saint-Antoine (CRSA), Paris, France.
| |
Collapse
|
40
|
Stemmler F, Simon D, Liphardt AM, Englbrecht M, Rech J, Hueber AJ, Engelke K, Schett G, Kleyer A. Biomechanical properties of bone are impaired in patients with ACPA-positive rheumatoid arthritis and associated with the occurrence of fractures. Ann Rheum Dis 2018; 77:973-980. [PMID: 29475856 PMCID: PMC6029639 DOI: 10.1136/annrheumdis-2017-212404] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 01/26/2018] [Accepted: 01/30/2018] [Indexed: 12/17/2022]
Abstract
OBJECTIVES Bone loss is a well-established consequence of rheumatoid arthritis (RA). To date, bone disease in RA is exclusively characterised by bone density measurements, while the functional properties of bone in RA are undefined. This study aimed to define the impact of RA on the functional properties of bone, such as failure load and stiffness. METHODS Micro-finite element analysis (µFEA) was carried out to measure failure load and stiffness of bone based on high-resolution peripheral quantitative CT data from the distal radius of anti-citrullinated protein antibody (ACPA)-positive RA (RA+), ACPA-negative RA (RA-) and healthy controls (HC). In addition, total, trabecular and cortical bone densities as well as microstructural parameters of bone were recorded. Correlations and multivariate models were used to determine the role of demographic, disease-specific and structural data of bone strength as well as its relation to prevalent fractures. RESULTS 276 individuals were analysed. Failure load and stiffness (both P<0.001) of bone were decreased in RA+, but not RA-, compared with HC. Lower bone strength affected both female and male patients with RA+, was related to longer disease duration and significantly (stiffness P=0.020; failure load P=0.012) associated with the occurrence of osteoporotic fractures. Impaired bone strength was correlated with altered bone density and microstructural parameters, which were all decreased in RA+. Multivariate models showed that ACPA status (P=0.007) and sex (P<0.001) were independently associated with reduced biomechanical properties of bone in RA. CONCLUSION In summary, µFEA showed that bone strength is significantly decreased in RA+ and associated with fractures.
Collapse
Affiliation(s)
- Fabian Stemmler
- Friedrich Alexander University Erlangen-Nürnberg, Department of Internal Medicine 3, Rheumatology and Immunology, Universitätsklinikum Erlangen, Erlangen, Germany
| | - David Simon
- Friedrich Alexander University Erlangen-Nürnberg, Department of Internal Medicine 3, Rheumatology and Immunology, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Anna-Maria Liphardt
- Friedrich Alexander University Erlangen-Nürnberg, Department of Internal Medicine 3, Rheumatology and Immunology, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Matthias Englbrecht
- Friedrich Alexander University Erlangen-Nürnberg, Department of Internal Medicine 3, Rheumatology and Immunology, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Juergen Rech
- Friedrich Alexander University Erlangen-Nürnberg, Department of Internal Medicine 3, Rheumatology and Immunology, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Axel J Hueber
- Friedrich Alexander University Erlangen-Nürnberg, Department of Internal Medicine 3, Rheumatology and Immunology, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Klaus Engelke
- Institute of Medical Physics (IMP), University of Erlangen, Erlangen, Germany
| | - Georg Schett
- Friedrich Alexander University Erlangen-Nürnberg, Department of Internal Medicine 3, Rheumatology and Immunology, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Arnd Kleyer
- Friedrich Alexander University Erlangen-Nürnberg, Department of Internal Medicine 3, Rheumatology and Immunology, Universitätsklinikum Erlangen, Erlangen, Germany
| |
Collapse
|
41
|
Feichtinger X, Muschitz C, Heimel P, Baierl A, Fahrleitner-Pammer A, Redl H, Resch H, Geiger E, Skalicky S, Dormann R, Plachel F, Pietschmann P, Grillari J, Hackl M, Kocijan R. Bone-related Circulating MicroRNAs miR-29b-3p, miR-550a-3p, and miR-324-3p and their Association to Bone Microstructure and Histomorphometry. Sci Rep 2018; 8:4867. [PMID: 29559644 PMCID: PMC5861059 DOI: 10.1038/s41598-018-22844-2] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Accepted: 03/01/2018] [Indexed: 12/27/2022] Open
Abstract
