1
|
Rossiaud L, Miagoux Q, Benabides M, Reiss O, Jauze L, Jarrige M, Polvèche H, Malfatti E, Laforêt P, Ronzitti G, Nissan X, Hoch L. Galectin-3: a novel biomarker of glycogen storage disease type III. Cell Death Discov 2025; 11:173. [PMID: 40229243 PMCID: PMC11997124 DOI: 10.1038/s41420-025-02452-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 03/06/2025] [Accepted: 03/27/2025] [Indexed: 04/16/2025] Open
Abstract
Glycogen storage disease type III (GSDIII) is a rare genetic disorder leading to abnormal glycogen storage in the liver and skeletal muscle. In this study, we conducted a comparative gene expression analysis of several in vitro and in vivo models and identified galectin-3 as a potential biomarker of the disease. Interestingly, we also observed a significant decrease in galectin-3 expression in mice treated with an AAV gene therapy. Finally, galectin-3 expression was studied in muscle biopsies of GSDIII patients, confirming its increase in patient tissue. Beyond the identification of this novel biomarker, our study offers a new perspective for future therapeutic developments.
Collapse
Affiliation(s)
- Lucille Rossiaud
- Université Paris-Saclay, Université d'Evry, Inserm, IStem, UMR861, Corbeil-Essonnes, France
- IStem, CECS, Corbeil-Essonnes, France
- IStem, CECS, The Research and Innovation Team, Corbeil-Essonnes, France
- Genethon, Evry, France
- Université Paris-Saclay, Univ Evry, Inserm, Genethon, Integrare research Unit UMR_S951, Evry, France
| | - Quentin Miagoux
- Université Paris-Saclay, Université d'Evry, Inserm, IStem, UMR861, Corbeil-Essonnes, France
- IStem, CECS, Corbeil-Essonnes, France
- IStem, CECS, The Research and Innovation Team, Corbeil-Essonnes, France
| | - Manon Benabides
- Université Paris-Saclay, Université d'Evry, Inserm, IStem, UMR861, Corbeil-Essonnes, France
- IStem, CECS, Corbeil-Essonnes, France
- IStem, CECS, The Research and Innovation Team, Corbeil-Essonnes, France
| | - Océane Reiss
- Université Paris-Saclay, Université d'Evry, Inserm, IStem, UMR861, Corbeil-Essonnes, France
- IStem, CECS, Corbeil-Essonnes, France
- IStem, CECS, The Research and Innovation Team, Corbeil-Essonnes, France
| | - Louisa Jauze
- Genethon, Evry, France
- Université Paris-Saclay, Univ Evry, Inserm, Genethon, Integrare research Unit UMR_S951, Evry, France
| | - Margot Jarrige
- Université Paris-Saclay, Université d'Evry, Inserm, IStem, UMR861, Corbeil-Essonnes, France
- IStem, CECS, Corbeil-Essonnes, France
- IStem, CECS, The Research and Innovation Team, Corbeil-Essonnes, France
| | - Hélène Polvèche
- Université Paris-Saclay, Université d'Evry, Inserm, IStem, UMR861, Corbeil-Essonnes, France
- IStem, CECS, Corbeil-Essonnes, France
- IStem, CECS, The Research and Innovation Team, Corbeil-Essonnes, France
| | - Edoardo Malfatti
- Reference Center for Neuromuscular Disorders, APHP Henri Mondor University Hospital, Créteil, France
- Université Paris Est Créteil, Inserm, U955, IMRB, Créteil, France
| | - Pascal Laforêt
- Neurology Department, Nord/Est/Île-de-France Neuromuscular Reference Center, FHU PHENIX, AP-HP, Raymond-Poincaré Hospital, Garches, France
| | - Giuseppe Ronzitti
- Genethon, Evry, France
- Université Paris-Saclay, Univ Evry, Inserm, Genethon, Integrare research Unit UMR_S951, Evry, France
| | - Xavier Nissan
- Université Paris-Saclay, Université d'Evry, Inserm, IStem, UMR861, Corbeil-Essonnes, France
- IStem, CECS, Corbeil-Essonnes, France
- IStem, CECS, The Research and Innovation Team, Corbeil-Essonnes, France
| | - Lucile Hoch
- Université Paris-Saclay, Université d'Evry, Inserm, IStem, UMR861, Corbeil-Essonnes, France.
- IStem, CECS, Corbeil-Essonnes, France.
- IStem, CECS, The Research and Innovation Team, Corbeil-Essonnes, France.
| |
Collapse
|
2
|
Kim JH, Lee Y, Hwang S, Kim D, Lee BH, Kim GH, Yoo HW, Choi JH. Endocrine Complications in Hepatic Glycogen Storage Diseases: A Long-term Perspective. Exp Clin Endocrinol Diabetes 2025; 133:83-91. [PMID: 39419286 DOI: 10.1055/a-2444-4320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Patients with a hepatic type of glycogen storage diseases (GSDs) can manifest endocrine features such as hypoglycemia, dyslipidemia, or osteoporosis. This study aimed to investigate the long-term endocrine consequences in patients with hepatic GSDs.This study included 64 patients from 52 families with hepatic GSDs including GSD type Ia (41 patients from 37 families), Ib (3 unrelated), III (8 from 6 families), IV (1 patient), and IX (11 from 5 families). All patients were genetically confirmed. Clinical and endocrine findings were retrospectively analyzed.The median age at diagnosis and current age were 2.4 years (range, 0.1-42.4 years) and 17.6 years (range, 1.0-47.8 years), respectively. The mean height SDS at diagnosis was -3.5±1.4, and short stature was observed in 35.6% of patients. Patients diagnosed after the age of 3.4 years exhibited a high risk of short stature (OR=36.1; P-value<0.001). Among 33 patients who reached the final height, 23 (69.7%) showed delayed puberty. Hypertriglyceridemia was observed in 46 patients (71.9%), whereas 25 patients (39%) had elevated low-density lipoprotein cholesterol levels during the follow-up period. Among 24 patients who underwent dual-energy X-ray absorptiometry, 22 showed a low bone mineral density Z-score of -3.0±1.3 at the L-spine.This study described the long-term endocrine consequences in patients with hepatic GSDs. Pediatric endocrinologists should be aware of the presenting features and long-term endocrine sequelae of GSDs to provide proper management and decrease its morbidities.
Collapse
Affiliation(s)
- Ja Hye Kim
- Department of Pediatrics, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea (the Republic of)
| | - Yena Lee
- Department of Pediatrics, Hallym University Sacred Heart Hospital, Hallym University College of Medicine, Anyang, Korea (the Republic of)
| | - Soojin Hwang
- Department of Pediatrics, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea (the Republic of)
| | - Dohyung Kim
- Department of Pediatrics, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea (the Republic of)
| | - Beom Hee Lee
- Department of Pediatrics, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea (the Republic of)
- Medical Genetics Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea (the Republic of)
| | - Gu-Hwan Kim
- Medical Genetics Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea (the Republic of)
| | - Han-Wook Yoo
- Department of Pediatrics, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea (the Republic of)
| | - Jin-Ho Choi
- Department of Pediatrics, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea (the Republic of)
| |
Collapse
|
3
|
Kalkan Uçar S, Altınok YA, Mansuroglu Y, Canda E, Yazıcı H, Çelik MY, Erdem F, Yanbolu AY, Ülger Z, Çoker M. Long-term personalized high-protein, high-fat diet in pediatric patients with glycogen storage disease type IIIa: Evaluation of myopathy, metabolic control, physical activity, growth, and dietary compliance. J Inherit Metab Dis 2024; 47:1001-1017. [PMID: 38623712 DOI: 10.1002/jimd.12741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 03/21/2024] [Accepted: 04/02/2024] [Indexed: 04/17/2024]
Abstract
Dietary lipid manipulation has recently been proposed for managing glycogen storage disease (GSD) type IIIa. This study aimed to evaluate the myopathic, cardiac, and metabolic status, physical activity, growth, and dietary compliance of a personalized diet high in protein and fat for 24 months. Of 31 patients with type IIIa GSD, 12 met the inclusion criteria. Of these, 10 patients (mean age 11.2 ± 7.4 years) completed the study. Patients were prescribed a personalized high-protein, high-fat diet, comprising 3.0-3.5 g/kg/day of protein and 3.0-4.5 g/kg/day of fat, constituting 18.5%-28% and 70.5%-75.7% of daily energy, respectively. Dietary compliance was ensured and assessed via the regular administration of questionnaires. Our results revealed consistent and significant decreases of 22%, 54%, and 30% in the creatinine kinase, creatine kinase-myocardial band, and lactate dehydrogenase levels, respectively. Echocardiography revealed improvements in the Z-scores of the left ventricular mass and interventricular septum thickness. A significant increase in body muscle mass was observed, and a higher score was achieved using the Daily Activity Questionnaire. Growth monitoring revealed an arrest in the height-SDS at the 6th and 12th months, followed by subsequent improvement at the end of the second year. A gradual and persistent decline in the periods of hypo- and hyperglycemia has been reported. Biotinidase activity decreased, whereas hepatosteatosis increased and then decreased by the end of the study. Implementing a high-protein, high-fat diet and monitoring key parameters in patients with type IIIa GSD can lead to myopathic and cardiac improvements and increased physical activity.