The assessment of bone quality and the prediction of fracture risk in idiopathic osteoporosis (IOP) are complex prospects as bone mineral density (BMD) and bone turnover markers (BTM) do not indicate fracture-risk. MicroRNAs (miRNAs) are promising new biomarkers for bone diseases, but the current understanding of the biological information contained in the variability of miRNAs is limited. Here, we investigated the association between serum-levels of 19 miRNA biomarkers of idiopathic osteoporosis to bone microstructure and bone histomorphometry based upon bone biopsies and µCT (9.3 μm) scans from 36 patients. Four miRNAs were found to be correlated to bone microarchitecture and seven miRNAs to dynamic histomorphometry (p < 0.05). Three miRNAs, namely, miR-29b-3p, miR-324-3p, and miR-550a-3p showed significant correlations to histomorphometric parameters of bone formation as well as microstructure parameters. miR-29b-3p and miR-324-p were found to be reduced in patients undergoing anti-resorptive therapy. This is the first study to report that serum levels of bone-related miRNAs might be surrogates of dynamic histomorphometry and potentially reveal changes in bone microstructure. Although these findings enhance the potential value of circulating miRNAs as bone biomarkers, further experimental studies are required to qualify the clinical utility of miRNAs to reflect dynamic changes in bone formation and microstructure.
Collapse
Affiliation(s)
- Xaver Feichtinger
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, Vienna, Austria.,St. Vincent Hospital - Medical Department II, The VINFORCE Study Group, Academic Teaching Hospital of the Medical University of Vienna, Vienna, Austria.,AUVA Trauma Center Meidling, Vienna, Austria
| | - Christian Muschitz
- St. Vincent Hospital - Medical Department II, The VINFORCE Study Group, Academic Teaching Hospital of the Medical University of Vienna, Vienna, Austria
| | - Patrick Heimel
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, Vienna, Austria.,Austrian Cluster for Tissue Regeneration, Vienna, Austria Department of Traumatology, Medical University of Vienna, Vienna, Austria.,Karl Donath Laboratory for Hard Tissue and Biomaterial Research, Department of Oral Surgery, Medical University of Vienna, Vienna, Austria
| | - Andreas Baierl
- Department of Statistics and Operations Research, University of Vienna, Vienna, Austria
| | - Astrid Fahrleitner-Pammer
- Department of Internal Medicine, Division of Endocrinology and Diabetology, Medical University of Graz, Graz, Austria
| | - Heinz Redl
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, Vienna, Austria.,Austrian Cluster for Tissue Regeneration, Vienna, Austria Department of Traumatology, Medical University of Vienna, Vienna, Austria
| | - Heinrich Resch
- St. Vincent Hospital - Medical Department II, The VINFORCE Study Group, Academic Teaching Hospital of the Medical University of Vienna, Vienna, Austria.,Medical Faculty of Bone Diseases, Sigmund Freud University, Vienna, Austria
| | | | | | - Rainer Dormann
- St. Vincent Hospital - Medical Department II, The VINFORCE Study Group, Academic Teaching Hospital of the Medical University of Vienna, Vienna, Austria
| | - Fabian Plachel
- St. Vincent Hospital - Medical Department II, The VINFORCE Study Group, Academic Teaching Hospital of the Medical University of Vienna, Vienna, Austria
| | - Peter Pietschmann
- Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Johannes Grillari
- TAmiRNA GmbH, Vienna, Austria.,Christian Doppler Laboratory on Biotechnology of Skin Aging, Department of Biotechnology, BOKU - University of Natural Resources and Life Sciences Vienna, Vienna, Austria
| | | | - Roland Kocijan
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, Vienna, Austria.,St. Vincent Hospital - Medical Department II, The VINFORCE Study Group, Academic Teaching Hospital of the Medical University of Vienna, Vienna, Austria
| |
Collapse
|
42
|
Chapurlat R, Pialat JB, Merle B, Confavreux E, Duvert F, Fontanges E, Khacef F, Peres SL, Schott AM, Lespessailles E. The QUALYOR (QUalité Osseuse LYon Orléans) study: a new cohort for non invasive evaluation of bone quality in postmenopausal osteoporosis. Rationale and study design. Arch Osteoporos 2017; 13:2. [PMID: 29282548 DOI: 10.1007/s11657-017-0412-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 12/13/2017] [Indexed: 02/03/2023]
Abstract