Collapse
Affiliation(s)
- Sema Kalkan Uçar
- Department of Pediatrics, Division of Metabolism and Nutrition, Ege University Medical Faculty, Izmir, Turkey
| | - Yasemin Atik Altınok
- Department of Pediatrics, Division of Metabolism and Nutrition, Ege University Medical Faculty, Izmir, Turkey
| | - Yelda Mansuroglu
- Department of Pediatrics, Division of Metabolism and Nutrition, Ege University Medical Faculty, Izmir, Turkey
| | - Ebru Canda
- Department of Pediatrics, Division of Metabolism and Nutrition, Ege University Medical Faculty, Izmir, Turkey
| | - Havva Yazıcı
- Department of Pediatrics, Division of Metabolism and Nutrition, Ege University Medical Faculty, Izmir, Turkey
| | - Merve Yoldaş Çelik
- Department of Pediatrics, Division of Metabolism and Nutrition, Ege University Medical Faculty, Izmir, Turkey
| | - Fehime Erdem
- Department of Pediatrics, Division of Metabolism and Nutrition, Ege University Medical Faculty, Izmir, Turkey
| | - Ayşe Yüksel Yanbolu
- Department of Pediatrics, Division of Metabolism and Nutrition, Ege University Medical Faculty, Izmir, Turkey
| | - Zülal Ülger
- Department of Pediatrics, Division of Pediatric Cardiology, Ege University Medical Faculty, Izmir, Turkey
| | - Mahmut Çoker
- Department of Pediatrics, Division of Metabolism and Nutrition, Ege University Medical Faculty, Izmir, Turkey
| |
Collapse
|
4
|
Rossi A, Simeoli C, Pivonello R, Salerno M, Rosano C, Brunetti B, Strisciuglio P, Colao A, Parenti G, Melis D, Derks TGJ. Endocrine involvement in hepatic glycogen storage diseases: pathophysiology and implications for care. Rev Endocr Metab Disord 2024; 25:707-725. [PMID: 38556561 PMCID: PMC11294274 DOI: 10.1007/s11154-024-09880-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/23/2024] [Indexed: 04/02/2024]
Abstract
Hepatic glycogen storage diseases constitute a group of disorders due to defects in the enzymes and transporters involved in glycogen breakdown and synthesis in the liver. Although hypoglycemia and hepatomegaly are the primary manifestations of (most of) hepatic GSDs, involvement of the endocrine system has been reported at multiple levels in individuals with hepatic GSDs. While some endocrine abnormalities (e.g., hypothalamic‑pituitary axis dysfunction in GSD I) can be direct consequence of the genetic defect itself, others (e.g., osteopenia in GSD Ib, insulin-resistance in GSD I and GSD III) may be triggered by the (dietary/medical) treatment. Being aware of the endocrine abnormalities occurring in hepatic GSDs is essential (1) to provide optimized medical care to this group of individuals and (2) to drive research aiming at understanding the disease pathophysiology. In this review, a thorough description of the endocrine manifestations in individuals with hepatic GSDs is presented, including pathophysiological and clinical implications.
Collapse
Affiliation(s)
- Alessandro Rossi
- Section of Metabolic Diseases, Beatrix Children's Hospital, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.
- Department of Translational Medicine, Section of Pediatrics, University of Naples "Federico II", Naples, Italy.
| | - Chiara Simeoli
- Dipartmento di Medicina Clinica e Chirurgia, Sezione di Endocrinologia, Diabetologia ed Andrologia, University of Naples "Federico II", Naples, Italy
| | - Rosario Pivonello
- Dipartmento di Medicina Clinica e Chirurgia, Sezione di Endocrinologia, Diabetologia ed Andrologia, University of Naples "Federico II", Naples, Italy
| | - Mariacarolina Salerno
- Department of Translational Medicine, Section of Pediatrics, University of Naples "Federico II", Naples, Italy
| | - Carmen Rosano
- Department of Translational Medicine, Section of Pediatrics, University of Naples "Federico II", Naples, Italy
| | - Barbara Brunetti
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", Section of Pediatrics, University of Salerno, Baronissi, Italy
| | - Pietro Strisciuglio
- Department of Translational Medicine, Section of Pediatrics, University of Naples "Federico II", Naples, Italy
| | - Annamaria Colao
- Dipartmento di Medicina Clinica e Chirurgia, Sezione di Endocrinologia, Diabetologia ed Andrologia, University of Naples "Federico II", Naples, Italy
| | - Giancarlo Parenti
- Department of Translational Medicine, Section of Pediatrics, University of Naples "Federico II", Naples, Italy
- Telethon Institute of Genetics and Medicine, Pozzuoli, Italy
| | - Daniela Melis
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", Section of Pediatrics, University of Salerno, Baronissi, Italy
| | - Terry G J Derks
- Section of Metabolic Diseases, Beatrix Children's Hospital, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
5
|
Wicker C, Cano A, Decostre V, Froissart R, Maillot F, Perry A, Petit F, Voillot C, Wahbi K, Wenz J, Laforêt P, Labrune P. French recommendations for the management of glycogen storage disease type III. Eur J Med Res 2023; 28:253. [PMID: 37488624 PMCID: PMC10364360 DOI: 10.1186/s40001-023-01212-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 07/05/2023] [Indexed: 07/26/2023] Open
Abstract
The aim of the Protocole National De Diagnostic et de Soins/French National Protocol for Diagnosis and Healthcare (PNDS) is to provide advice for health professionals on the optimum care provision and pathway for patients with glycogen storage disease type III (GSD III).The protocol aims at providing tools that make the diagnosis, defining the severity and different damages of the disease by detailing tests and explorations required for monitoring and diagnosis, better understanding the different aspects of the treatment, defining the modalities and organisation of the monitoring. This is a practical tool, to which health care professionals can refer. PNDS cannot, however, predict all specific cases, comorbidities, therapeutic particularities or hospital care protocols, and does not seek to serve as a substitute for the individual responsibility of the physician in front of his/her patient.
Collapse
Affiliation(s)
- Camille Wicker
- Maladies métaboliques et hépatiques pédiatriques, CHRU Hautepierre, 1 Avenue Molière, 67200, Strasbourg, France
| | - Aline Cano
- Centre de Référence des Maladies Héréditaires du Métabolisme- CHU La Timone Enfants, 264 rue Saint-Pierre, 13385, Marseille cedex 5, France
| | - Valérie Decostre
- Institut de myologie, Groupe Hospitalier Pitié-Salpêtrière, APHP. Université Paris Sorbonne, 47-83 boulevard de l'Hôpital, 75651, Paris Cedex 13, France
| | - Roseline Froissart
- Centre de Biologie et pathologie Est, maladies héréditaires du métabolisme, HFME, 59, Boulevard Pinel, 69677, Bron Cedex, France
| | - François Maillot
- Médecine Interne, Centre Référence Maladies Métaboliques, hôpital Bretonneau, 2 boulevard Tonnelé, 37044, Tours cedex 9, France
| | - Ariane Perry
- Pédiatrie, Centre de Référence Maladies Héréditaires du Métabolisme Hépatique, Hôpital Antoine Béclère, APHP Université Paris-Saclay, 92141, Clamart Cedex, France
| | - François Petit
- Laboratoire de génétique, Hôpital Antoine Béclère, APHP. Université Paris-Saclay, 92141, Clamart Cedex, France
| | - Catherine Voillot
- Pédiatrie, Centre de Référence Maladies Héréditaires du Métabolisme Hépatique, Hôpital Antoine Béclère, APHP Université Paris-Saclay, 92141, Clamart Cedex, France
| | - Karim Wahbi
- Service de cardiologie - Hôpital Cochin, APHP. Université Paris Centre, 27 rue du Faubourg Saint-Jacques, 75014, Paris, France
| | - Joëlle Wenz
- Service d'hépatologie et transplantation hépatique pédiatriques, hôpital Bicêtre, APHP. Université Paris-Saclay, 94276, Le Kremlin Bicêtre Cedex, France
| | - Pascal Laforêt
- Neurologie, Centre de Référence Maladies Neuromusculaires Nord/Est/Ile de France Hôpital Raymond Poincaré, AP-HP, Université Paris Saclay, 104 Boulevard Raymond Poincaré, 92380, Garches, France
| | - Philippe Labrune
- Pédiatrie, Centre de Référence Maladies Héréditaires du Métabolisme Hépatique, Hôpital Antoine Béclère, APHP Université Paris-Saclay, 92141, Clamart Cedex, France.