UNLABELLED The diagnostic performance of densitometry is inadequate. New techniques of non-invasive evaluation of bone quality may improve fracture risk prediction. Testing the value of these techniques is the goal of the QUALYOR cohort. INTRODUCTION The bone mineral density (BMD) of postmenopausal women who sustain osteoporotic fracture is generally above the World Health Organization definition for osteoporosis. Therefore, new approaches to improve the detection of women at high risk for fracture are warranted. METHODS We have designed and recruited a new cohort to assess the predictive value of several techniques to assess bone quality, including high-resolution peripheral quantitative computerized tomography (HRpQCT), hip QCT, calcaneus texture analysis, and biochemical markers. We have enrolled 1575 postmenopausal women, aged at least 50, with an areal BMD femoral neck or lumbar spine T-score between - 1.0 and - 3.0. Clinical risk factors for fracture have been collected along with serum and blood samples. RESULTS We describe the design of the QUALYOR study. Among these 1575 women, 80% were aged at least 60. The mean femoral neck T-score was - 1.6 and the mean lumbar spine T-score was -1.2. This cohort is currently being followed up. CONCLUSIONS QUALYOR will provide important information on the relationship between bone quality variables and fracture risk in women with moderately decreased BMD.
Collapse
Affiliation(s)
- Roland Chapurlat
- INSERM UMR 1033, Université de Lyon, Hôpital E Herriot, 69437, Lyon cedex 03, France.
| | - Jean-Baptiste Pialat
- INSERM UMR 1033, Université de Lyon, Hôpital E Herriot, 69437, Lyon cedex 03, France
| | - Blandine Merle
- INSERM UMR 1033, Université de Lyon, Hôpital E Herriot, 69437, Lyon cedex 03, France
| | - Elisabeth Confavreux
- INSERM UMR 1033, Université de Lyon, Hôpital E Herriot, 69437, Lyon cedex 03, France
| | - Florence Duvert
- INSERM UMR 1033, Université de Lyon, Hôpital E Herriot, 69437, Lyon cedex 03, France
| | - Elisabeth Fontanges
- INSERM UMR 1033, Université de Lyon, Hôpital E Herriot, 69437, Lyon cedex 03, France
| | - Farida Khacef
- Hopital d'Orleans, 14 avenue de l'hôpital, 45067, Orléans Cedex 2, France
| | | | - Anne-Marie Schott
- EA 4708-I3MTO, Université d'Orléans, 45067, Orléans, France.,EA 7425 HESPER, Université de Lyon, Lyon, France
| | - Eric Lespessailles
- Hopital d'Orleans, 14 avenue de l'hôpital, 45067, Orléans Cedex 2, France.,EA 4708-I3MTO, Université d'Orléans, 45067, Orléans, France
| |
Collapse
|
43
|
Mussawy H, Ferrari G, Schmidt FN, Schmidt T, Rolvien T, Hischke S, Rüther W, Amling M. Changes in cortical microarchitecture are independent of areal bone mineral density in patients with fragility fractures. Injury 2017; 48:2461-2465. [PMID: 28882378 DOI: 10.1016/j.injury.2017.08.043] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 08/20/2017] [Indexed: 02/02/2023]
Abstract
Dual-energy X-ray absorptiometry (DXA) and high-resolution peripheral quantitative computed tomography (HR-pQCT) are commonly used to assess the areal bone mineral density (aBMD) and peripheral microstructure, respectively. While DXA is the standard to diagnose osteoporosis, HR-pQCT provides information about the cortical and trabecular architecture. Many fragility fractures occur in patients who do not meet the osteoporosis criterion (i.e., T-score≤-2.5). We hypothesize that patients with T-score above -2.5 and fragility fracture may have abnormal bone microarchitecture. Therefore, in this retrospective clinical study, HR-pQCT data obtained from patients with fragility fractures and T-scores≥-2.5 (n=71) were compared to corresponding data from patients with fragility fractures and T-scores≤-3.5 (n=56). Types of secondary osteoporosis were excluded from the study. To verify the dependency of alterations in bone microarchitecture and T-score, the association between HR-pQCT values and aBMD as reflected by the T-score at both proximal femora, was assessed. At the distal tibia, cortical thickness was lower (p<0.001), cortical porosity was similar (p=0.61), trabecular number was higher (p<0.001), and bone volume fraction (BV/TV) was higher (p<0.001) in patients with T-scores≥-2.5 than in patients with T-scores≤-3.5. Trabecular number and BV/TV correlated with T-score (r=0.68, p<0.001; r=0.61, p<0.001), whereas the cortical values did not. Our results thus demonstrate the importance of bone structure, as assessed by HR-pQCT, in addition to the standard DXA T-score in the diagnosis of osteoporosis.