| |
Collapse
|
6
|
Gümüş E, Özen H. Glycogen storage diseases: An update. World J Gastroenterol 2023; 29:3932-3963. [PMID: 37476587 PMCID: PMC10354582 DOI: 10.3748/wjg.v29.i25.3932] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/15/2023] [Accepted: 04/30/2023] [Indexed: 06/28/2023] Open
Abstract
Glycogen storage diseases (GSDs), also referred to as glycogenoses, are inherited metabolic disorders of glycogen metabolism caused by deficiency of enzymes or transporters involved in the synthesis or degradation of glycogen leading to aberrant storage and/or utilization. The overall estimated GSD incidence is 1 case per 20000-43000 live births. There are over 20 types of GSD including the subtypes. This heterogeneous group of rare diseases represents inborn errors of carbohydrate metabolism and are classified based on the deficient enzyme and affected tissues. GSDs primarily affect liver or muscle or both as glycogen is particularly abundant in these tissues. However, besides liver and skeletal muscle, depending on the affected enzyme and its expression in various tissues, multiorgan involvement including heart, kidney and/or brain may be seen. Although GSDs share similar clinical features to some extent, there is a wide spectrum of clinical phenotypes. Currently, the goal of treatment is to maintain glucose homeostasis by dietary management and the use of uncooked cornstarch. In addition to nutritional interventions, pharmacological treatment, physical and supportive therapies, enzyme replacement therapy (ERT) and organ transplantation are other treatment approaches for both disease manifestations and long-term complications. The lack of a specific therapy for GSDs has prompted efforts to develop new treatment strategies like gene therapy. Since early diagnosis and aggressive treatment are related to better prognosis, physicians should be aware of these conditions and include GSDs in the differential diagnosis of patients with relevant manifestations including fasting hypoglycemia, hepatomegaly, hypertransaminasemia, hyperlipidemia, exercise intolerance, muscle cramps/pain, rhabdomyolysis, and muscle weakness. Here, we aim to provide a comprehensive review of GSDs. This review provides general characteristics of all types of GSDs with a focus on those with liver involvement.
Collapse
Affiliation(s)
- Ersin Gümüş
- Department of Pediatric Gastroenterology, Hepatology and Nutrition, Hacettepe University Faculty of Medicine, Ihsan Dogramaci Children’s Hospital, Ankara 06230, Turkey
| | - Hasan Özen
- Department of Pediatric Gastroenterology, Hepatology and Nutrition, Hacettepe University Faculty of Medicine, Ihsan Dogramaci Children’s Hospital, Ankara 06230, Turkey
| |
Collapse
|
7
|
Lin L, Guo Z, He E, Long X, Wang D, Zhang Y, Guo W, Wei Q, He W, Wu W, Li J, Wo L, Hong D, Zheng J, He M, Zhao Q. SIRT2 regulates extracellular vesicle-mediated liver-bone communication. Nat Metab 2023; 5:821-841. [PMID: 37188819 PMCID: PMC10229428 DOI: 10.1038/s42255-023-00803-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 04/11/2023] [Indexed: 05/17/2023]
Abstract
The interplay between liver and bone metabolism remains largely uncharacterized. Here, we uncover a mechanism of liver-bone crosstalk regulated by hepatocyte SIRT2. We demonstrate that hepatocyte SIRT2 expression is increased in aged mice and elderly humans. Liver-specific SIRT2 deficiency inhibits osteoclastogenesis and alleviates bone loss in mouse models of osteoporosis. We identify leucine-rich α-2-glycoprotein 1 (LRG1) as a functional cargo in hepatocyte-derived small extracellular vesicles (sEVs). In SIRT2-deficient hepatocytes, LRG1 levels in sEVs are upregulated, leading to increased transfer of LRG1 to bone-marrow-derived monocytes (BMDMs), and in turn, to inhibition of osteoclast differentiation via reduced nuclear translocation of NF-κB p65. Treatment with sEVs carrying high levels of LRG1 inhibits osteoclast differentiation in human BMDMs and in mice with osteoporosis, resulting in attenuated bone loss in mice. Furthermore, the plasma level of sEVs carrying LRG1 is positively correlated with bone mineral density in humans. Thus, drugs targeting hepatocyte-osteoclast communication may constitute a promising therapeutic strategy for primary osteoporosis.
Collapse
Affiliation(s)
- Longshuai Lin
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Ministry of Education, Shanghai Frontiers Science Center of Cellular Homeostasis and Human Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Pathology, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Zengya Guo
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Enjun He
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xidai Long
- Department of Pathology, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Difei Wang
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Ministry of Education, Shanghai Frontiers Science Center of Cellular Homeostasis and Human Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yingting Zhang
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Ministry of Education, Shanghai Frontiers Science Center of Cellular Homeostasis and Human Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Weihong Guo
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qian Wei
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Ministry of Education, Shanghai Frontiers Science Center of Cellular Homeostasis and Human Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wei He
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Ministry of Education, Shanghai Frontiers Science Center of Cellular Homeostasis and Human Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wanying Wu
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Ministry of Education, Shanghai Frontiers Science Center of Cellular Homeostasis and Human Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jingchi Li
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Ministry of Education, Shanghai Frontiers Science Center of Cellular Homeostasis and Human Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lulu Wo
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Ministry of Education, Shanghai Frontiers Science Center of Cellular Homeostasis and Human Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Dengli Hong
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Ministry of Education, Shanghai Frontiers Science Center of Cellular Homeostasis and Human Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Junke Zheng
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Ministry of Education, Shanghai Frontiers Science Center of Cellular Homeostasis and Human Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ming He
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Ministry of Education, Shanghai Frontiers Science Center of Cellular Homeostasis and Human Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Department of Pathology, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China.
| | - Qinghua Zhao
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
8
|
Kumru Akin B, Ozturk Hismi B, Daly A. Improvement in hypertrophic cardiomyopathy after using a high-fat, high-protein and low-carbohydrate diet in a non-adherent child with glycogen storage disease type IIIa. Mol Genet Metab Rep 2022; 32:100904. [PMID: 36046398 PMCID: PMC9421467 DOI: 10.1016/j.ymgmr.2022.100904] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/23/2022] [Accepted: 07/23/2022] [Indexed: 11/26/2022] Open
Abstract
Background Glycogen storage diseases type IIIa and b (GSDIII) are rare inherited metabolic disorders that are caused by deficiencies of the glycogen debranching enzyme, resulting in the accumulation of abnormal glycogen (‘limit dextrin’) in the muscles. The cardiac storage of limit dextrin causes a form of cardiomyopathy similar to primary hypertrophic cardiomyopathy. Treatment with a high fat diet is controversial but we report a positive outcome in a child with cardiomyopathy. Case presentation A 9-year-old boy with GSDIIIa developed left ventricular hypertrophy at 4.3 years of age. A high-fat (50%), high protein (20%), low-carbohydrates (30%) diet was introduced. After 18 months, echocardiogram, biochemical and clinical parameters improved (Creatine Kinase (CK), 1628➔1125 U/L; left ventricular outflow tract (LVOT), 35➔20 mmHg; interventricular septum (IVS), 21➔10 mm). The diet was abandoned for 2 years resulting in reversal of symptoms, but recommencement showed improvement after 6 months. Conclusion A high fat, high protein and low carbohydrate diet was successful in reversing cardiomyopathy. This form of treatment should be considered in children with GSD IIIa with cardiomyopathy.
Collapse
Affiliation(s)
- Burcu Kumru Akin
- Division of Nutrition and Diet, Gaziantep Cengiz Gökçek Maternity and Children's Hospital, Gaziantep, Turkey
| | - Burcu Ozturk Hismi
- Division of Pediatric Metabolic Disorders and Nutrition, Marmara University School of Medicine, Istanbul, Turkey
| | - Anne Daly
- Birmingham Women's and Children's Hospital, NHS Foundation Trust, Birmingham B4 6NH, UK
| |
Collapse
|
9
|
Hijazi G, Paschall A, Young SP, Smith B, Case LE, Boggs T, Amarasekara S, Austin SL, Pendyal S, El-Gharbawy A, Deak KL, Muir AJ, Kishnani PS. A retrospective longitudinal study and comprehensive review of adult patients with glycogen storage disease type III. Mol Genet Metab Rep 2021; 29:100821. [PMID: 34820282 PMCID: PMC8600151 DOI: 10.1016/j.ymgmr.2021.100821] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 11/09/2021] [Indexed: 12/03/2022] Open
Abstract
INTRODUCTION A deficiency of glycogen debrancher enzyme in patients with glycogen storage disease type III (GSD III) manifests with hepatic, cardiac, and muscle involvement in the most common subtype (type a), or with only hepatic involvement in patients with GSD IIIb. OBJECTIVE AND METHODS To describe longitudinal biochemical, radiological, muscle strength and ambulation, liver histopathological findings, and clinical outcomes in adults (≥18 years) with glycogen storage disease type III, by a retrospective review of medical records. RESULTS Twenty-one adults with GSD IIIa (14 F & 7 M) and four with GSD IIIb (1 F & 3 M) were included in this natural history study. At the most recent visit, the median (range) age and follow-up time were 36 (19-68) and 16 years (0-41), respectively. For the entire cohort: 40% had documented hypoglycemic episodes in adulthood; hepatomegaly and cirrhosis were the most common radiological findings; and 28% developed decompensated liver disease and portal hypertension, the latter being more prevalent in older patients. In the GSD IIIa group, muscle weakness was a major feature, noted in 89% of the GSD IIIa cohort, a third of whom depended on a wheelchair or an assistive walking device. Older individuals tended to show more severe muscle weakness and mobility limitations, compared with younger adults. Asymptomatic left ventricular hypertrophy (LVH) was the most common cardiac manifestation, present in 43%. Symptomatic cardiomyopathy and reduced ejection fraction was evident in 10%. Finally, a urinary biomarker of glycogen storage (Glc4) was significantly associated with AST, ALT and CK. CONCLUSION GSD III is a multisystem disorder in which a multidisciplinary approach with regular clinical, biochemical, radiological and functional (physical therapy assessment) follow-up is required. Despite dietary modification, hepatic and myopathic disease progression is evident in adults, with muscle weakness as the major cause of morbidity. Consequently, definitive therapies that address the underlying cause of the disease to correct both liver and muscle are needed.
Collapse
Key Words
- AFP, Alpha-fetoprotein
- ALT, Alanine aminotransferase
- AST, Aspartate aminotransferase
- BG, Blood glucose
- BMI, Body mass index
- CEA, Carcinoembryonic antigen
- CPK, Creatine phosphokinase
- CT scan, Computerized tomography scan
- Cardiomyopathy
- Cirrhosis
- DM, Diabetes mellitus
- GDE, Glycogen debrancher enzyme
- GGT, Gamma glutamyl transferase
- GSD, Glycogen storage disease
- Glc4, Glucose tetrasaccharide
- Glycogen storage disease type III (GSD III)
- HDL, High density lipoprotein
- Hypoglycemia
- LDL, Low density lipoproteins
- LT, liver transplantation.
- Left ventricular hypertrophy (LVH)
- MRI, Magnetic resonance imaging
- TGs, Triglycerides
- US, Ultrasound
- and myopathy
Collapse
Affiliation(s)
- Ghada Hijazi
- Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center, Durham, NC, USA
| | - Anna Paschall
- Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center, Durham, NC, USA
| | - Sarah P. Young
- Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center, Durham, NC, USA
| | - Brian Smith
- Division of Neonatal-Perinatal Medicine, Department of Pediatrics, Duke University Medical Center, Durham, NC, USA
| | - Laura E. Case
- Doctor of Physical Therapy Division, Department of Orthopedic Surgery, Duke University School of Medicine, Durham, NC, USA
| | - Tracy Boggs
- Duke University Health System, Department of Physical Therapy and Occupational Therapy, USA
| | | | - Stephanie L. Austin
- Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center, Durham, NC, USA
| | - Surekha Pendyal
- Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center, Durham, NC, USA
| | - Areeg El-Gharbawy
- Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center, Durham, NC, USA
| | | | - Andrew J. Muir
- Division of Gastroenterology, Duke University School of Medicine, Durham, NC, USA
| | - Priya S. Kishnani
- Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center, Durham, NC, USA
| |
Collapse
|
10
|
Bone Mineral Density in Patients with Hepatic Glycogen Storage Diseases. Nutrients 2021; 13:nu13092987. [PMID: 34578865 PMCID: PMC8469033 DOI: 10.3390/nu13092987] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 01/18/2021] [Accepted: 02/06/2021] [Indexed: 01/10/2023] Open
Abstract
The association between bone mineral density (BMD) and hepatic glycogen storage diseases (GSDs) is still unclear. To evaluate the BMD of patients with GSD I, IIIa and IXα, a cross-sectional study was performed, including 23 patients (GSD Ia = 13, Ib = 5, IIIa = 2 and IXα = 3; median age = 11.9 years; IQ = 10.9–20.1) who underwent a dual-energy X-ray absorptiometry (DXA). Osteocalcin (OC, n = 18), procollagen type 1 N-terminal propeptide (P1NP, n = 19), collagen type 1 C-terminal telopeptide (CTX, n = 18) and 25-OH Vitamin D (n = 23) were also measured. The participants completed a 3-day food diary (n = 20). Low BMD was defined as a Z-score ≤ −2.0. All participants were receiving uncooked cornstarch (median dosage = 6.3 g/kg/day) at inclusion, and 11 (47.8%) presented good metabolic control. Three (13%) patients (GSD Ia = 1, with poor metabolic control; IIIa = 2, both with high CPK levels) had a BMD ≤ −2.0. CTX, OC and P1NP correlated negatively with body weight and age. 25-OH Vitamin D concentration was decreased in seven (30.4%) patients. Our data suggest that patients with hepatic GSDs may have low BMD, especially in the presence of muscular involvement and poor metabolic control. Systematic nutritional monitoring of these patients is essential.
Collapse
|
11
|
Molares-Vila A, Corbalán-Rivas A, Carnero-Gregorio M, González-Cespón JL, Rodríguez-Cerdeira C. Biomarkers in Glycogen Storage Diseases: An Update. Int J Mol Sci 2021; 22:4381. [PMID: 33922238 PMCID: PMC8122709 DOI: 10.3390/ijms22094381] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 04/10/2021] [Accepted: 04/19/2021] [Indexed: 01/09/2023] Open
Abstract
Glycogen storage diseases (GSDs) are a group of 19 hereditary diseases caused by a lack of one or more enzymes involved in the synthesis or degradation of glycogen and are characterized by deposits or abnormal types of glycogen in tissues. Their frequency is very low and they are considered rare diseases. Except for X-linked type IX, the different types are inherited in an autosomal recessive pattern. In this study we reviewed the literature from 1977 to 2020 concerning GSDs, biomarkers, and metabolic imbalances in the symptoms of some GSDs. Most of the reported studies were performed with very few patients. Classification of emerging biomarkers between different types of diseases (hepatics GSDs, McArdle and PDs and other possible biomarkers) was done for better understanding. Calprotectin for hepatics GSDs and urinary glucose tetrasaccharide for Pompe disease have been approved for clinical use, and most of the markers mentioned in this review only need clinical validation, as a final step for their routine use. Most of the possible biomarkers are implied in hepatocellular adenomas, cardiomyopathies, in malfunction of skeletal muscle, in growth retardation, neutropenia, osteopenia and bowel inflammation. However, a few markers have lost interest due to a great variability of results, which is the case of biotinidase, actin alpha 2, smooth muscle, aorta and fibroblast growth factor receptor 4. This is the first review published on emerging biomarkers with a potential application to GSDs.
Collapse
Affiliation(s)
- Alberto Molares-Vila
- Bioinformatics Platform, Health Research Institute in Santiago de Compostela (IDIS), SERGAS-USC, 15706 Santiago de Compostela, Spain;
| | - Alberte Corbalán-Rivas
- Local Office of Health Inspection, Health Ministry at Galician Autonomous Region, 27880 Burela, Spain;
| | - Miguel Carnero-Gregorio
- Department of Molecular Diagnosis (Arrays Division), Institute of Cellular and Molecular Studies (ICM), 27003 Lugo, Spain;
- Efficiency, Quality, and Costs in Health Services Research Group (EFISALUD), Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, 36213 Vigo, Spain;
| | - José Luís González-Cespón
- Efficiency, Quality, and Costs in Health Services Research Group (EFISALUD), Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, 36213 Vigo, Spain;
| | - Carmen Rodríguez-Cerdeira
- Efficiency, Quality, and Costs in Health Services Research Group (EFISALUD), Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, 36213 Vigo, Spain;
- Dermatology Department, Complexo Hospitalario Universitario de Vigo (CHUVI), Meixoeiro Hospital, SERGAS, 36213 Vigo, Spain
| |
Collapse
|
12
|
Casertano A, Rossi A, Fecarotta S, Rosanio FM, Moracas C, Di Candia F, Parenti G, Franzese A, Mozzillo E. An Overview of Hypoglycemia in Children Including a Comprehensive Practical Diagnostic Flowchart for Clinical Use. Front Endocrinol (Lausanne) 2021; 12:684011. [PMID: 34408725 PMCID: PMC8366517 DOI: 10.3389/fendo.2021.684011] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 05/31/2021] [Indexed: 02/04/2023] Open
Abstract
Hypoglycemia is the result of defects/impairment in glucose homeostasis. The main etiological causes are metabolic and/or endocrine and/or other congenital disorders. Despite hypoglycemia is one of the most common emergencies in neonatal age and childhood, no consensus on the definition and diagnostic work-up exists yet. Aims of this review are to present the current age-related definitions of hypoglycemia in neonatal-pediatric age, to offer a concise and practical overview of its main causes and management and to discuss the current diagnostic-therapeutic approaches. Since a systematic and prompt approach to diagnosis and therapy is essential to prevent hypoglycemic brain injury and long-term neurological complications in children, a comprehensive diagnostic flowchart is also proposed.