Collapse
Affiliation(s)
- Haider Mussawy
- Department of Orthopaedic Surgery, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246 Hamburg, Germany; Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Lottestraße 59, 22529 Hamburg, Germany
| | - Gero Ferrari
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Lottestraße 59, 22529 Hamburg, Germany
| | - Felix N Schmidt
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Lottestraße 59, 22529 Hamburg, Germany
| | - Tobias Schmidt
- Department of Orthopaedic Surgery, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246 Hamburg, Germany; Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Lottestraße 59, 22529 Hamburg, Germany
| | - Tim Rolvien
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Lottestraße 59, 22529 Hamburg, Germany
| | - Sandra Hischke
- Department of Medical Biometry and Epidemiology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246 Hamburg, Germany
| | - Wolfgang Rüther
- Department of Orthopaedic Surgery, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246 Hamburg, Germany
| | - Michael Amling
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Lottestraße 59, 22529 Hamburg, Germany.
| |
Collapse
|
44
|
Sornay-Rendu E, Boutroy S, Duboeuf F, Chapurlat RD. Bone Microarchitecture Assessed by HR-pQCT as Predictor of Fracture Risk in Postmenopausal Women: The OFELY Study. J Bone Miner Res 2017; 32:1243-1251. [PMID: 28276092 DOI: 10.1002/jbmr.3105] [Citation(s) in RCA: 99] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 01/19/2017] [Accepted: 02/04/2017] [Indexed: 11/11/2022]
Abstract
Several cross-sectional studies have shown that impairment of bone microarchitecture contributes to skeletal fragility. The aim of this study was to prospectively investigate the prediction of fracture (Fx) by bone microarchitecture assessed by high-resolution peripheral computed tomography (HR- pQCT) in postmenopausal women. We measured microarchitecture at the distal radius and tibia with HR-pQCT in the OFELY study, in addition to areal BMD with dual-energy X-ray absorptiometry (DXA) in 589 women, mean ± SD age 68 ± 9 years. During a median [IQ] 9.4 [1.0] years of follow-up, 135 women sustained an incident fragility Fx, including 81 women with a major osteoporotic Fx (MOP Fx). After adjustment for age, women who sustained Fx had significantly lower total and trabecular volumetric densities (vBMD) at both sites, cortical parameters (area and thickness at the radius, vBMD at the tibia), trabecular number (Tb.N), connectivity density (Conn.D), stiffness, and estimated failure load at both sites, compared with control women. After adjustment for age, current smoking, falls, prior Fx, use of osteoporosis-related drugs, and total hip BMD, each quartile decrease of several baseline values of bone microarchitecture at the radius was associated with significant change of the risk of Fx (HR of 1.39 for Tb.BMD [p = 0.001], 1.32 for Tb.N [p = 0.01], 0.76 for Tb.Sp.SD [p = 0.01], 1.49 [p = 0.01] for Conn.D, and 1.27 for stiffness [p = 0.02]). At the tibia, the association remained significant for stiffness and failure load in the multivariate model for all fragility Fx and for Tt.BMD, stiffness, and failure load for MOP Fx. We conclude that impairment of bone microarchitecture-essentially in the trabecular compartment of the radius-predict the occurrence of incident fracture in postmenopausal women. This assessment may play an important role in identifying women at high risk of fracture who could not be adequately detected by BMD measurement alone, to benefit from a therapeutic intervention. © 2017 American Society for Bone and Mineral Research.