Collapse
Affiliation(s)
- Alberto Casertano
- Department of Translational Medical Science, Section of Pediatrics, Regional Center of Pediatric Diabetes, Federico II University of Naples, Naples, Italy
| | - Alessandro Rossi
- Department of Translational Medical Science, Section of Pediatrics, Metabolic Diseases Unit, Federico II University of Naples, Naples, Italy
- Section of Metabolic Diseases, Beatrix Children’s Hospital, University Medical Centre Groningen, University of Groningen, Groningen, Netherlands
| | - Simona Fecarotta
- Department of Translational Medical Science, Section of Pediatrics, Metabolic Diseases Unit, Federico II University of Naples, Naples, Italy
- *Correspondence: Enza Mozzillo, ; Simona Fecarotta, ;
| | - Francesco Maria Rosanio
- Department of Translational Medical Science, Section of Pediatrics, Regional Center of Pediatric Diabetes, Federico II University of Naples, Naples, Italy
| | - Cristina Moracas
- Department of Translational Medical Science, Section of Pediatrics, Federico II University of Naples, Naples, Italy
| | - Francesca Di Candia
- Department of Translational Medical Science, Section of Pediatrics, Regional Center of Pediatric Diabetes, Federico II University of Naples, Naples, Italy
| | - Giancarlo Parenti
- Department of Translational Medical Science, Section of Pediatrics, Metabolic Diseases Unit, Federico II University of Naples, Naples, Italy
- Telethon Institute of Genetics and Medicine, Pozzuoli, Italy
| | - Adriana Franzese
- Department of Translational Medical Science, Section of Pediatrics, Regional Center of Pediatric Diabetes, Federico II University of Naples, Naples, Italy
| | - Enza Mozzillo
- Department of Translational Medical Science, Section of Pediatrics, Regional Center of Pediatric Diabetes, Federico II University of Naples, Naples, Italy
- *Correspondence: Enza Mozzillo, ; Simona Fecarotta, ;
| |
Collapse
|
13
|
Role of Metabolism in Bone Development and Homeostasis. Int J Mol Sci 2020; 21:ijms21238992. [PMID: 33256181 PMCID: PMC7729585 DOI: 10.3390/ijms21238992] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 11/22/2020] [Accepted: 11/25/2020] [Indexed: 02/07/2023] Open
Abstract
Carbohydrates, fats, and proteins are the underlying energy sources for animals and are catabolized through specific biochemical cascades involving numerous enzymes. The catabolites and metabolites in these metabolic pathways are crucial for many cellular functions; therefore, an imbalance and/or dysregulation of these pathways causes cellular dysfunction, resulting in various metabolic diseases. Bone, a highly mineralized organ that serves as a skeleton of the body, undergoes continuous active turnover, which is required for the maintenance of healthy bony components through the deposition and resorption of bone matrix and minerals. This highly coordinated event is regulated throughout life by bone cells such as osteoblasts, osteoclasts, and osteocytes, and requires synchronized activities from different metabolic pathways. Here, we aim to provide a comprehensive review of the cellular metabolism involved in bone development and homeostasis, as revealed by mouse genetic studies.
Collapse
|
14
|
Rossi A, Hoogeveen IJ, Bastek VB, de Boer F, Montanari C, Meyer U, Maiorana A, Bordugo A, Dianin A, Campana C, Rigoldi M, Kishnani PS, Pendyal S, Strisciuglio P, Gasperini S, Parenti G, Parini R, Paci S, Melis D, Derks TGJ. Dietary lipids in glycogen storage disease type III: A systematic literature study, case studies, and future recommendations. J Inherit Metab Dis 2020; 43:770-777. [PMID: 32064649 PMCID: PMC7383479 DOI: 10.1002/jimd.12224] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 02/06/2020] [Accepted: 02/12/2020] [Indexed: 12/28/2022]
Abstract
A potential role of dietary lipids in the management of hepatic glycogen storage diseases (GSDs) has been proposed, but no consensus on management guidelines exists. The aim of this study was to describe current experiences with dietary lipid manipulations in hepatic GSD patients. An international study was set up to identify published and unpublished cases describing hepatic GSD patients with a dietary lipid manipulation. A literature search was performed according to the Cochrane Collaboration methodology through PubMed and EMBASE (up to December 2018). All delegates who attended the dietetics session at the IGSD2017, Groningen were invited to share unpublished cases. Due to multiple biases, only data on GSDIII were presented. A total of 28 cases with GSDIII and a dietary lipid manipulation were identified. Main indications were cardiomyopathy and/or myopathy. A high fat diet was the most common dietary lipid manipulation. A decline in creatine kinase concentrations (n = 19, P < .001) and a decrease in cardiac hypertrophy in paediatric GSDIIIa patients (n = 7, P < .01) were observed after the introduction with a high fat diet. This study presents an international cohort of GSDIII patients with different dietary lipid manipulations. High fat diet may be beneficial in paediatric GSDIIIa patients with cardiac hypertrophy, but careful long-term monitoring for potential complications is warranted, such as growth restriction, liver inflammation, and hepatocellular carcinoma development.
Collapse
Affiliation(s)
- Alessandro Rossi
- Department of Translational Medicine, Section of PediatricsUniversity of Naples “Federico II”NaplesItaly
| | - Irene J. Hoogeveen
- Section of Metabolic DiseasesBeatrix Children's Hospital, University Medical Center Groningen, University of GroningenGroningenThe Netherlands
| | - Vanessa B. Bastek
- Section of Metabolic DiseasesBeatrix Children's Hospital, University Medical Center Groningen, University of GroningenGroningenThe Netherlands
| | - Foekje de Boer
- Section of Metabolic DiseasesBeatrix Children's Hospital, University Medical Center Groningen, University of GroningenGroningenThe Netherlands
| | - Chiara Montanari
- Department of PediatricsSan Paolo Hospital, ASST Santi Paolo e Carlo, University of MilanMilanItaly
| | - Uta Meyer
- Department of PediatricsHannover Medical SchoolHannoverGermany
| | - Arianna Maiorana
- Division of Metabolic Diseases, Department of Pediatric SpecialtiesBambino Gesù Children's HospitalRomeItaly
| | - Andrea Bordugo
- Inherited Metabolic Diseases Unit, Department of Paediatrics, Regional Centre for Newborn Screening, Diagnosis and Treatment of Inherited Metabolic Diseases and Congenital Endocrine DiseasesAzienda Ospedaliera Universitaria IntegrataVeronaItaly
| | - Alice Dianin
- Inherited Metabolic Diseases Unit, Department of Paediatrics, Regional Centre for Newborn Screening, Diagnosis and Treatment of Inherited Metabolic Diseases and Congenital Endocrine DiseasesAzienda Ospedaliera Universitaria IntegrataVeronaItaly
| | - Carmen Campana
- Division of Metabolic Diseases, Department of Pediatric SpecialtiesBambino Gesù Children's HospitalRomeItaly
| | - Miriam Rigoldi
- Rare Diseases CenterASST Monza, San Gerardo HospitalMonzaItaly
| | - Priya S. Kishnani
- Division of Medical Genetics, Department of PediatricsDuke University Medical CenterDurhamNorth CarolinaUSA
| | - Surekha Pendyal
- Division of Medical Genetics, Department of PediatricsDuke University Medical CenterDurhamNorth CarolinaUSA
| | - Pietro Strisciuglio
- Department of Translational Medicine, Section of PediatricsUniversity of Naples “Federico II”NaplesItaly
| | - Serena Gasperini
- Rare Metabolic Diseases Pediatric Center, Pediatric Clinic, Fondazione MBBM, San Gerardo HospitalMonzaItaly
| | - Giancarlo Parenti
- Department of Translational Medicine, Section of PediatricsUniversity of Naples “Federico II”NaplesItaly
| | - Rossella Parini
- Rare Metabolic Diseases Pediatric Center, Pediatric Clinic, Fondazione MBBM, San Gerardo HospitalMonzaItaly
| | - Sabrina Paci
- Department of PediatricsSan Paolo Hospital, ASST Santi Paolo e Carlo, University of MilanMilanItaly
| | - Daniela Melis
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana"Section of Pediatrics, University of SalernoBaronissi (SA)Italy
| | - Terry G. J. Derks
- Section of Metabolic DiseasesBeatrix Children's Hospital, University Medical Center Groningen, University of GroningenGroningenThe Netherlands
| |
Collapse
|
15
|
Hannibal L, Theimer J, Wingert V, Klotz K, Bierschenk I, Nitschke R, Spiekerkoetter U, Grünert SC. Metabolic Profiling in Human Fibroblasts Enables Subtype Clustering in Glycogen Storage Disease. Front Endocrinol (Lausanne) 2020; 11:579981. [PMID: 33329388 PMCID: PMC7719825 DOI: 10.3389/fendo.2020.579981] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 10/21/2020] [Indexed: 12/15/2022] Open
Abstract
Glycogen storage disease subtypes I and III (GSD I and GSD III) are monogenic inherited disorders of metabolism that disrupt glycogen metabolism. Unavailability of glucose in GSD I and induction of gluconeogenesis in GSD III modify energy sources and possibly, mitochondrial function. Abnormal mitochondrial structure and function were described in mice with GSD Ia, yet significantly less research is available in human cells and ketotic forms of the disease. We hypothesized that impaired glycogen storage results in distinct metabolic phenotypes in the extra- and intracellular compartments that may contribute to pathogenesis. Herein, we examined mitochondrial organization in live cells by spinning-disk confocal microscopy and profiled extra- and intracellular metabolites by targeted LC-MS/MS in cultured fibroblasts from healthy controls and from patients with GSD Ia, GSD Ib, and GSD III. Results from live imaging revealed that mitochondrial content and network morphology of GSD cells are comparable to that of healthy controls. Likewise, healthy controls and GSD cells exhibited comparable basal oxygen consumption rates. Targeted metabolomics followed by principal component analysis (PCA) and hierarchical clustering (HC) uncovered metabolically distinct poises of healthy controls and GSD subtypes. Assessment of individual metabolites recapitulated dysfunctional energy production (glycolysis, Krebs cycle, succinate), reduced creatinine export in GSD Ia and GSD III, and reduced antioxidant defense of the cysteine and glutathione systems. Our study serves as proof-of-concept that extra- and intracellular metabolite profiles distinguish glycogen storage disease subtypes from healthy controls. We posit that metabolite profiles provide hints to disease mechanisms as well as to nutritional and pharmacological elements that may optimize current treatment strategies.