Collapse
|
45
|
Chen M, Yuan H. Assessment of porosity index of the femoral neck and tibia by 3D ultra-short echo-time MRI. J Magn Reson Imaging 2017; 47:820-828. [PMID: 28561910 DOI: 10.1002/jmri.25782] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 05/19/2017] [Indexed: 12/23/2022] Open
Affiliation(s)
- Min Chen
- Department of Radiology; Peking University Third Hospital; Beijing P.R. China
| | - Huishu Yuan
- Department of Radiology; Peking University Third Hospital; Beijing P.R. China
| |
Collapse
|
46
|
Contribution of high resolution peripheral quantitative CT to the management of bone and joint diseases. Joint Bone Spine 2017; 85:301-306. [PMID: 28512004 DOI: 10.1016/j.jbspin.2017.04.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 04/26/2017] [Indexed: 01/08/2023]
Abstract
Many imaging modalities have been described to diagnose and monitor osteoporosis (OP), osteoarthritis and inflammatory rheumatic diseases. Over the last ten years, High Resolution peripheral Quantitative Computerized Tomography (HR-pQCT) was shown to be a precise and non invasive technique to study bone and joint diseases in clinical research. It allows the study of both cortical and trabecular bone microarchitecture at the distal tibia and radius, and further applications have been developed such as the study of mechanical properties by the finite element analysis. Thus, in case-control and cross-sectional studies, microarchitecture parameters discriminated fractured individuals independently of areal BMD. Also, microstructure parameters can predict incident fracture in postmenopausal women. In metabolic diseases associated with bone fragility, HR-pQCT may also be used to explore bone changes. In joint disease studies, HR-pQCT was a remarkable tool to assess bone erosion and joint space narrowing at the hand. This article gives an overview of this imaging technique.
Collapse
|
47
|
Alvarenga JC, Fuller H, Pasoto SG, Pereira RMR. Age-related reference curves of volumetric bone density, structure, and biomechanical parameters adjusted for weight and height in a population of healthy women: an HR-pQCT study. Osteoporos Int 2017; 28:1335-1346. [PMID: 27981337 DOI: 10.1007/s00198-016-3876-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Accepted: 12/08/2016] [Indexed: 10/20/2022]
Abstract
UNLABELLED In a cross-sectional cohort of 450 healthy women aged 20 to 85 years, data on the density, structure, and strength of the distal radius and tibia were obtained using high-resolution peripheral quantitative computed tomography (HR-pQCT) and were adjusted for age, weight, and height. Age-dependent patterns of change differed between the sites and between the trabecular and cortical compartments. In postmenopausal women, the trabecular bone remained relatively stable at the distal tibia, but the cortical compartment changed significantly. Cortical porosity exhibited a very weak correlation with stiffness. INTRODUCTION The aim of this study is to provide information on age-related, weight-related, and height-related changes in the volumetric bone mineral density (vBMD), structure, and biomechanical parameters of the cortical and trabecular compartments in a healthy female population using HR-pQCT. METHODS For a cross-sectional Brazilian cohort of 450 women aged 20 to 85 years, age-related reference curves of the vBMD, structure, and biomechanical parameters of the distal radius (DR) and distal tibia (DT) were constructed and adjusted for weight and height, and comparisons between premenopausal and postmenopausal women were performed. RESULTS Reference curves were obtained for all parameters. At the DR, age-related changes varied from -8.68% (cortical thickness [Ct.Th]) to 26.7% (trabecular separation [Tb.Sp]). At the DT, the changes varied from -12.4% (Ct.Th) to 26.3% (Tb.Sp). Cortical porosity (Ct.Po) exhibited the largest percent changes: 342.2% at the DR and 381.5% at the DT. In premenopausal women, Ct.Th remained constant; in postmenopausal women, structural trabecular parameters (trabecular number (Tb.N), trabecular thickness (Tb.Th), Tb.Sp) did not change, whereas cortical parameters and stiffness were significantly altered. Cortical vBMD showed the greatest absolute decrease at both sites, and the slopes were highly negative after menopause. Pearson correlations between stiffness (S) and HR-pCT parameters revealed a significant correlation between the densities and structures of the trabecular and cortical compartments. A weak correlation was observed between S and Ct.Po (DR r = -0.162, DT r = -0.273; p < 0.05). CONCLUSIONS These data provide reference curves from healthy women and demonstrate that density and structural and biomechanical parameters differ between the radius and tibia and between the trabecular and cortical compartments. In postmenopausal women, the trabecular bone remained relatively stable at the tibia site, whereas the cortical compartment changed significantly.