Collapse
Affiliation(s)
- Luciana Hannibal
- Laboratory of Clinical Biochemistry and Metabolism, Department of General Pediatrics, Adolescent Medicine and Neonatology, Faculty of Medicine, Medical Center—University of Freiburg, Freiburg, Germany
- *Correspondence: Luciana Hannibal, ; Sarah C. Grünert,
| | - Jule Theimer
- Laboratory of Clinical Biochemistry and Metabolism, Department of General Pediatrics, Adolescent Medicine and Neonatology, Faculty of Medicine, Medical Center—University of Freiburg, Freiburg, Germany
| | - Victoria Wingert
- Laboratory of Clinical Biochemistry and Metabolism, Department of General Pediatrics, Adolescent Medicine and Neonatology, Faculty of Medicine, Medical Center—University of Freiburg, Freiburg, Germany
| | - Katharina Klotz
- Laboratory of Clinical Biochemistry and Metabolism, Department of General Pediatrics, Adolescent Medicine and Neonatology, Faculty of Medicine, Medical Center—University of Freiburg, Freiburg, Germany
| | - Iris Bierschenk
- Life Imaging Center, Center for Integrated Signalling Analysis, Albert-Ludwigs-University, Freiburg, Germany
| | - Roland Nitschke
- Life Imaging Center, Center for Integrated Signalling Analysis, Albert-Ludwigs-University, Freiburg, Germany
- BIOSS Centre for Biological Signaling Studies, Albert-Ludwigs-University Freiburg, Freiburg, Germany
| | - Ute Spiekerkoetter
- Department of General Pediatrics, Adolescent Medicine and Neonatology, Faculty of Medicine, Medical Center—University of Freiburg, Freiburg, Germany
| | - Sarah C. Grünert
- Department of General Pediatrics, Adolescent Medicine and Neonatology, Faculty of Medicine, Medical Center—University of Freiburg, Freiburg, Germany
- *Correspondence: Luciana Hannibal, ; Sarah C. Grünert,
| |
Collapse
|
16
|
Poulsen NS, Madsen KL, Hornsyld TM, Eisum ASV, Fornander F, Buch AE, Stemmerik MG, Ruiz-Ruiz C, Krag TO, Vissing J. Growth and differentiation factor 15 as a biomarker for mitochondrial myopathy. Mitochondrion 2019; 50:35-41. [PMID: 31669236 DOI: 10.1016/j.mito.2019.10.005] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Revised: 09/03/2019] [Accepted: 10/02/2019] [Indexed: 01/01/2023]
Abstract
OBJECTIVE We investigated if Growth and Differentiation Factor 15 (GDF-15) can be used as a biomarker to distinguish patients with mitochondrial myopathy from patients with other myopathies. METHODS Serum GDF-15 was measured in 28 patients with mitochondrial disease, 24 with metabolic myopathies, 27 with muscular dystrophy and 21 healthy controls. RESULTS AND CONCLUSIONS Our findings indicate that elevated GDF-15 can distinguish patients with mitochondrial myopathy from other myopathies, including metabolic myopathies. This suggests that increases in GDF-15 is specific to respiratory chain dysfunction rather than general metabolic dysfunction or muscle defect.
Collapse
Affiliation(s)
- Nanna Scharff Poulsen
- Copenhagen Neuromuscular Center, Rigshospitalet, University of Copenhagen, Copenhagen 2100, Denmark.
| | - Karen Lindhardt Madsen
- Copenhagen Neuromuscular Center, Rigshospitalet, University of Copenhagen, Copenhagen 2100, Denmark
| | - Tessa Munkeboe Hornsyld
- Copenhagen Neuromuscular Center, Rigshospitalet, University of Copenhagen, Copenhagen 2100, Denmark
| | - Anne-Sofie Vibæk Eisum
- Copenhagen Neuromuscular Center, Rigshospitalet, University of Copenhagen, Copenhagen 2100, Denmark
| | - Freja Fornander
- Copenhagen Neuromuscular Center, Rigshospitalet, University of Copenhagen, Copenhagen 2100, Denmark
| | - Astrid Emilie Buch
- Copenhagen Neuromuscular Center, Rigshospitalet, University of Copenhagen, Copenhagen 2100, Denmark
| | - Mads Godtfeldt Stemmerik
- Copenhagen Neuromuscular Center, Rigshospitalet, University of Copenhagen, Copenhagen 2100, Denmark
| | - Cristina Ruiz-Ruiz
- Copenhagen Neuromuscular Center, Rigshospitalet, University of Copenhagen, Copenhagen 2100, Denmark
| | - Thomas Oliver Krag
- Copenhagen Neuromuscular Center, Rigshospitalet, University of Copenhagen, Copenhagen 2100, Denmark
| | - John Vissing
- Copenhagen Neuromuscular Center, Rigshospitalet, University of Copenhagen, Copenhagen 2100, Denmark
| |
Collapse
|
17
|
Tobaly D, Laforêt P, Perry A, Habes D, Labrune P, Decostre V, Masingue M, Petit F, Barp A, Bello L, Carlier P, Carlier R. Whole‐Body Muscle Magnetic Resonance Imaging in Glycogen‐Storage Disease Type III. Muscle Nerve 2019; 60:72-79. [DOI: 10.1002/mus.26483] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/09/2019] [Indexed: 11/08/2022]
Affiliation(s)
- David Tobaly
- APHP, Service de Radiologie GHU PIFO pôle neuro‐locomoteurHôpital Raymond Poincaré Garches France
| | - Pascal Laforêt
- AP‐HP, Service de NeurologieHôpital Raymond‐Poincaré Garches France
- Centre de référence des maladies neuromusculaires Nord/Est/Ile de France France
| | - Ariane Perry
- Université Paris‐Diderot‐Sorbonne Paris Cité UMR 1149, Paris France
| | - Dalila Habes
- AP‐HP, Service de pédiatrieHôpital Bicêtre Kremlin‐Bicêtre France
| | - Philippe Labrune
- APHP, Hôpital Antoine Béclère, Centre de Référence Maladies Héréditaires du Métabolisme HépatiqueHôpitaux Universitaires Paris Sud Clamart France
| | | | - Marion Masingue
- Centre de référence des maladies neuromusculaires Nord/Est/Ile de FranceHôpital Pitié‐Salpêtrière APHP, Paris France
| | - Francois Petit
- APHP, Laboratoire de Génétique MoléculaireHôpitaux Universitaires Paris‐Sud, Hôpital Antoine Béclère Clamart France
| | - Andrea Barp
- Department of NeurosciencesUniversity of Padova Padova Italy
| | - Luca Bello
- Department of NeurosciencesUniversity of Padova Padova Italy
| | - Pierre Carlier
- AIM & CEA NMR LaboratoryInstitute of Myology, Pitié‐Salpêtrière University Hospital Paris France
| | - Robert‐Yves Carlier
- APHP, Service de Radiologie GHU PIFO pôle neuro‐locomoteurHôpital Raymond Poincaré Garches France
- Centre de référence des maladies neuromusculaires Nord/Est/Ile de France France
- UMR 1179Université Versailles Saint Quentin en Yvelines Paris Saclay France
| |
Collapse
|
18
|
Rodríguez-Gómez I, Santalla A, Díez-Bermejo J, Munguía-Izquierdo D, Alegre LM, Nogales-Gadea G, Arenas J, Martín MA, Lucía A, Ara I. Non-osteogenic muscle hypertrophy in children with McArdle disease. J Inherit Metab Dis 2018; 41:1037-1042. [PMID: 29594644 DOI: 10.1007/s10545-018-0170-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 02/28/2018] [Accepted: 03/05/2018] [Indexed: 01/13/2023]
Abstract
INTRODUCTION McArdle disease is an inborn disorder of muscle glycogen metabolism that produces exercise intolerance, and has been recently associated with low values of lean mass (LM) and bone mineral content (BMC) and density (BMD) in affected adults. Here we aimed to study whether this bone health problem begins in childhood. METHODS Forty children and adolescents were evaluated: 10 McArdle disease and 30 control children (mean age of both groups, 13 ± 2y). Body composition was evaluated by dual-energy X-ray absorptiometry and creatine kinase (CK) levels were determined in the patients as an estimate of muscle damage. RESULTS Legs bone mass was significantly lower in patients than in controls (-36% for BMC and -22% for BMD). Moreover, patients had significantly higher LM values in the legs than controls, whereas no difference was found for fat mass. CK levels were positively associated with LM in McArdle patients. A correlation was found between LM and BMD variables in the control group but not in McArdle patients. CONCLUSION We have identified a 'non-osteogenic muscle hypertrophy' in children with McArdle disease. This phenomenon warrants special attention since low osteogenesis at an early age predicts a high risk for osteoporosis later in life.
Collapse
Affiliation(s)
- I Rodríguez-Gómez
- GENUD Toledo Research Group, Universidad de Castilla-La Mancha, Avda Carlos III s/n, 45071, Toledo, Spain
- CIBER of Frailty and Healthy Aging (CIBERFES), Madrid, Spain
| | - A Santalla
- CIBER of Frailty and Healthy Aging (CIBERFES), Madrid, Spain
- Department of Sport and Computer Science, Section of Physical Education and Sports, Faculty of Sport, Universidad Pablo de Olavide, Sevilla, Spain
| | - J Díez-Bermejo
- Research Institute Hospital 12 de Octubre, Madrid, Spain
| | - D Munguía-Izquierdo
- CIBER of Frailty and Healthy Aging (CIBERFES), Madrid, Spain
- Department of Sport and Computer Science, Section of Physical Education and Sports, Faculty of Sport, Universidad Pablo de Olavide, Sevilla, Spain
| | - L M Alegre
- GENUD Toledo Research Group, Universidad de Castilla-La Mancha, Avda Carlos III s/n, 45071, Toledo, Spain
- CIBER of Frailty and Healthy Aging (CIBERFES), Madrid, Spain
| | - G Nogales-Gadea
- Neuromuscular and Neuropediatric Research Group, Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol, Campus Can Ruti, Universitat Autònoma de Barcelona, Badalona, Spain
- CIBER Rare Disorders (CIBERER), Madrid, Spain
| | - J Arenas
- Research Institute Hospital 12 de Octubre, Madrid, Spain
- CIBER Rare Disorders (CIBERER), Madrid, Spain
| | - M A Martín
- Research Institute Hospital 12 de Octubre, Madrid, Spain
- CIBER Rare Disorders (CIBERER), Madrid, Spain
| | - A Lucía
- CIBER of Frailty and Healthy Aging (CIBERFES), Madrid, Spain
- School of Research and Doctorate Studies, Universidad Europea de Madrid, Madrid, Spain
| | - I Ara
- GENUD Toledo Research Group, Universidad de Castilla-La Mancha, Avda Carlos III s/n, 45071, Toledo, Spain.
- CIBER of Frailty and Healthy Aging (CIBERFES), Madrid, Spain.
| |
Collapse
|
19
|
Rossi A, Ruoppolo M, Formisano P, Villani G, Albano L, Gallo G, Crisci D, Moccia A, Parenti G, Strisciuglio P, Melis D. Insulin-resistance in glycogen storage disease type Ia: linking carbohydrates and mitochondria? J Inherit Metab Dis 2018; 41:985-995. [PMID: 29435782 DOI: 10.1007/s10545-018-0149-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2017] [Accepted: 12/06/2017] [Indexed: 12/29/2022]
Abstract
BACKGROUND Glycogen storage disease type I (GSDI) is an inborn error of carbohydrate metabolism caused by mutations of either the G6PC gene (GSDIa) or the SLC37A4 gene (GSDIb). GSDIa patients are at higher risk of developing insulin-resistance (IR). Mitochondrial dysfunction has been implicated in the development of IR. Mitochondrial dysfunction can demonstrate abnormalities in plama acylcarnitines (ACs) and urine organic acids (UOA). The aim of the study was to investigate the presence of mitochondrial impairment in GSDI patients and its possible connection with IR. METHODS Fourteen GSDIa, seven GSDIb patients, 28 and 14 age and sex-matched controls, were enrolled. Plasma ACs, UOA, and surrogate markers of IR (HOMA-IR, QUICKI, ISI, VAI) were measured. RESULTS GSDIa patients showed higher short-chain ACs and long-chain ACs levels and increased urinary excretion of lactate, pyruvate, 2-ketoglutarate, 3-methylglutaconate, adipate, suberate, aconitate, ethylmalonate, fumarate, malate, sebacate, 4-octenedioate, 3OH-suberate, and 3-methylglutarate than controls (p < 0.05). GSDIb patients showed higher C0 and C4 levels and increased urinary excretion of lactate, 3-methylglutarate and suberate than controls (p < 0.05). In GSDIa patients C18 levels correlated with insulin serum levels, HOMA-IR, QUICKI, and ISI; long-chain ACs levels correlated with cholesterol, triglycerides, ALT serum levels, and VAI. DISCUSSION Increased plasma ACs and abnormal UOA profile suggest mitochondrial impairment in GSDIa. Correlation data suggest a possible connection between mitochondrial impairment and IR. We hypothesized that mitochondrial overload might generate by-products potentially affecting the insulin signaling pathway, leading to IR. On the basis of the available data, the possible pathomechanism for IR in GSDIa is proposed.
Collapse
Affiliation(s)
- Alessandro Rossi
- Department of Translational Medical Science, Section of Pediatrics, Federico II University, Via Sergio Pansini, 5, 80131, Naples, Italy.
| | - Margherita Ruoppolo
- Department of Molecular Medicine and Medical Biotechnology, Federico II University, Naples, Italy
- CEINGE Biotecnologie Avanzates.c.ar.l., Naples, Italy
| | - Pietro Formisano
- Department of Translational Medical Science, Section of Clinical Pathology, Federico II University, Naples, Italy
| | - Guglielmo Villani
- Department of Molecular Medicine and Medical Biotechnology, Federico II University, Naples, Italy
- CEINGE Biotecnologie Avanzates.c.ar.l., Naples, Italy
| | - Lucia Albano
- Department of Molecular Medicine and Medical Biotechnology, Federico II University, Naples, Italy
- CEINGE Biotecnologie Avanzates.c.ar.l., Naples, Italy
| | - Giovanna Gallo
- Department of Molecular Medicine and Medical Biotechnology, Federico II University, Naples, Italy
- CEINGE Biotecnologie Avanzates.c.ar.l., Naples, Italy
| | - Daniela Crisci
- Department of Molecular Medicine and Medical Biotechnology, Federico II University, Naples, Italy
- CEINGE Biotecnologie Avanzates.c.ar.l., Naples, Italy
| | - Augusta Moccia
- Department of Translational Medical Science, Section of Clinical Pathology, Federico II University, Naples, Italy
| | - Giancarlo Parenti
- Department of Translational Medical Science, Section of Pediatrics, Federico II University, Via Sergio Pansini, 5, 80131, Naples, Italy
- Telethon Institute of Genetics and Medicine, Pozzuoli, Italy
| | - Pietro Strisciuglio
- Department of Translational Medical Science, Section of Pediatrics, Federico II University, Via Sergio Pansini, 5, 80131, Naples, Italy
| | - Daniela Melis
- Department of Translational Medical Science, Section of Pediatrics, Federico II University, Via Sergio Pansini, 5, 80131, Naples, Italy
| |
Collapse
|
20
|
Ellingwood SS, Cheng A. Biochemical and clinical aspects of glycogen storage diseases. J Endocrinol 2018; 238:R131-R141. [PMID: 29875163 PMCID: PMC6050127 DOI: 10.1530/joe-18-0120] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 06/04/2018] [Indexed: 12/29/2022]
Abstract
The synthesis of glycogen represents a key pathway for the disposal of excess glucose while its degradation is crucial for providing energy during exercise and times of need. The importance of glycogen metabolism is also highlighted by human genetic disorders that are caused by mutations in the enzymes involved. In this review, we provide a basic summary on glycogen metabolism and some of the clinical aspects of the classical glycogen storage diseases. Disruptions in glycogen metabolism usually result in some level of dysfunction in the liver, muscle, heart, kidney and/or brain. Furthermore, the spectrum of symptoms observed is very broad, depending on the affected enzyme. Finally, we briefly discuss an aspect of glycogen metabolism related to the maintenance of its structure that seems to be gaining more recent attention. For example, in Lafora progressive myoclonus epilepsy, patients exhibit an accumulation of inclusion bodies in several tissues, containing glycogen with increased phosphorylation, longer chain lengths and irregular branch points. This abnormal structure is thought to make glycogen insoluble and resistant to degradation. Consequently, its accumulation becomes toxic to neurons, leading to cell death. Although the genes responsible have been identified, studies in the past two decades are only beginning to shed light into their molecular functions.