Collapse
Affiliation(s)
- J C Alvarenga
- Rheumatology Division, Faculdade Medicina da Universidade de São Paulo, Av. Dr. Arnaldo, 455, 3o andar, sala 3193, Sao Paulo, 01246-903, Brazil
| | - H Fuller
- Rheumatology Division, Faculdade Medicina da Universidade de São Paulo, Av. Dr. Arnaldo, 455, 3o andar, sala 3193, Sao Paulo, 01246-903, Brazil
| | - S G Pasoto
- Rheumatology Division, Faculdade Medicina da Universidade de São Paulo, Av. Dr. Arnaldo, 455, 3o andar, sala 3193, Sao Paulo, 01246-903, Brazil
| | - R M R Pereira
- Rheumatology Division, Faculdade Medicina da Universidade de São Paulo, Av. Dr. Arnaldo, 455, 3o andar, sala 3193, Sao Paulo, 01246-903, Brazil.
| |
Collapse
|
48
|
Bielesz B, Patsch JM, Fischer L, Bojic M, Winnicki W, Weber M, Cejka D. Cortical porosity not superior to conventional densitometry in identifying hemodialysis patients with fragility fracture. PLoS One 2017; 12:e0171873. [PMID: 28199411 PMCID: PMC5310770 DOI: 10.1371/journal.pone.0171873] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 01/26/2017] [Indexed: 11/23/2022] Open
Abstract
Hemodialysis (HD) patients face increased fracture risk, which is further associated with elevated risk of hospitalization and mortality. High-resolution peripheral computed tomography (HR-pQCT) has advanced our understanding of bone disease in chronic kidney disease by characterizing distinct changes in both the cortical and trabecular compartments. Increased cortical porosity (Ct.Po) has been shown to be associated with fracture in patients with osteopenia or in postmenopausal diabetic women. We tested whether the degree of Ct.Po identifies hemodialysis patients with prevalent fragility fractures in comparison to bone mineral density (BMD) assessed by dual X-ray absorptiometry (DXA). We performed a post-hoc analysis of a cross-sectional study in 76 prevalent hemodialysis patients. Markers of mineral metabolism, coronary calcification score, DXA-, and HR-pQCT-data were analyzed, and Ct.Po determined at radius and tibia. Ct.Po was significantly higher in patients with fracture but association was lost after adjusting for age and gender (tibia p = 0.228, radius p = 0.5). Instead, femoral (F) BMD neck area (p = 0.03), F T-score neck area (p = 0.03), radius (R) BMD (p = 0.03), R T-score (p = 0.03), and cortical HR-pQCT indices such as cortical area (Ct.Ar) (tibia: p = 0.01; radius: p = 0.02) and cortical thickness (Ct.Th) (tibia: p = 0.03; radius: p = 0.02) correctly classified patients with fragility fractures. Area under receiver operating characteristic curves (AUC) for Ct.Po (tibia AUC: 0.711; p = 0.01; radius AUC: 0.666; p = 0.04), Ct.Ar (tibia AUC: 0.832; p<0.001; radius AUC: 0.796; p<0.001), and F neck BMD (AUC: 0.758; p = 0.002) did not differ significantly among each other. In conclusion, measuring Ct.Po is not superior to BMD determined by DXA for identification of HD patients with fragility fracture.