Collapse
Affiliation(s)
- Sara S Ellingwood
- Department of Biochemistry and Molecular GeneticsUniversity of Louisville School of Medicine, Louisville, Kentucky, USA
| | - Alan Cheng
- Department of Biochemistry and Molecular GeneticsUniversity of Louisville School of Medicine, Louisville, Kentucky, USA
| |
Collapse
|
21
|
Tosi I, Art T, Cassart D, Farnir F, Ceusters J, Serteyn D, Lemieux H, Votion DM. Altered mitochondrial oxidative phosphorylation capacity in horses suffering from polysaccharide storage myopathy. J Bioenerg Biomembr 2018; 50:379-390. [PMID: 30143916 DOI: 10.1007/s10863-018-9768-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 08/15/2018] [Indexed: 12/22/2022]
Abstract
Polysaccharide storage myopathy (PSSM) is a widely described cause of exertional rhabdomyolysis in horses. Mitochondria play a central role in cellular energetics and are involved in human glycogen storage diseases but their role has been overlooked in equine PSSM. We hypothesized that the mitochondrial function is impaired in the myofibers of PSSM-affected horses. Nine horses with a history of recurrent exercise-associated rhabdomyolysis were tested for the glycogen synthase 1 gene (GYS1) mutation: 5 were tested positive (PSSM group) and 4 were tested negative (horses suffering from rhabdomyolysis of unknown origin, RUO group). Microbiopsies were collected from the gluteus medius (gm) and triceps brachii (tb) muscles of PSSM, RUO and healthy controls (HC) horses and used for histological analysis and for assessment of oxidative phosphorylation (OXPHOS) using high-resolution respirometry. The modification of mitochondrial respiration between HC, PSSM and RUO horses varied according to the muscle and to substrates feeding OXPHOS. In particular, compared to HC horses, the gm muscle of PSSM horses showed decreased OXPHOS- and electron transfer (ET)-capacities in presence of glutamate&malate&succinate. RUO horses showed a higher OXPHOS-capacity (with glutamate&malate) and ET-capacity (with glutamate&malate&succinate) in both muscles in comparison to the PSSM group. When expressed as ratios, our results highlighted a higher contribution of the NADH pathway (feeding electrons into Complex I) to maximal OXPHOS or ET-capacity in both rhabdomyolysis groups compared to the HC. Specific modifications in mitochondrial function might contribute to the pathogenesis of PSSM and of other types of exertional rhabdomyolyses.
Collapse
Affiliation(s)
- Irene Tosi
- Equine Sports Medicine Centre, Department of Functional Sciences, Fundamental and Applied Research for Animals & Health (FARAH), Faculty of Veterinary Medicine, University of Liège, Avenue de Cureghem, 7A (B42), Quartier Vallée 2, Sart Tilman, B-4000, Liège, Belgium.
| | - Tatiana Art
- Equine Sports Medicine Centre, Department of Functional Sciences, Fundamental and Applied Research for Animals & Health (FARAH), Faculty of Veterinary Medicine, University of Liège, Avenue de Cureghem, 7A (B42), Quartier Vallée 2, Sart Tilman, B-4000, Liège, Belgium
| | - Dominique Cassart
- Department of pathology, Fundamental and Applied Research for Animals & Health (FARAH), Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
| | - Frédéric Farnir
- Department of animal productions: Biostatistics and Bioinformatics Applied in Veterinary Sciences, Fundamental and Applied Research for Animals & Health (FARAH), Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
| | - Justine Ceusters
- Centre of Oxygen, Research and Development, University of Liège, Liège, Belgium
| | - Didier Serteyn
- Centre of Oxygen, Research and Development, University of Liège, Liège, Belgium.,Equine Pole, Fundamental and Applied Research for Animals & Health (FARAH), Faculty of Veterinary Medicine, Liège, Belgium
| | - Hélène Lemieux
- Faculty Saint-Jean, University of Alberta, Edmonton, AB, Canada
| | - Dominique-Marie Votion
- Equine Pole, Fundamental and Applied Research for Animals & Health (FARAH), Faculty of Veterinary Medicine, Liège, Belgium
| |
Collapse
|
22
|
Rodríguez-Gómez I, Santalla A, Díez-Bermejo J, Munguía-Izquierdo D, Alegre LM, Nogales-Gadea G, Arenas J, Martín MÁ, Lucía A, Ara I. A New Condition in McArdle Disease: Poor Bone Health-Benefits of an Active Lifestyle. Med Sci Sports Exerc 2018; 50:3-10. [PMID: 29251685 DOI: 10.1249/mss.0000000000001414] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
INTRODUCTION-PURPOSE McArdle disease (muscle glycogen phosphorylase deficiency) is a genetic condition associated with exercise intolerance, but how it affects lean mass (LM) and bone mineral content (BMC) and density (BMD) in patients is unknown. We compared these variables between McArdle patients and age-/sex-matched healthy controls and assessed their potential association with physical activity levels in patients. METHODS A case-control, cross-sectional design was used to examine LM, BMC, and BMD by using dual-energy x-ray absorptiometry in 136 young adults of both sexes (36 McArdle patients (33 ± 15 yr) and 103 controls (34 ± 11 yr)). Physical activity was assessed using the International Physical Activity Questionnaire. RESULTS McArdle patients had significantly lower LM values in whole-body and regional sites compared with their corresponding controls, whereas no differences were found (except for the trunk) when physically active patients (n = 23) were compared with controls. All bone-related variables were significantly lower in patients than in controls (average difference of 13% for BMC and 7.6% for BMD). By contrast, no significant differences at the lumbar spine, pelvis, and femur sites were found between physically active patients and controls. CONCLUSIONS We report on a previously undescribed condition in McArdle patients, poor bone health, which warrants further attention because it can occur in relatively young adults. An active lifestyle can at least partly alleviate this disorder presumably because of its beneficial effect on LM.
Collapse
Affiliation(s)
- Irene Rodríguez-Gómez
- GENUD Toledo Research Group, Universidad de Castilla-La Mancha, Toledo, SPAIN.,GENUD Toledo Research Group, Universidad de Castilla-La Mancha, Toledo, SPAIN
| | - Alfredo Santalla
- GENUD Toledo Research Group, Universidad de Castilla-La Mancha, Toledo, SPAIN.,GENUD Toledo Research Group, Universidad de Castilla-La Mancha, Toledo, SPAIN
| | - Jorge Díez-Bermejo
- GENUD Toledo Research Group, Universidad de Castilla-La Mancha, Toledo, SPAIN
| | - Diego Munguía-Izquierdo
- GENUD Toledo Research Group, Universidad de Castilla-La Mancha, Toledo, SPAIN.,GENUD Toledo Research Group, Universidad de Castilla-La Mancha, Toledo, SPAIN
| | - Luis M Alegre
- GENUD Toledo Research Group, Universidad de Castilla-La Mancha, Toledo, SPAIN.,GENUD Toledo Research Group, Universidad de Castilla-La Mancha, Toledo, SPAIN
| | - Gisela Nogales-Gadea
- GENUD Toledo Research Group, Universidad de Castilla-La Mancha, Toledo, SPAIN.,GENUD Toledo Research Group, Universidad de Castilla-La Mancha, Toledo, SPAIN
| | - Joaquin Arenas
- GENUD Toledo Research Group, Universidad de Castilla-La Mancha, Toledo, SPAIN.,GENUD Toledo Research Group, Universidad de Castilla-La Mancha, Toledo, SPAIN
| | - Miguel Ángel Martín
- GENUD Toledo Research Group, Universidad de Castilla-La Mancha, Toledo, SPAIN.,GENUD Toledo Research Group, Universidad de Castilla-La Mancha, Toledo, SPAIN
| | - Alejandro Lucía
- GENUD Toledo Research Group, Universidad de Castilla-La Mancha, Toledo, SPAIN.,GENUD Toledo Research Group, Universidad de Castilla-La Mancha, Toledo, SPAIN
| | - Ignacio Ara
- GENUD Toledo Research Group, Universidad de Castilla-La Mancha, Toledo, SPAIN.,GENUD Toledo Research Group, Universidad de Castilla-La Mancha, Toledo, SPAIN
| |
Collapse
|
23
|
Abstract
Hypoglycemia is a heterogeneous disorder with many different possible etiologies, including hyperinsulinism, glycogen storage disorders, fatty acid disorders, hormonal deficiencies, and metabolic defects, among others. This condition affects newborns to adolescents, with various approaches to diagnosis and management. This paper will review current literature on the history of hypoglycemia, current discussion on the definition of hypoglycemia, as well as etiologies, diagnosis, and management.
Collapse
Affiliation(s)
- Kajal Gandhi
- Section of Endocrinology, Nationwide Children's Hospital, Columbus, OH, USA
| |
Collapse
|
24
|
Szymanska E, Ehmke vel Emczynska-Seliga E, Rokicki D, Ksiazyk J. Body composition measurements using bioelectrical impedance analysis (BIA) in pediatric patients with hepatic glycogen storage disease – Preliminary data. Clin Nutr ESPEN 2017. [DOI: 10.1016/j.clnesp.2017.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
25
|
Insua A, Monje A, Wang HL, Miron RJ. Basis of bone metabolism around dental implants during osseointegration and peri-implant bone loss. J Biomed Mater Res A 2017; 105:2075-2089. [DOI: 10.1002/jbm.a.36060] [Citation(s) in RCA: 157] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 03/01/2017] [Accepted: 03/03/2017] [Indexed: 12/18/2022]
Affiliation(s)
- Angel Insua
- Department of Periodontics and Oral Medicine; The University of Michigan; Ann Arbor Michigan
| | - Alberto Monje
- Department of Periodontics and Oral Medicine; The University of Michigan; Ann Arbor Michigan
| | - Hom-Lay Wang
- Department of Periodontics and Oral Medicine; The University of Michigan; Ann Arbor Michigan
| | - Richard J. Miron
- Department of Periodontology; Nova Southeastern University; Fort Lauderdale Florida
| |
Collapse
|