Collapse
Affiliation(s)
- Bernhard Bielesz
- Division of Nephrology and Dialysis, Department of Medicine III, Medical University of Vienna, Vienna, Austria
- * E-mail:
| | - Janina M. Patsch
- Division of General Radiology and Pediatric Radiology, Department of Biomedical Imaging and Image-Guided Therapy, Vienna, Austria
| | - Lukas Fischer
- Computational Imaging Research (CIR) Laboratory, Department of Biomedical Imaging and Image-Guided Therapy, Vienna, Austria
- Software Competence Center Hagenberg, Hagenberg, Austria
| | - Marija Bojic
- Division of Nephrology and Dialysis, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Wolfgang Winnicki
- Division of Nephrology and Dialysis, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Michael Weber
- Division of General Radiology and Pediatric Radiology, Department of Biomedical Imaging and Image-Guided Therapy, Vienna, Austria
| | - Daniel Cejka
- Department of Medicine III, Nephrology, Transplantation, Rheumatology, Geriatrics, Ordensklinikum Linz, Linz, Austria
| |
Collapse
|
49
|
Gabel L, Macdonald HM, McKay HA. Sex Differences and Growth-Related Adaptations in Bone Microarchitecture, Geometry, Density, and Strength From Childhood to Early Adulthood: A Mixed Longitudinal HR-pQCT Study. J Bone Miner Res 2017; 32:250-263. [PMID: 27556581 PMCID: PMC5233447 DOI: 10.1002/jbmr.2982] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 08/10/2016] [Accepted: 08/22/2016] [Indexed: 11/09/2022]
Abstract
Sex differences in bone strength and fracture risk are well documented. However, we know little about bone strength accrual during growth and adaptations in bone microstructure, density, and geometry that accompany gains in bone strength. Thus, our objectives were to (1) describe growth related adaptations in bone microarchitecture, geometry, density, and strength at the distal tibia and radius in boys and girls; and (2) compare differences in adaptations in bone microarchitecture, geometry, density, and strength between boys and girls. We used HR-pQCT at the distal tibia (8% site) and radius (7% site) in 184 boys and 209 girls (9 to 20 years old at baseline). We aligned boys and girls on a common maturational landmark (age at peak height velocity [APHV]) and fit a mixed effects model to these longitudinal data. Importantly, boys showed 28% to 63% greater estimated bone strength across 12 years of longitudinal growth. Boys showed 28% to 80% more porous cortices compared with girls at both sites across all biological ages, except at the radius at 9 years post-APHV. However, cortical density was similar between boys and girls at all ages at both sites, except at 9 years post-APHV at the tibia when girls' values were 2% greater than boys'. Boys showed 13% to 48% greater cortical and total bone area across growth. Load-to-strength ratio was 26% to 27% lower in boys at all ages, indicating lower risk of distal forearm fracture compared with girls. Contrary to previous HR-pQCT studies that did not align boys and girls at the same biological age, we did not observe sex differences in Ct.BMD. Boys' superior bone size and strength compared with girls may confer them a protective advantage. However, boys' consistently more porous cortices may contribute to their higher fracture incidence during adolescence. Large prospective studies using HR-pQCT that target boys and girls who have sustained a fracture are needed to verify this. © 2016 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Leigh Gabel
- Department of Orthopaedics, University of British Columbia, Vancouver, Canada
- Centre for Hip Health and Mobility, Vancouver Coastal Health Research Institute, Vancouver, Canada
| | - Heather M. Macdonald
- Department of Orthopaedics, University of British Columbia, Vancouver, Canada
- Department of Family Practice, University of British Columbia, Vancouver, Canada
| | - Heather A. McKay
- Department of Orthopaedics, University of British Columbia, Vancouver, Canada
- Centre for Hip Health and Mobility, Vancouver Coastal Health Research Institute, Vancouver, Canada
- Department of Family Practice, University of British Columbia, Vancouver, Canada
| |
Collapse
|
50
|
Pratt IV, Cooper DML. A method for measuring the three-dimensional orientation of cortical canals with implications for comparative analysis of bone microstructure in vertebrates. Micron 2017; 92:32-38. [DOI: 10.1016/j.micron.2016.10.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 10/31/2016] [Accepted: 10/31/2016] [Indexed: 01/02/2023]
|